dir.c 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * fs/kernfs/dir.c - kernfs directory implementation
 *
 * Copyright (c) 2001-3 Patrick Mochel
 * Copyright (c) 2007 SUSE Linux Products GmbH
 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 */
10

11
#include <linux/sched.h>
12 13 14 15 16 17 18 19 20
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>

#include "kernfs-internal.h"

21
DEFINE_MUTEX(kernfs_mutex);
22 23
static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24
static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
25

26
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27

T
Tejun Heo 已提交
28 29 30 31 32 33
static bool kernfs_active(struct kernfs_node *kn)
{
	lockdep_assert_held(&kernfs_mutex);
	return atomic_read(&kn->active) >= 0;
}

34 35 36 37 38 39 40 41 42
static bool kernfs_lockdep(struct kernfs_node *kn)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	return kn->flags & KERNFS_LOCKDEP;
#else
	return false;
#endif
}

43 44
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
{
45 46 47
	if (!kn)
		return strlcpy(buf, "(null)", buflen);

48 49 50
	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
}

51 52
/* kernfs_node_depth - compute depth from @from to @to */
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53
{
54
	size_t depth = 0;
55

56 57 58 59 60 61
	while (to->parent && to != from) {
		depth++;
		to = to->parent;
	}
	return depth;
}
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
						  struct kernfs_node *b)
{
	size_t da, db;
	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);

	if (ra != rb)
		return NULL;

	da = kernfs_depth(ra->kn, a);
	db = kernfs_depth(rb->kn, b);

	while (da > db) {
		a = a->parent;
		da--;
	}
	while (db > da) {
		b = b->parent;
		db--;
	}

	/* worst case b and a will be the same at root */
	while (b != a) {
		b = b->parent;
		a = a->parent;
	}

	return a;
}

/**
 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
 * where kn_from is treated as root of the path.
 * @kn_from: kernfs node which should be treated as root for the path
 * @kn_to: kernfs node to which path is needed
 * @buf: buffer to copy the path into
 * @buflen: size of @buf
 *
 * We need to handle couple of scenarios here:
 * [1] when @kn_from is an ancestor of @kn_to at some level
 * kn_from: /n1/n2/n3
 * kn_to:   /n1/n2/n3/n4/n5
 * result:  /n4/n5
 *
 * [2] when @kn_from is on a different hierarchy and we need to find common
 * ancestor between @kn_from and @kn_to.
 * kn_from: /n1/n2/n3/n4
 * kn_to:   /n1/n2/n5
 * result:  /../../n5
 * OR
 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 * kn_to:   /n1/n2/n3         [depth=3]
 * result:  /../..
 *
117 118
 * [3] when @kn_to is NULL result will be "(null)"
 *
119 120 121
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
122 123 124 125 126 127 128
 */
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
					struct kernfs_node *kn_from,
					char *buf, size_t buflen)
{
	struct kernfs_node *kn, *common;
	const char parent_str[] = "/..";
129 130
	size_t depth_from, depth_to, len = 0;
	int i, j;
131

132 133 134
	if (!kn_to)
		return strlcpy(buf, "(null)", buflen);

135 136 137 138 139 140 141 142
	if (!kn_from)
		kn_from = kernfs_root(kn_to)->kn;

	if (kn_from == kn_to)
		return strlcpy(buf, "/", buflen);

	common = kernfs_common_ancestor(kn_from, kn_to);
	if (WARN_ON(!common))
143
		return -EINVAL;
144 145 146 147 148 149 150 151 152 153 154 155

	depth_to = kernfs_depth(common, kn_to);
	depth_from = kernfs_depth(common, kn_from);

	if (buf)
		buf[0] = '\0';

	for (i = 0; i < depth_from; i++)
		len += strlcpy(buf + len, parent_str,
			       len < buflen ? buflen - len : 0);

	/* Calculate how many bytes we need for the rest */
156 157 158 159 160 161 162
	for (i = depth_to - 1; i >= 0; i--) {
		for (kn = kn_to, j = 0; j < i; j++)
			kn = kn->parent;
		len += strlcpy(buf + len, "/",
			       len < buflen ? buflen - len : 0);
		len += strlcpy(buf + len, kn->name,
			       len < buflen ? buflen - len : 0);
163
	}
164

165
	return len;
166 167 168 169 170 171 172 173 174 175 176 177
}

/**
 * kernfs_name - obtain the name of a given node
 * @kn: kernfs_node of interest
 * @buf: buffer to copy @kn's name into
 * @buflen: size of @buf
 *
 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 *
178 179
 * Fills buffer with "(null)" if @kn is NULL.
 *
180 181 182 183 184 185 186 187 188 189 190 191 192
 * This function can be called from any context.
 */
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_name_locked(kn, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}

193 194 195 196 197 198 199 200 201 202 203 204
/**
 * kernfs_path_from_node - build path of node @to relative to @from.
 * @from: parent kernfs_node relative to which we need to build the path
 * @to: kernfs_node of interest
 * @buf: buffer to copy @to's path into
 * @buflen: size of @buf
 *
 * Builds @to's path relative to @from in @buf. @from and @to must
 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 * path (which includes '..'s) as needed to reach from @from to @to is
 * returned.
 *
205 206 207
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
208 209 210 211 212 213 214 215 216 217 218 219 220 221
 */
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
			  char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}
EXPORT_SYMBOL_GPL(kernfs_path_from_node);

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/**
 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_name(struct kernfs_node *kn)
{
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);

	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
	pr_cont("%s", kernfs_pr_cont_buf);

	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_path(struct kernfs_node *kn)
{
	unsigned long flags;
249
	int sz;
250 251 252

	spin_lock_irqsave(&kernfs_rename_lock, flags);

253 254 255 256 257 258 259 260 261 262 263 264 265
	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
					  sizeof(kernfs_pr_cont_buf));
	if (sz < 0) {
		pr_cont("(error)");
		goto out;
	}

	if (sz >= sizeof(kernfs_pr_cont_buf)) {
		pr_cont("(name too long)");
		goto out;
	}

	pr_cont("%s", kernfs_pr_cont_buf);
266

267
out:
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * kernfs_get_parent - determine the parent node and pin it
 * @kn: kernfs_node of interest
 *
 * Determines @kn's parent, pins and returns it.  This function can be
 * called from any context.
 */
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
{
	struct kernfs_node *parent;
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	parent = kn->parent;
	kernfs_get(parent);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);

	return parent;
}

291
/**
292
 *	kernfs_name_hash
293 294 295 296 297
 *	@name: Null terminated string to hash
 *	@ns:   Namespace tag to hash
 *
 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
 */
298
static unsigned int kernfs_name_hash(const char *name, const void *ns)
299
{
300
	unsigned long hash = init_name_hash(ns);
301 302 303
	unsigned int len = strlen(name);
	while (len--)
		hash = partial_name_hash(*name++, hash);
304
	hash = end_name_hash(hash);
305 306
	hash &= 0x7fffffffU;
	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
R
Richard Cochran 已提交
307
	if (hash < 2)
308 309 310 311 312 313
		hash += 2;
	if (hash >= INT_MAX)
		hash = INT_MAX - 1;
	return hash;
}

314 315
static int kernfs_name_compare(unsigned int hash, const char *name,
			       const void *ns, const struct kernfs_node *kn)
316
{
317 318 319 320 321 322 323 324
	if (hash < kn->hash)
		return -1;
	if (hash > kn->hash)
		return 1;
	if (ns < kn->ns)
		return -1;
	if (ns > kn->ns)
		return 1;
325
	return strcmp(name, kn->name);
326 327
}

328 329
static int kernfs_sd_compare(const struct kernfs_node *left,
			     const struct kernfs_node *right)
330
{
331
	return kernfs_name_compare(left->hash, left->name, left->ns, right);
332 333 334
}

/**
335
 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
336
 *	@kn: kernfs_node of interest
337
 *
338
 *	Link @kn into its sibling rbtree which starts from
339
 *	@kn->parent->dir.children.
340 341
 *
 *	Locking:
342
 *	mutex_lock(kernfs_mutex)
343 344 345 346
 *
 *	RETURNS:
 *	0 on susccess -EEXIST on failure.
 */
347
static int kernfs_link_sibling(struct kernfs_node *kn)
348
{
349
	struct rb_node **node = &kn->parent->dir.children.rb_node;
350 351 352
	struct rb_node *parent = NULL;

	while (*node) {
353
		struct kernfs_node *pos;
354 355
		int result;

356
		pos = rb_to_kn(*node);
357
		parent = *node;
358
		result = kernfs_sd_compare(kn, pos);
359
		if (result < 0)
360
			node = &pos->rb.rb_left;
361
		else if (result > 0)
362
			node = &pos->rb.rb_right;
363 364 365
		else
			return -EEXIST;
	}
J
Jianyu Zhan 已提交
366

367
	/* add new node and rebalance the tree */
368 369
	rb_link_node(&kn->rb, parent, node);
	rb_insert_color(&kn->rb, &kn->parent->dir.children);
J
Jianyu Zhan 已提交
370 371 372 373 374

	/* successfully added, account subdir number */
	if (kernfs_type(kn) == KERNFS_DIR)
		kn->parent->dir.subdirs++;

375 376 377 378
	return 0;
}

/**
379
 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380
 *	@kn: kernfs_node of interest
381
 *
382 383 384
 *	Try to unlink @kn from its sibling rbtree which starts from
 *	kn->parent->dir.children.  Returns %true if @kn was actually
 *	removed, %false if @kn wasn't on the rbtree.
385 386
 *
 *	Locking:
387
 *	mutex_lock(kernfs_mutex)
388
 */
389
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390
{
391 392 393
	if (RB_EMPTY_NODE(&kn->rb))
		return false;

T
Tejun Heo 已提交
394
	if (kernfs_type(kn) == KERNFS_DIR)
395
		kn->parent->dir.subdirs--;
396

397
	rb_erase(&kn->rb, &kn->parent->dir.children);
398 399
	RB_CLEAR_NODE(&kn->rb);
	return true;
400 401 402
}

/**
403
 *	kernfs_get_active - get an active reference to kernfs_node
404
 *	@kn: kernfs_node to get an active reference to
405
 *
406
 *	Get an active reference of @kn.  This function is noop if @kn
407 408 409
 *	is NULL.
 *
 *	RETURNS:
410
 *	Pointer to @kn on success, NULL on failure.
411
 */
412
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413
{
414
	if (unlikely(!kn))
415 416
		return NULL;

417 418
	if (!atomic_inc_unless_negative(&kn->active))
		return NULL;
419

420
	if (kernfs_lockdep(kn))
421 422
		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
	return kn;
423 424 425
}

/**
426
 *	kernfs_put_active - put an active reference to kernfs_node
427
 *	@kn: kernfs_node to put an active reference to
428
 *
429
 *	Put an active reference to @kn.  This function is noop if @kn
430 431
 *	is NULL.
 */
432
void kernfs_put_active(struct kernfs_node *kn)
433
{
434
	struct kernfs_root *root = kernfs_root(kn);
435 436
	int v;

437
	if (unlikely(!kn))
438 439
		return;

440
	if (kernfs_lockdep(kn))
441
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
442
	v = atomic_dec_return(&kn->active);
T
Tejun Heo 已提交
443
	if (likely(v != KN_DEACTIVATED_BIAS))
444 445
		return;

446
	wake_up_all(&root->deactivate_waitq);
447 448 449
}

/**
T
Tejun Heo 已提交
450 451
 * kernfs_drain - drain kernfs_node
 * @kn: kernfs_node to drain
452
 *
T
Tejun Heo 已提交
453 454 455
 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 * removers may invoke this function concurrently on @kn and all will
 * return after draining is complete.
456
 */
T
Tejun Heo 已提交
457
static void kernfs_drain(struct kernfs_node *kn)
458
	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459
{
460
	struct kernfs_root *root = kernfs_root(kn);
461

462
	lockdep_assert_held(&kernfs_mutex);
T
Tejun Heo 已提交
463
	WARN_ON_ONCE(kernfs_active(kn));
464

465
	mutex_unlock(&kernfs_mutex);
466

467
	if (kernfs_lockdep(kn)) {
468 469 470 471
		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
			lock_contended(&kn->dep_map, _RET_IP_);
	}
472

473
	/* but everyone should wait for draining */
474 475
	wait_event(root->deactivate_waitq,
		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476

477
	if (kernfs_lockdep(kn)) {
478 479 480
		lock_acquired(&kn->dep_map, _RET_IP_);
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
	}
481

482
	kernfs_drain_open_files(kn);
483

484
	mutex_lock(&kernfs_mutex);
485 486 487
}

/**
488 489
 * kernfs_get - get a reference count on a kernfs_node
 * @kn: the target kernfs_node
490
 */
491
void kernfs_get(struct kernfs_node *kn)
492
{
493
	if (kn) {
494 495
		WARN_ON(!atomic_read(&kn->count));
		atomic_inc(&kn->count);
496 497 498 499 500
	}
}
EXPORT_SYMBOL_GPL(kernfs_get);

/**
501 502
 * kernfs_put - put a reference count on a kernfs_node
 * @kn: the target kernfs_node
503
 *
504
 * Put a reference count of @kn and destroy it if it reached zero.
505
 */
506
void kernfs_put(struct kernfs_node *kn)
507
{
508
	struct kernfs_node *parent;
509
	struct kernfs_root *root;
510

511 512 513 514
	/*
	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
	 * depends on this to filter reused stale node
	 */
515
	if (!kn || !atomic_dec_and_test(&kn->count))
516
		return;
517
	root = kernfs_root(kn);
518
 repeat:
T
Tejun Heo 已提交
519 520
	/*
	 * Moving/renaming is always done while holding reference.
521
	 * kn->parent won't change beneath us.
522
	 */
523
	parent = kn->parent;
524

T
Tejun Heo 已提交
525 526 527
	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528

T
Tejun Heo 已提交
529
	if (kernfs_type(kn) == KERNFS_LINK)
530
		kernfs_put(kn->symlink.target_kn);
T
Tejun Heo 已提交
531 532 533

	kfree_const(kn->name);

534 535 536 537 538
	if (kn->iattr) {
		if (kn->iattr->ia_secdata)
			security_release_secctx(kn->iattr->ia_secdata,
						kn->iattr->ia_secdata_len);
		simple_xattrs_free(&kn->iattr->xattrs);
539
	}
540
	kfree(kn->iattr);
541
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
542
	idr_remove(&root->ino_idr, kn->id.ino);
543
	spin_unlock(&kernfs_idr_lock);
544
	kmem_cache_free(kernfs_node_cache, kn);
545

546 547
	kn = parent;
	if (kn) {
548
		if (atomic_dec_and_test(&kn->count))
549 550
			goto repeat;
	} else {
551
		/* just released the root kn, free @root too */
552
		idr_destroy(&root->ino_idr);
553 554
		kfree(root);
	}
555 556 557
}
EXPORT_SYMBOL_GPL(kernfs_put);

558
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
559
{
560
	struct kernfs_node *kn;
561 562 563 564

	if (flags & LOOKUP_RCU)
		return -ECHILD;

T
Tejun Heo 已提交
565
	/* Always perform fresh lookup for negatives */
566
	if (d_really_is_negative(dentry))
T
Tejun Heo 已提交
567 568
		goto out_bad_unlocked;

S
Shaohua Li 已提交
569
	kn = kernfs_dentry_node(dentry);
570
	mutex_lock(&kernfs_mutex);
571

T
Tejun Heo 已提交
572 573
	/* The kernfs node has been deactivated */
	if (!kernfs_active(kn))
574 575
		goto out_bad;

576
	/* The kernfs node has been moved? */
S
Shaohua Li 已提交
577
	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
578 579
		goto out_bad;

580
	/* The kernfs node has been renamed */
581
	if (strcmp(dentry->d_name.name, kn->name) != 0)
582 583
		goto out_bad;

584
	/* The kernfs node has been moved to a different namespace */
585
	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586
	    kernfs_info(dentry->d_sb)->ns != kn->ns)
587 588
		goto out_bad;

589
	mutex_unlock(&kernfs_mutex);
590 591
	return 1;
out_bad:
592
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
593
out_bad_unlocked:
594 595 596
	return 0;
}

597
const struct dentry_operations kernfs_dops = {
598
	.d_revalidate	= kernfs_dop_revalidate,
599 600
};

601 602 603 604 605 606 607 608 609 610 611 612 613
/**
 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 * @dentry: the dentry in question
 *
 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 * kernfs one, %NULL is returned.
 *
 * While the returned kernfs_node will stay accessible as long as @dentry
 * is accessible, the returned node can be in any state and the caller is
 * fully responsible for determining what's accessible.
 */
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
{
S
Shaohua Li 已提交
614 615 616
	if (dentry->d_sb->s_op == &kernfs_sops &&
	    !d_really_is_negative(dentry))
		return kernfs_dentry_node(dentry);
617 618 619
	return NULL;
}

620 621 622
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
					     const char *name, umode_t mode,
					     unsigned flags)
623
{
624
	struct kernfs_node *kn;
S
Shaohua Li 已提交
625 626
	u32 gen;
	int cursor;
627
	int ret;
628

T
Tejun Heo 已提交
629 630 631
	name = kstrdup_const(name, GFP_KERNEL);
	if (!name)
		return NULL;
632

633
	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
634
	if (!kn)
635 636
		goto err_out1;

637 638
	idr_preload(GFP_KERNEL);
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
639 640 641 642 643
	cursor = idr_get_cursor(&root->ino_idr);
	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
	if (ret >= 0 && ret < cursor)
		root->next_generation++;
	gen = root->next_generation;
644 645
	spin_unlock(&kernfs_idr_lock);
	idr_preload_end();
646
	if (ret < 0)
647
		goto err_out2;
S
Shaohua Li 已提交
648 649
	kn->id.ino = ret;
	kn->id.generation = gen;
650

651 652 653 654 655
	/*
	 * set ino first. This barrier is paired with atomic_inc_not_zero in
	 * kernfs_find_and_get_node_by_ino
	 */
	smp_mb__before_atomic();
656
	atomic_set(&kn->count, 1);
T
Tejun Heo 已提交
657
	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
658
	RB_CLEAR_NODE(&kn->rb);
659

660 661
	kn->name = name;
	kn->mode = mode;
T
Tejun Heo 已提交
662
	kn->flags = flags;
663

664
	return kn;
665 666

 err_out2:
667
	kmem_cache_free(kernfs_node_cache, kn);
668
 err_out1:
T
Tejun Heo 已提交
669
	kfree_const(name);
670 671 672
	return NULL;
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
				    const char *name, umode_t mode,
				    unsigned flags)
{
	struct kernfs_node *kn;

	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
	if (kn) {
		kernfs_get(parent);
		kn->parent = parent;
	}
	return kn;
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/*
 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
 * @root: the kernfs root
 * @ino: inode number
 *
 * RETURNS:
 * NULL on failure. Return a kernfs node with reference counter incremented
 */
struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
						    unsigned int ino)
{
	struct kernfs_node *kn;

	rcu_read_lock();
	kn = idr_find(&root->ino_idr, ino);
	if (!kn)
		goto out;

	/*
	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
	 * is freed, but reused before RCU grace period. But a freed node (see
	 * kernfs_put) or an incompletedly initialized node (see
	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
	 * filter out such node.
	 */
	if (!atomic_inc_not_zero(&kn->count)) {
		kn = NULL;
		goto out;
	}

	/*
	 * The node could be a new node or a reused node. If it's a new node,
	 * we are ok. If it's reused because of RCU (because of
	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
	 * hence we can use 'ino' to filter stale node.
	 */
S
Shaohua Li 已提交
724
	if (kn->id.ino != ino)
725 726 727 728 729 730 731 732 733 734
		goto out;
	rcu_read_unlock();

	return kn;
out:
	rcu_read_unlock();
	kernfs_put(kn);
	return NULL;
}

735
/**
736
 *	kernfs_add_one - add kernfs_node to parent without warning
737
 *	@kn: kernfs_node to be added
738
 *
739 740 741
 *	The caller must already have initialized @kn->parent.  This
 *	function increments nlink of the parent's inode if @kn is a
 *	directory and link into the children list of the parent.
742 743 744 745 746
 *
 *	RETURNS:
 *	0 on success, -EEXIST if entry with the given name already
 *	exists.
 */
T
Tejun Heo 已提交
747
int kernfs_add_one(struct kernfs_node *kn)
748
{
749
	struct kernfs_node *parent = kn->parent;
750
	struct kernfs_iattrs *ps_iattr;
T
Tejun Heo 已提交
751
	bool has_ns;
752 753
	int ret;

T
Tejun Heo 已提交
754 755 756 757 758 759 760
	mutex_lock(&kernfs_mutex);

	ret = -EINVAL;
	has_ns = kernfs_ns_enabled(parent);
	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
		 has_ns ? "required" : "invalid", parent->name, kn->name))
		goto out_unlock;
761

T
Tejun Heo 已提交
762
	if (kernfs_type(parent) != KERNFS_DIR)
T
Tejun Heo 已提交
763
		goto out_unlock;
764

T
Tejun Heo 已提交
765
	ret = -ENOENT;
766 767 768
	if (parent->flags & KERNFS_EMPTY_DIR)
		goto out_unlock;

769
	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
T
Tejun Heo 已提交
770
		goto out_unlock;
771

772
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
773

774
	ret = kernfs_link_sibling(kn);
775
	if (ret)
T
Tejun Heo 已提交
776
		goto out_unlock;
777 778

	/* Update timestamps on the parent */
779
	ps_iattr = parent->iattr;
780 781
	if (ps_iattr) {
		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
782 783
		ktime_get_real_ts(&ps_iattrs->ia_ctime);
		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
784 785
	}

786 787 788 789 790 791 792 793 794 795 796 797 798
	mutex_unlock(&kernfs_mutex);

	/*
	 * Activate the new node unless CREATE_DEACTIVATED is requested.
	 * If not activated here, the kernfs user is responsible for
	 * activating the node with kernfs_activate().  A node which hasn't
	 * been activated is not visible to userland and its removal won't
	 * trigger deactivation.
	 */
	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);
	return 0;

T
Tejun Heo 已提交
799
out_unlock:
800
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
801
	return ret;
802 803 804
}

/**
805 806
 * kernfs_find_ns - find kernfs_node with the given name
 * @parent: kernfs_node to search under
807 808 809
 * @name: name to look for
 * @ns: the namespace tag to use
 *
810 811
 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 * the found kernfs_node on success, %NULL on failure.
812
 */
813 814 815
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
					  const unsigned char *name,
					  const void *ns)
816
{
817
	struct rb_node *node = parent->dir.children.rb_node;
818
	bool has_ns = kernfs_ns_enabled(parent);
819 820
	unsigned int hash;

821
	lockdep_assert_held(&kernfs_mutex);
822 823

	if (has_ns != (bool)ns) {
824
		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
825
		     has_ns ? "required" : "invalid", parent->name, name);
826 827 828
		return NULL;
	}

829
	hash = kernfs_name_hash(name, ns);
830
	while (node) {
831
		struct kernfs_node *kn;
832 833
		int result;

834
		kn = rb_to_kn(node);
835
		result = kernfs_name_compare(hash, name, ns, kn);
836 837 838 839 840
		if (result < 0)
			node = node->rb_left;
		else if (result > 0)
			node = node->rb_right;
		else
841
			return kn;
842 843 844 845
	}
	return NULL;
}

846 847 848 849
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
					  const unsigned char *path,
					  const void *ns)
{
850 851
	size_t len;
	char *p, *name;
852 853 854

	lockdep_assert_held(&kernfs_mutex);

855 856 857 858 859 860 861
	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
	spin_lock_irq(&kernfs_rename_lock);

	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));

	if (len >= sizeof(kernfs_pr_cont_buf)) {
		spin_unlock_irq(&kernfs_rename_lock);
862
		return NULL;
863 864 865
	}

	p = kernfs_pr_cont_buf;
866 867 868 869 870 871 872

	while ((name = strsep(&p, "/")) && parent) {
		if (*name == '\0')
			continue;
		parent = kernfs_find_ns(parent, name, ns);
	}

873 874
	spin_unlock_irq(&kernfs_rename_lock);

875 876 877
	return parent;
}

878
/**
879 880
 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 * @parent: kernfs_node to search under
881 882 883
 * @name: name to look for
 * @ns: the namespace tag to use
 *
884
 * Look for kernfs_node with name @name under @parent and get a reference
885
 * if found.  This function may sleep and returns pointer to the found
886
 * kernfs_node on success, %NULL on failure.
887
 */
888 889
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
					   const char *name, const void *ns)
890
{
891
	struct kernfs_node *kn;
892

893
	mutex_lock(&kernfs_mutex);
894 895
	kn = kernfs_find_ns(parent, name, ns);
	kernfs_get(kn);
896
	mutex_unlock(&kernfs_mutex);
897

898
	return kn;
899 900 901
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/**
 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 * @parent: kernfs_node to search under
 * @path: path to look for
 * @ns: the namespace tag to use
 *
 * Look for kernfs_node with path @path under @parent and get a reference
 * if found.  This function may sleep and returns pointer to the found
 * kernfs_node on success, %NULL on failure.
 */
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
					   const char *path, const void *ns)
{
	struct kernfs_node *kn;

	mutex_lock(&kernfs_mutex);
	kn = kernfs_walk_ns(parent, path, ns);
	kernfs_get(kn);
	mutex_unlock(&kernfs_mutex);

	return kn;
}

925 926
/**
 * kernfs_create_root - create a new kernfs hierarchy
927
 * @scops: optional syscall operations for the hierarchy
928
 * @flags: KERNFS_ROOT_* flags
929 930 931 932 933
 * @priv: opaque data associated with the new directory
 *
 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 * failure.
 */
934
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
935
				       unsigned int flags, void *priv)
936 937
{
	struct kernfs_root *root;
938
	struct kernfs_node *kn;
939 940 941 942 943

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

944
	idr_init(&root->ino_idr);
945
	INIT_LIST_HEAD(&root->supers);
S
Shaohua Li 已提交
946
	root->next_generation = 1;
947

948 949
	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
			       KERNFS_DIR);
950
	if (!kn) {
951
		idr_destroy(&root->ino_idr);
952 953 954 955
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}

956
	kn->priv = priv;
957
	kn->dir.root = root;
958

959
	root->syscall_ops = scops;
960
	root->flags = flags;
961
	root->kn = kn;
962
	init_waitqueue_head(&root->deactivate_waitq);
963

964 965 966
	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);

967 968 969 970 971 972 973 974 975 976 977 978
	return root;
}

/**
 * kernfs_destroy_root - destroy a kernfs hierarchy
 * @root: root of the hierarchy to destroy
 *
 * Destroy the hierarchy anchored at @root by removing all existing
 * directories and destroying @root.
 */
void kernfs_destroy_root(struct kernfs_root *root)
{
979
	kernfs_remove(root->kn);	/* will also free @root */
980 981
}

982 983 984 985
/**
 * kernfs_create_dir_ns - create a directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
986
 * @mode: mode of the new directory
987 988 989 990 991
 * @priv: opaque data associated with the new directory
 * @ns: optional namespace tag of the directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
992
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
993 994
					 const char *name, umode_t mode,
					 void *priv, const void *ns)
995
{
996
	struct kernfs_node *kn;
997 998 999
	int rc;

	/* allocate */
1000
	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
1001
	if (!kn)
1002 1003
		return ERR_PTR(-ENOMEM);

1004 1005
	kn->dir.root = parent->dir.root;
	kn->ns = ns;
1006
	kn->priv = priv;
1007 1008

	/* link in */
T
Tejun Heo 已提交
1009
	rc = kernfs_add_one(kn);
1010
	if (!rc)
1011
		return kn;
1012

1013
	kernfs_put(kn);
1014 1015 1016
	return ERR_PTR(rc);
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/**
 * kernfs_create_empty_dir - create an always empty directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
					    const char *name)
{
	struct kernfs_node *kn;
	int rc;

	/* allocate */
	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
	if (!kn)
		return ERR_PTR(-ENOMEM);

	kn->flags |= KERNFS_EMPTY_DIR;
	kn->dir.root = parent->dir.root;
	kn->ns = NULL;
	kn->priv = NULL;

	/* link in */
	rc = kernfs_add_one(kn);
	if (!rc)
		return kn;

	kernfs_put(kn);
	return ERR_PTR(rc);
}

1049 1050 1051
static struct dentry *kernfs_iop_lookup(struct inode *dir,
					struct dentry *dentry,
					unsigned int flags)
1052
{
T
Tejun Heo 已提交
1053
	struct dentry *ret;
S
Shaohua Li 已提交
1054
	struct kernfs_node *parent = dir->i_private;
1055
	struct kernfs_node *kn;
1056 1057 1058
	struct inode *inode;
	const void *ns = NULL;

1059
	mutex_lock(&kernfs_mutex);
1060

1061
	if (kernfs_ns_enabled(parent))
1062
		ns = kernfs_info(dir->i_sb)->ns;
1063

1064
	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1065 1066

	/* no such entry */
1067
	if (!kn || !kernfs_active(kn)) {
T
Tejun Heo 已提交
1068
		ret = NULL;
1069 1070 1071 1072
		goto out_unlock;
	}

	/* attach dentry and inode */
1073
	inode = kernfs_get_inode(dir->i_sb, kn);
1074 1075 1076 1077 1078 1079
	if (!inode) {
		ret = ERR_PTR(-ENOMEM);
		goto out_unlock;
	}

	/* instantiate and hash dentry */
1080
	ret = d_splice_alias(inode, dentry);
1081
 out_unlock:
1082
	mutex_unlock(&kernfs_mutex);
1083 1084 1085
	return ret;
}

T
Tejun Heo 已提交
1086 1087 1088 1089
static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
			    umode_t mode)
{
	struct kernfs_node *parent = dir->i_private;
1090
	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1091
	int ret;
T
Tejun Heo 已提交
1092

1093
	if (!scops || !scops->mkdir)
T
Tejun Heo 已提交
1094 1095
		return -EPERM;

1096 1097 1098
	if (!kernfs_get_active(parent))
		return -ENODEV;

1099
	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1100 1101 1102

	kernfs_put_active(parent);
	return ret;
T
Tejun Heo 已提交
1103 1104 1105 1106
}

static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
{
S
Shaohua Li 已提交
1107
	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1108
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1109
	int ret;
T
Tejun Heo 已提交
1110

1111
	if (!scops || !scops->rmdir)
T
Tejun Heo 已提交
1112 1113
		return -EPERM;

1114 1115 1116
	if (!kernfs_get_active(kn))
		return -ENODEV;

1117
	ret = scops->rmdir(kn);
1118 1119 1120

	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1121 1122 1123
}

static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1124 1125
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags)
T
Tejun Heo 已提交
1126
{
S
Shaohua Li 已提交
1127
	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
T
Tejun Heo 已提交
1128
	struct kernfs_node *new_parent = new_dir->i_private;
1129
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1130
	int ret;
T
Tejun Heo 已提交
1131

1132 1133 1134
	if (flags)
		return -EINVAL;

1135
	if (!scops || !scops->rename)
T
Tejun Heo 已提交
1136 1137
		return -EPERM;

1138 1139 1140 1141 1142 1143 1144 1145
	if (!kernfs_get_active(kn))
		return -ENODEV;

	if (!kernfs_get_active(new_parent)) {
		kernfs_put_active(kn);
		return -ENODEV;
	}

1146
	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1147 1148 1149 1150

	kernfs_put_active(new_parent);
	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1151 1152
}

1153
const struct inode_operations kernfs_dir_iops = {
1154 1155 1156 1157 1158
	.lookup		= kernfs_iop_lookup,
	.permission	= kernfs_iop_permission,
	.setattr	= kernfs_iop_setattr,
	.getattr	= kernfs_iop_getattr,
	.listxattr	= kernfs_iop_listxattr,
T
Tejun Heo 已提交
1159 1160 1161 1162

	.mkdir		= kernfs_iop_mkdir,
	.rmdir		= kernfs_iop_rmdir,
	.rename		= kernfs_iop_rename,
1163 1164
};

1165
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1166
{
1167
	struct kernfs_node *last;
1168 1169 1170 1171 1172 1173

	while (true) {
		struct rb_node *rbn;

		last = pos;

T
Tejun Heo 已提交
1174
		if (kernfs_type(pos) != KERNFS_DIR)
1175 1176
			break;

1177
		rbn = rb_first(&pos->dir.children);
1178 1179 1180
		if (!rbn)
			break;

1181
		pos = rb_to_kn(rbn);
1182 1183 1184 1185 1186 1187
	}

	return last;
}

/**
1188
 * kernfs_next_descendant_post - find the next descendant for post-order walk
1189
 * @pos: the current position (%NULL to initiate traversal)
1190
 * @root: kernfs_node whose descendants to walk
1191 1192 1193 1194 1195
 *
 * Find the next descendant to visit for post-order traversal of @root's
 * descendants.  @root is included in the iteration and the last node to be
 * visited.
 */
1196 1197
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
						       struct kernfs_node *root)
1198 1199 1200
{
	struct rb_node *rbn;

1201
	lockdep_assert_held(&kernfs_mutex);
1202 1203 1204

	/* if first iteration, visit leftmost descendant which may be root */
	if (!pos)
1205
		return kernfs_leftmost_descendant(root);
1206 1207 1208 1209 1210 1211

	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

	/* if there's an unvisited sibling, visit its leftmost descendant */
1212
	rbn = rb_next(&pos->rb);
1213
	if (rbn)
1214
		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1215 1216

	/* no sibling left, visit parent */
1217
	return pos->parent;
1218 1219
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 * kernfs_activate - activate a node which started deactivated
 * @kn: kernfs_node whose subtree is to be activated
 *
 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
 * needs to be explicitly activated.  A node which hasn't been activated
 * isn't visible to userland and deactivation is skipped during its
 * removal.  This is useful to construct atomic init sequences where
 * creation of multiple nodes should either succeed or fail atomically.
 *
 * The caller is responsible for ensuring that this function is not called
 * after kernfs_remove*() is invoked on @kn.
 */
void kernfs_activate(struct kernfs_node *kn)
{
	struct kernfs_node *pos;

	mutex_lock(&kernfs_mutex);

	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn))) {
		if (!pos || (pos->flags & KERNFS_ACTIVATED))
			continue;

		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);

		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
		pos->flags |= KERNFS_ACTIVATED;
	}

	mutex_unlock(&kernfs_mutex);
}

T
Tejun Heo 已提交
1254
static void __kernfs_remove(struct kernfs_node *kn)
1255
{
1256 1257 1258
	struct kernfs_node *pos;

	lockdep_assert_held(&kernfs_mutex);
1259

1260 1261 1262 1263 1264 1265
	/*
	 * Short-circuit if non-root @kn has already finished removal.
	 * This is for kernfs_remove_self() which plays with active ref
	 * after removal.
	 */
	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1266 1267
		return;

1268
	pr_debug("kernfs %s: removing\n", kn->name);
1269

T
Tejun Heo 已提交
1270
	/* prevent any new usage under @kn by deactivating all nodes */
1271 1272
	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn)))
T
Tejun Heo 已提交
1273 1274
		if (kernfs_active(pos))
			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1275 1276

	/* deactivate and unlink the subtree node-by-node */
1277
	do {
1278 1279 1280
		pos = kernfs_leftmost_descendant(kn);

		/*
T
Tejun Heo 已提交
1281 1282 1283 1284
		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
		 * base ref could have been put by someone else by the time
		 * the function returns.  Make sure it doesn't go away
		 * underneath us.
1285 1286 1287
		 */
		kernfs_get(pos);

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		/*
		 * Drain iff @kn was activated.  This avoids draining and
		 * its lockdep annotations for nodes which have never been
		 * activated and allows embedding kernfs_remove() in create
		 * error paths without worrying about draining.
		 */
		if (kn->flags & KERNFS_ACTIVATED)
			kernfs_drain(pos);
		else
			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

		/*
		 * kernfs_unlink_sibling() succeeds once per node.  Use it
		 * to decide who's responsible for cleanups.
		 */
		if (!pos->parent || kernfs_unlink_sibling(pos)) {
			struct kernfs_iattrs *ps_iattr =
				pos->parent ? pos->parent->iattr : NULL;

			/* update timestamps on the parent */
			if (ps_iattr) {
1309 1310 1311
				ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
				ps_iattr->ia_iattr.ia_mtime =
					ps_iattr->ia_iattr.ia_ctime;
1312 1313
			}

T
Tejun Heo 已提交
1314
			kernfs_put(pos);
1315 1316 1317 1318
		}

		kernfs_put(pos);
	} while (pos != kn);
1319 1320 1321
}

/**
1322 1323
 * kernfs_remove - remove a kernfs_node recursively
 * @kn: the kernfs_node to remove
1324
 *
1325
 * Remove @kn along with all its subdirectories and files.
1326
 */
1327
void kernfs_remove(struct kernfs_node *kn)
1328
{
T
Tejun Heo 已提交
1329 1330 1331
	mutex_lock(&kernfs_mutex);
	__kernfs_remove(kn);
	mutex_unlock(&kernfs_mutex);
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/**
 * kernfs_break_active_protection - break out of active protection
 * @kn: the self kernfs_node
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
 * this function must also be matched with an invocation of
 * kernfs_unbreak_active_protection().
 *
 * This function releases the active reference of @kn the caller is
 * holding.  Once this function is called, @kn may be removed at any point
 * and the caller is solely responsible for ensuring that the objects it
 * dereferences are accessible.
 */
void kernfs_break_active_protection(struct kernfs_node *kn)
{
	/*
	 * Take out ourself out of the active ref dependency chain.  If
	 * we're called without an active ref, lockdep will complain.
	 */
	kernfs_put_active(kn);
}

/**
 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
 * @kn: the self kernfs_node
 *
 * If kernfs_break_active_protection() was called, this function must be
 * invoked before finishing the kernfs operation.  Note that while this
 * function restores the active reference, it doesn't and can't actually
 * restore the active protection - @kn may already or be in the process of
 * being removed.  Once kernfs_break_active_protection() is invoked, that
 * protection is irreversibly gone for the kernfs operation instance.
 *
 * While this function may be called at any point after
 * kernfs_break_active_protection() is invoked, its most useful location
 * would be right before the enclosing kernfs operation returns.
 */
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
{
	/*
	 * @kn->active could be in any state; however, the increment we do
	 * here will be undone as soon as the enclosing kernfs operation
	 * finishes and this temporary bump can't break anything.  If @kn
	 * is alive, nothing changes.  If @kn is being deactivated, the
	 * soon-to-follow put will either finish deactivation or restore
	 * deactivated state.  If @kn is already removed, the temporary
	 * bump is guaranteed to be gone before @kn is released.
	 */
	atomic_inc(&kn->active);
	if (kernfs_lockdep(kn))
		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
}

/**
 * kernfs_remove_self - remove a kernfs_node from its own method
 * @kn: the self kernfs_node to remove
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  This can be used to
 * implement a file operation which deletes itself.
 *
 * For example, the "delete" file for a sysfs device directory can be
 * implemented by invoking kernfs_remove_self() on the "delete" file
 * itself.  This function breaks the circular dependency of trying to
 * deactivate self while holding an active ref itself.  It isn't necessary
 * to modify the usual removal path to use kernfs_remove_self().  The
 * "delete" implementation can simply invoke kernfs_remove_self() on self
 * before proceeding with the usual removal path.  kernfs will ignore later
 * kernfs_remove() on self.
 *
 * kernfs_remove_self() can be called multiple times concurrently on the
 * same kernfs_node.  Only the first one actually performs removal and
 * returns %true.  All others will wait until the kernfs operation which
 * won self-removal finishes and return %false.  Note that the losers wait
 * for the completion of not only the winning kernfs_remove_self() but also
 * the whole kernfs_ops which won the arbitration.  This can be used to
 * guarantee, for example, all concurrent writes to a "delete" file to
 * finish only after the whole operation is complete.
 */
bool kernfs_remove_self(struct kernfs_node *kn)
{
	bool ret;

	mutex_lock(&kernfs_mutex);
	kernfs_break_active_protection(kn);

	/*
	 * SUICIDAL is used to arbitrate among competing invocations.  Only
	 * the first one will actually perform removal.  When the removal
	 * is complete, SUICIDED is set and the active ref is restored
	 * while holding kernfs_mutex.  The ones which lost arbitration
	 * waits for SUICDED && drained which can happen only after the
	 * enclosing kernfs operation which executed the winning instance
	 * of kernfs_remove_self() finished.
	 */
	if (!(kn->flags & KERNFS_SUICIDAL)) {
		kn->flags |= KERNFS_SUICIDAL;
		__kernfs_remove(kn);
		kn->flags |= KERNFS_SUICIDED;
		ret = true;
	} else {
		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
		DEFINE_WAIT(wait);

		while (true) {
			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);

			if ((kn->flags & KERNFS_SUICIDED) &&
			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
				break;

			mutex_unlock(&kernfs_mutex);
			schedule();
			mutex_lock(&kernfs_mutex);
		}
		finish_wait(waitq, &wait);
		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
		ret = false;
	}

	/*
	 * This must be done while holding kernfs_mutex; otherwise, waiting
	 * for SUICIDED && deactivated could finish prematurely.
	 */
	kernfs_unbreak_active_protection(kn);

	mutex_unlock(&kernfs_mutex);
	return ret;
}

1465
/**
1466 1467 1468 1469
 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
 * @parent: parent of the target
 * @name: name of the kernfs_node to remove
 * @ns: namespace tag of the kernfs_node to remove
1470
 *
1471 1472
 * Look for the kernfs_node with @name and @ns under @parent and remove it.
 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1473
 */
1474
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1475 1476
			     const void *ns)
{
1477
	struct kernfs_node *kn;
1478

1479
	if (!parent) {
1480
		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1481 1482 1483 1484
			name);
		return -ENOENT;
	}

T
Tejun Heo 已提交
1485
	mutex_lock(&kernfs_mutex);
1486

1487 1488
	kn = kernfs_find_ns(parent, name, ns);
	if (kn)
T
Tejun Heo 已提交
1489
		__kernfs_remove(kn);
1490

T
Tejun Heo 已提交
1491
	mutex_unlock(&kernfs_mutex);
1492

1493
	if (kn)
1494 1495 1496 1497 1498 1499 1500
		return 0;
	else
		return -ENOENT;
}

/**
 * kernfs_rename_ns - move and rename a kernfs_node
1501
 * @kn: target node
1502 1503 1504 1505
 * @new_parent: new parent to put @sd under
 * @new_name: new name
 * @new_ns: new namespace tag
 */
1506
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1507 1508
		     const char *new_name, const void *new_ns)
{
1509 1510
	struct kernfs_node *old_parent;
	const char *old_name = NULL;
1511 1512
	int error;

1513 1514 1515 1516
	/* can't move or rename root */
	if (!kn->parent)
		return -EINVAL;

1517 1518
	mutex_lock(&kernfs_mutex);

1519
	error = -ENOENT;
1520 1521
	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
	    (new_parent->flags & KERNFS_EMPTY_DIR))
1522 1523
		goto out;

1524
	error = 0;
1525 1526
	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
	    (strcmp(kn->name, new_name) == 0))
1527
		goto out;	/* nothing to rename */
1528 1529 1530

	error = -EEXIST;
	if (kernfs_find_ns(new_parent, new_name, new_ns))
1531
		goto out;
1532

1533
	/* rename kernfs_node */
1534
	if (strcmp(kn->name, new_name) != 0) {
1535
		error = -ENOMEM;
1536
		new_name = kstrdup_const(new_name, GFP_KERNEL);
1537
		if (!new_name)
1538
			goto out;
1539 1540
	} else {
		new_name = NULL;
1541 1542 1543 1544 1545
	}

	/*
	 * Move to the appropriate place in the appropriate directories rbtree.
	 */
1546
	kernfs_unlink_sibling(kn);
1547
	kernfs_get(new_parent);
1548 1549 1550 1551 1552

	/* rename_lock protects ->parent and ->name accessors */
	spin_lock_irq(&kernfs_rename_lock);

	old_parent = kn->parent;
1553
	kn->parent = new_parent;
1554 1555 1556

	kn->ns = new_ns;
	if (new_name) {
T
Tejun Heo 已提交
1557
		old_name = kn->name;
1558 1559 1560 1561 1562
		kn->name = new_name;
	}

	spin_unlock_irq(&kernfs_rename_lock);

1563
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1564
	kernfs_link_sibling(kn);
1565

1566
	kernfs_put(old_parent);
1567
	kfree_const(old_name);
1568

1569
	error = 0;
1570
 out:
1571
	mutex_unlock(&kernfs_mutex);
1572 1573 1574 1575
	return error;
}

/* Relationship between s_mode and the DT_xxx types */
1576
static inline unsigned char dt_type(struct kernfs_node *kn)
1577
{
1578
	return (kn->mode >> 12) & 15;
1579 1580
}

1581
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1582 1583 1584 1585 1586
{
	kernfs_put(filp->private_data);
	return 0;
}

1587
static struct kernfs_node *kernfs_dir_pos(const void *ns,
1588
	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1589 1590
{
	if (pos) {
T
Tejun Heo 已提交
1591
		int valid = kernfs_active(pos) &&
1592
			pos->parent == parent && hash == pos->hash;
1593 1594 1595 1596 1597
		kernfs_put(pos);
		if (!valid)
			pos = NULL;
	}
	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1598
		struct rb_node *node = parent->dir.children.rb_node;
1599
		while (node) {
1600
			pos = rb_to_kn(node);
1601

1602
			if (hash < pos->hash)
1603
				node = node->rb_left;
1604
			else if (hash > pos->hash)
1605 1606 1607 1608 1609
				node = node->rb_right;
			else
				break;
		}
	}
1610 1611
	/* Skip over entries which are dying/dead or in the wrong namespace */
	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1612
		struct rb_node *node = rb_next(&pos->rb);
1613 1614 1615
		if (!node)
			pos = NULL;
		else
1616
			pos = rb_to_kn(node);
1617 1618 1619 1620
	}
	return pos;
}

1621
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1622
	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1623
{
1624
	pos = kernfs_dir_pos(ns, parent, ino, pos);
1625
	if (pos) {
1626
		do {
1627
			struct rb_node *node = rb_next(&pos->rb);
1628 1629 1630
			if (!node)
				pos = NULL;
			else
1631
				pos = rb_to_kn(node);
1632 1633
		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
	}
1634 1635 1636
	return pos;
}

1637
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1638 1639
{
	struct dentry *dentry = file->f_path.dentry;
S
Shaohua Li 已提交
1640
	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1641
	struct kernfs_node *pos = file->private_data;
1642 1643 1644 1645
	const void *ns = NULL;

	if (!dir_emit_dots(file, ctx))
		return 0;
1646
	mutex_lock(&kernfs_mutex);
1647

1648
	if (kernfs_ns_enabled(parent))
1649
		ns = kernfs_info(dentry->d_sb)->ns;
1650

1651
	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1652
	     pos;
1653
	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1654
		const char *name = pos->name;
1655 1656
		unsigned int type = dt_type(pos);
		int len = strlen(name);
S
Shaohua Li 已提交
1657
		ino_t ino = pos->id.ino;
1658

1659
		ctx->pos = pos->hash;
1660 1661 1662
		file->private_data = pos;
		kernfs_get(pos);

1663
		mutex_unlock(&kernfs_mutex);
1664 1665
		if (!dir_emit(ctx, name, len, ino, type))
			return 0;
1666
		mutex_lock(&kernfs_mutex);
1667
	}
1668
	mutex_unlock(&kernfs_mutex);
1669 1670 1671 1672 1673
	file->private_data = NULL;
	ctx->pos = INT_MAX;
	return 0;
}

1674
const struct file_operations kernfs_dir_fops = {
1675
	.read		= generic_read_dir,
1676
	.iterate_shared	= kernfs_fop_readdir,
1677
	.release	= kernfs_dir_fop_release,
1678
	.llseek		= generic_file_llseek,
1679
};