dir.c 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * fs/kernfs/dir.c - kernfs directory implementation
 *
 * Copyright (c) 2001-3 Patrick Mochel
 * Copyright (c) 2007 SUSE Linux Products GmbH
 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 */
10

11
#include <linux/sched.h>
12 13 14 15 16 17 18 19 20
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>

#include "kernfs-internal.h"

21
DEFINE_MUTEX(kernfs_mutex);
22 23
static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24

25
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26

T
Tejun Heo 已提交
27 28 29 30 31 32
static bool kernfs_active(struct kernfs_node *kn)
{
	lockdep_assert_held(&kernfs_mutex);
	return atomic_read(&kn->active) >= 0;
}

33 34 35 36 37 38 39 40 41
static bool kernfs_lockdep(struct kernfs_node *kn)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	return kn->flags & KERNFS_LOCKDEP;
#else
	return false;
#endif
}

42 43 44 45 46
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
{
	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
}

47 48
/* kernfs_node_depth - compute depth from @from to @to */
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
49
{
50
	size_t depth = 0;
51

52 53 54 55 56 57
	while (to->parent && to != from) {
		depth++;
		to = to->parent;
	}
	return depth;
}
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
						  struct kernfs_node *b)
{
	size_t da, db;
	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);

	if (ra != rb)
		return NULL;

	da = kernfs_depth(ra->kn, a);
	db = kernfs_depth(rb->kn, b);

	while (da > db) {
		a = a->parent;
		da--;
	}
	while (db > da) {
		b = b->parent;
		db--;
	}

	/* worst case b and a will be the same at root */
	while (b != a) {
		b = b->parent;
		a = a->parent;
	}

	return a;
}

/**
 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
 * where kn_from is treated as root of the path.
 * @kn_from: kernfs node which should be treated as root for the path
 * @kn_to: kernfs node to which path is needed
 * @buf: buffer to copy the path into
 * @buflen: size of @buf
 *
 * We need to handle couple of scenarios here:
 * [1] when @kn_from is an ancestor of @kn_to at some level
 * kn_from: /n1/n2/n3
 * kn_to:   /n1/n2/n3/n4/n5
 * result:  /n4/n5
 *
 * [2] when @kn_from is on a different hierarchy and we need to find common
 * ancestor between @kn_from and @kn_to.
 * kn_from: /n1/n2/n3/n4
 * kn_to:   /n1/n2/n5
 * result:  /../../n5
 * OR
 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 * kn_to:   /n1/n2/n3         [depth=3]
 * result:  /../..
 *
 * return value: length of the string.  If greater than buflen,
 * then contents of buf are undefined.  On error, -1 is returned.
 */
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
					struct kernfs_node *kn_from,
					char *buf, size_t buflen)
{
	struct kernfs_node *kn, *common;
	const char parent_str[] = "/..";
	size_t depth_from, depth_to, len = 0, nlen = 0;
	char *p;
	int i;

	if (!kn_from)
		kn_from = kernfs_root(kn_to)->kn;

	if (kn_from == kn_to)
		return strlcpy(buf, "/", buflen);

	common = kernfs_common_ancestor(kn_from, kn_to);
	if (WARN_ON(!common))
		return -1;

	depth_to = kernfs_depth(common, kn_to);
	depth_from = kernfs_depth(common, kn_from);

	if (buf)
		buf[0] = '\0';

	for (i = 0; i < depth_from; i++)
		len += strlcpy(buf + len, parent_str,
			       len < buflen ? buflen - len : 0);

	/* Calculate how many bytes we need for the rest */
	for (kn = kn_to; kn != common; kn = kn->parent)
		nlen += strlen(kn->name) + 1;

	if (len + nlen >= buflen)
		return len + nlen;

	p = buf + len + nlen;
	*p = '\0';
	for (kn = kn_to; kn != common; kn = kn->parent) {
		nlen = strlen(kn->name);
		p -= nlen;
		memcpy(p, kn->name, nlen);
		*(--p) = '/';
	}
161

162
	return len + nlen;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
}

/**
 * kernfs_name - obtain the name of a given node
 * @kn: kernfs_node of interest
 * @buf: buffer to copy @kn's name into
 * @buflen: size of @buf
 *
 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 *
 * This function can be called from any context.
 */
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_name_locked(kn, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}

T
Tejun Heo 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/**
 * kernfs_path_len - determine the length of the full path of a given node
 * @kn: kernfs_node of interest
 *
 * The returned length doesn't include the space for the terminating '\0'.
 */
size_t kernfs_path_len(struct kernfs_node *kn)
{
	size_t len = 0;
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);

	do {
		len += strlen(kn->name) + 1;
		kn = kn->parent;
	} while (kn && kn->parent);

	spin_unlock_irqrestore(&kernfs_rename_lock, flags);

	return len;
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/**
 * kernfs_path_from_node - build path of node @to relative to @from.
 * @from: parent kernfs_node relative to which we need to build the path
 * @to: kernfs_node of interest
 * @buf: buffer to copy @to's path into
 * @buflen: size of @buf
 *
 * Builds @to's path relative to @from in @buf. @from and @to must
 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 * path (which includes '..'s) as needed to reach from @from to @to is
 * returned.
 *
 * If @buf isn't long enough, the return value will be greater than @buflen
 * and @buf contents are undefined.
 */
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
			  char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}
EXPORT_SYMBOL_GPL(kernfs_path_from_node);

239 240 241 242 243 244 245 246 247 248 249 250 251
/**
 * kernfs_path - build full path of a given node
 * @kn: kernfs_node of interest
 * @buf: buffer to copy @kn's name into
 * @buflen: size of @buf
 *
 * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
 * path is built from the end of @buf so the returned pointer usually
 * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
 * and %NULL is returned.
 */
char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
{
252
	int ret;
253

254 255 256 257
	ret = kernfs_path_from_node(kn, NULL, buf, buflen);
	if (ret < 0 || ret >= buflen)
		return NULL;
	return buf;
258
}
T
Tejun Heo 已提交
259
EXPORT_SYMBOL_GPL(kernfs_path);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

/**
 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_name(struct kernfs_node *kn)
{
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);

	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
	pr_cont("%s", kernfs_pr_cont_buf);

	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_path(struct kernfs_node *kn)
{
	unsigned long flags;
288
	int sz;
289 290 291

	spin_lock_irqsave(&kernfs_rename_lock, flags);

292 293 294 295 296 297 298 299 300 301 302 303 304
	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
					  sizeof(kernfs_pr_cont_buf));
	if (sz < 0) {
		pr_cont("(error)");
		goto out;
	}

	if (sz >= sizeof(kernfs_pr_cont_buf)) {
		pr_cont("(name too long)");
		goto out;
	}

	pr_cont("%s", kernfs_pr_cont_buf);
305

306
out:
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * kernfs_get_parent - determine the parent node and pin it
 * @kn: kernfs_node of interest
 *
 * Determines @kn's parent, pins and returns it.  This function can be
 * called from any context.
 */
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
{
	struct kernfs_node *parent;
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	parent = kn->parent;
	kernfs_get(parent);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);

	return parent;
}

330
/**
331
 *	kernfs_name_hash
332 333 334 335 336
 *	@name: Null terminated string to hash
 *	@ns:   Namespace tag to hash
 *
 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
 */
337
static unsigned int kernfs_name_hash(const char *name, const void *ns)
338 339 340 341 342 343 344 345
{
	unsigned long hash = init_name_hash();
	unsigned int len = strlen(name);
	while (len--)
		hash = partial_name_hash(*name++, hash);
	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
	hash &= 0x7fffffffU;
	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
R
Richard Cochran 已提交
346
	if (hash < 2)
347 348 349 350 351 352
		hash += 2;
	if (hash >= INT_MAX)
		hash = INT_MAX - 1;
	return hash;
}

353 354
static int kernfs_name_compare(unsigned int hash, const char *name,
			       const void *ns, const struct kernfs_node *kn)
355
{
356 357 358 359 360 361 362 363
	if (hash < kn->hash)
		return -1;
	if (hash > kn->hash)
		return 1;
	if (ns < kn->ns)
		return -1;
	if (ns > kn->ns)
		return 1;
364
	return strcmp(name, kn->name);
365 366
}

367 368
static int kernfs_sd_compare(const struct kernfs_node *left,
			     const struct kernfs_node *right)
369
{
370
	return kernfs_name_compare(left->hash, left->name, left->ns, right);
371 372 373
}

/**
374
 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
375
 *	@kn: kernfs_node of interest
376
 *
377
 *	Link @kn into its sibling rbtree which starts from
378
 *	@kn->parent->dir.children.
379 380
 *
 *	Locking:
381
 *	mutex_lock(kernfs_mutex)
382 383 384 385
 *
 *	RETURNS:
 *	0 on susccess -EEXIST on failure.
 */
386
static int kernfs_link_sibling(struct kernfs_node *kn)
387
{
388
	struct rb_node **node = &kn->parent->dir.children.rb_node;
389 390 391
	struct rb_node *parent = NULL;

	while (*node) {
392
		struct kernfs_node *pos;
393 394
		int result;

395
		pos = rb_to_kn(*node);
396
		parent = *node;
397
		result = kernfs_sd_compare(kn, pos);
398
		if (result < 0)
399
			node = &pos->rb.rb_left;
400
		else if (result > 0)
401
			node = &pos->rb.rb_right;
402 403 404
		else
			return -EEXIST;
	}
J
Jianyu Zhan 已提交
405

406
	/* add new node and rebalance the tree */
407 408
	rb_link_node(&kn->rb, parent, node);
	rb_insert_color(&kn->rb, &kn->parent->dir.children);
J
Jianyu Zhan 已提交
409 410 411 412 413

	/* successfully added, account subdir number */
	if (kernfs_type(kn) == KERNFS_DIR)
		kn->parent->dir.subdirs++;

414 415 416 417
	return 0;
}

/**
418
 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
419
 *	@kn: kernfs_node of interest
420
 *
421 422 423
 *	Try to unlink @kn from its sibling rbtree which starts from
 *	kn->parent->dir.children.  Returns %true if @kn was actually
 *	removed, %false if @kn wasn't on the rbtree.
424 425
 *
 *	Locking:
426
 *	mutex_lock(kernfs_mutex)
427
 */
428
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
429
{
430 431 432
	if (RB_EMPTY_NODE(&kn->rb))
		return false;

T
Tejun Heo 已提交
433
	if (kernfs_type(kn) == KERNFS_DIR)
434
		kn->parent->dir.subdirs--;
435

436
	rb_erase(&kn->rb, &kn->parent->dir.children);
437 438
	RB_CLEAR_NODE(&kn->rb);
	return true;
439 440 441
}

/**
442
 *	kernfs_get_active - get an active reference to kernfs_node
443
 *	@kn: kernfs_node to get an active reference to
444
 *
445
 *	Get an active reference of @kn.  This function is noop if @kn
446 447 448
 *	is NULL.
 *
 *	RETURNS:
449
 *	Pointer to @kn on success, NULL on failure.
450
 */
451
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
452
{
453
	if (unlikely(!kn))
454 455
		return NULL;

456 457
	if (!atomic_inc_unless_negative(&kn->active))
		return NULL;
458

459
	if (kernfs_lockdep(kn))
460 461
		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
	return kn;
462 463 464
}

/**
465
 *	kernfs_put_active - put an active reference to kernfs_node
466
 *	@kn: kernfs_node to put an active reference to
467
 *
468
 *	Put an active reference to @kn.  This function is noop if @kn
469 470
 *	is NULL.
 */
471
void kernfs_put_active(struct kernfs_node *kn)
472
{
473
	struct kernfs_root *root = kernfs_root(kn);
474 475
	int v;

476
	if (unlikely(!kn))
477 478
		return;

479
	if (kernfs_lockdep(kn))
480
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
481
	v = atomic_dec_return(&kn->active);
T
Tejun Heo 已提交
482
	if (likely(v != KN_DEACTIVATED_BIAS))
483 484
		return;

485
	wake_up_all(&root->deactivate_waitq);
486 487 488
}

/**
T
Tejun Heo 已提交
489 490
 * kernfs_drain - drain kernfs_node
 * @kn: kernfs_node to drain
491
 *
T
Tejun Heo 已提交
492 493 494
 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 * removers may invoke this function concurrently on @kn and all will
 * return after draining is complete.
495
 */
T
Tejun Heo 已提交
496
static void kernfs_drain(struct kernfs_node *kn)
497
	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
498
{
499
	struct kernfs_root *root = kernfs_root(kn);
500

501
	lockdep_assert_held(&kernfs_mutex);
T
Tejun Heo 已提交
502
	WARN_ON_ONCE(kernfs_active(kn));
503

504
	mutex_unlock(&kernfs_mutex);
505

506
	if (kernfs_lockdep(kn)) {
507 508 509 510
		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
			lock_contended(&kn->dep_map, _RET_IP_);
	}
511

512
	/* but everyone should wait for draining */
513 514
	wait_event(root->deactivate_waitq,
		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
515

516
	if (kernfs_lockdep(kn)) {
517 518 519
		lock_acquired(&kn->dep_map, _RET_IP_);
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
	}
520

521 522
	kernfs_unmap_bin_file(kn);

523
	mutex_lock(&kernfs_mutex);
524 525 526
}

/**
527 528
 * kernfs_get - get a reference count on a kernfs_node
 * @kn: the target kernfs_node
529
 */
530
void kernfs_get(struct kernfs_node *kn)
531
{
532
	if (kn) {
533 534
		WARN_ON(!atomic_read(&kn->count));
		atomic_inc(&kn->count);
535 536 537 538 539
	}
}
EXPORT_SYMBOL_GPL(kernfs_get);

/**
540 541
 * kernfs_put - put a reference count on a kernfs_node
 * @kn: the target kernfs_node
542
 *
543
 * Put a reference count of @kn and destroy it if it reached zero.
544
 */
545
void kernfs_put(struct kernfs_node *kn)
546
{
547
	struct kernfs_node *parent;
548
	struct kernfs_root *root;
549

550
	if (!kn || !atomic_dec_and_test(&kn->count))
551
		return;
552
	root = kernfs_root(kn);
553
 repeat:
T
Tejun Heo 已提交
554 555
	/*
	 * Moving/renaming is always done while holding reference.
556
	 * kn->parent won't change beneath us.
557
	 */
558
	parent = kn->parent;
559

T
Tejun Heo 已提交
560 561 562
	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
563

T
Tejun Heo 已提交
564
	if (kernfs_type(kn) == KERNFS_LINK)
565
		kernfs_put(kn->symlink.target_kn);
T
Tejun Heo 已提交
566 567 568

	kfree_const(kn->name);

569 570 571 572 573
	if (kn->iattr) {
		if (kn->iattr->ia_secdata)
			security_release_secctx(kn->iattr->ia_secdata,
						kn->iattr->ia_secdata_len);
		simple_xattrs_free(&kn->iattr->xattrs);
574
	}
575 576
	kfree(kn->iattr);
	ida_simple_remove(&root->ino_ida, kn->ino);
577
	kmem_cache_free(kernfs_node_cache, kn);
578

579 580
	kn = parent;
	if (kn) {
581
		if (atomic_dec_and_test(&kn->count))
582 583
			goto repeat;
	} else {
584
		/* just released the root kn, free @root too */
585
		ida_destroy(&root->ino_ida);
586 587
		kfree(root);
	}
588 589 590
}
EXPORT_SYMBOL_GPL(kernfs_put);

591
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
592
{
593
	struct kernfs_node *kn;
594 595 596 597

	if (flags & LOOKUP_RCU)
		return -ECHILD;

T
Tejun Heo 已提交
598
	/* Always perform fresh lookup for negatives */
599
	if (d_really_is_negative(dentry))
T
Tejun Heo 已提交
600 601
		goto out_bad_unlocked;

602
	kn = dentry->d_fsdata;
603
	mutex_lock(&kernfs_mutex);
604

T
Tejun Heo 已提交
605 606
	/* The kernfs node has been deactivated */
	if (!kernfs_active(kn))
607 608
		goto out_bad;

609
	/* The kernfs node has been moved? */
610
	if (dentry->d_parent->d_fsdata != kn->parent)
611 612
		goto out_bad;

613
	/* The kernfs node has been renamed */
614
	if (strcmp(dentry->d_name.name, kn->name) != 0)
615 616
		goto out_bad;

617
	/* The kernfs node has been moved to a different namespace */
618
	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
619
	    kernfs_info(dentry->d_sb)->ns != kn->ns)
620 621
		goto out_bad;

622
	mutex_unlock(&kernfs_mutex);
623 624
	return 1;
out_bad:
625
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
626
out_bad_unlocked:
627 628 629
	return 0;
}

630
static void kernfs_dop_release(struct dentry *dentry)
631 632 633 634
{
	kernfs_put(dentry->d_fsdata);
}

635
const struct dentry_operations kernfs_dops = {
636 637
	.d_revalidate	= kernfs_dop_revalidate,
	.d_release	= kernfs_dop_release,
638 639
};

640 641 642 643 644 645 646 647 648 649 650 651 652
/**
 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 * @dentry: the dentry in question
 *
 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 * kernfs one, %NULL is returned.
 *
 * While the returned kernfs_node will stay accessible as long as @dentry
 * is accessible, the returned node can be in any state and the caller is
 * fully responsible for determining what's accessible.
 */
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
{
L
Li Zefan 已提交
653
	if (dentry->d_sb->s_op == &kernfs_sops)
654 655 656 657
		return dentry->d_fsdata;
	return NULL;
}

658 659 660
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
					     const char *name, umode_t mode,
					     unsigned flags)
661
{
662
	struct kernfs_node *kn;
663
	int ret;
664

T
Tejun Heo 已提交
665 666 667
	name = kstrdup_const(name, GFP_KERNEL);
	if (!name)
		return NULL;
668

669
	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
670
	if (!kn)
671 672
		goto err_out1;

673
	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
674
	if (ret < 0)
675
		goto err_out2;
676
	kn->ino = ret;
677

678
	atomic_set(&kn->count, 1);
T
Tejun Heo 已提交
679
	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
680
	RB_CLEAR_NODE(&kn->rb);
681

682 683
	kn->name = name;
	kn->mode = mode;
T
Tejun Heo 已提交
684
	kn->flags = flags;
685

686
	return kn;
687 688

 err_out2:
689
	kmem_cache_free(kernfs_node_cache, kn);
690
 err_out1:
T
Tejun Heo 已提交
691
	kfree_const(name);
692 693 694
	return NULL;
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
				    const char *name, umode_t mode,
				    unsigned flags)
{
	struct kernfs_node *kn;

	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
	if (kn) {
		kernfs_get(parent);
		kn->parent = parent;
	}
	return kn;
}

709
/**
710
 *	kernfs_add_one - add kernfs_node to parent without warning
711
 *	@kn: kernfs_node to be added
712
 *
713 714 715
 *	The caller must already have initialized @kn->parent.  This
 *	function increments nlink of the parent's inode if @kn is a
 *	directory and link into the children list of the parent.
716 717 718 719 720
 *
 *	RETURNS:
 *	0 on success, -EEXIST if entry with the given name already
 *	exists.
 */
T
Tejun Heo 已提交
721
int kernfs_add_one(struct kernfs_node *kn)
722
{
723
	struct kernfs_node *parent = kn->parent;
724
	struct kernfs_iattrs *ps_iattr;
T
Tejun Heo 已提交
725
	bool has_ns;
726 727
	int ret;

T
Tejun Heo 已提交
728 729 730 731 732 733 734
	mutex_lock(&kernfs_mutex);

	ret = -EINVAL;
	has_ns = kernfs_ns_enabled(parent);
	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
		 has_ns ? "required" : "invalid", parent->name, kn->name))
		goto out_unlock;
735

T
Tejun Heo 已提交
736
	if (kernfs_type(parent) != KERNFS_DIR)
T
Tejun Heo 已提交
737
		goto out_unlock;
738

T
Tejun Heo 已提交
739
	ret = -ENOENT;
740 741 742
	if (parent->flags & KERNFS_EMPTY_DIR)
		goto out_unlock;

743
	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
T
Tejun Heo 已提交
744
		goto out_unlock;
745

746
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
747

748
	ret = kernfs_link_sibling(kn);
749
	if (ret)
T
Tejun Heo 已提交
750
		goto out_unlock;
751 752

	/* Update timestamps on the parent */
753
	ps_iattr = parent->iattr;
754 755 756 757 758
	if (ps_iattr) {
		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
	}

759 760 761 762 763 764 765 766 767 768 769 770 771
	mutex_unlock(&kernfs_mutex);

	/*
	 * Activate the new node unless CREATE_DEACTIVATED is requested.
	 * If not activated here, the kernfs user is responsible for
	 * activating the node with kernfs_activate().  A node which hasn't
	 * been activated is not visible to userland and its removal won't
	 * trigger deactivation.
	 */
	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);
	return 0;

T
Tejun Heo 已提交
772
out_unlock:
773
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
774
	return ret;
775 776 777
}

/**
778 779
 * kernfs_find_ns - find kernfs_node with the given name
 * @parent: kernfs_node to search under
780 781 782
 * @name: name to look for
 * @ns: the namespace tag to use
 *
783 784
 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 * the found kernfs_node on success, %NULL on failure.
785
 */
786 787 788
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
					  const unsigned char *name,
					  const void *ns)
789
{
790
	struct rb_node *node = parent->dir.children.rb_node;
791
	bool has_ns = kernfs_ns_enabled(parent);
792 793
	unsigned int hash;

794
	lockdep_assert_held(&kernfs_mutex);
795 796

	if (has_ns != (bool)ns) {
797
		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
798
		     has_ns ? "required" : "invalid", parent->name, name);
799 800 801
		return NULL;
	}

802
	hash = kernfs_name_hash(name, ns);
803
	while (node) {
804
		struct kernfs_node *kn;
805 806
		int result;

807
		kn = rb_to_kn(node);
808
		result = kernfs_name_compare(hash, name, ns, kn);
809 810 811 812 813
		if (result < 0)
			node = node->rb_left;
		else if (result > 0)
			node = node->rb_right;
		else
814
			return kn;
815 816 817 818
	}
	return NULL;
}

819 820 821 822
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
					  const unsigned char *path,
					  const void *ns)
{
823 824
	size_t len;
	char *p, *name;
825 826 827

	lockdep_assert_held(&kernfs_mutex);

828 829 830 831 832 833 834
	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
	spin_lock_irq(&kernfs_rename_lock);

	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));

	if (len >= sizeof(kernfs_pr_cont_buf)) {
		spin_unlock_irq(&kernfs_rename_lock);
835
		return NULL;
836 837 838
	}

	p = kernfs_pr_cont_buf;
839 840 841 842 843 844 845

	while ((name = strsep(&p, "/")) && parent) {
		if (*name == '\0')
			continue;
		parent = kernfs_find_ns(parent, name, ns);
	}

846 847
	spin_unlock_irq(&kernfs_rename_lock);

848 849 850
	return parent;
}

851
/**
852 853
 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 * @parent: kernfs_node to search under
854 855 856
 * @name: name to look for
 * @ns: the namespace tag to use
 *
857
 * Look for kernfs_node with name @name under @parent and get a reference
858
 * if found.  This function may sleep and returns pointer to the found
859
 * kernfs_node on success, %NULL on failure.
860
 */
861 862
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
					   const char *name, const void *ns)
863
{
864
	struct kernfs_node *kn;
865

866
	mutex_lock(&kernfs_mutex);
867 868
	kn = kernfs_find_ns(parent, name, ns);
	kernfs_get(kn);
869
	mutex_unlock(&kernfs_mutex);
870

871
	return kn;
872 873 874
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/**
 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 * @parent: kernfs_node to search under
 * @path: path to look for
 * @ns: the namespace tag to use
 *
 * Look for kernfs_node with path @path under @parent and get a reference
 * if found.  This function may sleep and returns pointer to the found
 * kernfs_node on success, %NULL on failure.
 */
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
					   const char *path, const void *ns)
{
	struct kernfs_node *kn;

	mutex_lock(&kernfs_mutex);
	kn = kernfs_walk_ns(parent, path, ns);
	kernfs_get(kn);
	mutex_unlock(&kernfs_mutex);

	return kn;
}

898 899
/**
 * kernfs_create_root - create a new kernfs hierarchy
900
 * @scops: optional syscall operations for the hierarchy
901
 * @flags: KERNFS_ROOT_* flags
902 903 904 905 906
 * @priv: opaque data associated with the new directory
 *
 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 * failure.
 */
907
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
908
				       unsigned int flags, void *priv)
909 910
{
	struct kernfs_root *root;
911
	struct kernfs_node *kn;
912 913 914 915 916

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

917
	ida_init(&root->ino_ida);
918
	INIT_LIST_HEAD(&root->supers);
919

920 921
	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
			       KERNFS_DIR);
922
	if (!kn) {
923
		ida_destroy(&root->ino_ida);
924 925 926 927
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}

928
	kn->priv = priv;
929
	kn->dir.root = root;
930

931
	root->syscall_ops = scops;
932
	root->flags = flags;
933
	root->kn = kn;
934
	init_waitqueue_head(&root->deactivate_waitq);
935

936 937 938
	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);

939 940 941 942 943 944 945 946 947 948 949 950
	return root;
}

/**
 * kernfs_destroy_root - destroy a kernfs hierarchy
 * @root: root of the hierarchy to destroy
 *
 * Destroy the hierarchy anchored at @root by removing all existing
 * directories and destroying @root.
 */
void kernfs_destroy_root(struct kernfs_root *root)
{
951
	kernfs_remove(root->kn);	/* will also free @root */
952 953
}

954 955 956 957
/**
 * kernfs_create_dir_ns - create a directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
958
 * @mode: mode of the new directory
959 960 961 962 963
 * @priv: opaque data associated with the new directory
 * @ns: optional namespace tag of the directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
964
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
965 966
					 const char *name, umode_t mode,
					 void *priv, const void *ns)
967
{
968
	struct kernfs_node *kn;
969 970 971
	int rc;

	/* allocate */
972
	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
973
	if (!kn)
974 975
		return ERR_PTR(-ENOMEM);

976 977
	kn->dir.root = parent->dir.root;
	kn->ns = ns;
978
	kn->priv = priv;
979 980

	/* link in */
T
Tejun Heo 已提交
981
	rc = kernfs_add_one(kn);
982
	if (!rc)
983
		return kn;
984

985
	kernfs_put(kn);
986 987 988
	return ERR_PTR(rc);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 * kernfs_create_empty_dir - create an always empty directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
					    const char *name)
{
	struct kernfs_node *kn;
	int rc;

	/* allocate */
	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
	if (!kn)
		return ERR_PTR(-ENOMEM);

	kn->flags |= KERNFS_EMPTY_DIR;
	kn->dir.root = parent->dir.root;
	kn->ns = NULL;
	kn->priv = NULL;

	/* link in */
	rc = kernfs_add_one(kn);
	if (!rc)
		return kn;

	kernfs_put(kn);
	return ERR_PTR(rc);
}

1021 1022 1023
static struct dentry *kernfs_iop_lookup(struct inode *dir,
					struct dentry *dentry,
					unsigned int flags)
1024
{
T
Tejun Heo 已提交
1025
	struct dentry *ret;
1026 1027
	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
	struct kernfs_node *kn;
1028 1029 1030
	struct inode *inode;
	const void *ns = NULL;

1031
	mutex_lock(&kernfs_mutex);
1032

1033
	if (kernfs_ns_enabled(parent))
1034
		ns = kernfs_info(dir->i_sb)->ns;
1035

1036
	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1037 1038

	/* no such entry */
1039
	if (!kn || !kernfs_active(kn)) {
T
Tejun Heo 已提交
1040
		ret = NULL;
1041 1042
		goto out_unlock;
	}
1043 1044
	kernfs_get(kn);
	dentry->d_fsdata = kn;
1045 1046

	/* attach dentry and inode */
1047
	inode = kernfs_get_inode(dir->i_sb, kn);
1048 1049 1050 1051 1052 1053
	if (!inode) {
		ret = ERR_PTR(-ENOMEM);
		goto out_unlock;
	}

	/* instantiate and hash dentry */
1054
	ret = d_splice_alias(inode, dentry);
1055
 out_unlock:
1056
	mutex_unlock(&kernfs_mutex);
1057 1058 1059
	return ret;
}

T
Tejun Heo 已提交
1060 1061 1062 1063
static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
			    umode_t mode)
{
	struct kernfs_node *parent = dir->i_private;
1064
	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1065
	int ret;
T
Tejun Heo 已提交
1066

1067
	if (!scops || !scops->mkdir)
T
Tejun Heo 已提交
1068 1069
		return -EPERM;

1070 1071 1072
	if (!kernfs_get_active(parent))
		return -ENODEV;

1073
	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1074 1075 1076

	kernfs_put_active(parent);
	return ret;
T
Tejun Heo 已提交
1077 1078 1079 1080 1081
}

static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
{
	struct kernfs_node *kn  = dentry->d_fsdata;
1082
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1083
	int ret;
T
Tejun Heo 已提交
1084

1085
	if (!scops || !scops->rmdir)
T
Tejun Heo 已提交
1086 1087
		return -EPERM;

1088 1089 1090
	if (!kernfs_get_active(kn))
		return -ENODEV;

1091
	ret = scops->rmdir(kn);
1092 1093 1094

	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1095 1096 1097 1098 1099 1100 1101
}

static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
			     struct inode *new_dir, struct dentry *new_dentry)
{
	struct kernfs_node *kn  = old_dentry->d_fsdata;
	struct kernfs_node *new_parent = new_dir->i_private;
1102
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1103
	int ret;
T
Tejun Heo 已提交
1104

1105
	if (!scops || !scops->rename)
T
Tejun Heo 已提交
1106 1107
		return -EPERM;

1108 1109 1110 1111 1112 1113 1114 1115
	if (!kernfs_get_active(kn))
		return -ENODEV;

	if (!kernfs_get_active(new_parent)) {
		kernfs_put_active(kn);
		return -ENODEV;
	}

1116
	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1117 1118 1119 1120

	kernfs_put_active(new_parent);
	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1121 1122
}

1123
const struct inode_operations kernfs_dir_iops = {
1124 1125 1126 1127 1128 1129 1130 1131
	.lookup		= kernfs_iop_lookup,
	.permission	= kernfs_iop_permission,
	.setattr	= kernfs_iop_setattr,
	.getattr	= kernfs_iop_getattr,
	.setxattr	= kernfs_iop_setxattr,
	.removexattr	= kernfs_iop_removexattr,
	.getxattr	= kernfs_iop_getxattr,
	.listxattr	= kernfs_iop_listxattr,
T
Tejun Heo 已提交
1132 1133 1134 1135

	.mkdir		= kernfs_iop_mkdir,
	.rmdir		= kernfs_iop_rmdir,
	.rename		= kernfs_iop_rename,
1136 1137
};

1138
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1139
{
1140
	struct kernfs_node *last;
1141 1142 1143 1144 1145 1146

	while (true) {
		struct rb_node *rbn;

		last = pos;

T
Tejun Heo 已提交
1147
		if (kernfs_type(pos) != KERNFS_DIR)
1148 1149
			break;

1150
		rbn = rb_first(&pos->dir.children);
1151 1152 1153
		if (!rbn)
			break;

1154
		pos = rb_to_kn(rbn);
1155 1156 1157 1158 1159 1160
	}

	return last;
}

/**
1161
 * kernfs_next_descendant_post - find the next descendant for post-order walk
1162
 * @pos: the current position (%NULL to initiate traversal)
1163
 * @root: kernfs_node whose descendants to walk
1164 1165 1166 1167 1168
 *
 * Find the next descendant to visit for post-order traversal of @root's
 * descendants.  @root is included in the iteration and the last node to be
 * visited.
 */
1169 1170
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
						       struct kernfs_node *root)
1171 1172 1173
{
	struct rb_node *rbn;

1174
	lockdep_assert_held(&kernfs_mutex);
1175 1176 1177

	/* if first iteration, visit leftmost descendant which may be root */
	if (!pos)
1178
		return kernfs_leftmost_descendant(root);
1179 1180 1181 1182 1183 1184

	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

	/* if there's an unvisited sibling, visit its leftmost descendant */
1185
	rbn = rb_next(&pos->rb);
1186
	if (rbn)
1187
		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1188 1189

	/* no sibling left, visit parent */
1190
	return pos->parent;
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/**
 * kernfs_activate - activate a node which started deactivated
 * @kn: kernfs_node whose subtree is to be activated
 *
 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
 * needs to be explicitly activated.  A node which hasn't been activated
 * isn't visible to userland and deactivation is skipped during its
 * removal.  This is useful to construct atomic init sequences where
 * creation of multiple nodes should either succeed or fail atomically.
 *
 * The caller is responsible for ensuring that this function is not called
 * after kernfs_remove*() is invoked on @kn.
 */
void kernfs_activate(struct kernfs_node *kn)
{
	struct kernfs_node *pos;

	mutex_lock(&kernfs_mutex);

	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn))) {
		if (!pos || (pos->flags & KERNFS_ACTIVATED))
			continue;

		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);

		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
		pos->flags |= KERNFS_ACTIVATED;
	}

	mutex_unlock(&kernfs_mutex);
}

T
Tejun Heo 已提交
1227
static void __kernfs_remove(struct kernfs_node *kn)
1228
{
1229 1230 1231
	struct kernfs_node *pos;

	lockdep_assert_held(&kernfs_mutex);
1232

1233 1234 1235 1236 1237 1238
	/*
	 * Short-circuit if non-root @kn has already finished removal.
	 * This is for kernfs_remove_self() which plays with active ref
	 * after removal.
	 */
	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1239 1240
		return;

1241
	pr_debug("kernfs %s: removing\n", kn->name);
1242

T
Tejun Heo 已提交
1243
	/* prevent any new usage under @kn by deactivating all nodes */
1244 1245
	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn)))
T
Tejun Heo 已提交
1246 1247
		if (kernfs_active(pos))
			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1248 1249

	/* deactivate and unlink the subtree node-by-node */
1250
	do {
1251 1252 1253
		pos = kernfs_leftmost_descendant(kn);

		/*
T
Tejun Heo 已提交
1254 1255 1256 1257
		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
		 * base ref could have been put by someone else by the time
		 * the function returns.  Make sure it doesn't go away
		 * underneath us.
1258 1259 1260
		 */
		kernfs_get(pos);

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		/*
		 * Drain iff @kn was activated.  This avoids draining and
		 * its lockdep annotations for nodes which have never been
		 * activated and allows embedding kernfs_remove() in create
		 * error paths without worrying about draining.
		 */
		if (kn->flags & KERNFS_ACTIVATED)
			kernfs_drain(pos);
		else
			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

		/*
		 * kernfs_unlink_sibling() succeeds once per node.  Use it
		 * to decide who's responsible for cleanups.
		 */
		if (!pos->parent || kernfs_unlink_sibling(pos)) {
			struct kernfs_iattrs *ps_iattr =
				pos->parent ? pos->parent->iattr : NULL;

			/* update timestamps on the parent */
			if (ps_iattr) {
				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
			}

T
Tejun Heo 已提交
1286
			kernfs_put(pos);
1287 1288 1289 1290
		}

		kernfs_put(pos);
	} while (pos != kn);
1291 1292 1293
}

/**
1294 1295
 * kernfs_remove - remove a kernfs_node recursively
 * @kn: the kernfs_node to remove
1296
 *
1297
 * Remove @kn along with all its subdirectories and files.
1298
 */
1299
void kernfs_remove(struct kernfs_node *kn)
1300
{
T
Tejun Heo 已提交
1301 1302 1303
	mutex_lock(&kernfs_mutex);
	__kernfs_remove(kn);
	mutex_unlock(&kernfs_mutex);
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/**
 * kernfs_break_active_protection - break out of active protection
 * @kn: the self kernfs_node
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
 * this function must also be matched with an invocation of
 * kernfs_unbreak_active_protection().
 *
 * This function releases the active reference of @kn the caller is
 * holding.  Once this function is called, @kn may be removed at any point
 * and the caller is solely responsible for ensuring that the objects it
 * dereferences are accessible.
 */
void kernfs_break_active_protection(struct kernfs_node *kn)
{
	/*
	 * Take out ourself out of the active ref dependency chain.  If
	 * we're called without an active ref, lockdep will complain.
	 */
	kernfs_put_active(kn);
}

/**
 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
 * @kn: the self kernfs_node
 *
 * If kernfs_break_active_protection() was called, this function must be
 * invoked before finishing the kernfs operation.  Note that while this
 * function restores the active reference, it doesn't and can't actually
 * restore the active protection - @kn may already or be in the process of
 * being removed.  Once kernfs_break_active_protection() is invoked, that
 * protection is irreversibly gone for the kernfs operation instance.
 *
 * While this function may be called at any point after
 * kernfs_break_active_protection() is invoked, its most useful location
 * would be right before the enclosing kernfs operation returns.
 */
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
{
	/*
	 * @kn->active could be in any state; however, the increment we do
	 * here will be undone as soon as the enclosing kernfs operation
	 * finishes and this temporary bump can't break anything.  If @kn
	 * is alive, nothing changes.  If @kn is being deactivated, the
	 * soon-to-follow put will either finish deactivation or restore
	 * deactivated state.  If @kn is already removed, the temporary
	 * bump is guaranteed to be gone before @kn is released.
	 */
	atomic_inc(&kn->active);
	if (kernfs_lockdep(kn))
		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
}

/**
 * kernfs_remove_self - remove a kernfs_node from its own method
 * @kn: the self kernfs_node to remove
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  This can be used to
 * implement a file operation which deletes itself.
 *
 * For example, the "delete" file for a sysfs device directory can be
 * implemented by invoking kernfs_remove_self() on the "delete" file
 * itself.  This function breaks the circular dependency of trying to
 * deactivate self while holding an active ref itself.  It isn't necessary
 * to modify the usual removal path to use kernfs_remove_self().  The
 * "delete" implementation can simply invoke kernfs_remove_self() on self
 * before proceeding with the usual removal path.  kernfs will ignore later
 * kernfs_remove() on self.
 *
 * kernfs_remove_self() can be called multiple times concurrently on the
 * same kernfs_node.  Only the first one actually performs removal and
 * returns %true.  All others will wait until the kernfs operation which
 * won self-removal finishes and return %false.  Note that the losers wait
 * for the completion of not only the winning kernfs_remove_self() but also
 * the whole kernfs_ops which won the arbitration.  This can be used to
 * guarantee, for example, all concurrent writes to a "delete" file to
 * finish only after the whole operation is complete.
 */
bool kernfs_remove_self(struct kernfs_node *kn)
{
	bool ret;

	mutex_lock(&kernfs_mutex);
	kernfs_break_active_protection(kn);

	/*
	 * SUICIDAL is used to arbitrate among competing invocations.  Only
	 * the first one will actually perform removal.  When the removal
	 * is complete, SUICIDED is set and the active ref is restored
	 * while holding kernfs_mutex.  The ones which lost arbitration
	 * waits for SUICDED && drained which can happen only after the
	 * enclosing kernfs operation which executed the winning instance
	 * of kernfs_remove_self() finished.
	 */
	if (!(kn->flags & KERNFS_SUICIDAL)) {
		kn->flags |= KERNFS_SUICIDAL;
		__kernfs_remove(kn);
		kn->flags |= KERNFS_SUICIDED;
		ret = true;
	} else {
		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
		DEFINE_WAIT(wait);

		while (true) {
			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);

			if ((kn->flags & KERNFS_SUICIDED) &&
			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
				break;

			mutex_unlock(&kernfs_mutex);
			schedule();
			mutex_lock(&kernfs_mutex);
		}
		finish_wait(waitq, &wait);
		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
		ret = false;
	}

	/*
	 * This must be done while holding kernfs_mutex; otherwise, waiting
	 * for SUICIDED && deactivated could finish prematurely.
	 */
	kernfs_unbreak_active_protection(kn);

	mutex_unlock(&kernfs_mutex);
	return ret;
}

1437
/**
1438 1439 1440 1441
 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
 * @parent: parent of the target
 * @name: name of the kernfs_node to remove
 * @ns: namespace tag of the kernfs_node to remove
1442
 *
1443 1444
 * Look for the kernfs_node with @name and @ns under @parent and remove it.
 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1445
 */
1446
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1447 1448
			     const void *ns)
{
1449
	struct kernfs_node *kn;
1450

1451
	if (!parent) {
1452
		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1453 1454 1455 1456
			name);
		return -ENOENT;
	}

T
Tejun Heo 已提交
1457
	mutex_lock(&kernfs_mutex);
1458

1459 1460
	kn = kernfs_find_ns(parent, name, ns);
	if (kn)
T
Tejun Heo 已提交
1461
		__kernfs_remove(kn);
1462

T
Tejun Heo 已提交
1463
	mutex_unlock(&kernfs_mutex);
1464

1465
	if (kn)
1466 1467 1468 1469 1470 1471 1472
		return 0;
	else
		return -ENOENT;
}

/**
 * kernfs_rename_ns - move and rename a kernfs_node
1473
 * @kn: target node
1474 1475 1476 1477
 * @new_parent: new parent to put @sd under
 * @new_name: new name
 * @new_ns: new namespace tag
 */
1478
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1479 1480
		     const char *new_name, const void *new_ns)
{
1481 1482
	struct kernfs_node *old_parent;
	const char *old_name = NULL;
1483 1484
	int error;

1485 1486 1487 1488
	/* can't move or rename root */
	if (!kn->parent)
		return -EINVAL;

1489 1490
	mutex_lock(&kernfs_mutex);

1491
	error = -ENOENT;
1492 1493
	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
	    (new_parent->flags & KERNFS_EMPTY_DIR))
1494 1495
		goto out;

1496
	error = 0;
1497 1498
	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
	    (strcmp(kn->name, new_name) == 0))
1499
		goto out;	/* nothing to rename */
1500 1501 1502

	error = -EEXIST;
	if (kernfs_find_ns(new_parent, new_name, new_ns))
1503
		goto out;
1504

1505
	/* rename kernfs_node */
1506
	if (strcmp(kn->name, new_name) != 0) {
1507
		error = -ENOMEM;
1508
		new_name = kstrdup_const(new_name, GFP_KERNEL);
1509
		if (!new_name)
1510
			goto out;
1511 1512
	} else {
		new_name = NULL;
1513 1514 1515 1516 1517
	}

	/*
	 * Move to the appropriate place in the appropriate directories rbtree.
	 */
1518
	kernfs_unlink_sibling(kn);
1519
	kernfs_get(new_parent);
1520 1521 1522 1523 1524

	/* rename_lock protects ->parent and ->name accessors */
	spin_lock_irq(&kernfs_rename_lock);

	old_parent = kn->parent;
1525
	kn->parent = new_parent;
1526 1527 1528

	kn->ns = new_ns;
	if (new_name) {
T
Tejun Heo 已提交
1529
		old_name = kn->name;
1530 1531 1532 1533 1534
		kn->name = new_name;
	}

	spin_unlock_irq(&kernfs_rename_lock);

1535
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1536
	kernfs_link_sibling(kn);
1537

1538
	kernfs_put(old_parent);
1539
	kfree_const(old_name);
1540

1541
	error = 0;
1542
 out:
1543
	mutex_unlock(&kernfs_mutex);
1544 1545 1546 1547
	return error;
}

/* Relationship between s_mode and the DT_xxx types */
1548
static inline unsigned char dt_type(struct kernfs_node *kn)
1549
{
1550
	return (kn->mode >> 12) & 15;
1551 1552
}

1553
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1554 1555 1556 1557 1558
{
	kernfs_put(filp->private_data);
	return 0;
}

1559
static struct kernfs_node *kernfs_dir_pos(const void *ns,
1560
	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1561 1562
{
	if (pos) {
T
Tejun Heo 已提交
1563
		int valid = kernfs_active(pos) &&
1564
			pos->parent == parent && hash == pos->hash;
1565 1566 1567 1568 1569
		kernfs_put(pos);
		if (!valid)
			pos = NULL;
	}
	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1570
		struct rb_node *node = parent->dir.children.rb_node;
1571
		while (node) {
1572
			pos = rb_to_kn(node);
1573

1574
			if (hash < pos->hash)
1575
				node = node->rb_left;
1576
			else if (hash > pos->hash)
1577 1578 1579 1580 1581
				node = node->rb_right;
			else
				break;
		}
	}
1582 1583
	/* Skip over entries which are dying/dead or in the wrong namespace */
	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1584
		struct rb_node *node = rb_next(&pos->rb);
1585 1586 1587
		if (!node)
			pos = NULL;
		else
1588
			pos = rb_to_kn(node);
1589 1590 1591 1592
	}
	return pos;
}

1593
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1594
	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1595
{
1596
	pos = kernfs_dir_pos(ns, parent, ino, pos);
1597
	if (pos) {
1598
		do {
1599
			struct rb_node *node = rb_next(&pos->rb);
1600 1601 1602
			if (!node)
				pos = NULL;
			else
1603
				pos = rb_to_kn(node);
1604 1605
		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
	}
1606 1607 1608
	return pos;
}

1609
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1610 1611
{
	struct dentry *dentry = file->f_path.dentry;
1612 1613
	struct kernfs_node *parent = dentry->d_fsdata;
	struct kernfs_node *pos = file->private_data;
1614 1615 1616 1617
	const void *ns = NULL;

	if (!dir_emit_dots(file, ctx))
		return 0;
1618
	mutex_lock(&kernfs_mutex);
1619

1620
	if (kernfs_ns_enabled(parent))
1621
		ns = kernfs_info(dentry->d_sb)->ns;
1622

1623
	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1624
	     pos;
1625
	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1626
		const char *name = pos->name;
1627 1628
		unsigned int type = dt_type(pos);
		int len = strlen(name);
1629
		ino_t ino = pos->ino;
1630

1631
		ctx->pos = pos->hash;
1632 1633 1634
		file->private_data = pos;
		kernfs_get(pos);

1635
		mutex_unlock(&kernfs_mutex);
1636 1637
		if (!dir_emit(ctx, name, len, ino, type))
			return 0;
1638
		mutex_lock(&kernfs_mutex);
1639
	}
1640
	mutex_unlock(&kernfs_mutex);
1641 1642 1643 1644 1645
	file->private_data = NULL;
	ctx->pos = INT_MAX;
	return 0;
}

1646 1647
static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
				    int whence)
1648 1649 1650 1651
{
	struct inode *inode = file_inode(file);
	loff_t ret;

A
Al Viro 已提交
1652
	inode_lock(inode);
1653
	ret = generic_file_llseek(file, offset, whence);
A
Al Viro 已提交
1654
	inode_unlock(inode);
1655 1656 1657 1658

	return ret;
}

1659
const struct file_operations kernfs_dir_fops = {
1660
	.read		= generic_read_dir,
1661 1662 1663
	.iterate	= kernfs_fop_readdir,
	.release	= kernfs_dir_fop_release,
	.llseek		= kernfs_dir_fop_llseek,
1664
};