mm.h 102.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
#ifndef _LINUX_MM_H
#define _LINUX_MM_H

#include <linux/errno.h>

#ifdef __KERNEL__

9
#include <linux/mmdebug.h>
L
Linus Torvalds 已提交
10
#include <linux/gfp.h>
11
#include <linux/bug.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
15
#include <linux/atomic.h>
16
#include <linux/debug_locks.h>
17
#include <linux/mm_types.h>
18
#include <linux/mmap_lock.h>
19
#include <linux/range.h>
20
#include <linux/pfn.h>
21
#include <linux/percpu-refcount.h>
A
Andrea Arcangeli 已提交
22
#include <linux/bit_spinlock.h>
23
#include <linux/shrinker.h>
24
#include <linux/resource.h>
25
#include <linux/page_ext.h>
26
#include <linux/err.h>
27
#include <linux/page-flags.h>
28
#include <linux/page_ref.h>
29
#include <linux/memremap.h>
30
#include <linux/overflow.h>
31
#include <linux/sizes.h>
32
#include <linux/sched.h>
33
#include <linux/pgtable.h>
34
#include <linux/kasan.h>
L
Linus Torvalds 已提交
35 36 37

struct mempolicy;
struct anon_vma;
38
struct anon_vma_chain;
A
Alexey Dobriyan 已提交
39
struct file_ra_state;
A
Alexey Dobriyan 已提交
40
struct user_struct;
A
Alexey Dobriyan 已提交
41
struct writeback_control;
42
struct bdi_writeback;
43
struct pt_regs;
L
Linus Torvalds 已提交
44

45 46
extern int sysctl_page_lock_unfairness;

47 48
void init_mm_internals(void);

49
#ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
L
Linus Torvalds 已提交
50
extern unsigned long max_mapnr;
51 52 53 54 55 56 57

static inline void set_max_mapnr(unsigned long limit)
{
	max_mapnr = limit;
}
#else
static inline void set_max_mapnr(unsigned long limit) { }
L
Linus Torvalds 已提交
58 59
#endif

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
extern atomic_long_t _totalram_pages;
static inline unsigned long totalram_pages(void)
{
	return (unsigned long)atomic_long_read(&_totalram_pages);
}

static inline void totalram_pages_inc(void)
{
	atomic_long_inc(&_totalram_pages);
}

static inline void totalram_pages_dec(void)
{
	atomic_long_dec(&_totalram_pages);
}

static inline void totalram_pages_add(long count)
{
	atomic_long_add(count, &_totalram_pages);
}

L
Linus Torvalds 已提交
81 82 83 84 85 86 87 88 89
extern void * high_memory;
extern int page_cluster;

#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif

90 91 92 93 94 95 96 97 98 99 100
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
extern const int mmap_rnd_bits_min;
extern const int mmap_rnd_bits_max;
extern int mmap_rnd_bits __read_mostly;
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
extern const int mmap_rnd_compat_bits_min;
extern const int mmap_rnd_compat_bits_max;
extern int mmap_rnd_compat_bits __read_mostly;
#endif

L
Linus Torvalds 已提交
101 102 103
#include <asm/page.h>
#include <asm/processor.h>

104 105 106 107 108
/*
 * Architectures that support memory tagging (assigning tags to memory regions,
 * embedding these tags into addresses that point to these memory regions, and
 * checking that the memory and the pointer tags match on memory accesses)
 * redefine this macro to strip tags from pointers.
I
Ingo Molnar 已提交
109
 * It's defined as noop for architectures that don't support memory tagging.
110 111 112 113 114
 */
#ifndef untagged_addr
#define untagged_addr(addr) (addr)
#endif

115 116 117 118
#ifndef __pa_symbol
#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
#endif

119 120 121 122
#ifndef page_to_virt
#define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
#endif

L
Laura Abbott 已提交
123 124 125 126
#ifndef lm_alias
#define lm_alias(x)	__va(__pa_symbol(x))
#endif

127 128 129 130 131 132 133 134 135 136
/*
 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
 * instrumented C code with jump table addresses. Architectures that
 * support CFI can define this macro to return the actual function address
 * when needed.
 */
#ifndef function_nocfi
#define function_nocfi(x) (x)
#endif

137 138 139 140 141 142 143 144 145 146 147
/*
 * To prevent common memory management code establishing
 * a zero page mapping on a read fault.
 * This macro should be defined within <asm/pgtable.h>.
 * s390 does this to prevent multiplexing of hardware bits
 * related to the physical page in case of virtualization.
 */
#ifndef mm_forbids_zeropage
#define mm_forbids_zeropage(X)	(0)
#endif

148 149
/*
 * On some architectures it is expensive to call memset() for small sizes.
150 151 152
 * If an architecture decides to implement their own version of
 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
 * define their own version of this macro in <asm/pgtable.h>
153
 */
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#if BITS_PER_LONG == 64
/* This function must be updated when the size of struct page grows above 80
 * or reduces below 56. The idea that compiler optimizes out switch()
 * statement, and only leaves move/store instructions. Also the compiler can
 * combine write statments if they are both assignments and can be reordered,
 * this can result in several of the writes here being dropped.
 */
#define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
static inline void __mm_zero_struct_page(struct page *page)
{
	unsigned long *_pp = (void *)page;

	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
	BUILD_BUG_ON(sizeof(struct page) & 7);
	BUILD_BUG_ON(sizeof(struct page) < 56);
	BUILD_BUG_ON(sizeof(struct page) > 80);

	switch (sizeof(struct page)) {
	case 80:
173 174
		_pp[9] = 0;
		fallthrough;
175
	case 72:
176 177
		_pp[8] = 0;
		fallthrough;
178
	case 64:
179 180
		_pp[7] = 0;
		fallthrough;
181 182 183 184 185 186 187 188 189 190 191
	case 56:
		_pp[6] = 0;
		_pp[5] = 0;
		_pp[4] = 0;
		_pp[3] = 0;
		_pp[2] = 0;
		_pp[1] = 0;
		_pp[0] = 0;
	}
}
#else
192 193 194
#define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
#endif

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/*
 * Default maximum number of active map areas, this limits the number of vmas
 * per mm struct. Users can overwrite this number by sysctl but there is a
 * problem.
 *
 * When a program's coredump is generated as ELF format, a section is created
 * per a vma. In ELF, the number of sections is represented in unsigned short.
 * This means the number of sections should be smaller than 65535 at coredump.
 * Because the kernel adds some informative sections to a image of program at
 * generating coredump, we need some margin. The number of extra sections is
 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 *
 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 * not a hard limit any more. Although some userspace tools can be surprised by
 * that.
 */
#define MAPCOUNT_ELF_CORE_MARGIN	(5)
#define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)

extern int sysctl_max_map_count;

216
extern unsigned long sysctl_user_reserve_kbytes;
217
extern unsigned long sysctl_admin_reserve_kbytes;
218

219 220 221 222
extern int sysctl_overcommit_memory;
extern int sysctl_overcommit_ratio;
extern unsigned long sysctl_overcommit_kbytes;

223 224 225 226
int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
		loff_t *);
int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
		loff_t *);
227 228
int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
		loff_t *);
229 230 231 232 233 234 235
/*
 * Any attempt to mark this function as static leads to build failure
 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
 * is referred to by BPF code. This must be visible for error injection.
 */
int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t index, gfp_t gfp, void **shadowp);
236

L
Linus Torvalds 已提交
237 238
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))

239 240 241
/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)

242
/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
243
#define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
244

245 246
#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))

L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255
/*
 * Linux kernel virtual memory manager primitives.
 * The idea being to have a "virtual" mm in the same way
 * we have a virtual fs - giving a cleaner interface to the
 * mm details, and allowing different kinds of memory mappings
 * (from shared memory to executable loading to arbitrary
 * mmap() functions).
 */

256
struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 258
struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
void vm_area_free(struct vm_area_struct *);
259

L
Linus Torvalds 已提交
260
#ifndef CONFIG_MMU
261 262
extern struct rb_root nommu_region_tree;
extern struct rw_semaphore nommu_region_sem;
L
Linus Torvalds 已提交
263 264 265 266 267

extern unsigned int kobjsize(const void *objp);
#endif

/*
H
Hugh Dickins 已提交
268
 * vm_flags in vm_area_struct, see mm_types.h.
269
 * When changing, update also include/trace/events/mmflags.h
L
Linus Torvalds 已提交
270
 */
271 272
#define VM_NONE		0x00000000

L
Linus Torvalds 已提交
273 274 275 276 277
#define VM_READ		0x00000001	/* currently active flags */
#define VM_WRITE	0x00000002
#define VM_EXEC		0x00000004
#define VM_SHARED	0x00000008

278
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
L
Linus Torvalds 已提交
279 280 281 282 283 284
#define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
#define VM_MAYWRITE	0x00000020
#define VM_MAYEXEC	0x00000040
#define VM_MAYSHARE	0x00000080

#define VM_GROWSDOWN	0x00000100	/* general info on the segment */
285
#define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
286
#define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
L
Linus Torvalds 已提交
287
#define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
288
#define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297 298

#define VM_LOCKED	0x00002000
#define VM_IO           0x00004000	/* Memory mapped I/O or similar */

					/* Used by sys_madvise() */
#define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
#define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */

#define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
#define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
E
Eric B Munson 已提交
299
#define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
L
Linus Torvalds 已提交
300
#define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
301
#define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
L
Linus Torvalds 已提交
302
#define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
J
Jan Kara 已提交
303
#define VM_SYNC		0x00800000	/* Synchronous page faults */
304
#define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
305
#define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
306
#define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
307

308 309 310 311 312 313
#ifdef CONFIG_MEM_SOFT_DIRTY
# define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
#else
# define VM_SOFTDIRTY	0
#endif

J
Jared Hulbert 已提交
314
#define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
315 316
#define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
#define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
H
Hugh Dickins 已提交
317
#define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
L
Linus Torvalds 已提交
318

319 320 321 322 323
#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
#define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
324
#define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
325 326 327 328
#define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
#define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
#define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
#define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
329
#define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
330 331
#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */

332
#ifdef CONFIG_ARCH_HAS_PKEYS
333 334
# define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
# define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335
# define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 337
# define VM_PKEY_BIT2	VM_HIGH_ARCH_2
# define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 339 340 341
#ifdef CONFIG_PPC
# define VM_PKEY_BIT4  VM_HIGH_ARCH_4
#else
# define VM_PKEY_BIT4  0
342
#endif
343 344 345 346
#endif /* CONFIG_ARCH_HAS_PKEYS */

#if defined(CONFIG_X86)
# define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
347 348
#elif defined(CONFIG_PPC)
# define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
349 350 351 352
#elif defined(CONFIG_PARISC)
# define VM_GROWSUP	VM_ARCH_1
#elif defined(CONFIG_IA64)
# define VM_GROWSUP	VM_ARCH_1
353 354 355
#elif defined(CONFIG_SPARC64)
# define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
# define VM_ARCH_CLEAR	VM_SPARC_ADI
356 357 358
#elif defined(CONFIG_ARM64)
# define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
# define VM_ARCH_CLEAR	VM_ARM64_BTI
359 360 361 362
#elif !defined(CONFIG_MMU)
# define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
#endif

363 364 365 366 367 368 369 370
#if defined(CONFIG_ARM64_MTE)
# define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
# define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
#else
# define VM_MTE		VM_NONE
# define VM_MTE_ALLOWED	VM_NONE
#endif

371 372 373 374
#ifndef VM_GROWSUP
# define VM_GROWSUP	VM_NONE
#endif

375 376 377 378 379 380 381
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
# define VM_UFFD_MINOR_BIT	37
# define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
# define VM_UFFD_MINOR		VM_NONE
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */

382 383 384
/* Bits set in the VMA until the stack is in its final location */
#define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)

385 386 387 388 389 390 391 392 393 394 395 396 397 398
#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)

/* Common data flag combinations */
#define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
				 VM_MAYWRITE | VM_MAYEXEC)
#define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)

#ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
#define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
#endif

L
Linus Torvalds 已提交
399 400 401 402 403
#ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif

#ifdef CONFIG_STACK_GROWSUP
404
#define VM_STACK	VM_GROWSUP
L
Linus Torvalds 已提交
405
#else
406
#define VM_STACK	VM_GROWSDOWN
L
Linus Torvalds 已提交
407 408
#endif

409 410
#define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)

411 412 413 414
/* VMA basic access permission flags */
#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)


N
Nick Piggin 已提交
415
/*
416
 * Special vmas that are non-mergable, non-mlock()able.
N
Nick Piggin 已提交
417
 */
418
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
N
Nick Piggin 已提交
419

420 421 422
/* This mask prevents VMA from being scanned with khugepaged */
#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)

423 424 425
/* This mask defines which mm->def_flags a process can inherit its parent */
#define VM_INIT_DEF_MASK	VM_NOHUGEPAGE

E
Eric B Munson 已提交
426 427 428
/* This mask is used to clear all the VMA flags used by mlock */
#define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))

429 430 431 432 433 434
/* Arch-specific flags to clear when updating VM flags on protection change */
#ifndef VM_ARCH_CLEAR
# define VM_ARCH_CLEAR	VM_NONE
#endif
#define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)

L
Linus Torvalds 已提交
435 436 437 438 439 440
/*
 * mapping from the currently active vm_flags protection bits (the
 * low four bits) to a page protection mask..
 */
extern pgprot_t protection_map[16];

441
/**
442
 * enum fault_flag - Fault flag definitions.
443 444 445
 * @FAULT_FLAG_WRITE: Fault was a write fault.
 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
446
 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
447 448 449 450 451 452
 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
 * @FAULT_FLAG_TRIED: The fault has been tried once.
 * @FAULT_FLAG_USER: The fault originated in userspace.
 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
 *
 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
 * whether we would allow page faults to retry by specifying these two
 * fault flags correctly.  Currently there can be three legal combinations:
 *
 * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
 *                              this is the first try
 *
 * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
 *                              we've already tried at least once
 *
 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
 *
 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
 * be used.  Note that page faults can be allowed to retry for multiple times,
 * in which case we'll have an initial fault with flags (a) then later on
 * continuous faults with flags (b).  We should always try to detect pending
 * signals before a retry to make sure the continuous page faults can still be
 * interrupted if necessary.
472
 */
473 474 475 476 477 478 479 480 481 482 483 484
enum fault_flag {
	FAULT_FLAG_WRITE =		1 << 0,
	FAULT_FLAG_MKWRITE =		1 << 1,
	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
	FAULT_FLAG_KILLABLE =		1 << 4,
	FAULT_FLAG_TRIED = 		1 << 5,
	FAULT_FLAG_USER =		1 << 6,
	FAULT_FLAG_REMOTE =		1 << 7,
	FAULT_FLAG_INSTRUCTION =	1 << 8,
	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
};
N
Nick Piggin 已提交
485

P
Peter Xu 已提交
486 487 488 489 490
/*
 * The default fault flags that should be used by most of the
 * arch-specific page fault handlers.
 */
#define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
491 492
			     FAULT_FLAG_KILLABLE | \
			     FAULT_FLAG_INTERRUPTIBLE)
P
Peter Xu 已提交
493

494 495
/**
 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
496
 * @flags: Fault flags.
497 498
 *
 * This is mostly used for places where we want to try to avoid taking
499
 * the mmap_lock for too long a time when waiting for another condition
500
 * to change, in which case we can try to be polite to release the
501 502
 * mmap_lock in the first round to avoid potential starvation of other
 * processes that would also want the mmap_lock.
503 504 505 506
 *
 * Return: true if the page fault allows retry and this is the first
 * attempt of the fault handling; false otherwise.
 */
507
static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
508 509 510 511 512
{
	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
	    (!(flags & FAULT_FLAG_TRIED));
}

513 514 515 516 517 518 519 520 521
#define FAULT_FLAG_TRACE \
	{ FAULT_FLAG_WRITE,		"WRITE" }, \
	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
	{ FAULT_FLAG_TRIED,		"TRIED" }, \
	{ FAULT_FLAG_USER,		"USER" }, \
	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
522 523
	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
524

525
/*
526
 * vm_fault is filled by the pagefault handler and passed to the vma's
N
Nick Piggin 已提交
527 528
 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 * of VM_FAULT_xxx flags that give details about how the fault was handled.
529
 *
530 531 532
 * MM layer fills up gfp_mask for page allocations but fault handler might
 * alter it if its implementation requires a different allocation context.
 *
533
 * pgoff should be used in favour of virtual_address, if possible.
534
 */
N
Nick Piggin 已提交
535
struct vm_fault {
536
	const struct {
537 538 539 540 541
		struct vm_area_struct *vma;	/* Target VMA */
		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
		pgoff_t pgoff;			/* Logical page offset based on vma */
		unsigned long address;		/* Faulting virtual address */
	};
542
	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
543
					 * XXX: should really be 'const' */
J
Jan Kara 已提交
544
	pmd_t *pmd;			/* Pointer to pmd entry matching
J
Jan Kara 已提交
545
					 * the 'address' */
546 547 548
	pud_t *pud;			/* Pointer to pud entry matching
					 * the 'address'
					 */
J
Jan Kara 已提交
549
	pte_t orig_pte;			/* Value of PTE at the time of fault */
N
Nick Piggin 已提交
550

551
	struct page *cow_page;		/* Page handler may use for COW fault */
N
Nick Piggin 已提交
552
	struct page *page;		/* ->fault handlers should return a
N
Nick Piggin 已提交
553
					 * page here, unless VM_FAULT_NOPAGE
N
Nick Piggin 已提交
554
					 * is set (which is also implied by
N
Nick Piggin 已提交
555
					 * VM_FAULT_ERROR).
N
Nick Piggin 已提交
556
					 */
J
Jan Kara 已提交
557
	/* These three entries are valid only while holding ptl lock */
K
Kirill A. Shutemov 已提交
558 559 560 561 562 563 564 565
	pte_t *pte;			/* Pointer to pte entry matching
					 * the 'address'. NULL if the page
					 * table hasn't been allocated.
					 */
	spinlock_t *ptl;		/* Page table lock.
					 * Protects pte page table if 'pte'
					 * is not NULL, otherwise pmd.
					 */
566
	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
567 568
					 * vm_ops->map_pages() sets up a page
					 * table from atomic context.
569 570 571 572
					 * do_fault_around() pre-allocates
					 * page table to avoid allocation from
					 * atomic context.
					 */
573
};
L
Linus Torvalds 已提交
574

575 576 577 578 579 580 581
/* page entry size for vm->huge_fault() */
enum page_entry_size {
	PE_SIZE_PTE = 0,
	PE_SIZE_PMD,
	PE_SIZE_PUD,
};

L
Linus Torvalds 已提交
582 583 584
/*
 * These are the virtual MM functions - opening of an area, closing and
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
585
 * to the functions called when a no-page or a wp-page exception occurs.
L
Linus Torvalds 已提交
586 587 588 589
 */
struct vm_operations_struct {
	void (*open)(struct vm_area_struct * area);
	void (*close)(struct vm_area_struct * area);
590 591
	/* Called any time before splitting to check if it's allowed */
	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
592
	int (*mremap)(struct vm_area_struct *area);
593 594 595 596 597 598 599
	/*
	 * Called by mprotect() to make driver-specific permission
	 * checks before mprotect() is finalised.   The VMA must not
	 * be modified.  Returns 0 if eprotect() can proceed.
	 */
	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
			unsigned long end, unsigned long newflags);
600 601 602
	vm_fault_t (*fault)(struct vm_fault *vmf);
	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
			enum page_entry_size pe_size);
603
	vm_fault_t (*map_pages)(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
604
			pgoff_t start_pgoff, pgoff_t end_pgoff);
605
	unsigned long (*pagesize)(struct vm_area_struct * area);
606 607 608

	/* notification that a previously read-only page is about to become
	 * writable, if an error is returned it will cause a SIGBUS */
609
	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610

611
	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612
	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613

614
	/* called by access_process_vm when get_user_pages() fails, typically
615 616
	 * for use by special VMAs. See also generic_access_phys() for a generic
	 * implementation useful for any iomem mapping.
617 618 619
	 */
	int (*access)(struct vm_area_struct *vma, unsigned long addr,
		      void *buf, int len, int write);
620 621 622 623 624 625

	/* Called by the /proc/PID/maps code to ask the vma whether it
	 * has a special name.  Returning non-NULL will also cause this
	 * vma to be dumped unconditionally. */
	const char *(*name)(struct vm_area_struct *vma);

L
Linus Torvalds 已提交
626
#ifdef CONFIG_NUMA
627 628 629 630 631 632 633
	/*
	 * set_policy() op must add a reference to any non-NULL @new mempolicy
	 * to hold the policy upon return.  Caller should pass NULL @new to
	 * remove a policy and fall back to surrounding context--i.e. do not
	 * install a MPOL_DEFAULT policy, nor the task or system default
	 * mempolicy.
	 */
L
Linus Torvalds 已提交
634
	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 636 637 638 639 640

	/*
	 * get_policy() op must add reference [mpol_get()] to any policy at
	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
	 * in mm/mempolicy.c will do this automatically.
	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641
	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 643 644 645
	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
	 * must return NULL--i.e., do not "fallback" to task or system default
	 * policy.
	 */
L
Linus Torvalds 已提交
646 647 648
	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
					unsigned long addr);
#endif
649 650 651 652 653 654 655
	/*
	 * Called by vm_normal_page() for special PTEs to find the
	 * page for @addr.  This is useful if the default behavior
	 * (using pte_page()) would not find the correct page.
	 */
	struct page *(*find_special_page)(struct vm_area_struct *vma,
					  unsigned long addr);
L
Linus Torvalds 已提交
656 657
};

K
Kirill A. Shutemov 已提交
658 659
static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
{
660 661
	static const struct vm_operations_struct dummy_vm_ops = {};

662
	memset(vma, 0, sizeof(*vma));
K
Kirill A. Shutemov 已提交
663
	vma->vm_mm = mm;
664
	vma->vm_ops = &dummy_vm_ops;
K
Kirill A. Shutemov 已提交
665 666 667
	INIT_LIST_HEAD(&vma->anon_vma_chain);
}

668 669 670 671 672
static inline void vma_set_anonymous(struct vm_area_struct *vma)
{
	vma->vm_ops = NULL;
}

673 674 675 676 677
static inline bool vma_is_anonymous(struct vm_area_struct *vma)
{
	return !vma->vm_ops;
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691
static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
{
	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);

	if (!maybe_stack)
		return false;

	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
						VM_STACK_INCOMPLETE_SETUP)
		return true;

	return false;
}

692 693 694 695 696 697 698 699 700 701
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
	if (!current->mm)
		return true;

	if (current->mm != vma->vm_mm)
		return true;

	return false;
}
702 703 704

static inline bool vma_is_accessible(struct vm_area_struct *vma)
{
705
	return vma->vm_flags & VM_ACCESS_FLAGS;
706 707
}

708 709 710 711 712 713 714 715 716 717 718 719
#ifdef CONFIG_SHMEM
/*
 * The vma_is_shmem is not inline because it is used only by slow
 * paths in userfault.
 */
bool vma_is_shmem(struct vm_area_struct *vma);
#else
static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
#endif

int vma_is_stack_for_current(struct vm_area_struct *vma);

720 721 722
/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }

L
Linus Torvalds 已提交
723 724 725
struct mmu_gather;
struct inode;

726
#include <linux/huge_mm.h>
L
Linus Torvalds 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

/*
 * Methods to modify the page usage count.
 *
 * What counts for a page usage:
 * - cache mapping   (page->mapping)
 * - private data    (page->private)
 * - page mapped in a task's page tables, each mapping
 *   is counted separately
 *
 * Also, many kernel routines increase the page count before a critical
 * routine so they can be sure the page doesn't go away from under them.
 */

/*
N
Nick Piggin 已提交
742
 * Drop a ref, return true if the refcount fell to zero (the page has no users)
L
Linus Torvalds 已提交
743
 */
744 745
static inline int put_page_testzero(struct page *page)
{
746 747
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
	return page_ref_dec_and_test(page);
748
}
L
Linus Torvalds 已提交
749 750

/*
751 752
 * Try to grab a ref unless the page has a refcount of zero, return false if
 * that is the case.
753 754
 * This can be called when MMU is off so it must not access
 * any of the virtual mappings.
L
Linus Torvalds 已提交
755
 */
756 757
static inline int get_page_unless_zero(struct page *page)
{
758
	return page_ref_add_unless(page, 1, 0);
759
}
L
Linus Torvalds 已提交
760

761
extern int page_is_ram(unsigned long pfn);
762 763 764 765 766 767 768

enum {
	REGION_INTERSECTS,
	REGION_DISJOINT,
	REGION_MIXED,
};

769 770
int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
		      unsigned long desc);
771

772
/* Support for virtually mapped pages */
773 774
struct page *vmalloc_to_page(const void *addr);
unsigned long vmalloc_to_pfn(const void *addr);
775

776 777 778 779 780 781
/*
 * Determine if an address is within the vmalloc range
 *
 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 * is no special casing required.
 */
782 783 784 785 786

#ifndef is_ioremap_addr
#define is_ioremap_addr(x) is_vmalloc_addr(x)
#endif

787
#ifdef CONFIG_MMU
788
extern bool is_vmalloc_addr(const void *x);
789 790
extern int is_vmalloc_or_module_addr(const void *x);
#else
791 792 793 794
static inline bool is_vmalloc_addr(const void *x)
{
	return false;
}
795
static inline int is_vmalloc_or_module_addr(const void *x)
796 797 798 799
{
	return 0;
}
#endif
800

M
Michal Hocko 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814
extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
static inline void *kvmalloc(size_t size, gfp_t flags)
{
	return kvmalloc_node(size, flags, NUMA_NO_NODE);
}
static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
{
	return kvmalloc_node(size, flags | __GFP_ZERO, node);
}
static inline void *kvzalloc(size_t size, gfp_t flags)
{
	return kvmalloc(size, flags | __GFP_ZERO);
}

815 816
static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
{
817 818 819
	size_t bytes;

	if (unlikely(check_mul_overflow(n, size, &bytes)))
820 821
		return NULL;

822
	return kvmalloc(bytes, flags);
823 824
}

K
Kees Cook 已提交
825 826 827 828 829
static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
{
	return kvmalloc_array(n, size, flags | __GFP_ZERO);
}

A
Al Viro 已提交
830
extern void kvfree(const void *addr);
831
extern void kvfree_sensitive(const void *addr, size_t len);
A
Al Viro 已提交
832

833
static inline int head_compound_mapcount(struct page *head)
834 835 836 837
{
	return atomic_read(compound_mapcount_ptr(head)) + 1;
}

838 839 840 841 842
/*
 * Mapcount of compound page as a whole, does not include mapped sub-pages.
 *
 * Must be called only for compound pages or any their tail sub-pages.
 */
843 844
static inline int compound_mapcount(struct page *page)
{
845
	VM_BUG_ON_PAGE(!PageCompound(page), page);
846
	page = compound_head(page);
847
	return head_compound_mapcount(page);
848 849
}

850 851 852 853 854
/*
 * The atomic page->_mapcount, starts from -1: so that transitions
 * both from it and to it can be tracked, using atomic_inc_and_test
 * and atomic_add_negative(-1).
 */
855
static inline void page_mapcount_reset(struct page *page)
856 857 858 859
{
	atomic_set(&(page)->_mapcount, -1);
}

860 861
int __page_mapcount(struct page *page);

862 863 864 865 866 867 868 869
/*
 * Mapcount of 0-order page; when compound sub-page, includes
 * compound_mapcount().
 *
 * Result is undefined for pages which cannot be mapped into userspace.
 * For example SLAB or special types of pages. See function page_has_type().
 * They use this place in struct page differently.
 */
870 871
static inline int page_mapcount(struct page *page)
{
872 873 874 875 876 877 878
	if (unlikely(PageCompound(page)))
		return __page_mapcount(page);
	return atomic_read(&page->_mapcount) + 1;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int total_mapcount(struct page *page);
879
int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
880 881 882 883
#else
static inline int total_mapcount(struct page *page)
{
	return page_mapcount(page);
884
}
885 886 887 888 889 890 891 892
static inline int page_trans_huge_mapcount(struct page *page,
					   int *total_mapcount)
{
	int mapcount = page_mapcount(page);
	if (total_mapcount)
		*total_mapcount = mapcount;
	return mapcount;
}
893
#endif
894

895 896 897
static inline struct page *virt_to_head_page(const void *x)
{
	struct page *page = virt_to_page(x);
898

899
	return compound_head(page);
900 901
}

902 903
void __put_page(struct page *page);

904
void put_pages_list(struct list_head *pages);
L
Linus Torvalds 已提交
905

N
Nick Piggin 已提交
906 907
void split_page(struct page *page, unsigned int order);

908 909 910
/*
 * Compound pages have a destructor function.  Provide a
 * prototype for that function and accessor functions.
911
 * These are _only_ valid on the head of a compound page.
912
 */
913 914 915 916 917 918 919 920
typedef void compound_page_dtor(struct page *);

/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
enum compound_dtor_id {
	NULL_COMPOUND_DTOR,
	COMPOUND_PAGE_DTOR,
#ifdef CONFIG_HUGETLB_PAGE
	HUGETLB_PAGE_DTOR,
921 922 923
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	TRANSHUGE_PAGE_DTOR,
924 925 926
#endif
	NR_COMPOUND_DTORS,
};
927
extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
928 929

static inline void set_compound_page_dtor(struct page *page,
930
		enum compound_dtor_id compound_dtor)
931
{
932 933
	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
	page[1].compound_dtor = compound_dtor;
934 935
}

936
static inline void destroy_compound_page(struct page *page)
937
{
938
	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
939
	compound_page_dtors[page[1].compound_dtor](page);
940 941
}

942
static inline unsigned int compound_order(struct page *page)
943
{
944
	if (!PageHead(page))
945
		return 0;
946
	return page[1].compound_order;
947 948
}

949 950 951 952 953 954 955 956 957 958 959
static inline bool hpage_pincount_available(struct page *page)
{
	/*
	 * Can the page->hpage_pinned_refcount field be used? That field is in
	 * the 3rd page of the compound page, so the smallest (2-page) compound
	 * pages cannot support it.
	 */
	page = compound_head(page);
	return PageCompound(page) && compound_order(page) > 1;
}

960
static inline int head_compound_pincount(struct page *head)
961 962 963 964
{
	return atomic_read(compound_pincount_ptr(head));
}

965 966 967 968
static inline int compound_pincount(struct page *page)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	page = compound_head(page);
969
	return head_compound_pincount(page);
970 971
}

972
static inline void set_compound_order(struct page *page, unsigned int order)
973
{
974
	page[1].compound_order = order;
975
	page[1].compound_nr = 1U << order;
976 977
}

978 979 980
/* Returns the number of pages in this potentially compound page. */
static inline unsigned long compound_nr(struct page *page)
{
981 982 983
	if (!PageHead(page))
		return 1;
	return page[1].compound_nr;
984 985
}

986 987 988 989 990 991
/* Returns the number of bytes in this potentially compound page. */
static inline unsigned long page_size(struct page *page)
{
	return PAGE_SIZE << compound_order(page);
}

992 993 994 995 996 997
/* Returns the number of bits needed for the number of bytes in a page */
static inline unsigned int page_shift(struct page *page)
{
	return PAGE_SHIFT + compound_order(page);
}

998 999
void free_compound_page(struct page *page);

1000
#ifdef CONFIG_MMU
A
Andrea Arcangeli 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/*
 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 * servicing faults for write access.  In the normal case, do always want
 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 * that do not have writing enabled, when used by access_process_vm.
 */
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
	if (likely(vma->vm_flags & VM_WRITE))
		pte = pte_mkwrite(pte);
	return pte;
}
1013

1014
vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1015
void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1016

1017 1018
vm_fault_t finish_fault(struct vm_fault *vmf);
vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1019
#endif
A
Andrea Arcangeli 已提交
1020

L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026 1027
/*
 * Multiple processes may "see" the same page. E.g. for untouched
 * mappings of /dev/null, all processes see the same page full of
 * zeroes, and text pages of executables and shared libraries have
 * only one copy in memory, at most, normally.
 *
 * For the non-reserved pages, page_count(page) denotes a reference count.
1028 1029
 *   page_count() == 0 means the page is free. page->lru is then used for
 *   freelist management in the buddy allocator.
N
Nick Piggin 已提交
1030
 *   page_count() > 0  means the page has been allocated.
L
Linus Torvalds 已提交
1031
 *
N
Nick Piggin 已提交
1032 1033 1034 1035 1036
 * Pages are allocated by the slab allocator in order to provide memory
 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 * unless a particular usage is carefully commented. (the responsibility of
 * freeing the kmalloc memory is the caller's, of course).
L
Linus Torvalds 已提交
1037
 *
N
Nick Piggin 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046
 * A page may be used by anyone else who does a __get_free_page().
 * In this case, page_count still tracks the references, and should only
 * be used through the normal accessor functions. The top bits of page->flags
 * and page->virtual store page management information, but all other fields
 * are unused and could be used privately, carefully. The management of this
 * page is the responsibility of the one who allocated it, and those who have
 * subsequently been given references to it.
 *
 * The other pages (we may call them "pagecache pages") are completely
L
Linus Torvalds 已提交
1047 1048 1049
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 * The following discussion applies only to them.
 *
N
Nick Piggin 已提交
1050 1051 1052 1053
 * A pagecache page contains an opaque `private' member, which belongs to the
 * page's address_space. Usually, this is the address of a circular list of
 * the page's disk buffers. PG_private must be set to tell the VM to call
 * into the filesystem to release these pages.
L
Linus Torvalds 已提交
1054
 *
N
Nick Piggin 已提交
1055 1056
 * A page may belong to an inode's memory mapping. In this case, page->mapping
 * is the pointer to the inode, and page->index is the file offset of the page,
1057
 * in units of PAGE_SIZE.
L
Linus Torvalds 已提交
1058
 *
N
Nick Piggin 已提交
1059 1060 1061
 * If pagecache pages are not associated with an inode, they are said to be
 * anonymous pages. These may become associated with the swapcache, and in that
 * case PG_swapcache is set, and page->private is an offset into the swapcache.
L
Linus Torvalds 已提交
1062
 *
N
Nick Piggin 已提交
1063 1064 1065
 * In either case (swapcache or inode backed), the pagecache itself holds one
 * reference to the page. Setting PG_private should also increment the
 * refcount. The each user mapping also has a reference to the page.
L
Linus Torvalds 已提交
1066
 *
N
Nick Piggin 已提交
1067
 * The pagecache pages are stored in a per-mapping radix tree, which is
M
Matthew Wilcox 已提交
1068
 * rooted at mapping->i_pages, and indexed by offset.
N
Nick Piggin 已提交
1069 1070
 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 * lists, we instead now tag pages as dirty/writeback in the radix tree.
L
Linus Torvalds 已提交
1071
 *
N
Nick Piggin 已提交
1072
 * All pagecache pages may be subject to I/O:
L
Linus Torvalds 已提交
1073 1074
 * - inode pages may need to be read from disk,
 * - inode pages which have been modified and are MAP_SHARED may need
N
Nick Piggin 已提交
1075 1076 1077 1078
 *   to be written back to the inode on disk,
 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 *   modified may need to be swapped out to swap space and (later) to be read
 *   back into memory.
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084
 */

/*
 * The zone field is never updated after free_area_init_core()
 * sets it, so none of the operations on it need to be atomic.
 */
1085

1086
/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1087
#define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
A
Andy Whitcroft 已提交
1088 1089
#define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1090
#define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1091
#define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
A
Andy Whitcroft 已提交
1092

1093
/*
L
Lucas De Marchi 已提交
1094
 * Define the bit shifts to access each section.  For non-existent
1095 1096 1097
 * sections we define the shift as 0; that plus a 0 mask ensures
 * the compiler will optimise away reference to them.
 */
A
Andy Whitcroft 已提交
1098 1099 1100
#define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1101
#define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1102
#define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1103

1104 1105
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
#ifdef NODE_NOT_IN_PAGE_FLAGS
1106
#define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1107 1108
#define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
						SECTIONS_PGOFF : ZONES_PGOFF)
A
Andy Whitcroft 已提交
1109
#else
1110
#define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1111 1112
#define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
						NODES_PGOFF : ZONES_PGOFF)
1113 1114
#endif

1115
#define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1116

A
Andy Whitcroft 已提交
1117 1118 1119
#define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK		((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1120
#define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1121
#define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1122
#define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1123

I
Ian Campbell 已提交
1124
static inline enum zone_type page_zonenum(const struct page *page)
L
Linus Torvalds 已提交
1125
{
1126
	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1127
	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
L
Linus Torvalds 已提交
1128 1129
}

1130 1131 1132 1133 1134
#ifdef CONFIG_ZONE_DEVICE
static inline bool is_zone_device_page(const struct page *page)
{
	return page_zonenum(page) == ZONE_DEVICE;
}
1135 1136
extern void memmap_init_zone_device(struct zone *, unsigned long,
				    unsigned long, struct dev_pagemap *);
1137 1138 1139 1140 1141
#else
static inline bool is_zone_device_page(const struct page *page)
{
	return false;
}
1142
#endif
1143

1144 1145 1146 1147 1148
static inline bool is_zone_movable_page(const struct page *page)
{
	return page_zonenum(page) == ZONE_MOVABLE;
}

1149
#ifdef CONFIG_DEV_PAGEMAP_OPS
1150
void free_devmap_managed_page(struct page *page);
1151
DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1152 1153

static inline bool page_is_devmap_managed(struct page *page)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
{
	if (!static_branch_unlikely(&devmap_managed_key))
		return false;
	if (!is_zone_device_page(page))
		return false;
	switch (page->pgmap->type) {
	case MEMORY_DEVICE_PRIVATE:
	case MEMORY_DEVICE_FS_DAX:
		return true;
	default:
		break;
	}
	return false;
}

1169 1170
void put_devmap_managed_page(struct page *page);

1171
#else /* CONFIG_DEV_PAGEMAP_OPS */
1172
static inline bool page_is_devmap_managed(struct page *page)
1173 1174 1175
{
	return false;
}
1176 1177 1178 1179

static inline void put_devmap_managed_page(struct page *page)
{
}
1180
#endif /* CONFIG_DEV_PAGEMAP_OPS */
1181

1182 1183
static inline bool is_device_private_page(const struct page *page)
{
1184 1185 1186 1187
	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
		is_zone_device_page(page) &&
		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1188
}
1189

1190 1191
static inline bool is_pci_p2pdma_page(const struct page *page)
{
1192 1193 1194 1195
	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
		is_zone_device_page(page) &&
		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1196
}
1197

1198 1199 1200 1201
/* 127: arbitrary random number, small enough to assemble well */
#define page_ref_zero_or_close_to_overflow(page) \
	((unsigned int) page_ref_count(page) + 127u <= 127u)

1202 1203 1204 1205 1206
static inline void get_page(struct page *page)
{
	page = compound_head(page);
	/*
	 * Getting a normal page or the head of a compound page
1207
	 * requires to already have an elevated page->_refcount.
1208
	 */
1209
	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1210
	page_ref_inc(page);
1211 1212
}

J
John Hubbard 已提交
1213
bool __must_check try_grab_page(struct page *page, unsigned int flags);
1214 1215 1216
__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
						   unsigned int flags);

J
John Hubbard 已提交
1217

1218 1219 1220 1221 1222
static inline __must_check bool try_get_page(struct page *page)
{
	page = compound_head(page);
	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
		return false;
1223
	page_ref_inc(page);
1224
	return true;
1225 1226 1227 1228 1229 1230
}

static inline void put_page(struct page *page)
{
	page = compound_head(page);

1231
	/*
1232 1233 1234
	 * For devmap managed pages we need to catch refcount transition from
	 * 2 to 1, when refcount reach one it means the page is free and we
	 * need to inform the device driver through callback. See
1235 1236
	 * include/linux/memremap.h and HMM for details.
	 */
1237 1238
	if (page_is_devmap_managed(page)) {
		put_devmap_managed_page(page);
1239
		return;
1240
	}
1241

1242 1243 1244 1245
	if (put_page_testzero(page))
		__put_page(page);
}

J
John Hubbard 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/*
 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
 * the page's refcount so that two separate items are tracked: the original page
 * reference count, and also a new count of how many pin_user_pages() calls were
 * made against the page. ("gup-pinned" is another term for the latter).
 *
 * With this scheme, pin_user_pages() becomes special: such pages are marked as
 * distinct from normal pages. As such, the unpin_user_page() call (and its
 * variants) must be used in order to release gup-pinned pages.
 *
 * Choice of value:
 *
 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
 * counts with respect to pin_user_pages() and unpin_user_page() becomes
 * simpler, due to the fact that adding an even power of two to the page
 * refcount has the effect of using only the upper N bits, for the code that
 * counts up using the bias value. This means that the lower bits are left for
 * the exclusive use of the original code that increments and decrements by one
 * (or at least, by much smaller values than the bias value).
1265
 *
J
John Hubbard 已提交
1266 1267 1268 1269 1270
 * Of course, once the lower bits overflow into the upper bits (and this is
 * OK, because subtraction recovers the original values), then visual inspection
 * no longer suffices to directly view the separate counts. However, for normal
 * applications that don't have huge page reference counts, this won't be an
 * issue.
1271
 *
J
John Hubbard 已提交
1272 1273 1274 1275
 * Locking: the lockless algorithm described in page_cache_get_speculative()
 * and page_cache_gup_pin_speculative() provides safe operation for
 * get_user_pages and page_mkclean and other calls that race to set up page
 * table entries.
1276
 */
J
John Hubbard 已提交
1277
#define GUP_PIN_COUNTING_BIAS (1U << 10)
1278

J
John Hubbard 已提交
1279
void unpin_user_page(struct page *page);
1280 1281
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty);
1282 1283
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
				      bool make_dirty);
1284
void unpin_user_pages(struct page **pages, unsigned long npages);
1285

J
John Hubbard 已提交
1286
/**
1287 1288
 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
 * @page: The page.
J
John Hubbard 已提交
1289 1290
 *
 * This function checks if a page has been pinned via a call to
1291
 * a function in the pin_user_pages() family.
J
John Hubbard 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
 *
 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
 * because it means "definitely not pinned for DMA", but true means "probably
 * pinned for DMA, but possibly a false positive due to having at least
 * GUP_PIN_COUNTING_BIAS worth of normal page references".
 *
 * False positives are OK, because: a) it's unlikely for a page to get that many
 * refcounts, and b) all the callers of this routine are expected to be able to
 * deal gracefully with a false positive.
 *
1302 1303 1304 1305 1306
 * For huge pages, the result will be exactly correct. That's because we have
 * more tracking data available: the 3rd struct page in the compound page is
 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
 * scheme).
 *
1307
 * For more information, please see Documentation/core-api/pin_user_pages.rst.
J
John Hubbard 已提交
1308
 *
1309 1310
 * Return: True, if it is likely that the page has been "dma-pinned".
 * False, if the page is definitely not dma-pinned.
J
John Hubbard 已提交
1311 1312 1313
 */
static inline bool page_maybe_dma_pinned(struct page *page)
{
1314 1315 1316
	if (hpage_pincount_available(page))
		return compound_pincount(page) > 0;

J
John Hubbard 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * page_ref_count() is signed. If that refcount overflows, then
	 * page_ref_count() returns a negative value, and callers will avoid
	 * further incrementing the refcount.
	 *
	 * Here, for that overflow case, use the signed bit to count a little
	 * bit higher via unsigned math, and thus still get an accurate result.
	 */
	return ((unsigned int)page_ref_count(compound_head(page))) >=
		GUP_PIN_COUNTING_BIAS;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static inline bool is_cow_mapping(vm_flags_t flags)
{
	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}

/*
 * This should most likely only be called during fork() to see whether we
 * should break the cow immediately for a page on the src mm.
 */
static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
					  struct page *page)
{
	if (!is_cow_mapping(vma->vm_flags))
		return false;

1344
	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1345 1346 1347 1348 1349
		return false;

	return page_maybe_dma_pinned(page);
}

C
Cody P Schafer 已提交
1350 1351 1352 1353
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
#endif

1354
/*
1355 1356 1357 1358 1359 1360
 * The identification function is mainly used by the buddy allocator for
 * determining if two pages could be buddies. We are not really identifying
 * the zone since we could be using the section number id if we do not have
 * node id available in page flags.
 * We only guarantee that it will return the same value for two combinable
 * pages in a zone.
1361
 */
1362 1363
static inline int page_zone_id(struct page *page)
{
1364
	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1365 1366
}

1367
#ifdef NODE_NOT_IN_PAGE_FLAGS
I
Ian Campbell 已提交
1368
extern int page_to_nid(const struct page *page);
1369
#else
I
Ian Campbell 已提交
1370
static inline int page_to_nid(const struct page *page)
A
Andy Whitcroft 已提交
1371
{
1372 1373 1374
	struct page *p = (struct page *)page;

	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
A
Andy Whitcroft 已提交
1375
}
1376 1377
#endif

1378
#ifdef CONFIG_NUMA_BALANCING
1379
static inline int cpu_pid_to_cpupid(int cpu, int pid)
1380
{
1381
	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1382 1383
}

1384
static inline int cpupid_to_pid(int cpupid)
1385
{
1386
	return cpupid & LAST__PID_MASK;
1387
}
1388

1389
static inline int cpupid_to_cpu(int cpupid)
1390
{
1391
	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1392 1393
}

1394
static inline int cpupid_to_nid(int cpupid)
1395
{
1396
	return cpu_to_node(cpupid_to_cpu(cpupid));
1397 1398
}

1399
static inline bool cpupid_pid_unset(int cpupid)
1400
{
1401
	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1402 1403
}

1404
static inline bool cpupid_cpu_unset(int cpupid)
1405
{
1406
	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1407 1408
}

1409 1410 1411 1412 1413 1414
static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
{
	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
}

#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1415 1416
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1417
{
1418
	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1419
}
1420 1421 1422 1423 1424 1425

static inline int page_cpupid_last(struct page *page)
{
	return page->_last_cpupid;
}
static inline void page_cpupid_reset_last(struct page *page)
1426
{
1427
	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1428 1429
}
#else
1430
static inline int page_cpupid_last(struct page *page)
1431
{
1432
	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1433 1434
}

1435
extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1436

1437
static inline void page_cpupid_reset_last(struct page *page)
1438
{
1439
	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1440
}
1441 1442 1443
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
#else /* !CONFIG_NUMA_BALANCING */
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1444
{
1445
	return page_to_nid(page); /* XXX */
1446 1447
}

1448
static inline int page_cpupid_last(struct page *page)
1449
{
1450
	return page_to_nid(page); /* XXX */
1451 1452
}

1453
static inline int cpupid_to_nid(int cpupid)
1454 1455 1456 1457
{
	return -1;
}

1458
static inline int cpupid_to_pid(int cpupid)
1459 1460 1461 1462
{
	return -1;
}

1463
static inline int cpupid_to_cpu(int cpupid)
1464 1465 1466 1467
{
	return -1;
}

1468 1469 1470 1471 1472 1473
static inline int cpu_pid_to_cpupid(int nid, int pid)
{
	return -1;
}

static inline bool cpupid_pid_unset(int cpupid)
1474
{
1475
	return true;
1476 1477
}

1478
static inline void page_cpupid_reset_last(struct page *page)
1479 1480
{
}
1481 1482 1483 1484 1485

static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
{
	return false;
}
1486
#endif /* CONFIG_NUMA_BALANCING */
1487

1488
#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1489

1490 1491 1492 1493 1494 1495
/*
 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
 * setting tags for all pages to native kernel tag value 0xff, as the default
 * value 0x00 maps to 0xff.
 */

1496 1497
static inline u8 page_kasan_tag(const struct page *page)
{
1498 1499 1500 1501 1502 1503 1504 1505
	u8 tag = 0xff;

	if (kasan_enabled()) {
		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
		tag ^= 0xff;
	}

	return tag;
1506 1507 1508 1509
}

static inline void page_kasan_tag_set(struct page *page, u8 tag)
{
1510
	if (kasan_enabled()) {
1511
		tag ^= 0xff;
1512 1513 1514
		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
	}
1515 1516 1517 1518
}

static inline void page_kasan_tag_reset(struct page *page)
{
1519 1520
	if (kasan_enabled())
		page_kasan_tag_set(page, 0xff);
1521
}
1522 1523 1524

#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */

1525 1526 1527 1528 1529 1530 1531
static inline u8 page_kasan_tag(const struct page *page)
{
	return 0xff;
}

static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
static inline void page_kasan_tag_reset(struct page *page) { }
1532 1533

#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1534

I
Ian Campbell 已提交
1535
static inline struct zone *page_zone(const struct page *page)
1536 1537 1538 1539
{
	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}

1540 1541 1542 1543 1544
static inline pg_data_t *page_pgdat(const struct page *page)
{
	return NODE_DATA(page_to_nid(page));
}

C
Cody P Schafer 已提交
1545
#ifdef SECTION_IN_PAGE_FLAGS
1546 1547 1548 1549 1550 1551
static inline void set_page_section(struct page *page, unsigned long section)
{
	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}

1552
static inline unsigned long page_to_section(const struct page *page)
A
Andy Whitcroft 已提交
1553 1554 1555
{
	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
1556
#endif
A
Andy Whitcroft 已提交
1557

1558 1559 1560 1561
/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
#ifdef CONFIG_MIGRATION
static inline bool is_pinnable_page(struct page *page)
{
1562 1563
	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
		is_zero_pfn(page_to_pfn(page));
1564 1565 1566 1567 1568 1569 1570 1571
}
#else
static inline bool is_pinnable_page(struct page *page)
{
	return true;
}
#endif

1572
static inline void set_page_zone(struct page *page, enum zone_type zone)
1573 1574 1575 1576
{
	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}
1577

1578 1579 1580 1581
static inline void set_page_node(struct page *page, unsigned long node)
{
	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
L
Linus Torvalds 已提交
1582
}
1583

1584
static inline void set_page_links(struct page *page, enum zone_type zone,
A
Andy Whitcroft 已提交
1585
	unsigned long node, unsigned long pfn)
L
Linus Torvalds 已提交
1586
{
1587 1588
	set_page_zone(page, zone);
	set_page_node(page, node);
C
Cody P Schafer 已提交
1589
#ifdef SECTION_IN_PAGE_FLAGS
A
Andy Whitcroft 已提交
1590
	set_page_section(page, pfn_to_section_nr(pfn));
1591
#endif
L
Linus Torvalds 已提交
1592 1593
}

1594 1595 1596 1597 1598
/*
 * Some inline functions in vmstat.h depend on page_zone()
 */
#include <linux/vmstat.h>

I
Ian Campbell 已提交
1599
static __always_inline void *lowmem_page_address(const struct page *page)
L
Linus Torvalds 已提交
1600
{
1601
	return page_to_virt(page);
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608
}

#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif

#if defined(WANT_PAGE_VIRTUAL)
1609 1610 1611 1612 1613 1614 1615 1616
static inline void *page_address(const struct page *page)
{
	return page->virtual;
}
static inline void set_page_address(struct page *page, void *address)
{
	page->virtual = address;
}
L
Linus Torvalds 已提交
1617 1618 1619 1620
#define page_address_init()  do { } while(0)
#endif

#if defined(HASHED_PAGE_VIRTUAL)
1621
void *page_address(const struct page *page);
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif

#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address)  do { } while(0)
#define page_address_init()  do { } while(0)
#endif

1632 1633
extern void *page_rmapping(struct page *page);
extern struct anon_vma *page_anon_vma(struct page *page);
S
Shaohua Li 已提交
1634
extern struct address_space *page_mapping(struct page *page);
L
Linus Torvalds 已提交
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
extern struct address_space *__page_file_mapping(struct page *);

static inline
struct address_space *page_file_mapping(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return __page_file_mapping(page);

	return page->mapping;
}

1647 1648
extern pgoff_t __page_file_index(struct page *page);

L
Linus Torvalds 已提交
1649 1650
/*
 * Return the pagecache index of the passed page.  Regular pagecache pages
1651
 * use ->index whereas swapcache pages use swp_offset(->private)
L
Linus Torvalds 已提交
1652 1653 1654 1655
 */
static inline pgoff_t page_index(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
1656
		return __page_file_index(page);
L
Linus Torvalds 已提交
1657 1658 1659
	return page->index;
}

A
Andrew Morton 已提交
1660
bool page_mapped(struct page *page);
1661
struct address_space *page_mapping(struct page *page);
L
Linus Torvalds 已提交
1662

1663 1664 1665 1666 1667
/*
 * Return true only if the page has been allocated with
 * ALLOC_NO_WATERMARKS and the low watermark was not
 * met implying that the system is under some pressure.
 */
1668
static inline bool page_is_pfmemalloc(const struct page *page)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
{
	/*
	 * Page index cannot be this large so this must be
	 * a pfmemalloc page.
	 */
	return page->index == -1UL;
}

/*
 * Only to be called by the page allocator on a freshly allocated
 * page.
 */
static inline void set_page_pfmemalloc(struct page *page)
{
	page->index = -1UL;
}

static inline void clear_page_pfmemalloc(struct page *page)
{
	page->index = 0;
}

1691 1692 1693 1694 1695
/*
 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 */
extern void pagefault_out_of_memory(void);

L
Linus Torvalds 已提交
1696
#define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1697
#define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
L
Linus Torvalds 已提交
1698

1699
/*
1700
 * Flags passed to show_mem() and show_free_areas() to suppress output in
1701 1702
 * various contexts.
 */
1703
#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1704

1705
extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
L
Linus Torvalds 已提交
1706

1707
#ifdef CONFIG_MMU
1708
extern bool can_do_mlock(void);
1709 1710 1711
#else
static inline bool can_do_mlock(void) { return false; }
#endif
L
Linus Torvalds 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);

/*
 * Parameter block passed down to zap_pte_range in exceptional cases.
 */
struct zap_details {
	struct address_space *check_mapping;	/* Check page->mapping if set */
	pgoff_t	first_index;			/* Lowest page->index to unmap */
	pgoff_t last_index;			/* Highest page->index to unmap */
1722
	struct page *single_page;		/* Locked page to be unmapped */
L
Linus Torvalds 已提交
1723 1724
};

1725 1726
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
			     pte_t pte);
1727 1728
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
				pmd_t pmd);
N
Nick Piggin 已提交
1729

1730 1731
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		  unsigned long size);
A
Al Viro 已提交
1732
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1733
		    unsigned long size);
1734 1735
void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
		unsigned long start, unsigned long end);
1736

1737 1738
struct mmu_notifier_range;

1739
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1740
		unsigned long end, unsigned long floor, unsigned long ceiling);
1741 1742
int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1743 1744 1745
int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
			  struct mmu_notifier_range *range, pte_t **ptepp,
			  pmd_t **pmdpp, spinlock_t **ptlp);
C
Christoph Hellwig 已提交
1746
int follow_pte(struct mm_struct *mm, unsigned long address,
1747
	       pte_t **ptepp, spinlock_t **ptlp);
J
Johannes Weiner 已提交
1748 1749
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn);
1750 1751
int follow_phys(struct vm_area_struct *vma, unsigned long address,
		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1752 1753
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write);
L
Linus Torvalds 已提交
1754

1755
extern void truncate_pagecache(struct inode *inode, loff_t new);
1756
extern void truncate_setsize(struct inode *inode, loff_t newsize);
1757
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1758
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1759
int truncate_inode_page(struct address_space *mapping, struct page *page);
1760
int generic_error_remove_page(struct address_space *mapping, struct page *page);
1761 1762
int invalidate_inode_page(struct page *page);

1763
#ifdef CONFIG_MMU
1764
extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1765 1766
				  unsigned long address, unsigned int flags,
				  struct pt_regs *regs);
1767
extern int fixup_user_fault(struct mm_struct *mm,
1768 1769
			    unsigned long address, unsigned int fault_flags,
			    bool *unlocked);
1770
void unmap_mapping_page(struct page *page);
M
Matthew Wilcox 已提交
1771 1772 1773 1774
void unmap_mapping_pages(struct address_space *mapping,
		pgoff_t start, pgoff_t nr, bool even_cows);
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows);
1775
#else
1776
static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1777 1778
					 unsigned long address, unsigned int flags,
					 struct pt_regs *regs)
1779 1780 1781 1782 1783
{
	/* should never happen if there's no MMU */
	BUG();
	return VM_FAULT_SIGBUS;
}
1784
static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1785
		unsigned int fault_flags, bool *unlocked)
1786 1787 1788 1789 1790
{
	/* should never happen if there's no MMU */
	BUG();
	return -EFAULT;
}
1791
static inline void unmap_mapping_page(struct page *page) { }
M
Matthew Wilcox 已提交
1792 1793 1794 1795
static inline void unmap_mapping_pages(struct address_space *mapping,
		pgoff_t start, pgoff_t nr, bool even_cows) { }
static inline void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1796
#endif
N
Nick Piggin 已提交
1797

M
Matthew Wilcox 已提交
1798 1799 1800 1801 1802 1803 1804 1805
static inline void unmap_shared_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen)
{
	unmap_mapping_range(mapping, holebegin, holelen, 0);
}

extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
		void *buf, int len, unsigned int gup_flags);
S
Stephen Wilson 已提交
1806
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1807
		void *buf, int len, unsigned int gup_flags);
1808 1809
extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
			      void *buf, int len, unsigned int gup_flags);
L
Linus Torvalds 已提交
1810

1811
long get_user_pages_remote(struct mm_struct *mm,
1812
			    unsigned long start, unsigned long nr_pages,
1813
			    unsigned int gup_flags, struct page **pages,
1814
			    struct vm_area_struct **vmas, int *locked);
1815
long pin_user_pages_remote(struct mm_struct *mm,
1816 1817 1818
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked);
1819
long get_user_pages(unsigned long start, unsigned long nr_pages,
1820
			    unsigned int gup_flags, struct page **pages,
1821
			    struct vm_area_struct **vmas);
1822 1823 1824
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas);
1825
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1826
		    unsigned int gup_flags, struct page **pages, int *locked);
1827 1828
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages, int *locked);
1829
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1830
		    struct page **pages, unsigned int gup_flags);
1831 1832
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
		    struct page **pages, unsigned int gup_flags);
1833

1834 1835
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages);
1836 1837
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages);
1838

1839 1840 1841 1842
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
			struct task_struct *task, bool bypass_rlim);

1843 1844 1845 1846
struct kvec;
int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
			struct page **pages);
int get_kernel_page(unsigned long start, int write, struct page **pages);
H
Hugh Dickins 已提交
1847
struct page *get_dump_page(unsigned long addr);
L
Linus Torvalds 已提交
1848

1849
extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1850 1851
extern void do_invalidatepage(struct page *page, unsigned int offset,
			      unsigned int length);
1852

L
Linus Torvalds 已提交
1853 1854
int redirty_page_for_writepage(struct writeback_control *wbc,
				struct page *page);
1855
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
1856
			  struct bdi_writeback *wb);
1857
int set_page_dirty(struct page *page);
L
Linus Torvalds 已提交
1858
int set_page_dirty_lock(struct page *page);
1859 1860 1861 1862 1863 1864 1865
void __cancel_dirty_page(struct page *page);
static inline void cancel_dirty_page(struct page *page)
{
	/* Avoid atomic ops, locking, etc. when not actually needed. */
	if (PageDirty(page))
		__cancel_dirty_page(page);
}
L
Linus Torvalds 已提交
1866
int clear_page_dirty_for_io(struct page *page);
1867

1868
int get_cmdline(struct task_struct *task, char *buffer, int buflen);
L
Linus Torvalds 已提交
1869

1870 1871
extern unsigned long move_page_tables(struct vm_area_struct *vma,
		unsigned long old_addr, struct vm_area_struct *new_vma,
1872 1873
		unsigned long new_addr, unsigned long len,
		bool need_rmap_locks);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

/*
 * Flags used by change_protection().  For now we make it a bitmap so
 * that we can pass in multiple flags just like parameters.  However
 * for now all the callers are only use one of the flags at the same
 * time.
 */
/* Whether we should allow dirty bit accounting */
#define  MM_CP_DIRTY_ACCT                  (1UL << 0)
/* Whether this protection change is for NUMA hints */
#define  MM_CP_PROT_NUMA                   (1UL << 1)
1885 1886 1887 1888 1889
/* Whether this change is for write protecting */
#define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
#define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
#define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
					    MM_CP_UFFD_WP_RESOLVE)
1890

1891 1892
extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
			      unsigned long end, pgprot_t newprot,
1893
			      unsigned long cp_flags);
1894 1895 1896
extern int mprotect_fixup(struct vm_area_struct *vma,
			  struct vm_area_struct **pprev, unsigned long start,
			  unsigned long end, unsigned long newflags);
L
Linus Torvalds 已提交
1897

1898 1899 1900
/*
 * doesn't attempt to fault and will return short.
 */
1901 1902
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages);
1903 1904
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages);
1905 1906 1907 1908 1909 1910

static inline bool get_user_page_fast_only(unsigned long addr,
			unsigned int gup_flags, struct page **pagep)
{
	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
}
K
KAMEZAWA Hiroyuki 已提交
1911 1912 1913 1914 1915
/*
 * per-process(per-mm_struct) statistics.
 */
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
1916 1917 1918 1919 1920 1921 1922 1923 1924
	long val = atomic_long_read(&mm->rss_stat.count[member]);

#ifdef SPLIT_RSS_COUNTING
	/*
	 * counter is updated in asynchronous manner and may go to minus.
	 * But it's never be expected number for users.
	 */
	if (val < 0)
		val = 0;
1925
#endif
1926 1927
	return (unsigned long)val;
}
K
KAMEZAWA Hiroyuki 已提交
1928

1929
void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1930

K
KAMEZAWA Hiroyuki 已提交
1931 1932
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
{
1933 1934
	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);

1935
	mm_trace_rss_stat(mm, member, count);
K
KAMEZAWA Hiroyuki 已提交
1936 1937 1938 1939
}

static inline void inc_mm_counter(struct mm_struct *mm, int member)
{
1940 1941
	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);

1942
	mm_trace_rss_stat(mm, member, count);
K
KAMEZAWA Hiroyuki 已提交
1943 1944 1945 1946
}

static inline void dec_mm_counter(struct mm_struct *mm, int member)
{
1947 1948
	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);

1949
	mm_trace_rss_stat(mm, member, count);
K
KAMEZAWA Hiroyuki 已提交
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/* Optimized variant when page is already known not to be PageAnon */
static inline int mm_counter_file(struct page *page)
{
	if (PageSwapBacked(page))
		return MM_SHMEMPAGES;
	return MM_FILEPAGES;
}

static inline int mm_counter(struct page *page)
{
	if (PageAnon(page))
		return MM_ANONPAGES;
	return mm_counter_file(page);
}

K
KAMEZAWA Hiroyuki 已提交
1967 1968 1969
static inline unsigned long get_mm_rss(struct mm_struct *mm)
{
	return get_mm_counter(mm, MM_FILEPAGES) +
1970 1971
		get_mm_counter(mm, MM_ANONPAGES) +
		get_mm_counter(mm, MM_SHMEMPAGES);
K
KAMEZAWA Hiroyuki 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
}

static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
	return max(mm->hiwater_rss, get_mm_rss(mm));
}

static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
	return max(mm->hiwater_vm, mm->total_vm);
}

static inline void update_hiwater_rss(struct mm_struct *mm)
{
	unsigned long _rss = get_mm_rss(mm);

	if ((mm)->hiwater_rss < _rss)
		(mm)->hiwater_rss = _rss;
}

static inline void update_hiwater_vm(struct mm_struct *mm)
{
	if (mm->hiwater_vm < mm->total_vm)
		mm->hiwater_vm = mm->total_vm;
}

1998 1999 2000 2001 2002
static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
{
	mm->hiwater_rss = get_mm_rss(mm);
}

K
KAMEZAWA Hiroyuki 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011
static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
					 struct mm_struct *mm)
{
	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);

	if (*maxrss < hiwater_rss)
		*maxrss = hiwater_rss;
}

K
KAMEZAWA Hiroyuki 已提交
2012
#if defined(SPLIT_RSS_COUNTING)
2013
void sync_mm_rss(struct mm_struct *mm);
K
KAMEZAWA Hiroyuki 已提交
2014
#else
2015
static inline void sync_mm_rss(struct mm_struct *mm)
K
KAMEZAWA Hiroyuki 已提交
2016 2017 2018
{
}
#endif
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
static inline int pte_special(pte_t pte)
{
	return 0;
}

static inline pte_t pte_mkspecial(pte_t pte)
{
	return pte;
}
#endif

R
Robin Murphy 已提交
2032
#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2033 2034 2035 2036 2037 2038
static inline int pte_devmap(pte_t pte)
{
	return 0;
}
#endif

2039
int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049
extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
			       spinlock_t **ptl);
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
				    spinlock_t **ptl)
{
	pte_t *ptep;
	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
	return ptep;
}
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
#ifdef __PAGETABLE_P4D_FOLDED
static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
						unsigned long address)
{
	return 0;
}
#else
int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
#endif

K
Kirill A. Shutemov 已提交
2061
#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2062
static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
N
Nick Piggin 已提交
2063 2064 2065 2066
						unsigned long address)
{
	return 0;
}
K
Kirill A. Shutemov 已提交
2067 2068 2069
static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
static inline void mm_dec_nr_puds(struct mm_struct *mm) {}

N
Nick Piggin 已提交
2070
#else
2071
int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
K
Kirill A. Shutemov 已提交
2072 2073 2074

static inline void mm_inc_nr_puds(struct mm_struct *mm)
{
2075 2076
	if (mm_pud_folded(mm))
		return;
2077
	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
K
Kirill A. Shutemov 已提交
2078 2079 2080 2081
}

static inline void mm_dec_nr_puds(struct mm_struct *mm)
{
2082 2083
	if (mm_pud_folded(mm))
		return;
2084
	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
K
Kirill A. Shutemov 已提交
2085
}
N
Nick Piggin 已提交
2086 2087
#endif

2088
#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
N
Nick Piggin 已提交
2089 2090 2091 2092 2093
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
						unsigned long address)
{
	return 0;
}
2094 2095 2096 2097

static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}

N
Nick Piggin 已提交
2098
#else
2099
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2100 2101 2102

static inline void mm_inc_nr_pmds(struct mm_struct *mm)
{
2103 2104
	if (mm_pmd_folded(mm))
		return;
2105
	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2106 2107 2108 2109
}

static inline void mm_dec_nr_pmds(struct mm_struct *mm)
{
2110 2111
	if (mm_pmd_folded(mm))
		return;
2112
	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2113
}
N
Nick Piggin 已提交
2114 2115
#endif

2116
#ifdef CONFIG_MMU
2117
static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2118
{
2119
	atomic_long_set(&mm->pgtables_bytes, 0);
2120 2121
}

2122
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2123
{
2124
	return atomic_long_read(&mm->pgtables_bytes);
2125 2126 2127 2128
}

static inline void mm_inc_nr_ptes(struct mm_struct *mm)
{
2129
	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2130 2131 2132 2133
}

static inline void mm_dec_nr_ptes(struct mm_struct *mm)
{
2134
	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2135 2136 2137
}
#else

2138 2139
static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2140 2141 2142 2143 2144 2145 2146 2147
{
	return 0;
}

static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
#endif

2148 2149
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
int __pte_alloc_kernel(pmd_t *pmd);
2150

2151 2152
#if defined(CONFIG_MMU)

2153 2154 2155 2156 2157 2158 2159 2160 2161
static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
		unsigned long address)
{
	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
		NULL : p4d_offset(pgd, address);
}

static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
		unsigned long address)
L
Linus Torvalds 已提交
2162
{
2163 2164
	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
		NULL : pud_offset(p4d, address);
L
Linus Torvalds 已提交
2165
}
2166

L
Linus Torvalds 已提交
2167 2168
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
2169 2170
	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
		NULL: pmd_offset(pud, address);
L
Linus Torvalds 已提交
2171
}
2172
#endif /* CONFIG_MMU */
2173

2174
#if USE_SPLIT_PTE_PTLOCKS
2175
#if ALLOC_SPLIT_PTLOCKS
2176
void __init ptlock_cache_init(void);
2177 2178 2179 2180 2181 2182 2183
extern bool ptlock_alloc(struct page *page);
extern void ptlock_free(struct page *page);

static inline spinlock_t *ptlock_ptr(struct page *page)
{
	return page->ptl;
}
2184
#else /* ALLOC_SPLIT_PTLOCKS */
2185 2186 2187 2188
static inline void ptlock_cache_init(void)
{
}

2189 2190 2191 2192
static inline bool ptlock_alloc(struct page *page)
{
	return true;
}
2193

2194 2195 2196 2197 2198 2199
static inline void ptlock_free(struct page *page)
{
}

static inline spinlock_t *ptlock_ptr(struct page *page)
{
2200
	return &page->ptl;
2201
}
2202
#endif /* ALLOC_SPLIT_PTLOCKS */
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
	return ptlock_ptr(pmd_page(*pmd));
}

static inline bool ptlock_init(struct page *page)
{
	/*
	 * prep_new_page() initialize page->private (and therefore page->ptl)
	 * with 0. Make sure nobody took it in use in between.
	 *
	 * It can happen if arch try to use slab for page table allocation:
2216
	 * slab code uses page->slab_cache, which share storage with page->ptl.
2217
	 */
2218
	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2219 2220 2221 2222 2223 2224
	if (!ptlock_alloc(page))
		return false;
	spin_lock_init(ptlock_ptr(page));
	return true;
}

2225
#else	/* !USE_SPLIT_PTE_PTLOCKS */
H
Hugh Dickins 已提交
2226 2227 2228
/*
 * We use mm->page_table_lock to guard all pagetable pages of the mm.
 */
2229 2230 2231 2232
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
	return &mm->page_table_lock;
}
2233
static inline void ptlock_cache_init(void) {}
2234
static inline bool ptlock_init(struct page *page) { return true; }
Y
Yu Zhao 已提交
2235
static inline void ptlock_free(struct page *page) {}
2236
#endif /* USE_SPLIT_PTE_PTLOCKS */
H
Hugh Dickins 已提交
2237

2238 2239 2240 2241 2242 2243
static inline void pgtable_init(void)
{
	ptlock_cache_init();
	pgtable_cache_init();
}

2244
static inline bool pgtable_pte_page_ctor(struct page *page)
2245
{
2246 2247
	if (!ptlock_init(page))
		return false;
2248
	__SetPageTable(page);
2249
	inc_lruvec_page_state(page, NR_PAGETABLE);
2250
	return true;
2251 2252
}

2253
static inline void pgtable_pte_page_dtor(struct page *page)
2254
{
Y
Yu Zhao 已提交
2255
	ptlock_free(page);
2256
	__ClearPageTable(page);
2257
	dec_lruvec_page_state(page, NR_PAGETABLE);
2258 2259
}

H
Hugh Dickins 已提交
2260 2261
#define pte_offset_map_lock(mm, pmd, address, ptlp)	\
({							\
H
Hugh Dickins 已提交
2262
	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
H
Hugh Dickins 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	pte_t *__pte = pte_offset_map(pmd, address);	\
	*(ptlp) = __ptl;				\
	spin_lock(__ptl);				\
	__pte;						\
})

#define pte_unmap_unlock(pte, ptl)	do {		\
	spin_unlock(ptl);				\
	pte_unmap(pte);					\
} while (0)

2274
#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2275 2276

#define pte_alloc_map(mm, pmd, address)			\
2277
	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2278

H
Hugh Dickins 已提交
2279
#define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2280
	(pte_alloc(mm, pmd) ?			\
2281
		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
H
Hugh Dickins 已提交
2282

2283
#define pte_alloc_kernel(pmd, address)			\
2284
	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2285
		NULL: pte_offset_kernel(pmd, address))
L
Linus Torvalds 已提交
2286

2287 2288
#if USE_SPLIT_PMD_PTLOCKS

2289 2290 2291 2292 2293 2294
static struct page *pmd_to_page(pmd_t *pmd)
{
	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
	return virt_to_page((void *)((unsigned long) pmd & mask));
}

2295 2296
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
2297
	return ptlock_ptr(pmd_to_page(pmd));
2298 2299
}

2300
static inline bool pmd_ptlock_init(struct page *page)
2301 2302 2303 2304
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page->pmd_huge_pte = NULL;
#endif
2305
	return ptlock_init(page);
2306 2307
}

2308
static inline void pmd_ptlock_free(struct page *page)
2309 2310
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2311
	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2312
#endif
2313
	ptlock_free(page);
2314 2315
}

2316
#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2317 2318 2319

#else

2320 2321 2322 2323 2324
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
	return &mm->page_table_lock;
}

2325 2326
static inline bool pmd_ptlock_init(struct page *page) { return true; }
static inline void pmd_ptlock_free(struct page *page) {}
2327

2328
#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2329

2330 2331
#endif

2332 2333 2334 2335 2336 2337 2338
static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	return ptl;
}

2339 2340 2341 2342 2343
static inline bool pgtable_pmd_page_ctor(struct page *page)
{
	if (!pmd_ptlock_init(page))
		return false;
	__SetPageTable(page);
2344
	inc_lruvec_page_state(page, NR_PAGETABLE);
2345 2346 2347 2348 2349 2350 2351
	return true;
}

static inline void pgtable_pmd_page_dtor(struct page *page)
{
	pmd_ptlock_free(page);
	__ClearPageTable(page);
2352
	dec_lruvec_page_state(page, NR_PAGETABLE);
2353 2354
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
/*
 * No scalability reason to split PUD locks yet, but follow the same pattern
 * as the PMD locks to make it easier if we decide to.  The VM should not be
 * considered ready to switch to split PUD locks yet; there may be places
 * which need to be converted from page_table_lock.
 */
static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
{
	return &mm->page_table_lock;
}

static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
{
	spinlock_t *ptl = pud_lockptr(mm, pud);

	spin_lock(ptl);
	return ptl;
}
2373

2374
extern void __init pagecache_init(void);
2375
extern void __init free_area_init_memoryless_node(int nid);
2376 2377
extern void free_initmem(void);

2378 2379 2380
/*
 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
 * into the buddy system. The freed pages will be poisoned with pattern
2381
 * "poison" if it's within range [0, UCHAR_MAX].
2382 2383
 * Return pages freed into the buddy system.
 */
2384
extern unsigned long free_reserved_area(void *start, void *end,
2385
					int poison, const char *s);
2386 2387

extern void adjust_managed_page_count(struct page *page, long count);
2388
extern void mem_init_print_info(void);
2389

2390
extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2391

2392
/* Free the reserved page into the buddy system, so it gets managed. */
2393
static inline void free_reserved_page(struct page *page)
2394 2395 2396 2397 2398 2399
{
	ClearPageReserved(page);
	init_page_count(page);
	__free_page(page);
	adjust_managed_page_count(page, 1);
}
2400
#define free_highmem_page(page) free_reserved_page(page)
2401 2402 2403 2404 2405 2406 2407 2408 2409

static inline void mark_page_reserved(struct page *page)
{
	SetPageReserved(page);
	adjust_managed_page_count(page, -1);
}

/*
 * Default method to free all the __init memory into the buddy system.
2410 2411 2412
 * The freed pages will be poisoned with pattern "poison" if it's within
 * range [0, UCHAR_MAX].
 * Return pages freed into the buddy system.
2413 2414 2415 2416 2417
 */
static inline unsigned long free_initmem_default(int poison)
{
	extern char __init_begin[], __init_end[];

2418
	return free_reserved_area(&__init_begin, &__init_end,
2419 2420 2421
				  poison, "unused kernel");
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static inline unsigned long get_num_physpages(void)
{
	int nid;
	unsigned long phys_pages = 0;

	for_each_online_node(nid)
		phys_pages += node_present_pages(nid);

	return phys_pages;
}

2433
/*
2434
 * Using memblock node mappings, an architecture may initialise its
2435 2436
 * zones, allocate the backing mem_map and account for memory holes in an
 * architecture independent manner.
2437 2438
 *
 * An architecture is expected to register range of page frames backed by
T
Tejun Heo 已提交
2439
 * physical memory with memblock_add[_node]() before calling
2440
 * free_area_init() passing in the PFN each zone ends at. At a basic
2441 2442 2443 2444 2445
 * usage, an architecture is expected to do something like
 *
 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 * 							 max_highmem_pfn};
 * for_each_valid_physical_page_range()
T
Tejun Heo 已提交
2446
 * 	memblock_add_node(base, size, nid)
2447
 * free_area_init(max_zone_pfns);
2448
 */
2449
void free_area_init(unsigned long *max_zone_pfn);
2450
unsigned long node_map_pfn_alignment(void);
2451 2452
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
						unsigned long end_pfn);
2453 2454 2455 2456 2457
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
						unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
			unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
2458

2459
#ifndef CONFIG_NEED_MULTIPLE_NODES
2460
static inline int early_pfn_to_nid(unsigned long pfn)
2461 2462 2463 2464 2465 2466 2467 2468
{
	return 0;
}
#else
/* please see mm/page_alloc.c */
extern int __meminit early_pfn_to_nid(unsigned long pfn);
#endif

2469
extern void set_dma_reserve(unsigned long new_dma_reserve);
2470
extern void memmap_init_range(unsigned long, int, unsigned long,
2471 2472
		unsigned long, unsigned long, enum meminit_context,
		struct vmem_altmap *, int migratetype);
2473
extern void setup_per_zone_wmarks(void);
2474
extern int __meminit init_per_zone_wmark_min(void);
L
Linus Torvalds 已提交
2475
extern void mem_init(void);
2476
extern void __init mmap_init(void);
2477
extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2478
extern long si_mem_available(void);
L
Linus Torvalds 已提交
2479 2480
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
2481 2482 2483
#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
extern unsigned long arch_reserved_kernel_pages(void);
#endif
L
Linus Torvalds 已提交
2484

2485 2486
extern __printf(3, 4)
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2487

2488 2489
extern void setup_per_cpu_pageset(void);

2490 2491
/* page_alloc.c */
extern int min_free_kbytes;
2492
extern int watermark_boost_factor;
2493
extern int watermark_scale_factor;
2494
extern bool arch_has_descending_max_zone_pfns(void);
2495

2496
/* nommu.c */
2497
extern atomic_long_t mmap_pages_allocated;
2498
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2499

2500 2501
/* interval_tree.c */
void vma_interval_tree_insert(struct vm_area_struct *node,
2502
			      struct rb_root_cached *root);
M
Michel Lespinasse 已提交
2503 2504
void vma_interval_tree_insert_after(struct vm_area_struct *node,
				    struct vm_area_struct *prev,
2505
				    struct rb_root_cached *root);
2506
void vma_interval_tree_remove(struct vm_area_struct *node,
2507 2508
			      struct rb_root_cached *root);
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2509 2510 2511 2512 2513 2514 2515
				unsigned long start, unsigned long last);
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
				unsigned long start, unsigned long last);

#define vma_interval_tree_foreach(vma, root, start, last)		\
	for (vma = vma_interval_tree_iter_first(root, start, last);	\
	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
L
Linus Torvalds 已提交
2516

2517
void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2518
				   struct rb_root_cached *root);
2519
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2520 2521 2522 2523
				   struct rb_root_cached *root);
struct anon_vma_chain *
anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
				  unsigned long start, unsigned long last);
2524 2525
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2526 2527 2528
#ifdef CONFIG_DEBUG_VM_RB
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
#endif
2529 2530 2531 2532 2533

#define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))

L
Linus Torvalds 已提交
2534
/* mmap.c */
2535
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2536 2537 2538 2539 2540 2541 2542 2543
extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
	struct vm_area_struct *expand);
static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
}
L
Linus Torvalds 已提交
2544 2545 2546
extern struct vm_area_struct *vma_merge(struct mm_struct *,
	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2547
	struct mempolicy *, struct vm_userfaultfd_ctx);
L
Linus Torvalds 已提交
2548
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2549 2550 2551 2552
extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
	unsigned long addr, int new_below);
extern int split_vma(struct mm_struct *, struct vm_area_struct *,
	unsigned long addr, int new_below);
L
Linus Torvalds 已提交
2553 2554 2555
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
	struct rb_node **, struct rb_node *);
2556
extern void unlink_file_vma(struct vm_area_struct *);
L
Linus Torvalds 已提交
2557
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2558 2559
	unsigned long addr, unsigned long len, pgoff_t pgoff,
	bool *need_rmap_locks);
L
Linus Torvalds 已提交
2560
extern void exit_mmap(struct mm_struct *);
M
Matt Helsley 已提交
2561

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
static inline int check_data_rlimit(unsigned long rlim,
				    unsigned long new,
				    unsigned long start,
				    unsigned long end_data,
				    unsigned long start_data)
{
	if (rlim < RLIM_INFINITY) {
		if (((new - start) + (end_data - start_data)) > rlim)
			return -ENOSPC;
	}

	return 0;
}

2576 2577 2578
extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);

2579 2580
extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern struct file *get_mm_exe_file(struct mm_struct *mm);
M
Mateusz Guzik 已提交
2581
extern struct file *get_task_exe_file(struct task_struct *task);
M
Matt Helsley 已提交
2582

2583 2584 2585
extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);

2586 2587
extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
				   const struct vm_special_mapping *sm);
2588 2589
extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
				   unsigned long addr, unsigned long len,
2590 2591 2592
				   unsigned long flags,
				   const struct vm_special_mapping *spec);
/* This is an obsolete alternative to _install_special_mapping. */
2593 2594 2595
extern int install_special_mapping(struct mm_struct *mm,
				   unsigned long addr, unsigned long len,
				   unsigned long flags, struct page **pages);
L
Linus Torvalds 已提交
2596

2597 2598
unsigned long randomize_stack_top(unsigned long stack_top);

L
Linus Torvalds 已提交
2599 2600
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);

M
Miklos Szeredi 已提交
2601
extern unsigned long mmap_region(struct file *file, unsigned long addr,
2602 2603
	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
	struct list_head *uf);
2604
extern unsigned long do_mmap(struct file *file, unsigned long addr,
2605
	unsigned long len, unsigned long prot, unsigned long flags,
2606
	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2607 2608
extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
		       struct list_head *uf, bool downgrade);
2609 2610
extern int do_munmap(struct mm_struct *, unsigned long, size_t,
		     struct list_head *uf);
M
Minchan Kim 已提交
2611
extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
L
Linus Torvalds 已提交
2612

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
#ifdef CONFIG_MMU
extern int __mm_populate(unsigned long addr, unsigned long len,
			 int ignore_errors);
static inline void mm_populate(unsigned long addr, unsigned long len)
{
	/* Ignore errors */
	(void) __mm_populate(addr, len, 1);
}
#else
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif

2625
/* These take the mm semaphore themselves */
2626
extern int __must_check vm_brk(unsigned long, unsigned long);
2627
extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
A
Al Viro 已提交
2628
extern int vm_munmap(unsigned long, size_t);
M
Michal Hocko 已提交
2629
extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2630 2631
        unsigned long, unsigned long,
        unsigned long, unsigned long);
L
Linus Torvalds 已提交
2632

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
struct vm_unmapped_area_info {
#define VM_UNMAPPED_AREA_TOPDOWN 1
	unsigned long flags;
	unsigned long length;
	unsigned long low_limit;
	unsigned long high_limit;
	unsigned long align_mask;
	unsigned long align_offset;
};

2643
extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2644

2645
/* truncate.c */
L
Linus Torvalds 已提交
2646
extern void truncate_inode_pages(struct address_space *, loff_t);
2647 2648
extern void truncate_inode_pages_range(struct address_space *,
				       loff_t lstart, loff_t lend);
2649
extern void truncate_inode_pages_final(struct address_space *);
L
Linus Torvalds 已提交
2650 2651

/* generic vm_area_ops exported for stackable file systems */
2652
extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2653
extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2654
		pgoff_t start_pgoff, pgoff_t end_pgoff);
2655
extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
L
Linus Torvalds 已提交
2656 2657

/* mm/page-writeback.c */
2658
int __must_check write_one_page(struct page *page);
N
Nick Piggin 已提交
2659
void task_dirty_inc(struct task_struct *tsk);
L
Linus Torvalds 已提交
2660

2661
extern unsigned long stack_guard_gap;
2662
/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
H
Hugh Dickins 已提交
2663
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2664

2665
/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2666 2667
extern int expand_downwards(struct vm_area_struct *vma,
		unsigned long address);
2668
#if VM_GROWSUP
H
Hugh Dickins 已提交
2669
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2670
#else
2671
  #define expand_upwards(vma, address) (0)
2672
#endif
L
Linus Torvalds 已提交
2673 2674 2675 2676 2677 2678

/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
					     struct vm_area_struct **pprev);

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/**
 * find_vma_intersection() - Look up the first VMA which intersects the interval
 * @mm: The process address space.
 * @start_addr: The inclusive start user address.
 * @end_addr: The exclusive end user address.
 *
 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
 * start_addr < end_addr.
 */
static inline
struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
					     unsigned long start_addr,
					     unsigned long end_addr)
L
Linus Torvalds 已提交
2692
{
2693
	struct vm_area_struct *vma = find_vma(mm, start_addr);
L
Linus Torvalds 已提交
2694 2695 2696 2697 2698 2699

	if (vma && end_addr <= vma->vm_start)
		vma = NULL;
	return vma;
}

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/**
 * vma_lookup() - Find a VMA at a specific address
 * @mm: The process address space.
 * @addr: The user address.
 *
 * Return: The vm_area_struct at the given address, %NULL otherwise.
 */
static inline
struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
{
	struct vm_area_struct *vma = find_vma(mm, addr);

	if (vma && addr < vma->vm_start)
		vma = NULL;

	return vma;
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
{
	unsigned long vm_start = vma->vm_start;

	if (vma->vm_flags & VM_GROWSDOWN) {
		vm_start -= stack_guard_gap;
		if (vm_start > vma->vm_start)
			vm_start = 0;
	}
	return vm_start;
}

static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
{
	unsigned long vm_end = vma->vm_end;

	if (vma->vm_flags & VM_GROWSUP) {
		vm_end += stack_guard_gap;
		if (vm_end < vma->vm_end)
			vm_end = -PAGE_SIZE;
	}
	return vm_end;
}

L
Linus Torvalds 已提交
2742 2743 2744 2745 2746
static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
				unsigned long vm_start, unsigned long vm_end)
{
	struct vm_area_struct *vma = find_vma(mm, vm_start);

	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
		vma = NULL;

	return vma;
}

2759 2760 2761 2762 2763 2764
static inline bool range_in_vma(struct vm_area_struct *vma,
				unsigned long start, unsigned long end)
{
	return (vma && vma->vm_start <= start && end <= vma->vm_end);
}

2765
#ifdef CONFIG_MMU
2766
pgprot_t vm_get_page_prot(unsigned long vm_flags);
2767
void vma_set_page_prot(struct vm_area_struct *vma);
2768 2769 2770 2771 2772
#else
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
	return __pgprot(0);
}
2773 2774 2775 2776
static inline void vma_set_page_prot(struct vm_area_struct *vma)
{
	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
}
2777 2778
#endif

2779 2780
void vma_set_file(struct vm_area_struct *vma, struct file *file);

2781
#ifdef CONFIG_NUMA_BALANCING
2782
unsigned long change_prot_numa(struct vm_area_struct *vma,
L
Lee Schermerhorn 已提交
2783 2784 2785
			unsigned long start, unsigned long end);
#endif

2786 2787 2788
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
			unsigned long pfn, unsigned long size, pgprot_t);
2789 2790
int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
		unsigned long pfn, unsigned long size, pgprot_t prot);
2791
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
A
Arjun Roy 已提交
2792 2793
int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
			struct page **pages, unsigned long *num);
2794 2795 2796 2797
int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
				unsigned long num);
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
				unsigned long num);
M
Matthew Wilcox 已提交
2798
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
N
Nick Piggin 已提交
2799
			unsigned long pfn);
2800 2801
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t pgprot);
M
Matthew Wilcox 已提交
2802
vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2803
			pfn_t pfn);
2804 2805
vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
			pfn_t pfn, pgprot_t pgprot);
2806 2807
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
		unsigned long addr, pfn_t pfn);
2808 2809
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
				unsigned long addr, struct page *page)
{
	int err = vm_insert_page(vma, addr, page);

	if (err == -ENOMEM)
		return VM_FAULT_OOM;
	if (err < 0 && err != -EBUSY)
		return VM_FAULT_SIGBUS;

	return VM_FAULT_NOPAGE;
}

2823 2824 2825 2826 2827 2828 2829 2830 2831
#ifndef io_remap_pfn_range
static inline int io_remap_pfn_range(struct vm_area_struct *vma,
				     unsigned long addr, unsigned long pfn,
				     unsigned long size, pgprot_t prot)
{
	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
}
#endif

2832 2833 2834 2835 2836 2837 2838
static inline vm_fault_t vmf_error(int err)
{
	if (err == -ENOMEM)
		return VM_FAULT_OOM;
	return VM_FAULT_SIGBUS;
}

2839 2840
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags);
2841

2842 2843 2844
#define FOLL_WRITE	0x01	/* check pte is writable */
#define FOLL_TOUCH	0x02	/* mark page accessed */
#define FOLL_GET	0x04	/* do get_page on page */
H
Hugh Dickins 已提交
2845
#define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
H
Hugh Dickins 已提交
2846
#define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2847 2848
#define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
				 * and return without waiting upon it */
2849
#define FOLL_POPULATE	0x40	/* fault in page */
2850
#define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2851
#define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2852
#define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2853
#define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
E
Eric B Munson 已提交
2854
#define FOLL_MLOCK	0x1000	/* lock present pages */
2855
#define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2856
#define FOLL_COW	0x4000	/* internal GUP flag */
2857
#define FOLL_ANON	0x8000	/* don't do file mappings */
2858
#define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
S
Song Liu 已提交
2859
#define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2860
#define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2861
#define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2862 2863

/*
2864 2865
 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
 * other. Here is what they mean, and how to use them:
2866 2867
 *
 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2868 2869
 * period _often_ under userspace control.  This is in contrast to
 * iov_iter_get_pages(), whose usages are transient.
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
 *
 * FIXME: For pages which are part of a filesystem, mappings are subject to the
 * lifetime enforced by the filesystem and we need guarantees that longterm
 * users like RDMA and V4L2 only establish mappings which coordinate usage with
 * the filesystem.  Ideas for this coordination include revoking the longterm
 * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
 * added after the problem with filesystems was found FS DAX VMAs are
 * specifically failed.  Filesystem pages are still subject to bugs and use of
 * FOLL_LONGTERM should be avoided on those pages.
 *
 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
 * Currently only get_user_pages() and get_user_pages_fast() support this flag
 * and calls to get_user_pages_[un]locked are specifically not allowed.  This
 * is due to an incompatibility with the FS DAX check and
2884
 * FAULT_FLAG_ALLOW_RETRY.
2885
 *
2886 2887
 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
 * that region.  And so, CMA attempts to migrate the page before pinning, when
2888
 * FOLL_LONGTERM is specified.
2889 2890 2891 2892 2893 2894 2895
 *
 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
 * but an additional pin counting system) will be invoked. This is intended for
 * anything that gets a page reference and then touches page data (for example,
 * Direct IO). This lets the filesystem know that some non-file-system entity is
 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2896
 * a call to unpin_user_page().
2897 2898 2899 2900 2901 2902 2903
 *
 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
 * and separate refcounting mechanisms, however, and that means that each has
 * its own acquire and release mechanisms:
 *
 *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
 *
2904
 *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2905 2906 2907 2908 2909 2910 2911 2912 2913
 *
 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
 * calls applied to them, and that's perfectly OK. This is a constraint on the
 * callers, not on the pages.)
 *
 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
 * directly by the caller. That's in order to help avoid mismatches when
 * releasing pages: get_user_pages*() pages must be released via put_page(),
2914
 * while pin_user_pages*() pages must be released via unpin_user_page().
2915
 *
2916
 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2917
 */
L
Linus Torvalds 已提交
2918

2919
static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
{
	if (vm_fault & VM_FAULT_OOM)
		return -ENOMEM;
	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
		return -EFAULT;
	return 0;
}

2930
typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2931 2932
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
			       unsigned long size, pte_fn_t fn, void *data);
2933 2934 2935
extern int apply_to_existing_page_range(struct mm_struct *mm,
				   unsigned long address, unsigned long size,
				   pte_fn_t fn, void *data);
2936

2937
extern void init_mem_debugging_and_hardening(void);
2938
#ifdef CONFIG_PAGE_POISONING
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
extern void __kernel_poison_pages(struct page *page, int numpages);
extern void __kernel_unpoison_pages(struct page *page, int numpages);
extern bool _page_poisoning_enabled_early;
DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
static inline bool page_poisoning_enabled(void)
{
	return _page_poisoning_enabled_early;
}
/*
 * For use in fast paths after init_mem_debugging() has run, or when a
 * false negative result is not harmful when called too early.
 */
static inline bool page_poisoning_enabled_static(void)
{
	return static_branch_unlikely(&_page_poisoning_enabled);
}
static inline void kernel_poison_pages(struct page *page, int numpages)
{
	if (page_poisoning_enabled_static())
		__kernel_poison_pages(page, numpages);
}
static inline void kernel_unpoison_pages(struct page *page, int numpages)
{
	if (page_poisoning_enabled_static())
		__kernel_unpoison_pages(page, numpages);
}
2965 2966
#else
static inline bool page_poisoning_enabled(void) { return false; }
2967
static inline bool page_poisoning_enabled_static(void) { return false; }
2968
static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2969 2970
static inline void kernel_poison_pages(struct page *page, int numpages) { }
static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2971 2972
#endif

2973
DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2974 2975
static inline bool want_init_on_alloc(gfp_t flags)
{
2976 2977
	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
				&init_on_alloc))
2978 2979 2980 2981
		return true;
	return flags & __GFP_ZERO;
}

2982
DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2983 2984
static inline bool want_init_on_free(void)
{
2985 2986
	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
				   &init_on_free);
2987 2988
}

2989 2990
extern bool _debug_pagealloc_enabled_early;
DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2991 2992

static inline bool debug_pagealloc_enabled(void)
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
{
	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
		_debug_pagealloc_enabled_early;
}

/*
 * For use in fast paths after init_debug_pagealloc() has run, or when a
 * false negative result is not harmful when called too early.
 */
static inline bool debug_pagealloc_enabled_static(void)
3003
{
3004 3005 3006 3007
	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
		return false;

	return static_branch_unlikely(&_debug_pagealloc_enabled);
3008 3009
}

3010
#ifdef CONFIG_DEBUG_PAGEALLOC
3011
/*
3012 3013
 * To support DEBUG_PAGEALLOC architecture must ensure that
 * __kernel_map_pages() never fails
3014
 */
3015 3016
extern void __kernel_map_pages(struct page *page, int numpages, int enable);

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
{
	if (debug_pagealloc_enabled_static())
		__kernel_map_pages(page, numpages, 1);
}

static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
{
	if (debug_pagealloc_enabled_static())
		__kernel_map_pages(page, numpages, 0);
}
3028
#else	/* CONFIG_DEBUG_PAGEALLOC */
3029 3030
static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3031
#endif	/* CONFIG_DEBUG_PAGEALLOC */
L
Linus Torvalds 已提交
3032

3033
#ifdef __HAVE_ARCH_GATE_AREA
3034
extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3035 3036
extern int in_gate_area_no_mm(unsigned long addr);
extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
L
Linus Torvalds 已提交
3037
#else
3038 3039 3040 3041 3042 3043 3044 3045 3046
static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
{
	return NULL;
}
static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
{
	return 0;
}
L
Linus Torvalds 已提交
3047 3048
#endif	/* __HAVE_ARCH_GATE_AREA */

3049 3050
extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);

3051 3052
#ifdef CONFIG_SYSCTL
extern int sysctl_drop_caches;
3053 3054
int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
		loff_t *);
3055 3056
#endif

3057 3058
void drop_slab(void);
void drop_slab_node(int nid);
A
Andrew Morton 已提交
3059

3060 3061 3062
#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
3063
extern int randomize_va_space;
3064
#endif
3065

3066
const char * arch_vma_name(struct vm_area_struct *vma);
3067
#ifdef CONFIG_MMU
3068
void print_vma_addr(char *prefix, unsigned long rip);
3069 3070 3071 3072 3073
#else
static inline void print_vma_addr(char *prefix, unsigned long rip)
{
}
#endif
3074

3075
void *sparse_buffer_alloc(unsigned long size);
3076 3077
struct page * __populate_section_memmap(unsigned long pfn,
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3078
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3079 3080
p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3081
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3082 3083
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
			    struct vmem_altmap *altmap);
3084
void *vmemmap_alloc_block(unsigned long size, int node);
3085
struct vmem_altmap;
3086 3087
void *vmemmap_alloc_block_buf(unsigned long size, int node,
			      struct vmem_altmap *altmap);
3088
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3089
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3090
			       int node, struct vmem_altmap *altmap);
3091 3092
int vmemmap_populate(unsigned long start, unsigned long end, int node,
		struct vmem_altmap *altmap);
3093
void vmemmap_populate_print_last(void);
3094
#ifdef CONFIG_MEMORY_HOTPLUG
3095 3096
void vmemmap_free(unsigned long start, unsigned long end,
		struct vmem_altmap *altmap);
3097
#endif
3098
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3099
				  unsigned long nr_pages);
3100

3101 3102
enum mf_flags {
	MF_COUNT_INCREASED = 1 << 0,
3103
	MF_ACTION_REQUIRED = 1 << 1,
3104
	MF_MUST_KILL = 1 << 2,
3105
	MF_SOFT_OFFLINE = 1 << 3,
3106
};
3107 3108
extern int memory_failure(unsigned long pfn, int flags);
extern void memory_failure_queue(unsigned long pfn, int flags);
3109
extern void memory_failure_queue_kick(int cpu);
W
Wu Fengguang 已提交
3110
extern int unpoison_memory(unsigned long pfn);
3111 3112
extern int sysctl_memory_failure_early_kill;
extern int sysctl_memory_failure_recovery;
3113
extern void shake_page(struct page *p, int access);
3114
extern atomic_long_t num_poisoned_pages __read_mostly;
3115
extern int soft_offline_page(unsigned long pfn, int flags);
3116

3117 3118 3119 3120

/*
 * Error handlers for various types of pages.
 */
3121
enum mf_result {
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	MF_IGNORED,	/* Error: cannot be handled */
	MF_FAILED,	/* Error: handling failed */
	MF_DELAYED,	/* Will be handled later */
	MF_RECOVERED,	/* Successfully recovered */
};

enum mf_action_page_type {
	MF_MSG_KERNEL,
	MF_MSG_KERNEL_HIGH_ORDER,
	MF_MSG_SLAB,
	MF_MSG_DIFFERENT_COMPOUND,
	MF_MSG_POISONED_HUGE,
	MF_MSG_HUGE,
	MF_MSG_FREE_HUGE,
3136
	MF_MSG_NON_PMD_HUGE,
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	MF_MSG_UNMAP_FAILED,
	MF_MSG_DIRTY_SWAPCACHE,
	MF_MSG_CLEAN_SWAPCACHE,
	MF_MSG_DIRTY_MLOCKED_LRU,
	MF_MSG_CLEAN_MLOCKED_LRU,
	MF_MSG_DIRTY_UNEVICTABLE_LRU,
	MF_MSG_CLEAN_UNEVICTABLE_LRU,
	MF_MSG_DIRTY_LRU,
	MF_MSG_CLEAN_LRU,
	MF_MSG_TRUNCATED_LRU,
	MF_MSG_BUDDY,
	MF_MSG_BUDDY_2ND,
3149
	MF_MSG_DAX,
3150
	MF_MSG_UNSPLIT_THP,
3151 3152 3153
	MF_MSG_UNKNOWN,
};

A
Andrea Arcangeli 已提交
3154 3155
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
extern void clear_huge_page(struct page *page,
3156
			    unsigned long addr_hint,
A
Andrea Arcangeli 已提交
3157 3158
			    unsigned int pages_per_huge_page);
extern void copy_user_huge_page(struct page *dst, struct page *src,
3159 3160
				unsigned long addr_hint,
				struct vm_area_struct *vma,
A
Andrea Arcangeli 已提交
3161
				unsigned int pages_per_huge_page);
3162 3163
extern long copy_huge_page_from_user(struct page *dst_page,
				const void __user *usr_src,
3164 3165
				unsigned int pages_per_huge_page,
				bool allow_pagefault);
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

/**
 * vma_is_special_huge - Are transhuge page-table entries considered special?
 * @vma: Pointer to the struct vm_area_struct to consider
 *
 * Whether transhuge page-table entries are considered "special" following
 * the definition in vm_normal_page().
 *
 * Return: true if transhuge page-table entries should be considered special,
 * false otherwise.
 */
static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
{
	return vma_is_dax(vma) || (vma->vm_file &&
				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
}

A
Andrea Arcangeli 已提交
3183 3184
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */

3185 3186
#ifdef CONFIG_DEBUG_PAGEALLOC
extern unsigned int _debug_guardpage_minorder;
3187
DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3188 3189 3190 3191 3192 3193

static inline unsigned int debug_guardpage_minorder(void)
{
	return _debug_guardpage_minorder;
}

3194 3195
static inline bool debug_guardpage_enabled(void)
{
3196
	return static_branch_unlikely(&_debug_guardpage_enabled);
3197 3198
}

3199 3200
static inline bool page_is_guard(struct page *page)
{
3201 3202 3203
	if (!debug_guardpage_enabled())
		return false;

3204
	return PageGuard(page);
3205 3206 3207
}
#else
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3208
static inline bool debug_guardpage_enabled(void) { return false; }
3209 3210 3211
static inline bool page_is_guard(struct page *page) { return false; }
#endif /* CONFIG_DEBUG_PAGEALLOC */

3212 3213 3214 3215 3216 3217
#if MAX_NUMNODES > 1
void __init setup_nr_node_ids(void);
#else
static inline void setup_nr_node_ids(void) {}
#endif

3218 3219 3220 3221 3222 3223 3224
extern int memcmp_pages(struct page *page1, struct page *page2);

static inline int pages_identical(struct page *page1, struct page *page2)
{
	return !memcmp_pages(page1, page2);
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
#ifdef CONFIG_MAPPING_DIRTY_HELPERS
unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
						pgoff_t first_index, pgoff_t nr,
						pgoff_t bitmap_pgoff,
						unsigned long *bitmap,
						pgoff_t *start,
						pgoff_t *end);

unsigned long wp_shared_mapping_range(struct address_space *mapping,
				      pgoff_t first_index, pgoff_t nr);
#endif

3237 3238
extern int sysctl_nr_trim_pages;

3239
#ifdef CONFIG_PRINTK
3240
void mem_dump_obj(void *object);
3241 3242 3243
#else
static inline void mem_dump_obj(void *object) {}
#endif
3244

P
Peter Xu 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
/**
 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
 * @seals: the seals to check
 * @vma: the vma to operate on
 *
 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
 * the vma flags.  Return 0 if check pass, or <0 for errors.
 */
static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
{
	if (seals & F_SEAL_FUTURE_WRITE) {
		/*
		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
		 * "future write" seal active.
		 */
		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
			return -EPERM;

		/*
		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
		 * MAP_SHARED and read-only, take care to not allow mprotect to
		 * revert protections on such mappings. Do this only for shared
		 * mappings. For private mappings, don't need to mask
		 * VM_MAYWRITE as we still want them to be COW-writable.
		 */
		if (vma->vm_flags & VM_SHARED)
			vma->vm_flags &= ~(VM_MAYWRITE);
	}

	return 0;
}

L
Linus Torvalds 已提交
3277 3278
#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */