volumes.c 205.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */
5

6
#include <linux/sched.h>
7
#include <linux/sched/mm.h>
8
#include <linux/bio.h>
9
#include <linux/slab.h>
10
#include <linux/blkdev.h>
11
#include <linux/ratelimit.h>
I
Ilya Dryomov 已提交
12
#include <linux/kthread.h>
D
David Woodhouse 已提交
13
#include <linux/raid/pq.h>
S
Stefan Behrens 已提交
14
#include <linux/semaphore.h>
15
#include <linux/uuid.h>
A
Anand Jain 已提交
16
#include <linux/list_sort.h>
17
#include "misc.h"
18 19 20 21 22 23
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
D
David Woodhouse 已提交
24
#include "raid56.h"
25
#include "async-thread.h"
26
#include "check-integrity.h"
27
#include "rcu-string.h"
28
#include "dev-replace.h"
29
#include "sysfs.h"
30
#include "tree-checker.h"
31
#include "space-info.h"
32
#include "block-group.h"
33
#include "discard.h"
34

Z
Zhao Lei 已提交
35 36 37 38 39 40
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
41
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
42 43
		.devs_increment	= 2,
		.ncopies	= 2,
44
		.nparity        = 0,
45
		.raid_name	= "raid10",
46
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47
		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
Z
Zhao Lei 已提交
48 49 50 51 52 53
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
54
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
55 56
		.devs_increment	= 2,
		.ncopies	= 2,
57
		.nparity        = 0,
58
		.raid_name	= "raid1",
59
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60
		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
Z
Zhao Lei 已提交
61
	},
62 63 64
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
65
		.devs_max	= 3,
66 67 68 69
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
70
		.nparity        = 0,
71 72 73 74
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
	},
75 76 77
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
78
		.devs_max	= 4,
79 80 81 82
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
83
		.nparity        = 0,
84 85 86 87
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
	},
Z
Zhao Lei 已提交
88 89 90 91 92
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
93
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
94 95
		.devs_increment	= 1,
		.ncopies	= 2,
96
		.nparity        = 0,
97
		.raid_name	= "dup",
98
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99
		.mindev_error	= 0,
Z
Zhao Lei 已提交
100 101 102 103 104 105
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
106
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
107 108
		.devs_increment	= 1,
		.ncopies	= 1,
109
		.nparity        = 0,
110
		.raid_name	= "raid0",
111
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112
		.mindev_error	= 0,
Z
Zhao Lei 已提交
113 114 115 116 117 118
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
119
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
120 121
		.devs_increment	= 1,
		.ncopies	= 1,
122
		.nparity        = 0,
123
		.raid_name	= "single",
124
		.bg_flag	= 0,
125
		.mindev_error	= 0,
Z
Zhao Lei 已提交
126 127 128 129 130 131
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
132
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
133
		.devs_increment	= 1,
134
		.ncopies	= 1,
135
		.nparity        = 1,
136
		.raid_name	= "raid5",
137
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138
		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
Z
Zhao Lei 已提交
139 140 141 142 143 144
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
145
		.tolerated_failures = 2,
Z
Zhao Lei 已提交
146
		.devs_increment	= 1,
147
		.ncopies	= 1,
148
		.nparity        = 2,
149
		.raid_name	= "raid6",
150
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151
		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
Z
Zhao Lei 已提交
152 153 154
	},
};

155
const char *btrfs_bg_type_to_raid_name(u64 flags)
156
{
157 158 159
	const int index = btrfs_bg_flags_to_raid_index(flags);

	if (index >= BTRFS_NR_RAID_TYPES)
160 161
		return NULL;

162
	return btrfs_raid_array[index].raid_name;
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 * bytes including terminating null byte.
 */
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
	int i;
	int ret;
	char *bp = buf;
	u64 flags = bg_flags;
	u32 size_bp = size_buf;

	if (!flags) {
		strcpy(bp, "NONE");
		return;
	}

#define DESCRIBE_FLAG(flag, desc)						\
	do {								\
		if (flags & (flag)) {					\
			ret = snprintf(bp, size_bp, "%s|", (desc));	\
			if (ret < 0 || ret >= size_bp)			\
				goto out_overflow;			\
			size_bp -= ret;					\
			bp += ret;					\
			flags &= ~(flag);				\
		}							\
	} while (0)

	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");

	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
			      btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG

	if (flags) {
		ret = snprintf(bp, size_bp, "0x%llx|", flags);
		size_bp -= ret;
	}

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */

	/*
	 * The text is trimmed, it's up to the caller to provide sufficiently
	 * large buffer
	 */
out_overflow:;
}

219
static int init_first_rw_device(struct btrfs_trans_handle *trans);
220
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 224 225 226 227
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
			     u64 logical, u64 *length,
			     struct btrfs_bio **bbio_ret,
			     int mirror_num, int need_raid_map);
Y
Yan Zheng 已提交
228

D
David Sterba 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Device locking
 * ==============
 *
 * There are several mutexes that protect manipulation of devices and low-level
 * structures like chunks but not block groups, extents or files
 *
 * uuid_mutex (global lock)
 * ------------------------
 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 * device) or requested by the device= mount option
 *
 * the mutex can be very coarse and can cover long-running operations
 *
 * protects: updates to fs_devices counters like missing devices, rw devices,
245
 * seeding, structure cloning, opening/closing devices at mount/umount time
D
David Sterba 已提交
246 247 248
 *
 * global::fs_devs - add, remove, updates to the global list
 *
249 250 251
 * does not protect: manipulation of the fs_devices::devices list in general
 * but in mount context it could be used to exclude list modifications by eg.
 * scan ioctl
D
David Sterba 已提交
252 253 254 255 256 257 258 259 260 261 262 263
 *
 * btrfs_device::name - renames (write side), read is RCU
 *
 * fs_devices::device_list_mutex (per-fs, with RCU)
 * ------------------------------------------------
 * protects updates to fs_devices::devices, ie. adding and deleting
 *
 * simple list traversal with read-only actions can be done with RCU protection
 *
 * may be used to exclude some operations from running concurrently without any
 * modifications to the list (see write_all_supers)
 *
264 265 266
 * Is not required at mount and close times, because our device list is
 * protected by the uuid_mutex at that point.
 *
D
David Sterba 已提交
267 268 269 270 271 272 273 274
 * balance_mutex
 * -------------
 * protects balance structures (status, state) and context accessed from
 * several places (internally, ioctl)
 *
 * chunk_mutex
 * -----------
 * protects chunks, adding or removing during allocation, trim or when a new
275 276 277
 * device is added/removed. Additionally it also protects post_commit_list of
 * individual devices, since they can be added to the transaction's
 * post_commit_list only with chunk_mutex held.
D
David Sterba 已提交
278 279 280 281 282 283 284 285 286 287 288
 *
 * cleaner_mutex
 * -------------
 * a big lock that is held by the cleaner thread and prevents running subvolume
 * cleaning together with relocation or delayed iputs
 *
 *
 * Lock nesting
 * ============
 *
 * uuid_mutex
289 290 291
 *   device_list_mutex
 *     chunk_mutex
 *   balance_mutex
292 293
 *
 *
294 295
 * Exclusive operations
 * ====================
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 *
 * Maintains the exclusivity of the following operations that apply to the
 * whole filesystem and cannot run in parallel.
 *
 * - Balance (*)
 * - Device add
 * - Device remove
 * - Device replace (*)
 * - Resize
 *
 * The device operations (as above) can be in one of the following states:
 *
 * - Running state
 * - Paused state
 * - Completed state
 *
 * Only device operations marked with (*) can go into the Paused state for the
 * following reasons:
 *
 * - ioctl (only Balance can be Paused through ioctl)
 * - filesystem remounted as read-only
 * - filesystem unmounted and mounted as read-only
 * - system power-cycle and filesystem mounted as read-only
 * - filesystem or device errors leading to forced read-only
 *
321 322
 * The status of exclusive operation is set and cleared atomically.
 * During the course of Paused state, fs_info::exclusive_operation remains set.
323 324
 * A device operation in Paused or Running state can be canceled or resumed
 * either by ioctl (Balance only) or when remounted as read-write.
325
 * The exclusive status is cleared when the device operation is canceled or
326
 * completed.
D
David Sterba 已提交
327 328
 */

329
DEFINE_MUTEX(uuid_mutex);
330
static LIST_HEAD(fs_uuids);
D
David Sterba 已提交
331
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 333 334
{
	return &fs_uuids;
}
335

D
David Sterba 已提交
336 337
/*
 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 339
 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
D
David Sterba 已提交
340 341 342 343 344
 *
 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 * The returned struct is not linked onto any lists and can be destroyed with
 * kfree() right away.
 */
345 346
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
						 const u8 *metadata_fsid)
347 348 349
{
	struct btrfs_fs_devices *fs_devs;

350
	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 352 353 354 355 356 357
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
	INIT_LIST_HEAD(&fs_devs->alloc_list);
358
	INIT_LIST_HEAD(&fs_devs->fs_list);
359
	INIT_LIST_HEAD(&fs_devs->seed_list);
360 361 362
	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);

363 364 365 366 367
	if (metadata_fsid)
		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
	else if (fsid)
		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);

368 369 370
	return fs_devs;
}

371
void btrfs_free_device(struct btrfs_device *device)
372
{
373
	WARN_ON(!list_empty(&device->post_commit_list));
374
	rcu_string_free(device->name);
375
	extent_io_tree_release(&device->alloc_state);
376 377 378 379
	bio_put(device->flush_bio);
	kfree(device);
}

Y
Yan Zheng 已提交
380 381 382 383 384 385 386 387
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
388
		btrfs_free_device(device);
Y
Yan Zheng 已提交
389 390 391 392
	}
	kfree(fs_devices);
}

393
void __exit btrfs_cleanup_fs_uuids(void)
394 395 396
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
397 398
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
399 400
					struct btrfs_fs_devices, fs_list);
		list_del(&fs_devices->fs_list);
Y
Yan Zheng 已提交
401
		free_fs_devices(fs_devices);
402 403 404
	}
}

405 406 407
/*
 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 * Returned struct is not linked onto any lists and must be destroyed using
408
 * btrfs_free_device.
409
 */
410
static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 412 413
{
	struct btrfs_device *dev;

414
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 416 417
	if (!dev)
		return ERR_PTR(-ENOMEM);

418 419 420 421 422 423 424 425 426 427
	/*
	 * Preallocate a bio that's always going to be used for flushing device
	 * barriers and matches the device lifespan
	 */
	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
	if (!dev->flush_bio) {
		kfree(dev);
		return ERR_PTR(-ENOMEM);
	}

428 429
	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
430
	INIT_LIST_HEAD(&dev->post_commit_list);
431 432

	atomic_set(&dev->reada_in_flight, 0);
433
	atomic_set(&dev->dev_stats_ccnt, 0);
434
	btrfs_device_data_ordered_init(dev, fs_info);
435
	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436
	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 438
	extent_io_tree_init(fs_info, &dev->alloc_state,
			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
439 440 441 442

	return dev;
}

443 444
static noinline struct btrfs_fs_devices *find_fsid(
		const u8 *fsid, const u8 *metadata_fsid)
445 446 447
{
	struct btrfs_fs_devices *fs_devices;

448 449
	ASSERT(fsid);

450
	/* Handle non-split brain cases */
451
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 453 454 455 456 457 458 459 460
		if (metadata_fsid) {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
				      BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		} else {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		}
461 462 463 464
	}
	return NULL;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
				struct btrfs_super_block *disk_super)
{

	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by first scanning
	 * a device which didn't have its fsid/metadata_uuid changed
	 * at all and the CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}
	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by a device that
	 * has an outdated pair of fsid/metadata_uuid and
	 * CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(fs_devices->metadata_uuid,
			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}

	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}


506 507 508
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
509
		      struct btrfs_super_block **disk_super)
510 511 512 513 514 515 516 517 518 519 520 521
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522
	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 524 525 526 527
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
528 529 530
	*disk_super = btrfs_read_dev_super(*bdev);
	if (IS_ERR(*disk_super)) {
		ret = PTR_ERR(*disk_super);
531 532 533 534 535 536 537 538 539 540 541
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	return ret;
}

542 543 544 545 546 547 548 549 550 551 552
static bool device_path_matched(const char *path, struct btrfs_device *device)
{
	int found;

	rcu_read_lock();
	found = strcmp(rcu_str_deref(device->name), path);
	rcu_read_unlock();

	return found == 0;
}

553 554 555 556 557 558 559
/*
 *  Search and remove all stale (devices which are not mounted) devices.
 *  When both inputs are NULL, it will search and release all stale devices.
 *  path:	Optional. When provided will it release all unmounted devices
 *		matching this path only.
 *  skip_dev:	Optional. Will skip this device when searching for the stale
 *		devices.
560 561 562
 *  Return:	0 for success or if @path is NULL.
 * 		-EBUSY if @path is a mounted device.
 * 		-ENOENT if @path does not match any device in the list.
563
 */
564
static int btrfs_free_stale_devices(const char *path,
565
				     struct btrfs_device *skip_device)
A
Anand Jain 已提交
566
{
567 568
	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
	struct btrfs_device *device, *tmp_device;
569 570 571 572
	int ret = 0;

	if (path)
		ret = -ENOENT;
A
Anand Jain 已提交
573

574
	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
A
Anand Jain 已提交
575

576
		mutex_lock(&fs_devices->device_list_mutex);
577 578 579
		list_for_each_entry_safe(device, tmp_device,
					 &fs_devices->devices, dev_list) {
			if (skip_device && skip_device == device)
580
				continue;
581
			if (path && !device->name)
A
Anand Jain 已提交
582
				continue;
583
			if (path && !device_path_matched(path, device))
584
				continue;
585 586 587 588 589 590
			if (fs_devices->opened) {
				/* for an already deleted device return 0 */
				if (path && ret != 0)
					ret = -EBUSY;
				break;
			}
A
Anand Jain 已提交
591 592

			/* delete the stale device */
593 594 595 596
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);

597
			ret = 0;
598 599
		}
		mutex_unlock(&fs_devices->device_list_mutex);
600

601 602 603 604
		if (fs_devices->num_devices == 0) {
			btrfs_sysfs_remove_fsid(fs_devices);
			list_del(&fs_devices->fs_list);
			free_fs_devices(fs_devices);
A
Anand Jain 已提交
605 606
		}
	}
607 608

	return ret;
A
Anand Jain 已提交
609 610
}

611 612 613 614 615
/*
 * This is only used on mount, and we are protected from competing things
 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 * fs_devices->device_list_mutex here.
 */
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
			struct btrfs_device *device, fmode_t flags,
			void *holder)
{
	struct request_queue *q;
	struct block_device *bdev;
	struct btrfs_super_block *disk_super;
	u64 devid;
	int ret;

	if (device->bdev)
		return -EINVAL;
	if (!device->name)
		return -EINVAL;

	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632
				    &bdev, &disk_super);
633 634 635 636 637
	if (ret)
		return ret;

	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (devid != device->devid)
638
		goto error_free_page;
639 640

	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641
		goto error_free_page;
642 643 644 645

	device->generation = btrfs_super_generation(disk_super);

	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 647 648 649
		if (btrfs_super_incompat_flags(disk_super) &
		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
			pr_err(
		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650
			goto error_free_page;
651 652
		}

653
		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654
		fs_devices->seeding = true;
655
	} else {
656 657 658 659
		if (bdev_read_only(bdev))
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
		else
			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 661 662 663
	}

	q = bdev_get_queue(bdev);
	if (!blk_queue_nonrot(q))
664
		fs_devices->rotating = true;
665 666

	device->bdev = bdev;
667
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 669 670
	device->mode = flags;

	fs_devices->open_devices++;
671 672
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673
		fs_devices->rw_devices++;
674
		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675
	}
676
	btrfs_release_disk_super(disk_super);
677 678 679

	return 0;

680 681
error_free_page:
	btrfs_release_disk_super(disk_super);
682 683 684 685 686
	blkdev_put(bdev, flags);

	return -EINVAL;
}

687 688
/*
 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689 690 691
 * being created with a disk that has already completed its fsid change. Such
 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 * Handle both cases here.
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
 */
static struct btrfs_fs_devices *find_fsid_inprogress(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
			return fs_devices;
		}
	}

707
	return find_fsid(disk_super->fsid, NULL);
708 709
}

710 711 712 713 714 715 716 717 718

static struct btrfs_fs_devices *find_fsid_changed(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handles the case where scanned device is part of an fs that had
	 * multiple successful changes of FSID but curently device didn't
719 720 721 722 723
	 * observe it. Meaning our fsid will be different than theirs. We need
	 * to handle two subcases :
	 *  1 - The fs still continues to have different METADATA/FSID uuids.
	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
	 *  are equal).
724 725
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726
		/* Changed UUIDs */
727 728 729 730 731
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->fsid,
732 733 734 735 736 737 738 739
			   BTRFS_FSID_SIZE) != 0)
			return fs_devices;

		/* Unchanged UUIDs */
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0)
740 741 742 743 744
			return fs_devices;
	}

	return NULL;
}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

static struct btrfs_fs_devices *find_fsid_reverted_metadata(
				struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle the case where the scanned device is part of an fs whose last
	 * metadata UUID change reverted it to the original FSID. At the same
	 * time * fs_devices was first created by another constitutent device
	 * which didn't fully observe the operation. This results in an
	 * btrfs_fs_devices created with metadata/fsid different AND
	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
	 * fs_devices equal to the FSID of the disk.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    fs_devices->fsid_change)
			return fs_devices;
	}

	return NULL;
}
771 772 773 774
/*
 * Add new device to list of registered devices
 *
 * Returns:
775 776
 * device pointer which was just added or updated when successful
 * error pointer when failed
777
 */
778
static noinline struct btrfs_device *device_list_add(const char *path,
779 780
			   struct btrfs_super_block *disk_super,
			   bool *new_device_added)
781 782
{
	struct btrfs_device *device;
783
	struct btrfs_fs_devices *fs_devices = NULL;
784
	struct rcu_string *name;
785
	u64 found_transid = btrfs_super_generation(disk_super);
786
	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 788
	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 790
	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791

792
	if (fsid_change_in_progress) {
793
		if (!has_metadata_uuid)
794
			fs_devices = find_fsid_inprogress(disk_super);
795
		else
796
			fs_devices = find_fsid_changed(disk_super);
797
	} else if (has_metadata_uuid) {
798
		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799
	} else {
800 801 802
		fs_devices = find_fsid_reverted_metadata(disk_super);
		if (!fs_devices)
			fs_devices = find_fsid(disk_super->fsid, NULL);
803 804
	}

805 806

	if (!fs_devices) {
807 808 809 810 811 812
		if (has_metadata_uuid)
			fs_devices = alloc_fs_devices(disk_super->fsid,
						      disk_super->metadata_uuid);
		else
			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);

813
		if (IS_ERR(fs_devices))
814
			return ERR_CAST(fs_devices);
815

816 817
		fs_devices->fsid_change = fsid_change_in_progress;

818
		mutex_lock(&fs_devices->device_list_mutex);
819
		list_add(&fs_devices->fs_list, &fs_uuids);
820

821 822
		device = NULL;
	} else {
823
		mutex_lock(&fs_devices->device_list_mutex);
824 825
		device = btrfs_find_device(fs_devices, devid,
				disk_super->dev_item.uuid, NULL, false);
826 827 828 829 830 831

		/*
		 * If this disk has been pulled into an fs devices created by
		 * a device which had the CHANGING_FSID_V2 flag then replace the
		 * metadata_uuid/fsid values of the fs_devices.
		 */
832
		if (fs_devices->fsid_change &&
833 834 835
		    found_transid > fs_devices->latest_generation) {
			memcpy(fs_devices->fsid, disk_super->fsid,
					BTRFS_FSID_SIZE);
836 837 838 839 840 841 842 843

			if (has_metadata_uuid)
				memcpy(fs_devices->metadata_uuid,
				       disk_super->metadata_uuid,
				       BTRFS_FSID_SIZE);
			else
				memcpy(fs_devices->metadata_uuid,
				       disk_super->fsid, BTRFS_FSID_SIZE);
844 845 846

			fs_devices->fsid_change = false;
		}
847
	}
848

849
	if (!device) {
850 851
		if (fs_devices->opened) {
			mutex_unlock(&fs_devices->device_list_mutex);
852
			return ERR_PTR(-EBUSY);
853
		}
Y
Yan Zheng 已提交
854

855 856 857
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
858
			mutex_unlock(&fs_devices->device_list_mutex);
859
			/* we can safely leave the fs_devices entry around */
860
			return device;
861
		}
862 863 864

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
865
			btrfs_free_device(device);
866
			mutex_unlock(&fs_devices->device_list_mutex);
867
			return ERR_PTR(-ENOMEM);
868
		}
869
		rcu_assign_pointer(device->name, name);
870

871
		list_add_rcu(&device->dev_list, &fs_devices->devices);
872
		fs_devices->num_devices++;
873

Y
Yan Zheng 已提交
874
		device->fs_devices = fs_devices;
875
		*new_device_added = true;
876 877

		if (disk_super->label[0])
878 879 880 881
			pr_info(
	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->label, devid, found_transid, path,
				current->comm, task_pid_nr(current));
882
		else
883 884 885 886
			pr_info(
	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->fsid, devid, found_transid, path,
				current->comm, task_pid_nr(current));
887

888
	} else if (!device->name || strcmp(device->name->str, path)) {
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
910 911 912 913
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
914
		 */
915
		if (!fs_devices->opened && found_transid < device->generation) {
916 917 918 919 920 921 922
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
923
			mutex_unlock(&fs_devices->device_list_mutex);
924
			return ERR_PTR(-EEXIST);
925
		}
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		/*
		 * We are going to replace the device path for a given devid,
		 * make sure it's the same device if the device is mounted
		 */
		if (device->bdev) {
			struct block_device *path_bdev;

			path_bdev = lookup_bdev(path);
			if (IS_ERR(path_bdev)) {
				mutex_unlock(&fs_devices->device_list_mutex);
				return ERR_CAST(path_bdev);
			}

			if (device->bdev != path_bdev) {
				bdput(path_bdev);
				mutex_unlock(&fs_devices->device_list_mutex);
				btrfs_warn_in_rcu(device->fs_info,
944 945 946 947
	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
						  path, devid, found_transid,
						  current->comm,
						  task_pid_nr(current));
948 949 950 951
				return ERR_PTR(-EEXIST);
			}
			bdput(path_bdev);
			btrfs_info_in_rcu(device->fs_info,
952 953 954 955
	"devid %llu device path %s changed to %s scanned by %s (%d)",
					  devid, rcu_str_deref(device->name),
					  path, current->comm,
					  task_pid_nr(current));
956 957
		}

958
		name = rcu_string_strdup(path, GFP_NOFS);
959 960
		if (!name) {
			mutex_unlock(&fs_devices->device_list_mutex);
961
			return ERR_PTR(-ENOMEM);
962
		}
963 964
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
965
		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966
			fs_devices->missing_devices--;
967
			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968
		}
969 970
	}

971 972 973 974 975 976
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
977
	if (!fs_devices->opened) {
978
		device->generation = found_transid;
979 980 981
		fs_devices->latest_generation = max_t(u64, found_transid,
						fs_devices->latest_generation);
	}
982

983 984
	fs_devices->total_devices = btrfs_super_num_devices(disk_super);

985
	mutex_unlock(&fs_devices->device_list_mutex);
986
	return device;
987 988
}

Y
Yan Zheng 已提交
989 990 991 992 993
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;
994
	int ret = 0;
Y
Yan Zheng 已提交
995

996
	fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 998
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
999

1000
	mutex_lock(&orig->device_list_mutex);
J
Josef Bacik 已提交
1001
	fs_devices->total_devices = orig->total_devices;
Y
Yan Zheng 已提交
1002 1003

	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 1005
		struct rcu_string *name;

1006 1007
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
1008 1009
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
Y
Yan Zheng 已提交
1010
			goto error;
1011
		}
Y
Yan Zheng 已提交
1012

1013 1014 1015 1016
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
1017
		if (orig_dev->name) {
1018 1019
			name = rcu_string_strdup(orig_dev->name->str,
					GFP_KERNEL);
1020
			if (!name) {
1021
				btrfs_free_device(device);
1022
				ret = -ENOMEM;
1023 1024 1025
				goto error;
			}
			rcu_assign_pointer(device->name, name);
J
Julia Lawall 已提交
1026
		}
Y
Yan Zheng 已提交
1027 1028 1029 1030 1031

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
1032
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1033 1034
	return fs_devices;
error:
1035
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1036
	free_fs_devices(fs_devices);
1037
	return ERR_PTR(ret);
Y
Yan Zheng 已提交
1038 1039
}

1040 1041
static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
				      int step, struct btrfs_device **latest_dev)
1042
{
Q
Qinghuang Feng 已提交
1043
	struct btrfs_device *device, *next;
1044

1045
	/* This is the initialized path, it is safe to release the devices. */
Q
Qinghuang Feng 已提交
1046
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047
		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049
				      &device->dev_state) &&
1050 1051
			    !test_bit(BTRFS_DEV_STATE_MISSING,
				      &device->dev_state) &&
1052 1053 1054
			    (!*latest_dev ||
			     device->generation > (*latest_dev)->generation)) {
				*latest_dev = device;
1055
			}
Y
Yan Zheng 已提交
1056
			continue;
1057
		}
Y
Yan Zheng 已提交
1058

1059 1060 1061 1062 1063 1064 1065
		/*
		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
		 * in btrfs_init_dev_replace() so just continue.
		 */
		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
			continue;

Y
Yan Zheng 已提交
1066
		if (device->bdev) {
1067
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1068 1069 1070
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
1071
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
1072
			list_del_init(&device->dev_alloc_list);
1073
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
1074
		}
Y
Yan Zheng 已提交
1075 1076
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
1077
		btrfs_free_device(device);
1078
	}
Y
Yan Zheng 已提交
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088
}

/*
 * After we have read the system tree and know devids belonging to this
 * filesystem, remove the device which does not belong there.
 */
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
{
	struct btrfs_device *latest_dev = NULL;
1089
	struct btrfs_fs_devices *seed_dev;
1090 1091 1092

	mutex_lock(&uuid_mutex);
	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1093 1094 1095

	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
Y
Yan Zheng 已提交
1096

1097
	fs_devices->latest_bdev = latest_dev->bdev;
1098

1099 1100
	mutex_unlock(&uuid_mutex);
}
1101

1102 1103
static void btrfs_close_bdev(struct btrfs_device *device)
{
D
David Sterba 已提交
1104 1105 1106
	if (!device->bdev)
		return;

1107
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1108 1109 1110 1111
		sync_blockdev(device->bdev);
		invalidate_bdev(device->bdev);
	}

D
David Sterba 已提交
1112
	blkdev_put(device->bdev, device->mode);
1113 1114
}

1115
static void btrfs_close_one_device(struct btrfs_device *device)
1116 1117 1118
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;

1119
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1120 1121 1122 1123 1124
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

1125
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 1127
		fs_devices->missing_devices--;

1128
	btrfs_close_bdev(device);
1129
	if (device->bdev) {
1130
		fs_devices->open_devices--;
1131
		device->bdev = NULL;
1132
	}
1133
	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134

1135 1136 1137
	device->fs_info = NULL;
	atomic_set(&device->dev_stats_ccnt, 0);
	extent_io_tree_release(&device->alloc_state);
1138

1139 1140 1141 1142 1143 1144
	/* Verify the device is back in a pristine state  */
	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
	ASSERT(list_empty(&device->dev_alloc_list));
	ASSERT(list_empty(&device->post_commit_list));
	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1145 1146
}

1147
static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1148
{
1149
	struct btrfs_device *device, *tmp;
Y
Yan Zheng 已提交
1150

1151 1152
	lockdep_assert_held(&uuid_mutex);

Y
Yan Zheng 已提交
1153
	if (--fs_devices->opened > 0)
1154
		return;
1155

1156
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1157
		btrfs_close_one_device(device);
1158

Y
Yan Zheng 已提交
1159 1160
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
1161
	fs_devices->opened = 0;
1162
	fs_devices->seeding = false;
1163
	fs_devices->fs_info = NULL;
1164 1165
}

1166
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
Y
Yan Zheng 已提交
1167
{
1168 1169
	LIST_HEAD(list);
	struct btrfs_fs_devices *tmp;
Y
Yan Zheng 已提交
1170 1171

	mutex_lock(&uuid_mutex);
1172
	close_fs_devices(fs_devices);
1173 1174
	if (!fs_devices->opened)
		list_splice_init(&fs_devices->seed_list, &list);
Y
Yan Zheng 已提交
1175

1176
	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1177
		close_fs_devices(fs_devices);
1178
		list_del(&fs_devices->seed_list);
Y
Yan Zheng 已提交
1179 1180
		free_fs_devices(fs_devices);
	}
1181
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
1182 1183
}

1184
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
Y
Yan Zheng 已提交
1185
				fmode_t flags, void *holder)
1186 1187
{
	struct btrfs_device *device;
1188
	struct btrfs_device *latest_dev = NULL;
1189
	struct btrfs_device *tmp_device;
1190

1191 1192
	flags |= FMODE_EXCL;

1193 1194 1195
	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
				 dev_list) {
		int ret;
1196

1197 1198 1199
		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
		if (ret == 0 &&
		    (!latest_dev || device->generation > latest_dev->generation)) {
1200
			latest_dev = device;
1201 1202 1203 1204 1205
		} else if (ret == -ENODATA) {
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);
		}
1206
	}
1207 1208 1209
	if (fs_devices->open_devices == 0)
		return -EINVAL;

Y
Yan Zheng 已提交
1210
	fs_devices->opened = 1;
1211
	fs_devices->latest_bdev = latest_dev->bdev;
Y
Yan Zheng 已提交
1212
	fs_devices->total_rw_bytes = 0;
1213
	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1214 1215

	return 0;
Y
Yan Zheng 已提交
1216 1217
}

A
Anand Jain 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_device *dev1, *dev2;

	dev1 = list_entry(a, struct btrfs_device, dev_list);
	dev2 = list_entry(b, struct btrfs_device, dev_list);

	if (dev1->devid < dev2->devid)
		return -1;
	else if (dev1->devid > dev2->devid)
		return 1;
	return 0;
}

Y
Yan Zheng 已提交
1232
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1233
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
1234 1235 1236
{
	int ret;

1237
	lockdep_assert_held(&uuid_mutex);
1238 1239 1240 1241 1242 1243 1244
	/*
	 * The device_list_mutex cannot be taken here in case opening the
	 * underlying device takes further locks like bd_mutex.
	 *
	 * We also don't need the lock here as this is called during mount and
	 * exclusion is provided by uuid_mutex
	 */
1245

Y
Yan Zheng 已提交
1246
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
1247 1248
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
1249
	} else {
A
Anand Jain 已提交
1250
		list_sort(NULL, &fs_devices->devices, devid_cmp);
1251
		ret = open_fs_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
1252
	}
1253

1254 1255 1256
	return ret;
}

1257
void btrfs_release_disk_super(struct btrfs_super_block *super)
1258
{
1259 1260
	struct page *page = virt_to_page(super);

1261 1262 1263
	put_page(page);
}

1264 1265
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
						       u64 bytenr)
1266
{
1267 1268
	struct btrfs_super_block *disk_super;
	struct page *page;
1269 1270 1271 1272 1273
	void *p;
	pgoff_t index;

	/* make sure our super fits in the device */
	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1274
		return ERR_PTR(-EINVAL);
1275 1276

	/* make sure our super fits in the page */
1277 1278
	if (sizeof(*disk_super) > PAGE_SIZE)
		return ERR_PTR(-EINVAL);
1279 1280 1281

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_SHIFT;
1282 1283
	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
		return ERR_PTR(-EINVAL);
1284 1285

	/* pull in the page with our super */
1286
	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1287

1288 1289
	if (IS_ERR(page))
		return ERR_CAST(page);
1290

1291
	p = page_address(page);
1292 1293

	/* align our pointer to the offset of the super block */
1294
	disk_super = p + offset_in_page(bytenr);
1295

1296 1297
	if (btrfs_super_bytenr(disk_super) != bytenr ||
	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1298
		btrfs_release_disk_super(p);
1299
		return ERR_PTR(-EINVAL);
1300 1301
	}

1302 1303
	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1304

1305
	return disk_super;
1306 1307
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
int btrfs_forget_devices(const char *path)
{
	int ret;

	mutex_lock(&uuid_mutex);
	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
	mutex_unlock(&uuid_mutex);

	return ret;
}

1319 1320 1321 1322 1323
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
1324 1325
struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
					   void *holder)
1326 1327
{
	struct btrfs_super_block *disk_super;
1328
	bool new_device_added = false;
1329
	struct btrfs_device *device = NULL;
1330
	struct block_device *bdev;
1331
	u64 bytenr;
1332

1333 1334
	lockdep_assert_held(&uuid_mutex);

1335 1336 1337 1338 1339 1340 1341
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	bytenr = btrfs_sb_offset(0);
1342
	flags |= FMODE_EXCL;
1343 1344

	bdev = blkdev_get_by_path(path, flags, holder);
1345
	if (IS_ERR(bdev))
1346
		return ERR_CAST(bdev);
1347

1348 1349 1350
	disk_super = btrfs_read_disk_super(bdev, bytenr);
	if (IS_ERR(disk_super)) {
		device = ERR_CAST(disk_super);
1351
		goto error_bdev_put;
1352
	}
1353

1354
	device = device_list_add(path, disk_super, &new_device_added);
1355
	if (!IS_ERR(device)) {
1356 1357 1358
		if (new_device_added)
			btrfs_free_stale_devices(path, device);
	}
1359

1360
	btrfs_release_disk_super(disk_super);
1361 1362

error_bdev_put:
1363
	blkdev_put(bdev, flags);
1364

1365
	return device;
1366
}
1367

1368 1369 1370 1371 1372 1373
/*
 * Try to find a chunk that intersects [start, start + len] range and when one
 * such is found, record the end of it in *start
 */
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
				    u64 len)
1374
{
1375
	u64 physical_start, physical_end;
1376

1377
	lockdep_assert_held(&device->fs_info->chunk_mutex);
1378

1379 1380 1381
	if (!find_first_extent_bit(&device->alloc_state, *start,
				   &physical_start, &physical_end,
				   CHUNK_ALLOCATED, NULL)) {
1382

1383 1384 1385 1386 1387
		if (in_range(physical_start, *start, len) ||
		    in_range(*start, physical_start,
			     physical_end - physical_start)) {
			*start = physical_end + 1;
			return true;
1388 1389
		}
	}
1390
	return false;
1391 1392
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
{
	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/*
		 * We don't want to overwrite the superblock on the drive nor
		 * any area used by the boot loader (grub for example), so we
		 * make sure to start at an offset of at least 1MB.
		 */
		return max_t(u64, start, SZ_1M);
	default:
		BUG();
	}
}

/**
 * dev_extent_hole_check - check if specified hole is suitable for allocation
 * @device:	the device which we have the hole
 * @hole_start: starting position of the hole
 * @hole_size:	the size of the hole
 * @num_bytes:	the size of the free space that we need
 *
 * This function may modify @hole_start and @hole_end to reflect the suitable
 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
 */
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
				  u64 *hole_size, u64 num_bytes)
{
	bool changed = false;
	u64 hole_end = *hole_start + *hole_size;

	/*
	 * Check before we set max_hole_start, otherwise we could end up
	 * sending back this offset anyway.
	 */
	if (contains_pending_extent(device, hole_start, *hole_size)) {
		if (hole_end >= *hole_start)
			*hole_size = hole_end - *hole_start;
		else
			*hole_size = 0;
		changed = true;
	}

	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/* No extra check */
		break;
	default:
		BUG();
	}

	return changed;
}
1446

1447
/*
1448 1449 1450 1451 1452 1453 1454
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1455
 *
1456 1457 1458
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1459 1460 1461 1462 1463 1464 1465 1466
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1467 1468 1469 1470 1471 1472
 *
 * NOTE: This function will search *commit* root of device tree, and does extra
 * check to ensure dev extents are not double allocated.
 * This makes the function safe to allocate dev extents but may not report
 * correct usable device space, as device extent freed in current transaction
 * is not reported as avaiable.
1473
 */
1474 1475 1476
static int find_free_dev_extent_start(struct btrfs_device *device,
				u64 num_bytes, u64 search_start, u64 *start,
				u64 *len)
1477
{
1478 1479
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1480
	struct btrfs_key key;
1481
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
1482
	struct btrfs_path *path;
1483 1484 1485 1486
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1487 1488
	u64 search_end = device->total_bytes;
	int ret;
1489
	int slot;
1490
	struct extent_buffer *l;
1491

1492
	search_start = dev_extent_search_start(device, search_start);
1493

1494 1495 1496
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1497

1498 1499 1500
	max_hole_start = search_start;
	max_hole_size = 0;

1501
again:
1502 1503
	if (search_start >= search_end ||
		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1504
		ret = -ENOSPC;
1505
		goto out;
1506 1507
	}

1508
	path->reada = READA_FORWARD;
1509 1510
	path->search_commit_root = 1;
	path->skip_locking = 1;
1511

1512 1513 1514
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1515

1516
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1517
	if (ret < 0)
1518
		goto out;
1519 1520 1521
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
1522
			goto out;
1523
	}
1524

1525 1526 1527 1528 1529 1530 1531 1532
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1533 1534 1535
				goto out;

			break;
1536 1537 1538 1539 1540 1541 1542
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1543
			break;
1544

1545
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1546
			goto next;
1547

1548 1549
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1550 1551
			dev_extent_hole_check(device, &search_start, &hole_size,
					      num_bytes);
1552

1553 1554 1555 1556
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1570 1571 1572 1573
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1574 1575 1576 1577
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1578 1579 1580 1581 1582
next:
		path->slots[0]++;
		cond_resched();
	}

1583 1584 1585 1586 1587
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1588
	if (search_end > search_start) {
1589
		hole_size = search_end - search_start;
1590 1591
		if (dev_extent_hole_check(device, &search_start, &hole_size,
					  num_bytes)) {
1592 1593 1594
			btrfs_release_path(path);
			goto again;
		}
1595

1596 1597 1598 1599
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1600 1601
	}

1602
	/* See above. */
1603
	if (max_hole_size < num_bytes)
1604 1605 1606 1607 1608
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
1609
	btrfs_free_path(path);
1610
	*start = max_hole_start;
1611
	if (len)
1612
		*len = max_hole_size;
1613 1614 1615
	return ret;
}

1616
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1617 1618 1619
			 u64 *start, u64 *len)
{
	/* FIXME use last free of some kind */
1620
	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1621 1622
}

1623
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1624
			  struct btrfs_device *device,
M
Miao Xie 已提交
1625
			  u64 start, u64 *dev_extent_len)
1626
{
1627 1628
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1629 1630 1631
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
1632 1633 1634
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1635 1636 1637 1638 1639 1640 1641 1642

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
M
Miao Xie 已提交
1643
again:
1644
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1645 1646 1647
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1648 1649
		if (ret)
			goto out;
1650 1651 1652 1653 1654 1655
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
M
Miao Xie 已提交
1656 1657 1658
		key = found_key;
		btrfs_release_path(path);
		goto again;
1659 1660 1661 1662
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1663
	} else {
1664
		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1665
		goto out;
1666
	}
1667

M
Miao Xie 已提交
1668 1669
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1670
	ret = btrfs_del_item(trans, root, path);
1671
	if (ret) {
1672 1673
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to remove dev extent item");
Z
Zhao Lei 已提交
1674
	} else {
1675
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1676
	}
1677
out:
1678 1679 1680 1681
	btrfs_free_path(path);
	return ret;
}

1682 1683 1684
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
				  struct btrfs_device *device,
				  u64 chunk_offset, u64 start, u64 num_bytes)
1685 1686 1687
{
	int ret;
	struct btrfs_path *path;
1688 1689
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1690 1691 1692 1693
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1694
	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1695
	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1696 1697 1698 1699 1700
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Y
Yan Zheng 已提交
1701
	key.offset = start;
1702 1703 1704
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
1705 1706
	if (ret)
		goto out;
1707 1708 1709 1710

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1711 1712
	btrfs_set_dev_extent_chunk_tree(leaf, extent,
					BTRFS_CHUNK_TREE_OBJECTID);
1713 1714
	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1715 1716
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

1717 1718
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
1719
out:
1720 1721 1722 1723
	btrfs_free_path(path);
	return ret;
}

1724
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1725
{
1726 1727 1728 1729
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1730

1731
	em_tree = &fs_info->mapping_tree;
1732
	read_lock(&em_tree->lock);
L
Liu Bo 已提交
1733
	n = rb_last(&em_tree->map.rb_root);
1734 1735 1736
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1737
	}
1738 1739
	read_unlock(&em_tree->lock);

1740 1741 1742
	return ret;
}

1743 1744
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1745 1746 1747 1748
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1749 1750 1751 1752 1753
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1754 1755 1756 1757 1758

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1759
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1760 1761 1762
	if (ret < 0)
		goto error;

1763 1764 1765 1766 1767 1768
	if (ret == 0) {
		/* Corruption */
		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
		ret = -EUCLEAN;
		goto error;
	}
1769

1770 1771
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1772 1773
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1774
		*devid_ret = 1;
1775 1776 1777
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1778
		*devid_ret = found_key.offset + 1;
1779 1780 1781
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1782
	btrfs_free_path(path);
1783 1784 1785 1786 1787 1788 1789
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1790
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1791
			    struct btrfs_device *device)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1806
	key.offset = device->devid;
1807

1808 1809
	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
				      &key, sizeof(*dev_item));
1810 1811 1812 1813 1814 1815 1816
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1817
	btrfs_set_device_generation(leaf, dev_item, 0);
1818 1819 1820 1821
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1822 1823 1824 1825
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1826 1827 1828
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1829
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1830

1831
	ptr = btrfs_device_uuid(dev_item);
1832
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1833
	ptr = btrfs_device_fsid(dev_item);
1834 1835
	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
			    ptr, BTRFS_FSID_SIZE);
1836 1837
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1838
	ret = 0;
1839 1840 1841 1842
out:
	btrfs_free_path(path);
	return ret;
}
1843

1844 1845 1846 1847
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
 */
1848
static void update_dev_time(const char *path_name)
1849 1850 1851 1852
{
	struct file *filp;

	filp = filp_open(path_name, O_RDWR, 0);
1853
	if (IS_ERR(filp))
1854 1855 1856 1857 1858
		return;
	file_update_time(filp);
	filp_close(filp, NULL);
}

1859
static int btrfs_rm_dev_item(struct btrfs_device *device)
1860
{
1861
	struct btrfs_root *root = device->fs_info->chunk_root;
1862 1863 1864 1865 1866 1867 1868 1869 1870
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1871
	trans = btrfs_start_transaction(root, 0);
1872 1873 1874 1875
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1876 1877 1878 1879 1880
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1881 1882 1883 1884 1885
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
1886 1887 1888 1889
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
1890 1891 1892 1893 1894
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	}

1895 1896
out:
	btrfs_free_path(path);
1897 1898
	if (!ret)
		ret = btrfs_commit_transaction(trans);
1899 1900 1901
	return ret;
}

1902 1903 1904 1905 1906 1907 1908
/*
 * Verify that @num_devices satisfies the RAID profile constraints in the whole
 * filesystem. It's up to the caller to adjust that number regarding eg. device
 * replace.
 */
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
		u64 num_devices)
1909 1910
{
	u64 all_avail;
1911
	unsigned seq;
1912
	int i;
1913

1914
	do {
1915
		seq = read_seqbegin(&fs_info->profiles_lock);
1916

1917 1918 1919 1920
		all_avail = fs_info->avail_data_alloc_bits |
			    fs_info->avail_system_alloc_bits |
			    fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));
1921

1922
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1923
		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1924
			continue;
1925

1926
		if (num_devices < btrfs_raid_array[i].devs_min) {
1927
			int ret = btrfs_raid_array[i].mindev_error;
1928

1929 1930 1931
			if (ret)
				return ret;
		}
D
David Woodhouse 已提交
1932 1933
	}

1934
	return 0;
1935 1936
}

1937 1938
static struct btrfs_device * btrfs_find_next_active_device(
		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1939
{
Y
Yan Zheng 已提交
1940
	struct btrfs_device *next_device;
1941 1942 1943

	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
		if (next_device != device &&
1944 1945
		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
		    && next_device->bdev)
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
			return next_device;
	}

	return NULL;
}

/*
 * Helper function to check if the given device is part of s_bdev / latest_bdev
 * and replace it with the provided or the next active device, in the context
 * where this function called, there should be always be another device (or
 * this_dev) which is active.
 */
1958
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1959
					    struct btrfs_device *next_device)
1960
{
1961
	struct btrfs_fs_info *fs_info = device->fs_info;
1962

1963
	if (!next_device)
1964
		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1965
							    device);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	ASSERT(next_device);

	if (fs_info->sb->s_bdev &&
			(fs_info->sb->s_bdev == device->bdev))
		fs_info->sb->s_bdev = next_device->bdev;

	if (fs_info->fs_devices->latest_bdev == device->bdev)
		fs_info->fs_devices->latest_bdev = next_device->bdev;
}

1976 1977 1978 1979 1980 1981 1982 1983
/*
 * Return btrfs_fs_devices::num_devices excluding the device that's being
 * currently replaced.
 */
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
	u64 num_devices = fs_info->fs_devices->num_devices;

1984
	down_read(&fs_info->dev_replace.rwsem);
1985 1986 1987 1988
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		ASSERT(num_devices > 1);
		num_devices--;
	}
1989
	up_read(&fs_info->dev_replace.rwsem);
1990 1991 1992 1993

	return num_devices;
}

1994 1995 1996
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
			       struct block_device *bdev,
			       const char *device_path)
1997 1998 1999 2000 2001 2002 2003 2004
{
	struct btrfs_super_block *disk_super;
	int copy_num;

	if (!bdev)
		return;

	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2005 2006
		struct page *page;
		int ret;
2007

2008 2009 2010
		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
		if (IS_ERR(disk_super))
			continue;
2011 2012

		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

		page = virt_to_page(disk_super);
		set_page_dirty(page);
		lock_page(page);
		/* write_on_page() unlocks the page */
		ret = write_one_page(page);
		if (ret)
			btrfs_warn(fs_info,
				"error clearing superblock number %d (%d)",
				copy_num, ret);
		btrfs_release_disk_super(disk_super);

2025 2026 2027 2028 2029 2030 2031 2032 2033
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
	update_dev_time(device_path);
}

2034
int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2035
		    u64 devid)
2036 2037
{
	struct btrfs_device *device;
2038
	struct btrfs_fs_devices *cur_devices;
2039
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2040
	u64 num_devices;
2041 2042 2043 2044
	int ret = 0;

	mutex_lock(&uuid_mutex);

2045
	num_devices = btrfs_num_devices(fs_info);
2046

2047
	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2048
	if (ret)
2049 2050
		goto out;

2051 2052 2053 2054 2055 2056 2057 2058
	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);

	if (IS_ERR(device)) {
		if (PTR_ERR(device) == -ENOENT &&
		    strcmp(device_path, "missing") == 0)
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
		else
			ret = PTR_ERR(device);
D
David Woodhouse 已提交
2059
		goto out;
2060
	}
2061

2062 2063 2064 2065 2066 2067 2068 2069
	if (btrfs_pinned_by_swapfile(fs_info, device)) {
		btrfs_warn_in_rcu(fs_info,
		  "cannot remove device %s (devid %llu) due to active swapfile",
				  rcu_str_deref(device->name), device->devid);
		ret = -ETXTBSY;
		goto out;
	}

2070
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2071
		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2072
		goto out;
2073 2074
	}

2075 2076
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    fs_info->fs_devices->rw_devices == 1) {
2077
		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2078
		goto out;
Y
Yan Zheng 已提交
2079 2080
	}

2081
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2082
		mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2083
		list_del_init(&device->dev_alloc_list);
2084
		device->fs_devices->rw_devices--;
2085
		mutex_unlock(&fs_info->chunk_mutex);
2086
	}
2087

2088
	mutex_unlock(&uuid_mutex);
2089
	ret = btrfs_shrink_device(device, 0);
2090 2091
	if (!ret)
		btrfs_reada_remove_dev(device);
2092
	mutex_lock(&uuid_mutex);
2093
	if (ret)
2094
		goto error_undo;
2095

2096 2097 2098 2099 2100
	/*
	 * TODO: the superblock still includes this device in its num_devices
	 * counter although write_all_supers() is not locked out. This
	 * could give a filesystem state which requires a degraded mount.
	 */
2101
	ret = btrfs_rm_dev_item(device);
2102
	if (ret)
2103
		goto error_undo;
2104

2105
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2106
	btrfs_scrub_cancel_dev(device);
2107 2108 2109 2110

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
2111 2112 2113 2114 2115
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
2116
	 */
2117

2118 2119 2120 2121 2122
	/*
	 * In normal cases the cur_devices == fs_devices. But in case
	 * of deleting a seed device, the cur_devices should point to
	 * its own fs_devices listed under the fs_devices->seed.
	 */
2123
	cur_devices = device->fs_devices;
2124
	mutex_lock(&fs_devices->device_list_mutex);
2125
	list_del_rcu(&device->dev_list);
2126

2127 2128
	cur_devices->num_devices--;
	cur_devices->total_devices--;
2129 2130 2131
	/* Update total_devices of the parent fs_devices if it's seed */
	if (cur_devices != fs_devices)
		fs_devices->total_devices--;
Y
Yan Zheng 已提交
2132

2133
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2134
		cur_devices->missing_devices--;
2135

2136
	btrfs_assign_next_active_device(device, NULL);
Y
Yan Zheng 已提交
2137

2138
	if (device->bdev) {
2139
		cur_devices->open_devices--;
2140
		/* remove sysfs entry */
2141
		btrfs_sysfs_remove_device(device);
2142
	}
2143

2144 2145
	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2146
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2147

2148 2149 2150 2151 2152
	/*
	 * at this point, the device is zero sized and detached from
	 * the devices list.  All that's left is to zero out the old
	 * supers and free the device.
	 */
2153
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2154 2155
		btrfs_scratch_superblocks(fs_info, device->bdev,
					  device->name->str);
2156 2157

	btrfs_close_bdev(device);
2158 2159
	synchronize_rcu();
	btrfs_free_device(device);
2160

2161
	if (cur_devices->open_devices == 0) {
2162
		list_del_init(&cur_devices->seed_list);
2163
		close_fs_devices(cur_devices);
2164
		free_fs_devices(cur_devices);
Y
Yan Zheng 已提交
2165 2166
	}

2167 2168 2169
out:
	mutex_unlock(&uuid_mutex);
	return ret;
2170

2171
error_undo:
2172
	btrfs_reada_undo_remove_dev(device);
2173
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2174
		mutex_lock(&fs_info->chunk_mutex);
2175
		list_add(&device->dev_alloc_list,
2176
			 &fs_devices->alloc_list);
2177
		device->fs_devices->rw_devices++;
2178
		mutex_unlock(&fs_info->chunk_mutex);
2179
	}
2180
	goto out;
2181 2182
}

2183
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2184
{
2185 2186
	struct btrfs_fs_devices *fs_devices;

2187
	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2188

2189 2190 2191 2192 2193 2194 2195
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
2196

2197
	list_del_rcu(&srcdev->dev_list);
2198
	list_del(&srcdev->dev_alloc_list);
2199
	fs_devices->num_devices--;
2200
	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2201
		fs_devices->missing_devices--;
2202

2203
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2204
		fs_devices->rw_devices--;
2205

2206
	if (srcdev->bdev)
2207
		fs_devices->open_devices--;
2208 2209
}

2210
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2211 2212
{
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2213

2214 2215
	mutex_lock(&uuid_mutex);

2216
	btrfs_close_bdev(srcdev);
2217 2218
	synchronize_rcu();
	btrfs_free_device(srcdev);
2219 2220 2221

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
2222 2223 2224 2225 2226 2227 2228 2229
		/*
		 * On a mounted FS, num_devices can't be zero unless it's a
		 * seed. In case of a seed device being replaced, the replace
		 * target added to the sprout FS, so there will be no more
		 * device left under the seed FS.
		 */
		ASSERT(fs_devices->seeding);

2230
		list_del_init(&fs_devices->seed_list);
2231
		close_fs_devices(fs_devices);
2232
		free_fs_devices(fs_devices);
2233
	}
2234
	mutex_unlock(&uuid_mutex);
2235 2236
}

2237
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2238
{
2239
	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2240 2241

	mutex_lock(&fs_devices->device_list_mutex);
2242

2243
	btrfs_sysfs_remove_device(tgtdev);
2244

2245
	if (tgtdev->bdev)
2246
		fs_devices->open_devices--;
2247

2248
	fs_devices->num_devices--;
2249

2250
	btrfs_assign_next_active_device(tgtdev, NULL);
2251 2252 2253

	list_del_rcu(&tgtdev->dev_list);

2254
	mutex_unlock(&fs_devices->device_list_mutex);
2255 2256 2257 2258 2259 2260 2261 2262

	/*
	 * The update_dev_time() with in btrfs_scratch_superblocks()
	 * may lead to a call to btrfs_show_devname() which will try
	 * to hold device_list_mutex. And here this device
	 * is already out of device list, so we don't have to hold
	 * the device_list_mutex lock.
	 */
2263 2264
	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
				  tgtdev->name->str);
2265 2266

	btrfs_close_bdev(tgtdev);
2267 2268
	synchronize_rcu();
	btrfs_free_device(tgtdev);
2269 2270
}

2271 2272
static struct btrfs_device *btrfs_find_device_by_path(
		struct btrfs_fs_info *fs_info, const char *device_path)
2273 2274 2275 2276 2277 2278
{
	int ret = 0;
	struct btrfs_super_block *disk_super;
	u64 devid;
	u8 *dev_uuid;
	struct block_device *bdev;
2279
	struct btrfs_device *device;
2280 2281

	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2282
				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2283
	if (ret)
2284
		return ERR_PTR(ret);
2285

2286 2287
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	dev_uuid = disk_super->dev_item.uuid;
2288
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2289
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2290
					   disk_super->metadata_uuid, true);
2291
	else
2292
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2293
					   disk_super->fsid, true);
2294

2295
	btrfs_release_disk_super(disk_super);
2296 2297
	if (!device)
		device = ERR_PTR(-ENOENT);
2298
	blkdev_put(bdev, FMODE_READ);
2299
	return device;
2300 2301
}

2302 2303 2304
/*
 * Lookup a device given by device id, or the path if the id is 0.
 */
2305
struct btrfs_device *btrfs_find_device_by_devspec(
2306 2307
		struct btrfs_fs_info *fs_info, u64 devid,
		const char *device_path)
2308
{
2309
	struct btrfs_device *device;
2310

2311
	if (devid) {
2312
		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2313
					   NULL, true);
2314 2315
		if (!device)
			return ERR_PTR(-ENOENT);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		return device;
	}

	if (!device_path || !device_path[0])
		return ERR_PTR(-EINVAL);

	if (strcmp(device_path, "missing") == 0) {
		/* Find first missing device */
		list_for_each_entry(device, &fs_info->fs_devices->devices,
				    dev_list) {
			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				     &device->dev_state) && !device->bdev)
				return device;
2329
		}
2330
		return ERR_PTR(-ENOENT);
2331
	}
2332 2333

	return btrfs_find_device_by_path(fs_info, device_path);
2334 2335
}

Y
Yan Zheng 已提交
2336 2337 2338
/*
 * does all the dirty work required for changing file system's UUID.
 */
2339
static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
2340
{
2341
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2342
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
2343
	struct btrfs_fs_devices *seed_devices;
2344
	struct btrfs_super_block *disk_super = fs_info->super_copy;
Y
Yan Zheng 已提交
2345 2346 2347
	struct btrfs_device *device;
	u64 super_flags;

2348
	lockdep_assert_held(&uuid_mutex);
Y
Yan Zheng 已提交
2349
	if (!fs_devices->seeding)
Y
Yan Zheng 已提交
2350 2351
		return -EINVAL;

2352 2353 2354 2355
	/*
	 * Private copy of the seed devices, anchored at
	 * fs_info->fs_devices->seed_list
	 */
2356
	seed_devices = alloc_fs_devices(NULL, NULL);
2357 2358
	if (IS_ERR(seed_devices))
		return PTR_ERR(seed_devices);
Y
Yan Zheng 已提交
2359

2360 2361 2362 2363 2364 2365
	/*
	 * It's necessary to retain a copy of the original seed fs_devices in
	 * fs_uuids so that filesystems which have been seeded can successfully
	 * reference the seed device from open_seed_devices. This also supports
	 * multiple fs seed.
	 */
Y
Yan Zheng 已提交
2366 2367 2368 2369
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Y
Yan Zheng 已提交
2370
	}
Y
Yan Zheng 已提交
2371

2372
	list_add(&old_devices->fs_list, &fs_uuids);
Y
Yan Zheng 已提交
2373

Y
Yan Zheng 已提交
2374 2375 2376 2377
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2378
	mutex_init(&seed_devices->device_list_mutex);
2379

2380
	mutex_lock(&fs_devices->device_list_mutex);
2381 2382
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
M
Miao Xie 已提交
2383 2384
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2385

2386
	fs_devices->seeding = false;
Y
Yan Zheng 已提交
2387 2388
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2389
	fs_devices->missing_devices = 0;
2390
	fs_devices->rotating = false;
2391
	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
Y
Yan Zheng 已提交
2392 2393

	generate_random_uuid(fs_devices->fsid);
2394
	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
2395
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2396
	mutex_unlock(&fs_devices->device_list_mutex);
2397

Y
Yan Zheng 已提交
2398 2399 2400 2401 2402 2403 2404 2405
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
2406
 * Store the expected generation for seed devices in device items.
Y
Yan Zheng 已提交
2407
 */
2408
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
2409
{
2410
	struct btrfs_fs_info *fs_info = trans->fs_info;
2411
	struct btrfs_root *root = fs_info->chunk_root;
Y
Yan Zheng 已提交
2412 2413 2414 2415 2416
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
2417
	u8 fs_uuid[BTRFS_FSID_SIZE];
Y
Yan Zheng 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2445
			btrfs_release_path(path);
Y
Yan Zheng 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
2457
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Y
Yan Zheng 已提交
2458
				   BTRFS_UUID_SIZE);
2459
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2460
				   BTRFS_FSID_SIZE);
2461
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2462
					   fs_uuid, true);
2463
		BUG_ON(!device); /* Logic error */
Y
Yan Zheng 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2480
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2481
{
2482
	struct btrfs_root *root = fs_info->dev_root;
2483
	struct request_queue *q;
2484 2485 2486
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
2487
	struct super_block *sb = fs_info->sb;
2488
	struct rcu_string *name;
2489
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2490 2491
	u64 orig_super_total_bytes;
	u64 orig_super_num_devices;
Y
Yan Zheng 已提交
2492
	int seeding_dev = 0;
2493
	int ret = 0;
2494
	bool locked = false;
2495

2496
	if (sb_rdonly(sb) && !fs_devices->seeding)
2497
		return -EROFS;
2498

2499
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2500
				  fs_info->bdev_holder);
2501 2502
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2503

2504
	if (fs_devices->seeding) {
Y
Yan Zheng 已提交
2505 2506 2507
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
2508
		locked = true;
Y
Yan Zheng 已提交
2509 2510
	}

2511
	sync_blockdev(bdev);
2512

2513 2514
	rcu_read_lock();
	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2515 2516
		if (device->bdev == bdev) {
			ret = -EEXIST;
2517
			rcu_read_unlock();
Y
Yan Zheng 已提交
2518
			goto error;
2519 2520
		}
	}
2521
	rcu_read_unlock();
2522

2523
	device = btrfs_alloc_device(fs_info, NULL, NULL);
2524
	if (IS_ERR(device)) {
2525
		/* we can safely leave the fs_devices entry around */
2526
		ret = PTR_ERR(device);
Y
Yan Zheng 已提交
2527
		goto error;
2528 2529
	}

2530
	name = rcu_string_strdup(device_path, GFP_KERNEL);
2531
	if (!name) {
Y
Yan Zheng 已提交
2532
		ret = -ENOMEM;
2533
		goto error_free_device;
2534
	}
2535
	rcu_assign_pointer(device->name, name);
Y
Yan Zheng 已提交
2536

2537
	trans = btrfs_start_transaction(root, 0);
2538 2539
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2540
		goto error_free_device;
2541 2542
	}

2543
	q = bdev_get_queue(bdev);
2544
	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
2545
	device->generation = trans->transid;
2546 2547 2548
	device->io_width = fs_info->sectorsize;
	device->io_align = fs_info->sectorsize;
	device->sector_size = fs_info->sectorsize;
2549 2550
	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
					 fs_info->sectorsize);
2551
	device->disk_total_bytes = device->total_bytes;
2552
	device->commit_total_bytes = device->total_bytes;
2553
	device->fs_info = fs_info;
2554
	device->bdev = bdev;
2555
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2556
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2557
	device->mode = FMODE_EXCL;
2558
	device->dev_stats_valid = 1;
2559
	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2560

Y
Yan Zheng 已提交
2561
	if (seeding_dev) {
2562
		sb->s_flags &= ~SB_RDONLY;
2563
		ret = btrfs_prepare_sprout(fs_info);
2564 2565 2566 2567
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto error_trans;
		}
Y
Yan Zheng 已提交
2568
	}
2569

2570
	device->fs_devices = fs_devices;
2571

2572
	mutex_lock(&fs_devices->device_list_mutex);
2573
	mutex_lock(&fs_info->chunk_mutex);
2574 2575 2576 2577 2578 2579 2580
	list_add_rcu(&device->dev_list, &fs_devices->devices);
	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
	fs_devices->num_devices++;
	fs_devices->open_devices++;
	fs_devices->rw_devices++;
	fs_devices->total_devices++;
	fs_devices->total_rw_bytes += device->total_bytes;
2581

2582
	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2583

2584
	if (!blk_queue_nonrot(q))
2585
		fs_devices->rotating = true;
C
Chris Mason 已提交
2586

2587
	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2588
	btrfs_set_super_total_bytes(fs_info->super_copy,
2589 2590
		round_down(orig_super_total_bytes + device->total_bytes,
			   fs_info->sectorsize));
2591

2592 2593 2594
	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices + 1);
2595

M
Miao Xie 已提交
2596 2597 2598 2599
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
2600
	btrfs_clear_space_info_full(fs_info);
M
Miao Xie 已提交
2601

2602
	mutex_unlock(&fs_info->chunk_mutex);
2603 2604

	/* Add sysfs device entry */
2605
	btrfs_sysfs_add_device(device);
2606

2607
	mutex_unlock(&fs_devices->device_list_mutex);
2608

Y
Yan Zheng 已提交
2609
	if (seeding_dev) {
2610
		mutex_lock(&fs_info->chunk_mutex);
2611
		ret = init_first_rw_device(trans);
2612
		mutex_unlock(&fs_info->chunk_mutex);
2613
		if (ret) {
2614
			btrfs_abort_transaction(trans, ret);
2615
			goto error_sysfs;
2616
		}
M
Miao Xie 已提交
2617 2618
	}

2619
	ret = btrfs_add_dev_item(trans, device);
M
Miao Xie 已提交
2620
	if (ret) {
2621
		btrfs_abort_transaction(trans, ret);
2622
		goto error_sysfs;
M
Miao Xie 已提交
2623 2624 2625
	}

	if (seeding_dev) {
2626
		ret = btrfs_finish_sprout(trans);
2627
		if (ret) {
2628
			btrfs_abort_transaction(trans, ret);
2629
			goto error_sysfs;
2630
		}
2631

2632 2633 2634 2635 2636
		/*
		 * fs_devices now represents the newly sprouted filesystem and
		 * its fsid has been changed by btrfs_prepare_sprout
		 */
		btrfs_sysfs_update_sprout_fsid(fs_devices);
Y
Yan Zheng 已提交
2637 2638
	}

2639
	ret = btrfs_commit_transaction(trans);
2640

Y
Yan Zheng 已提交
2641 2642 2643
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2644
		locked = false;
2645

2646 2647 2648
		if (ret) /* transaction commit */
			return ret;

2649
		ret = btrfs_relocate_sys_chunks(fs_info);
2650
		if (ret < 0)
2651
			btrfs_handle_fs_error(fs_info, ret,
J
Jeff Mahoney 已提交
2652
				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2653 2654 2655 2656
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
2657 2658 2659
			ret = PTR_ERR(trans);
			trans = NULL;
			goto error_sysfs;
2660
		}
2661
		ret = btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
2662
	}
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * Now that we have written a new super block to this device, check all
	 * other fs_devices list if device_path alienates any other scanned
	 * device.
	 * We can ignore the return value as it typically returns -EINVAL and
	 * only succeeds if the device was an alien.
	 */
	btrfs_forget_devices(device_path);

	/* Update ctime/mtime for blkid or udev */
2674
	update_dev_time(device_path);
2675

Y
Yan Zheng 已提交
2676
	return ret;
2677

2678
error_sysfs:
2679
	btrfs_sysfs_remove_device(device);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	mutex_lock(&fs_info->chunk_mutex);
	list_del_rcu(&device->dev_list);
	list_del(&device->dev_alloc_list);
	fs_info->fs_devices->num_devices--;
	fs_info->fs_devices->open_devices--;
	fs_info->fs_devices->rw_devices--;
	fs_info->fs_devices->total_devices--;
	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
	btrfs_set_super_total_bytes(fs_info->super_copy,
				    orig_super_total_bytes);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices);
	mutex_unlock(&fs_info->chunk_mutex);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2696
error_trans:
2697
	if (seeding_dev)
2698
		sb->s_flags |= SB_RDONLY;
2699 2700
	if (trans)
		btrfs_end_transaction(trans);
2701
error_free_device:
2702
	btrfs_free_device(device);
Y
Yan Zheng 已提交
2703
error:
2704
	blkdev_put(bdev, FMODE_EXCL);
2705
	if (locked) {
Y
Yan Zheng 已提交
2706 2707 2708
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2709
	return ret;
2710 2711
}

C
Chris Mason 已提交
2712 2713
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2714 2715 2716
{
	int ret;
	struct btrfs_path *path;
2717
	struct btrfs_root *root = device->fs_info->chunk_root;
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2747 2748 2749 2750
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2751 2752 2753 2754 2755 2756 2757
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

M
Miao Xie 已提交
2758
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2759 2760
		      struct btrfs_device *device, u64 new_size)
{
2761 2762
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_super_block *super_copy = fs_info->super_copy;
M
Miao Xie 已提交
2763 2764
	u64 old_total;
	u64 diff;
2765

2766
	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Y
Yan Zheng 已提交
2767
		return -EACCES;
M
Miao Xie 已提交
2768

2769 2770
	new_size = round_down(new_size, fs_info->sectorsize);

2771
	mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2772
	old_total = btrfs_super_total_bytes(super_copy);
2773
	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
M
Miao Xie 已提交
2774

2775
	if (new_size <= device->total_bytes ||
2776
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2777
		mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2778
		return -EINVAL;
M
Miao Xie 已提交
2779
	}
Y
Yan Zheng 已提交
2780

2781 2782
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total + diff, fs_info->sectorsize));
Y
Yan Zheng 已提交
2783 2784
	device->fs_devices->total_rw_bytes += diff;

2785 2786
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2787
	btrfs_clear_space_info_full(device->fs_info);
2788 2789 2790
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
2791
	mutex_unlock(&fs_info->chunk_mutex);
2792

2793 2794 2795
	return btrfs_update_device(trans, device);
}

2796
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2797
{
2798
	struct btrfs_fs_info *fs_info = trans->fs_info;
2799
	struct btrfs_root *root = fs_info->chunk_root;
2800 2801 2802 2803 2804 2805 2806 2807
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2808
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2809 2810 2811 2812
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2813 2814 2815
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2816 2817
		btrfs_handle_fs_error(fs_info, -ENOENT,
				      "Failed lookup while freeing chunk.");
2818 2819 2820
		ret = -ENOENT;
		goto out;
	}
2821 2822

	ret = btrfs_del_item(trans, root, path);
2823
	if (ret < 0)
2824 2825
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to delete chunk item.");
2826
out:
2827
	btrfs_free_path(path);
2828
	return ret;
2829 2830
}

2831
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2832
{
2833
	struct btrfs_super_block *super_copy = fs_info->super_copy;
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

2844
	mutex_lock(&fs_info->chunk_mutex);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
2864
		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2865 2866 2867 2868 2869 2870 2871 2872 2873
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
2874
	mutex_unlock(&fs_info->chunk_mutex);
2875 2876 2877
	return ret;
}

2878 2879 2880 2881 2882 2883 2884 2885 2886
/*
 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 * @logical: Logical block offset in bytes.
 * @length: Length of extent in bytes.
 *
 * Return: Chunk mapping or ERR_PTR.
 */
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
				       u64 logical, u64 length)
2887 2888 2889 2890
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;

2891
	em_tree = &fs_info->mapping_tree;
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
			   logical, length);
		return ERR_PTR(-EINVAL);
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info,
			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
			   logical, length, em->start, em->start + em->len);
		free_extent_map(em);
		return ERR_PTR(-EINVAL);
	}

	/* callers are responsible for dropping em's ref. */
	return em;
}

2914
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2915
{
2916
	struct btrfs_fs_info *fs_info = trans->fs_info;
2917 2918
	struct extent_map *em;
	struct map_lookup *map;
M
Miao Xie 已提交
2919
	u64 dev_extent_len = 0;
2920
	int i, ret = 0;
2921
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2922

2923
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2924
	if (IS_ERR(em)) {
2925 2926
		/*
		 * This is a logic error, but we don't want to just rely on the
2927
		 * user having built with ASSERT enabled, so if ASSERT doesn't
2928 2929 2930
		 * do anything we still error out.
		 */
		ASSERT(0);
2931
		return PTR_ERR(em);
2932
	}
2933
	map = em->map_lookup;
2934
	mutex_lock(&fs_info->chunk_mutex);
2935
	check_system_chunk(trans, map->type);
2936
	mutex_unlock(&fs_info->chunk_mutex);
2937

2938 2939 2940 2941 2942 2943
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
	mutex_lock(&fs_devices->device_list_mutex);
2944
	for (i = 0; i < map->num_stripes; i++) {
2945
		struct btrfs_device *device = map->stripes[i].dev;
M
Miao Xie 已提交
2946 2947 2948
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
2949
		if (ret) {
2950
			mutex_unlock(&fs_devices->device_list_mutex);
2951
			btrfs_abort_transaction(trans, ret);
2952 2953
			goto out;
		}
2954

M
Miao Xie 已提交
2955
		if (device->bytes_used > 0) {
2956
			mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2957 2958
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
2959
			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2960
			btrfs_clear_space_info_full(fs_info);
2961
			mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2962
		}
2963

2964 2965 2966 2967 2968
		ret = btrfs_update_device(trans, device);
		if (ret) {
			mutex_unlock(&fs_devices->device_list_mutex);
			btrfs_abort_transaction(trans, ret);
			goto out;
2969
		}
2970
	}
2971 2972
	mutex_unlock(&fs_devices->device_list_mutex);

2973
	ret = btrfs_free_chunk(trans, chunk_offset);
2974
	if (ret) {
2975
		btrfs_abort_transaction(trans, ret);
2976 2977
		goto out;
	}
2978

2979
	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2980

2981
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2982
		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2983
		if (ret) {
2984
			btrfs_abort_transaction(trans, ret);
2985 2986
			goto out;
		}
2987 2988
	}

2989
	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2990
	if (ret) {
2991
		btrfs_abort_transaction(trans, ret);
2992 2993
		goto out;
	}
Y
Yan Zheng 已提交
2994

2995
out:
Y
Yan Zheng 已提交
2996 2997
	/* once for us */
	free_extent_map(em);
2998 2999
	return ret;
}
Y
Yan Zheng 已提交
3000

3001
static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3002
{
3003
	struct btrfs_root *root = fs_info->chunk_root;
3004
	struct btrfs_trans_handle *trans;
3005
	struct btrfs_block_group *block_group;
3006
	int ret;
Y
Yan Zheng 已提交
3007

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
3020
	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3021

3022
	/* step one, relocate all the extents inside this chunk */
3023
	btrfs_scrub_pause(fs_info);
3024
	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3025
	btrfs_scrub_continue(fs_info);
3026 3027 3028
	if (ret)
		return ret;

3029 3030 3031 3032 3033 3034
	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
	if (!block_group)
		return -ENOENT;
	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
	btrfs_put_block_group(block_group);

3035 3036 3037 3038 3039 3040 3041 3042
	trans = btrfs_start_trans_remove_block_group(root->fs_info,
						     chunk_offset);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		btrfs_handle_fs_error(root->fs_info, ret, NULL);
		return ret;
	}

3043
	/*
3044 3045
	 * step two, delete the device extents and the
	 * chunk tree entries
3046
	 */
3047
	ret = btrfs_remove_chunk(trans, chunk_offset);
3048
	btrfs_end_transaction(trans);
3049
	return ret;
Y
Yan Zheng 已提交
3050 3051
}

3052
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
3053
{
3054
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
3055 3056 3057 3058 3059 3060
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
3061 3062
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
3063 3064 3065 3066 3067 3068
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3069
again:
Y
Yan Zheng 已提交
3070 3071 3072 3073 3074
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
3075
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3076
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3077
		if (ret < 0) {
3078
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3079
			goto error;
3080
		}
3081
		BUG_ON(ret == 0); /* Corruption */
Y
Yan Zheng 已提交
3082 3083 3084

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
3085
		if (ret)
3086
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3087 3088 3089 3090
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
Z
Zheng Yan 已提交
3091

Y
Yan Zheng 已提交
3092 3093
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
Z
Zheng Yan 已提交
3094

Y
Yan Zheng 已提交
3095 3096 3097
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
3098
		btrfs_release_path(path);
3099

Y
Yan Zheng 已提交
3100
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3101
			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3102 3103
			if (ret == -ENOSPC)
				failed++;
H
HIMANGI SARAOGI 已提交
3104 3105
			else
				BUG_ON(ret);
Y
Yan Zheng 已提交
3106
		}
3107
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3108

Y
Yan Zheng 已提交
3109 3110 3111 3112 3113
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
3114 3115 3116 3117
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
3118
	} else if (WARN_ON(failed && retried)) {
3119 3120
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
3121 3122 3123
error:
	btrfs_free_path(path);
	return ret;
3124 3125
}

3126 3127 3128 3129 3130 3131 3132 3133
/*
 * return 1 : allocate a data chunk successfully,
 * return <0: errors during allocating a data chunk,
 * return 0 : no need to allocate a data chunk.
 */
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
				      u64 chunk_offset)
{
3134
	struct btrfs_block_group *cache;
3135 3136 3137 3138 3139 3140 3141 3142
	u64 bytes_used;
	u64 chunk_type;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	ASSERT(cache);
	chunk_type = cache->flags;
	btrfs_put_block_group(cache);

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	spin_lock(&fs_info->data_sinfo->lock);
	bytes_used = fs_info->data_sinfo->bytes_used;
	spin_unlock(&fs_info->data_sinfo->lock);

	if (!bytes_used) {
		struct btrfs_trans_handle *trans;
		int ret;

		trans =	btrfs_join_transaction(fs_info->tree_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
		btrfs_end_transaction(trans);
		if (ret < 0)
			return ret;
		return 1;
3163
	}
3164

3165 3166 3167
	return 0;
}

3168
static int insert_balance_item(struct btrfs_fs_info *fs_info,
3169 3170
			       struct btrfs_balance_control *bctl)
{
3171
	struct btrfs_root *root = fs_info->tree_root;
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3191
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3202
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
3216
	err = btrfs_commit_transaction(trans);
3217 3218 3219 3220 3221
	if (err && !ret)
		ret = err;
	return ret;
}

3222
static int del_balance_item(struct btrfs_fs_info *fs_info)
3223
{
3224
	struct btrfs_root *root = fs_info->tree_root;
3225 3226 3227 3228 3229 3230 3231 3232 3233
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3234
	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3235 3236 3237 3238 3239 3240
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3241
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
3255
	err = btrfs_commit_transaction(trans);
3256 3257 3258 3259 3260
	if (err && !ret)
		ret = err;
	return ret;
}

I
Ilya Dryomov 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3285
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3286 3287 3288 3289 3290
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3291
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3292 3293 3294 3295 3296
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3298 3299 3300 3301 3302 3303
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3304 3305 3306 3307
/*
 * Clear the balance status in fs_info and delete the balance item from disk.
 */
static void reset_balance_state(struct btrfs_fs_info *fs_info)
3308 3309
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3310
	int ret;
3311 3312 3313 3314 3315 3316 3317 3318

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
3319 3320 3321
	ret = del_balance_item(fs_info);
	if (ret)
		btrfs_handle_fs_error(fs_info, ret, NULL);
3322 3323
}

I
Ilya Dryomov 已提交
3324 3325 3326 3327
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3328
static int chunk_profiles_filter(u64 chunk_type,
I
Ilya Dryomov 已提交
3329 3330
				 struct btrfs_balance_args *bargs)
{
3331 3332
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
I
Ilya Dryomov 已提交
3333

3334
	if (bargs->profiles & chunk_type)
I
Ilya Dryomov 已提交
3335 3336 3337 3338 3339
		return 0;

	return 1;
}

3340
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
I
Ilya Dryomov 已提交
3341
			      struct btrfs_balance_args *bargs)
3342
{
3343
	struct btrfs_block_group *cache;
3344 3345 3346 3347 3348 3349
	u64 chunk_used;
	u64 user_thresh_min;
	u64 user_thresh_max;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3350
	chunk_used = cache->used;
3351 3352 3353 3354

	if (bargs->usage_min == 0)
		user_thresh_min = 0;
	else
3355 3356
		user_thresh_min = div_factor_fine(cache->length,
						  bargs->usage_min);
3357 3358 3359 3360

	if (bargs->usage_max == 0)
		user_thresh_max = 1;
	else if (bargs->usage_max > 100)
3361
		user_thresh_max = cache->length;
3362
	else
3363 3364
		user_thresh_max = div_factor_fine(cache->length,
						  bargs->usage_max);
3365 3366 3367 3368 3369 3370 3371 3372

	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

3373
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3374
		u64 chunk_offset, struct btrfs_balance_args *bargs)
I
Ilya Dryomov 已提交
3375
{
3376
	struct btrfs_block_group *cache;
I
Ilya Dryomov 已提交
3377 3378 3379 3380
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3381
	chunk_used = cache->used;
I
Ilya Dryomov 已提交
3382

3383
	if (bargs->usage_min == 0)
3384
		user_thresh = 1;
3385
	else if (bargs->usage > 100)
3386
		user_thresh = cache->length;
3387
	else
3388
		user_thresh = div_factor_fine(cache->length, bargs->usage);
3389

I
Ilya Dryomov 已提交
3390 3391 3392 3393 3394 3395 3396
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

I
Ilya Dryomov 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
static u64 calc_data_stripes(u64 type, int num_stripes)
{
	const int index = btrfs_bg_flags_to_raid_index(type);
	const int ncopies = btrfs_raid_array[index].ncopies;
	const int nparity = btrfs_raid_array[index].nparity;

	if (nparity)
		return num_stripes - nparity;
	else
		return num_stripes / ncopies;
}

I
Ilya Dryomov 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
3435
	u64 type;
I
Ilya Dryomov 已提交
3436 3437 3438 3439 3440 3441
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

3442 3443
	type = btrfs_chunk_type(leaf, chunk);
	factor = calc_data_stripes(type, num_stripes);
I
Ilya Dryomov 已提交
3444 3445 3446 3447 3448 3449 3450 3451

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3452
		stripe_length = div_u64(stripe_length, factor);
I
Ilya Dryomov 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

	if (bargs->stripes_min <= num_stripes
			&& num_stripes <= bargs->stripes_max)
		return 0;

	return 1;
}

3489
static int chunk_soft_convert_filter(u64 chunk_type,
3490 3491 3492 3493 3494
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3495 3496
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3497

3498
	if (bargs->target == chunk_type)
3499 3500 3501 3502 3503
		return 1;

	return 0;
}

3504
static int should_balance_chunk(struct extent_buffer *leaf,
3505 3506
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
3507
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3508
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

I
Ilya Dryomov 已提交
3525 3526 3527 3528
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3529 3530 3531 3532
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3533
	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
I
Ilya Dryomov 已提交
3534
		return 0;
3535
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3536
	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3537
		return 0;
I
Ilya Dryomov 已提交
3538 3539 3540 3541 3542 3543
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3544 3545 3546 3547
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3548
	    chunk_drange_filter(leaf, chunk, bargs)) {
I
Ilya Dryomov 已提交
3549
		return 0;
3550 3551 3552 3553 3554 3555
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3556 3557
	}

3558 3559 3560 3561 3562 3563
	/* stripes filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
		return 0;
	}

3564 3565 3566 3567 3568 3569
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3570 3571 3572 3573 3574 3575 3576 3577
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
3578 3579 3580
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
		/*
		 * Same logic as the 'limit' filter; the minimum cannot be
3581
		 * determined here because we do not have the global information
3582 3583 3584 3585 3586 3587
		 * about the count of all chunks that satisfy the filters.
		 */
		if (bargs->limit_max == 0)
			return 0;
		else
			bargs->limit_max--;
3588 3589
	}

3590 3591 3592
	return 1;
}

3593
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3594
{
3595
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3596
	struct btrfs_root *chunk_root = fs_info->chunk_root;
3597
	u64 chunk_type;
3598
	struct btrfs_chunk *chunk;
3599
	struct btrfs_path *path = NULL;
3600 3601
	struct btrfs_key key;
	struct btrfs_key found_key;
3602 3603
	struct extent_buffer *leaf;
	int slot;
3604 3605
	int ret;
	int enospc_errors = 0;
3606
	bool counting = true;
3607
	/* The single value limit and min/max limits use the same bytes in the */
3608 3609 3610
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3611 3612 3613
	u32 count_data = 0;
	u32 count_meta = 0;
	u32 count_sys = 0;
3614
	int chunk_reserved = 0;
3615 3616

	path = btrfs_alloc_path();
3617 3618 3619 3620
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3621 3622 3623 3624 3625 3626

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3627
	if (!counting) {
3628 3629 3630 3631
		/*
		 * The single value limit and min/max limits use the same bytes
		 * in the
		 */
3632 3633 3634 3635
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3636 3637 3638 3639
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

C
Chris Mason 已提交
3640
	while (1) {
3641
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3642
		    atomic_read(&fs_info->balance_cancel_req)) {
3643 3644 3645 3646
			ret = -ECANCELED;
			goto error;
		}

3647
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3648
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3649 3650
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651
			goto error;
3652
		}
3653 3654 3655 3656 3657 3658

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3659
			BUG(); /* FIXME break ? */
3660 3661 3662

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3663
		if (ret) {
3664
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3665
			ret = 0;
3666
			break;
3667
		}
3668

3669 3670 3671
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3672

3673 3674
		if (found_key.objectid != key.objectid) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675
			break;
3676
		}
3677

3678
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3679
		chunk_type = btrfs_chunk_type(leaf, chunk);
3680

3681 3682 3683 3684 3685 3686
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3687
		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3688

3689
		btrfs_release_path(path);
3690 3691
		if (!ret) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692
			goto loop;
3693
		}
3694

3695
		if (counting) {
3696
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 3698 3699
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
				count_data++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
				count_sys++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
				count_meta++;

			goto loop;
		}

		/*
		 * Apply limit_min filter, no need to check if the LIMITS
		 * filter is used, limit_min is 0 by default
		 */
		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
					count_data < bctl->data.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
					count_meta < bctl->meta.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
					count_sys < bctl->sys.limit_min)) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3722 3723 3724
			goto loop;
		}

3725 3726 3727 3728 3729 3730 3731 3732 3733
		if (!chunk_reserved) {
			/*
			 * We may be relocating the only data chunk we have,
			 * which could potentially end up with losing data's
			 * raid profile, so lets allocate an empty one in
			 * advance.
			 */
			ret = btrfs_may_alloc_data_chunk(fs_info,
							 found_key.offset);
3734 3735 3736
			if (ret < 0) {
				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
				goto error;
3737 3738
			} else if (ret == 1) {
				chunk_reserved = 1;
3739 3740 3741
			}
		}

3742
		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3743
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3744
		if (ret == -ENOSPC) {
3745
			enospc_errors++;
3746 3747 3748 3749 3750 3751 3752
		} else if (ret == -ETXTBSY) {
			btrfs_info(fs_info,
	   "skipping relocation of block group %llu due to active swapfile",
				   found_key.offset);
			ret = 0;
		} else if (ret) {
			goto error;
3753 3754 3755 3756 3757
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3758
loop:
3759 3760
		if (found_key.offset == 0)
			break;
3761
		key.offset = found_key.offset - 1;
3762
	}
3763

3764 3765 3766 3767 3768
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
3769 3770
error:
	btrfs_free_path(path);
3771
	if (enospc_errors) {
3772
		btrfs_info(fs_info, "%d enospc errors during balance",
J
Jeff Mahoney 已提交
3773
			   enospc_errors);
3774 3775 3776 3777
		if (!ret)
			ret = -ENOSPC;
	}

3778 3779 3780
	return ret;
}

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

3801
	return has_single_bit_set(flags);
3802 3803
}

3804 3805
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
3806 3807 3808 3809
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
3810 3811
}

3812 3813 3814 3815 3816 3817 3818
/*
 * Validate target profile against allowed profiles and return true if it's OK.
 * Otherwise print the error message and return false.
 */
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
		const struct btrfs_balance_args *bargs,
		u64 allowed, const char *type)
3819
{
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return true;

	/* Profile is valid and does not have bits outside of the allowed set */
	if (alloc_profile_is_valid(bargs->target, 1) &&
	    (bargs->target & ~allowed) == 0)
		return true;

	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
			type, btrfs_bg_type_to_raid_name(bargs->target));
	return false;
3831 3832
}

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
/*
 * Fill @buf with textual description of balance filter flags @bargs, up to
 * @size_buf including the terminating null. The output may be trimmed if it
 * does not fit into the provided buffer.
 */
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
				 u32 size_buf)
{
	int ret;
	u32 size_bp = size_buf;
	char *bp = buf;
	u64 flags = bargs->flags;
	char tmp_buf[128] = {'\0'};

	if (!flags)
		return;

#define CHECK_APPEND_NOARG(a)						\
	do {								\
		ret = snprintf(bp, size_bp, (a));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_2ARG(a, v1, v2)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

3877 3878 3879
	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
		CHECK_APPEND_1ARG("convert=%s,",
				  btrfs_bg_type_to_raid_name(bargs->target));
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986

	if (flags & BTRFS_BALANCE_ARGS_SOFT)
		CHECK_APPEND_NOARG("soft,");

	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
					    sizeof(tmp_buf));
		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
	}

	if (flags & BTRFS_BALANCE_ARGS_USAGE)
		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);

	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
		CHECK_APPEND_2ARG("usage=%u..%u,",
				  bargs->usage_min, bargs->usage_max);

	if (flags & BTRFS_BALANCE_ARGS_DEVID)
		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);

	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
		CHECK_APPEND_2ARG("drange=%llu..%llu,",
				  bargs->pstart, bargs->pend);

	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
				  bargs->vstart, bargs->vend);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
		CHECK_APPEND_2ARG("limit=%u..%u,",
				bargs->limit_min, bargs->limit_max);

	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
		CHECK_APPEND_2ARG("stripes=%u..%u,",
				  bargs->stripes_min, bargs->stripes_max);

#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
	else
		buf[0] = '\0';
}

static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
	u32 size_buf = 1024;
	char tmp_buf[192] = {'\0'};
	char *buf;
	char *bp;
	u32 size_bp = size_buf;
	int ret;
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	buf = kzalloc(size_buf, GFP_KERNEL);
	if (!buf)
		return;

	bp = buf;

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

	if (bctl->flags & BTRFS_BALANCE_FORCE)
		CHECK_APPEND_1ARG("%s", "-f ");

	if (bctl->flags & BTRFS_BALANCE_DATA) {
		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_METADATA) {
		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
	}

#undef CHECK_APPEND_1ARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
	btrfs_info(fs_info, "balance: %s %s",
		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
		   "resume" : "start", buf);

	kfree(buf);
}

3987
/*
3988
 * Should be called with balance mutexe held
3989
 */
3990 3991
int btrfs_balance(struct btrfs_fs_info *fs_info,
		  struct btrfs_balance_control *bctl,
3992 3993
		  struct btrfs_ioctl_balance_args *bargs)
{
3994
	u64 meta_target, data_target;
3995
	u64 allowed;
3996
	int mixed = 0;
3997
	int ret;
3998
	u64 num_devices;
3999
	unsigned seq;
4000
	bool reducing_redundancy;
4001
	int i;
4002

4003
	if (btrfs_fs_closing(fs_info) ||
4004
	    atomic_read(&fs_info->balance_pause_req) ||
4005
	    btrfs_should_cancel_balance(fs_info)) {
4006 4007 4008 4009
		ret = -EINVAL;
		goto out;
	}

4010 4011 4012 4013
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

4014 4015 4016 4017
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
4018 4019
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
4020 4021 4022
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
J
Jeff Mahoney 已提交
4023
			btrfs_err(fs_info,
4024
	  "balance: mixed groups data and metadata options must be the same");
4025 4026 4027 4028 4029
			ret = -EINVAL;
			goto out;
		}
	}

4030 4031
	/*
	 * rw_devices will not change at the moment, device add/delete/replace
4032
	 * are exclusive
4033 4034
	 */
	num_devices = fs_info->fs_devices->rw_devices;
4035 4036 4037 4038 4039 4040 4041

	/*
	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
	 * special bit for it, to make it easier to distinguish.  Thus we need
	 * to set it manually, or balance would refuse the profile.
	 */
	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4042 4043 4044
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
		if (num_devices >= btrfs_raid_array[i].devs_min)
			allowed |= btrfs_raid_array[i].bg_flag;
4045

4046 4047 4048
	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4049 4050 4051 4052
		ret = -EINVAL;
		goto out;
	}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	/*
	 * Allow to reduce metadata or system integrity only if force set for
	 * profiles with redundancy (copies, parity)
	 */
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
		if (btrfs_raid_array[i].ncopies >= 2 ||
		    btrfs_raid_array[i].tolerated_failures >= 1)
			allowed |= btrfs_raid_array[i].bg_flag;
	}
4063 4064 4065 4066 4067 4068 4069 4070
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4071
		     !(bctl->meta.target & allowed)))
4072
			reducing_redundancy = true;
4073
		else
4074
			reducing_redundancy = false;
4075 4076 4077 4078 4079 4080

		/* if we're not converting, the target field is uninitialized */
		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->data.target : fs_info->avail_data_alloc_bits;
4081
	} while (read_seqretry(&fs_info->profiles_lock, seq));
4082

4083
	if (reducing_redundancy) {
4084 4085
		if (bctl->flags & BTRFS_BALANCE_FORCE) {
			btrfs_info(fs_info,
4086
			   "balance: force reducing metadata redundancy");
4087 4088
		} else {
			btrfs_err(fs_info,
4089
	"balance: reduces metadata redundancy, use --force if you want this");
4090 4091 4092 4093 4094
			ret = -EINVAL;
			goto out;
		}
	}

4095 4096
	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4097
		btrfs_warn(fs_info,
4098
	"balance: metadata profile %s has lower redundancy than data profile %s",
4099 4100
				btrfs_bg_type_to_raid_name(meta_target),
				btrfs_bg_type_to_raid_name(data_target));
4101 4102
	}

4103 4104 4105 4106 4107 4108 4109 4110
	if (fs_info->send_in_progress) {
		btrfs_warn_rl(fs_info,
"cannot run balance while send operations are in progress (%d in progress)",
			      fs_info->send_in_progress);
		ret = -EAGAIN;
		goto out;
	}

4111
	ret = insert_balance_item(fs_info, bctl);
I
Ilya Dryomov 已提交
4112
	if (ret && ret != -EEXIST)
4113 4114
		goto out;

I
Ilya Dryomov 已提交
4115 4116
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
4117 4118 4119 4120
		BUG_ON(fs_info->balance_ctl);
		spin_lock(&fs_info->balance_lock);
		fs_info->balance_ctl = bctl;
		spin_unlock(&fs_info->balance_lock);
I
Ilya Dryomov 已提交
4121 4122 4123 4124 4125 4126
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
4127

4128 4129
	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4130
	describe_balance_start_or_resume(fs_info);
4131 4132 4133 4134 4135
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
4136 4137
	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
		btrfs_info(fs_info, "balance: paused");
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	/*
	 * Balance can be canceled by:
	 *
	 * - Regular cancel request
	 *   Then ret == -ECANCELED and balance_cancel_req > 0
	 *
	 * - Fatal signal to "btrfs" process
	 *   Either the signal caught by wait_reserve_ticket() and callers
	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
	 *   got -ECANCELED.
	 *   Either way, in this case balance_cancel_req = 0, and
	 *   ret == -EINTR or ret == -ECANCELED.
	 *
	 * So here we only check the return value to catch canceled balance.
	 */
	else if (ret == -ECANCELED || ret == -EINTR)
4154 4155 4156 4157
		btrfs_info(fs_info, "balance: canceled");
	else
		btrfs_info(fs_info, "balance: ended with status: %d", ret);

4158
	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4159 4160 4161

	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
4162
		btrfs_update_ioctl_balance_args(fs_info, bargs);
4163 4164
	}

4165 4166
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
4167
		reset_balance_state(fs_info);
4168
		btrfs_exclop_finish(fs_info);
4169 4170
	}

4171
	wake_up(&fs_info->balance_wait_q);
4172 4173 4174

	return ret;
out:
I
Ilya Dryomov 已提交
4175
	if (bctl->flags & BTRFS_BALANCE_RESUME)
4176
		reset_balance_state(fs_info);
4177
	else
I
Ilya Dryomov 已提交
4178
		kfree(bctl);
4179
	btrfs_exclop_finish(fs_info);
4180

I
Ilya Dryomov 已提交
4181 4182 4183 4184 4185
	return ret;
}

static int balance_kthread(void *data)
{
4186
	struct btrfs_fs_info *fs_info = data;
4187
	int ret = 0;
I
Ilya Dryomov 已提交
4188 4189

	mutex_lock(&fs_info->balance_mutex);
4190
	if (fs_info->balance_ctl)
4191
		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
I
Ilya Dryomov 已提交
4192
	mutex_unlock(&fs_info->balance_mutex);
4193

I
Ilya Dryomov 已提交
4194 4195 4196
	return ret;
}

4197 4198 4199 4200
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

4201
	mutex_lock(&fs_info->balance_mutex);
4202
	if (!fs_info->balance_ctl) {
4203
		mutex_unlock(&fs_info->balance_mutex);
4204 4205
		return 0;
	}
4206
	mutex_unlock(&fs_info->balance_mutex);
4207

4208
	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4209
		btrfs_info(fs_info, "balance: resume skipped");
4210 4211 4212
		return 0;
	}

4213 4214 4215 4216 4217 4218 4219 4220 4221
	/*
	 * A ro->rw remount sequence should continue with the paused balance
	 * regardless of who pauses it, system or the user as of now, so set
	 * the resume flag.
	 */
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
	spin_unlock(&fs_info->balance_lock);

4222
	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4223
	return PTR_ERR_OR_ZERO(tsk);
4224 4225
}

4226
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
I
Ilya Dryomov 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
4241
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
I
Ilya Dryomov 已提交
4242 4243
	key.offset = 0;

4244
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
I
Ilya Dryomov 已提交
4245
	if (ret < 0)
4246
		goto out;
I
Ilya Dryomov 已提交
4247 4248
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
4249 4250 4251 4252 4253 4254 4255
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
I
Ilya Dryomov 已提交
4256 4257 4258 4259 4260
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

4261 4262
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
I
Ilya Dryomov 已提交
4263 4264 4265 4266 4267 4268 4269 4270

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
	/*
	 * This should never happen, as the paused balance state is recovered
	 * during mount without any chance of other exclusive ops to collide.
	 *
	 * This gives the exclusive op status to balance and keeps in paused
	 * state until user intervention (cancel or umount). If the ownership
	 * cannot be assigned, show a message but do not fail. The balance
	 * is in a paused state and must have fs_info::balance_ctl properly
	 * set up.
	 */
4281
	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4282
		btrfs_warn(fs_info,
4283
	"balance: cannot set exclusive op status, resume manually");
4284

4285
	mutex_lock(&fs_info->balance_mutex);
4286 4287 4288 4289
	BUG_ON(fs_info->balance_ctl);
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
4290
	mutex_unlock(&fs_info->balance_mutex);
I
Ilya Dryomov 已提交
4291 4292
out:
	btrfs_free_path(path);
4293 4294 4295
	return ret;
}

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4306
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4307 4308 4309 4310
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
4311
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4312 4313 4314

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
4315
		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4316 4317 4318 4319 4320 4321 4322 4323 4324
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

4325 4326 4327 4328 4329 4330 4331 4332
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	/*
	 * A paused balance with the item stored on disk can be resumed at
	 * mount time if the mount is read-write. Otherwise it's still paused
	 * and we must not allow cancelling as it deletes the item.
	 */
	if (sb_rdonly(fs_info->sb)) {
		mutex_unlock(&fs_info->balance_mutex);
		return -EROFS;
	}

4343 4344 4345 4346 4347
	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
4348
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4349 4350
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
4351
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4352 4353 4354
		mutex_lock(&fs_info->balance_mutex);
	} else {
		mutex_unlock(&fs_info->balance_mutex);
4355 4356 4357 4358
		/*
		 * Lock released to allow other waiters to continue, we'll
		 * reexamine the status again.
		 */
4359 4360
		mutex_lock(&fs_info->balance_mutex);

4361
		if (fs_info->balance_ctl) {
4362
			reset_balance_state(fs_info);
4363
			btrfs_exclop_finish(fs_info);
4364
			btrfs_info(fs_info, "balance: canceled");
4365
		}
4366 4367
	}

4368 4369
	BUG_ON(fs_info->balance_ctl ||
		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4370 4371 4372 4373 4374
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

4375
int btrfs_uuid_scan_kthread(void *data)
S
Stefan Behrens 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
4386
	struct btrfs_trans_handle *trans = NULL;
4387
	bool closing = false;
S
Stefan Behrens 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	while (1) {
4400 4401 4402 4403
		if (btrfs_fs_closing(fs_info)) {
			closing = true;
			break;
		}
4404 4405
		ret = btrfs_search_forward(root, &key, path,
				BTRFS_OLDEST_GENERATION);
S
Stefan Behrens 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
		item_size = btrfs_item_size_nr(eb, slot);
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
4429 4430 4431 4432 4433 4434 4435

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
S
Stefan Behrens 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
4445 4446 4447 4448 4449
			continue;
		} else {
			goto skip;
		}
update_tree:
4450
		btrfs_release_path(path);
4451
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4452
			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
S
Stefan Behrens 已提交
4453 4454 4455
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4456
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4457 4458 4459 4460 4461 4462
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4463
			ret = btrfs_uuid_tree_add(trans,
S
Stefan Behrens 已提交
4464 4465 4466 4467
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4468
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4469 4470 4471 4472 4473
					ret);
				break;
			}
		}

4474
skip:
4475
		btrfs_release_path(path);
S
Stefan Behrens 已提交
4476
		if (trans) {
4477
			ret = btrfs_end_transaction(trans);
4478
			trans = NULL;
S
Stefan Behrens 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
			if (ret)
				break;
		}

		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
4500
	if (trans && !IS_ERR(trans))
4501
		btrfs_end_transaction(trans);
S
Stefan Behrens 已提交
4502
	if (ret)
4503
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4504
	else if (!closing)
4505
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
S
Stefan Behrens 已提交
4506 4507 4508 4509
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

4510 4511 4512 4513 4514
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
S
Stefan Behrens 已提交
4515 4516
	struct task_struct *task;
	int ret;
4517 4518 4519 4520 4521 4522 4523 4524 4525

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

4526
	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4527
	if (IS_ERR(uuid_root)) {
4528
		ret = PTR_ERR(uuid_root);
4529
		btrfs_abort_transaction(trans, ret);
4530
		btrfs_end_transaction(trans);
4531
		return ret;
4532 4533 4534 4535
	}

	fs_info->uuid_root = uuid_root;

4536
	ret = btrfs_commit_transaction(trans);
S
Stefan Behrens 已提交
4537 4538 4539 4540 4541 4542
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4543
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4544
		btrfs_warn(fs_info, "failed to start uuid_scan task");
S
Stefan Behrens 已提交
4545 4546 4547 4548 4549
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4550
}
S
Stefan Behrens 已提交
4551

4552 4553 4554 4555 4556 4557 4558
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
4559 4560
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
4561 4562 4563 4564 4565 4566 4567
	struct btrfs_trans_handle *trans;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4568 4569
	int failed = 0;
	bool retried = false;
4570 4571
	struct extent_buffer *l;
	struct btrfs_key key;
4572
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4573
	u64 old_total = btrfs_super_total_bytes(super_copy);
4574
	u64 old_size = btrfs_device_get_total_bytes(device);
4575
	u64 diff;
4576
	u64 start;
4577 4578

	new_size = round_down(new_size, fs_info->sectorsize);
4579
	start = new_size;
4580
	diff = round_down(old_size - new_size, fs_info->sectorsize);
4581

4582
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4583 4584
		return -EINVAL;

4585 4586 4587 4588
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4589
	path->reada = READA_BACK;
4590

4591 4592 4593 4594 4595 4596
	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

4597
	mutex_lock(&fs_info->chunk_mutex);
4598

4599
	btrfs_device_set_total_bytes(device, new_size);
4600
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
4601
		device->fs_devices->total_rw_bytes -= diff;
4602
		atomic64_sub(diff, &fs_info->free_chunk_space);
4603
	}
4604 4605 4606 4607 4608 4609

	/*
	 * Once the device's size has been set to the new size, ensure all
	 * in-memory chunks are synced to disk so that the loop below sees them
	 * and relocates them accordingly.
	 */
4610
	if (contains_pending_extent(device, &start, diff)) {
4611 4612 4613 4614 4615 4616 4617 4618
		mutex_unlock(&fs_info->chunk_mutex);
		ret = btrfs_commit_transaction(trans);
		if (ret)
			goto done;
	} else {
		mutex_unlock(&fs_info->chunk_mutex);
		btrfs_end_transaction(trans);
	}
4619

4620
again:
4621 4622 4623 4624
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4625
	do {
4626
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4627
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4628
		if (ret < 0) {
4629
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4630
			goto done;
4631
		}
4632 4633

		ret = btrfs_previous_item(root, path, 0, key.type);
4634
		if (ret)
4635
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4636 4637 4638 4639
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
4640
			btrfs_release_path(path);
4641
			break;
4642 4643 4644 4645 4646 4647
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4648
		if (key.objectid != device->devid) {
4649
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4650
			btrfs_release_path(path);
4651
			break;
4652
		}
4653 4654 4655 4656

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4657
		if (key.offset + length <= new_size) {
4658
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4659
			btrfs_release_path(path);
4660
			break;
4661
		}
4662 4663

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4664
		btrfs_release_path(path);
4665

4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
		/*
		 * We may be relocating the only data chunk we have,
		 * which could potentially end up with losing data's
		 * raid profile, so lets allocate an empty one in
		 * advance.
		 */
		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
			goto done;
		}

4678 4679
		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4680
		if (ret == -ENOSPC) {
4681
			failed++;
4682 4683 4684 4685 4686 4687 4688 4689
		} else if (ret) {
			if (ret == -ETXTBSY) {
				btrfs_warn(fs_info,
		   "could not shrink block group %llu due to active swapfile",
					   chunk_offset);
			}
			goto done;
		}
4690
	} while (key.offset-- > 0);
4691 4692 4693 4694 4695 4696 4697 4698

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4699 4700
	}

4701
	/* Shrinking succeeded, else we would be at "done". */
4702
	trans = btrfs_start_transaction(root, 0);
4703 4704 4705 4706 4707
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4708
	mutex_lock(&fs_info->chunk_mutex);
4709 4710 4711 4712
	/* Clear all state bits beyond the shrunk device size */
	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
			  CHUNK_STATE_MASK);

4713
	btrfs_device_set_disk_total_bytes(device, new_size);
4714 4715 4716
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
4717 4718

	WARN_ON(diff > old_total);
4719 4720
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total - diff, fs_info->sectorsize));
4721
	mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
4722 4723 4724

	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4725 4726 4727 4728 4729 4730
	if (ret < 0) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	} else {
		ret = btrfs_commit_transaction(trans);
	}
4731 4732
done:
	btrfs_free_path(path);
4733
	if (ret) {
4734
		mutex_lock(&fs_info->chunk_mutex);
4735
		btrfs_device_set_total_bytes(device, old_size);
4736
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4737
			device->fs_devices->total_rw_bytes += diff;
4738
		atomic64_add(diff, &fs_info->free_chunk_space);
4739
		mutex_unlock(&fs_info->chunk_mutex);
4740
	}
4741 4742 4743
	return ret;
}

4744
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4745 4746 4747
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4748
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4749 4750 4751 4752
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4753
	mutex_lock(&fs_info->chunk_mutex);
4754
	array_size = btrfs_super_sys_array_size(super_copy);
4755
	if (array_size + item_size + sizeof(disk_key)
4756
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4757
		mutex_unlock(&fs_info->chunk_mutex);
4758
		return -EFBIG;
4759
	}
4760 4761 4762 4763 4764 4765 4766 4767

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4768
	mutex_unlock(&fs_info->chunk_mutex);
4769

4770 4771 4772
	return 0;
}

4773 4774 4775 4776
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
4777
{
4778 4779
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
4780

4781
	if (di_a->max_avail > di_b->max_avail)
4782
		return -1;
4783
	if (di_a->max_avail < di_b->max_avail)
4784
		return 1;
4785 4786 4787 4788 4789
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
4790
}
4791

D
David Woodhouse 已提交
4792 4793
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
4794
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
D
David Woodhouse 已提交
4795 4796
		return;

4797
	btrfs_set_fs_incompat(info, RAID56);
D
David Woodhouse 已提交
4798 4799
}

4800 4801 4802 4803 4804 4805 4806 4807
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
		return;

	btrfs_set_fs_incompat(info, RAID1C34);
}

N
Naohiro Aota 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
/*
 * Structure used internally for __btrfs_alloc_chunk() function.
 * Wraps needed parameters.
 */
struct alloc_chunk_ctl {
	u64 start;
	u64 type;
	/* Total number of stripes to allocate */
	int num_stripes;
	/* sub_stripes info for map */
	int sub_stripes;
	/* Stripes per device */
	int dev_stripes;
	/* Maximum number of devices to use */
	int devs_max;
	/* Minimum number of devices to use */
	int devs_min;
	/* ndevs has to be a multiple of this */
	int devs_increment;
	/* Number of copies */
	int ncopies;
	/* Number of stripes worth of bytes to store parity information */
	int nparity;
	u64 max_stripe_size;
	u64 max_chunk_size;
4833
	u64 dev_extent_min;
N
Naohiro Aota 已提交
4834 4835 4836 4837 4838
	u64 stripe_size;
	u64 chunk_size;
	int ndevs;
};

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
static void init_alloc_chunk_ctl_policy_regular(
				struct btrfs_fs_devices *fs_devices,
				struct alloc_chunk_ctl *ctl)
{
	u64 type = ctl->type;

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		ctl->max_stripe_size = SZ_1G;
		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		/* For larger filesystems, use larger metadata chunks */
		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
			ctl->max_stripe_size = SZ_1G;
		else
			ctl->max_stripe_size = SZ_256M;
		ctl->max_chunk_size = ctl->max_stripe_size;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ctl->max_stripe_size = SZ_32M;
		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
		ctl->devs_max = min_t(int, ctl->devs_max,
				      BTRFS_MAX_DEVS_SYS_CHUNK);
	} else {
		BUG();
	}

	/* We don't want a chunk larger than 10% of writable space */
	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
				  ctl->max_chunk_size);
4867
	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
}

static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
				 struct alloc_chunk_ctl *ctl)
{
	int index = btrfs_bg_flags_to_raid_index(ctl->type);

	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
	ctl->devs_max = btrfs_raid_array[index].devs_max;
	if (!ctl->devs_max)
		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
	ctl->devs_min = btrfs_raid_array[index].devs_min;
	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
	ctl->ncopies = btrfs_raid_array[index].ncopies;
	ctl->nparity = btrfs_raid_array[index].nparity;
	ctl->ndevs = 0;

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
		break;
	default:
		BUG();
	}
}

4895 4896 4897
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
4898
{
4899
	struct btrfs_fs_info *info = fs_devices->fs_info;
4900
	struct btrfs_device *device;
4901
	u64 total_avail;
4902
	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4903
	int ret;
4904 4905 4906
	int ndevs = 0;
	u64 max_avail;
	u64 dev_offset;
4907

4908
	/*
4909 4910
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
4911
	 */
4912
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4913
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
J
Julia Lawall 已提交
4914
			WARN(1, KERN_ERR
4915
			       "BTRFS: read-only device in alloc_list\n");
4916 4917
			continue;
		}
4918

4919 4920
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
					&device->dev_state) ||
4921
		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4922
			continue;
4923

4924 4925 4926 4927
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
4928 4929

		/* If there is no space on this device, skip it. */
4930
		if (total_avail < ctl->dev_extent_min)
4931
			continue;
4932

4933 4934
		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
					   &max_avail);
4935
		if (ret && ret != -ENOSPC)
4936
			return ret;
4937

4938
		if (ret == 0)
4939
			max_avail = dev_extent_want;
4940

4941
		if (max_avail < ctl->dev_extent_min) {
4942 4943
			if (btrfs_test_opt(info, ENOSPC_DEBUG))
				btrfs_debug(info,
4944
			"%s: devid %llu has no free space, have=%llu want=%llu",
4945
					    __func__, device->devid, max_avail,
4946
					    ctl->dev_extent_min);
4947
			continue;
4948
		}
4949

4950 4951 4952 4953 4954
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
4955 4956 4957 4958 4959 4960
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
4961
	ctl->ndevs = ndevs;
4962

4963 4964 4965
	/*
	 * now sort the devices by hole size / available space
	 */
4966
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4967
	     btrfs_cmp_device_info, NULL);
4968

4969 4970 4971
	return 0;
}

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
				      struct btrfs_device_info *devices_info)
{
	/* Number of stripes that count for block group size */
	int data_stripes;

	/*
	 * The primary goal is to maximize the number of stripes, so use as
	 * many devices as possible, even if the stripes are not maximum sized.
	 *
	 * The DUP profile stores more than one stripe per device, the
	 * max_avail is the total size so we have to adjust.
	 */
	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
				   ctl->dev_stripes);
	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;

	/* This will have to be fixed for RAID1 and RAID10 over more drives */
	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;

	/*
	 * Use the number of data stripes to figure out how big this chunk is
	 * really going to be in terms of logical address space, and compare
	 * that answer with the max chunk size. If it's higher, we try to
	 * reduce stripe_size.
	 */
	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
		/*
		 * Reduce stripe_size, round it up to a 16MB boundary again and
		 * then use it, unless it ends up being even bigger than the
		 * previous value we had already.
		 */
		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
							data_stripes), SZ_16M),
				       ctl->stripe_size);
	}

	/* Align to BTRFS_STRIPE_LEN */
	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
	ctl->chunk_size = ctl->stripe_size * data_stripes;

	return 0;
}

static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
{
	struct btrfs_fs_info *info = fs_devices->fs_info;

	/*
	 * Round down to number of usable stripes, devs_increment can be any
	 * number so we can't use round_down() that requires power of 2, while
	 * rounddown is safe.
	 */
	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);

	if (ctl->ndevs < ctl->devs_min) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
			btrfs_debug(info,
	"%s: not enough devices with free space: have=%d minimum required=%d",
				    __func__, ctl->ndevs, ctl->devs_min);
		}
		return -ENOSPC;
	}

	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		return decide_stripe_size_regular(ctl, devices_info);
	default:
		BUG();
	}
}

N
Naohiro Aota 已提交
5048 5049 5050
static int create_chunk(struct btrfs_trans_handle *trans,
			struct alloc_chunk_ctl *ctl,
			struct btrfs_device_info *devices_info)
5051 5052 5053 5054 5055
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
N
Naohiro Aota 已提交
5056 5057
	u64 start = ctl->start;
	u64 type = ctl->type;
5058 5059 5060 5061
	int ret;
	int i;
	int j;

N
Naohiro Aota 已提交
5062 5063
	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
	if (!map)
5064
		return -ENOMEM;
N
Naohiro Aota 已提交
5065
	map->num_stripes = ctl->num_stripes;
5066

N
Naohiro Aota 已提交
5067 5068 5069
	for (i = 0; i < ctl->ndevs; ++i) {
		for (j = 0; j < ctl->dev_stripes; ++j) {
			int s = i * ctl->dev_stripes + j;
5070 5071
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
N
Naohiro Aota 已提交
5072
						   j * ctl->stripe_size;
5073 5074
		}
	}
5075 5076 5077
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
5078
	map->type = type;
N
Naohiro Aota 已提交
5079
	map->sub_stripes = ctl->sub_stripes;
5080

N
Naohiro Aota 已提交
5081
	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5082

5083
	em = alloc_extent_map();
Y
Yan Zheng 已提交
5084
	if (!em) {
5085
		kfree(map);
N
Naohiro Aota 已提交
5086
		return -ENOMEM;
5087
	}
5088
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5089
	em->map_lookup = map;
Y
Yan Zheng 已提交
5090
	em->start = start;
N
Naohiro Aota 已提交
5091
	em->len = ctl->chunk_size;
Y
Yan Zheng 已提交
5092 5093
	em->block_start = 0;
	em->block_len = em->len;
N
Naohiro Aota 已提交
5094
	em->orig_block_len = ctl->stripe_size;
5095

5096
	em_tree = &info->mapping_tree;
5097
	write_lock(&em_tree->lock);
J
Josef Bacik 已提交
5098
	ret = add_extent_mapping(em_tree, em, 0);
5099
	if (ret) {
5100
		write_unlock(&em_tree->lock);
5101
		free_extent_map(em);
N
Naohiro Aota 已提交
5102
		return ret;
5103
	}
5104 5105
	write_unlock(&em_tree->lock);

N
Naohiro Aota 已提交
5106
	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5107 5108
	if (ret)
		goto error_del_extent;
Y
Yan Zheng 已提交
5109

5110 5111 5112
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *dev = map->stripes[i].dev;

N
Naohiro Aota 已提交
5113
		btrfs_device_set_bytes_used(dev,
N
Naohiro Aota 已提交
5114
					    dev->bytes_used + ctl->stripe_size);
5115 5116 5117 5118
		if (list_empty(&dev->post_commit_list))
			list_add_tail(&dev->post_commit_list,
				      &trans->transaction->dev_update_list);
	}
5119

N
Naohiro Aota 已提交
5120
	atomic64_sub(ctl->stripe_size * map->num_stripes,
N
Naohiro Aota 已提交
5121
		     &info->free_chunk_space);
5122

5123
	free_extent_map(em);
5124
	check_raid56_incompat_flag(info, type);
5125
	check_raid1c34_incompat_flag(info, type);
D
David Woodhouse 已提交
5126

Y
Yan Zheng 已提交
5127
	return 0;
5128

5129
error_del_extent:
5130 5131 5132 5133 5134 5135 5136 5137
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
N
Naohiro Aota 已提交
5138 5139 5140 5141

	return ret;
}

5142
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
N
Naohiro Aota 已提交
5143 5144 5145 5146 5147 5148 5149
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct btrfs_device_info *devices_info = NULL;
	struct alloc_chunk_ctl ctl;
	int ret;

5150 5151
	lockdep_assert_held(&info->chunk_mutex);

N
Naohiro Aota 已提交
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	if (!alloc_profile_is_valid(type, 0)) {
		ASSERT(0);
		return -EINVAL;
	}

	if (list_empty(&fs_devices->alloc_list)) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG))
			btrfs_debug(info, "%s: no writable device", __func__);
		return -ENOSPC;
	}

	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
		ASSERT(0);
		return -EINVAL;
	}

5169
	ctl.start = find_next_chunk(info);
N
Naohiro Aota 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	ctl.type = type;
	init_alloc_chunk_ctl(fs_devices, &ctl);

	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;

	ret = gather_device_info(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = create_chunk(trans, &ctl, devices_info);

out:
5189 5190
	kfree(devices_info);
	return ret;
Y
Yan Zheng 已提交
5191 5192
}

5193 5194 5195 5196 5197 5198 5199
/*
 * Chunk allocation falls into two parts. The first part does work
 * that makes the new allocated chunk usable, but does not do any operation
 * that modifies the chunk tree. The second part does the work that
 * requires modifying the chunk tree. This division is important for the
 * bootstrap process of adding storage to a seed btrfs.
 */
5200
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5201
			     u64 chunk_offset, u64 chunk_size)
Y
Yan Zheng 已提交
5202
{
5203
	struct btrfs_fs_info *fs_info = trans->fs_info;
5204 5205
	struct btrfs_root *extent_root = fs_info->extent_root;
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
5206 5207 5208 5209
	struct btrfs_key key;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
5210 5211 5212 5213 5214 5215
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	u64 dev_offset;
	u64 stripe_size;
	int i = 0;
5216
	int ret = 0;
Y
Yan Zheng 已提交
5217

5218
	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5219 5220
	if (IS_ERR(em))
		return PTR_ERR(em);
5221

5222
	map = em->map_lookup;
5223 5224 5225
	item_size = btrfs_chunk_item_size(map->num_stripes);
	stripe_size = em->orig_block_len;

Y
Yan Zheng 已提交
5226
	chunk = kzalloc(item_size, GFP_NOFS);
5227 5228 5229 5230 5231
	if (!chunk) {
		ret = -ENOMEM;
		goto out;
	}

5232 5233 5234 5235 5236 5237 5238
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with the map's stripes, because the device object's id can change
	 * at any time during that final phase of the device replace operation
	 * (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
5239
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5240 5241 5242
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
Y
Yan Zheng 已提交
5243

5244
		ret = btrfs_update_device(trans, device);
5245
		if (ret)
5246
			break;
5247 5248
		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
					     dev_offset, stripe_size);
5249
		if (ret)
5250 5251 5252
			break;
	}
	if (ret) {
5253
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5254
		goto out;
Y
Yan Zheng 已提交
5255 5256 5257
	}

	stripe = &chunk->stripe;
5258 5259 5260
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
5261

5262 5263 5264
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
5265
		stripe++;
5266
	}
5267
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5268

Y
Yan Zheng 已提交
5269
	btrfs_set_stack_chunk_length(chunk, chunk_size);
5270
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Y
Yan Zheng 已提交
5271 5272 5273 5274 5275
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5276
	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
Y
Yan Zheng 已提交
5277
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5278

Y
Yan Zheng 已提交
5279 5280 5281
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
5282

Y
Yan Zheng 已提交
5283
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5284 5285 5286 5287 5288
	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		/*
		 * TODO: Cleanup of inserted chunk root in case of
		 * failure.
		 */
5289
		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5290
	}
5291

5292
out:
5293
	kfree(chunk);
5294
	free_extent_map(em);
5295
	return ret;
Y
Yan Zheng 已提交
5296
}
5297

5298
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
5299
{
5300
	struct btrfs_fs_info *fs_info = trans->fs_info;
Y
Yan Zheng 已提交
5301 5302 5303
	u64 alloc_profile;
	int ret;

5304
	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5305
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5306 5307
	if (ret)
		return ret;
Y
Yan Zheng 已提交
5308

5309
	alloc_profile = btrfs_system_alloc_profile(fs_info);
5310
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5311
	return ret;
Y
Yan Zheng 已提交
5312 5313
}

5314 5315
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
5316
	const int index = btrfs_bg_flags_to_raid_index(map->type);
Y
Yan Zheng 已提交
5317

5318
	return btrfs_raid_array[index].tolerated_failures;
Y
Yan Zheng 已提交
5319 5320
}

5321
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
Y
Yan Zheng 已提交
5322 5323 5324 5325
{
	struct extent_map *em;
	struct map_lookup *map;
	int readonly = 0;
5326
	int miss_ndevs = 0;
Y
Yan Zheng 已提交
5327 5328
	int i;

5329
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5330
	if (IS_ERR(em))
Y
Yan Zheng 已提交
5331 5332
		return 1;

5333
	map = em->map_lookup;
Y
Yan Zheng 已提交
5334
	for (i = 0; i < map->num_stripes; i++) {
5335 5336
		if (test_bit(BTRFS_DEV_STATE_MISSING,
					&map->stripes[i].dev->dev_state)) {
5337 5338 5339
			miss_ndevs++;
			continue;
		}
5340 5341
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
					&map->stripes[i].dev->dev_state)) {
Y
Yan Zheng 已提交
5342
			readonly = 1;
5343
			goto end;
Y
Yan Zheng 已提交
5344 5345
		}
	}
5346 5347 5348 5349 5350 5351 5352 5353 5354

	/*
	 * If the number of missing devices is larger than max errors,
	 * we can not write the data into that chunk successfully, so
	 * set it readonly.
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
		readonly = 1;
end:
5355
	free_extent_map(em);
Y
Yan Zheng 已提交
5356
	return readonly;
5357 5358
}

5359
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5360 5361 5362
{
	struct extent_map *em;

C
Chris Mason 已提交
5363
	while (1) {
5364 5365
		write_lock(&tree->lock);
		em = lookup_extent_mapping(tree, 0, (u64)-1);
5366
		if (em)
5367 5368
			remove_extent_mapping(tree, em);
		write_unlock(&tree->lock);
5369 5370 5371 5372 5373 5374 5375 5376 5377
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

5378
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5379 5380 5381 5382 5383
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret;

5384
	em = btrfs_get_chunk_map(fs_info, logical, len);
5385 5386 5387 5388 5389 5390 5391
	if (IS_ERR(em))
		/*
		 * We could return errors for these cases, but that could get
		 * ugly and we'd probably do the same thing which is just not do
		 * anything else and exit, so return 1 so the callers don't try
		 * to use other copies.
		 */
5392 5393
		return 1;

5394
	map = em->map_lookup;
5395
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5396
		ret = map->num_stripes;
C
Chris Mason 已提交
5397 5398
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
D
David Woodhouse 已提交
5399 5400 5401
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
L
Liu Bo 已提交
5402 5403 5404
		/*
		 * There could be two corrupted data stripes, we need
		 * to loop retry in order to rebuild the correct data.
5405
		 *
L
Liu Bo 已提交
5406 5407 5408 5409
		 * Fail a stripe at a time on every retry except the
		 * stripe under reconstruction.
		 */
		ret = map->num_stripes;
5410 5411 5412
	else
		ret = 1;
	free_extent_map(em);
5413

5414
	down_read(&fs_info->dev_replace.rwsem);
5415 5416
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
	    fs_info->dev_replace.tgtdev)
5417
		ret++;
5418
	up_read(&fs_info->dev_replace.rwsem);
5419

5420 5421 5422
	return ret;
}

5423
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
D
David Woodhouse 已提交
5424 5425 5426 5427
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
5428
	unsigned long len = fs_info->sectorsize;
D
David Woodhouse 已提交
5429

5430
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5431

5432 5433 5434 5435 5436 5437
	if (!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			len = map->stripe_len * nr_data_stripes(map);
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5438 5439 5440
	return len;
}

5441
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
D
David Woodhouse 已提交
5442 5443 5444 5445 5446
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret = 0;

5447
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5448

5449 5450 5451 5452 5453 5454
	if(!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			ret = 1;
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5455 5456 5457
	return ret;
}

5458
static int find_live_mirror(struct btrfs_fs_info *fs_info,
5459
			    struct map_lookup *map, int first,
5460
			    int dev_replace_is_ongoing)
5461 5462
{
	int i;
5463
	int num_stripes;
5464
	int preferred_mirror;
5465 5466 5467
	int tolerance;
	struct btrfs_device *srcdev;

5468
	ASSERT((map->type &
5469
		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5470 5471 5472 5473 5474 5475

	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		num_stripes = map->sub_stripes;
	else
		num_stripes = map->num_stripes;

5476 5477
	preferred_mirror = first + current->pid % num_stripes;

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
5491 5492 5493
		if (map->stripes[preferred_mirror].dev->bdev &&
		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
			return preferred_mirror;
5494
		for (i = first; i < first + num_stripes; i++) {
5495 5496 5497 5498
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5499
	}
5500

5501 5502 5503
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
5504
	return preferred_mirror;
5505 5506
}

D
David Woodhouse 已提交
5507
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5508
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
D
David Woodhouse 已提交
5509 5510 5511 5512 5513 5514
{
	int i;
	int again = 1;

	while (again) {
		again = 0;
5515
		for (i = 0; i < num_stripes - 1; i++) {
5516 5517 5518 5519
			/* Swap if parity is on a smaller index */
			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
				swap(bbio->stripes[i], bbio->stripes[i + 1]);
				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
D
David Woodhouse 已提交
5520 5521 5522 5523 5524 5525
				again = 1;
			}
		}
	}
}

5526 5527 5528
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
{
	struct btrfs_bio *bbio = kzalloc(
5529
		 /* the size of the btrfs_bio */
5530
		sizeof(struct btrfs_bio) +
5531
		/* plus the variable array for the stripes */
5532
		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5533
		/* plus the variable array for the tgt dev */
5534
		sizeof(int) * (real_stripes) +
5535 5536 5537 5538 5539
		/*
		 * plus the raid_map, which includes both the tgt dev
		 * and the stripes
		 */
		sizeof(u64) * (total_stripes),
5540
		GFP_NOFS|__GFP_NOFAIL);
5541 5542

	atomic_set(&bbio->error, 0);
5543
	refcount_set(&bbio->refs, 1);
5544

5545 5546 5547
	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);

5548 5549 5550 5551 5552
	return bbio;
}

void btrfs_get_bbio(struct btrfs_bio *bbio)
{
5553 5554
	WARN_ON(!refcount_read(&bbio->refs));
	refcount_inc(&bbio->refs);
5555 5556 5557 5558 5559 5560
}

void btrfs_put_bbio(struct btrfs_bio *bbio)
{
	if (!bbio)
		return;
5561
	if (refcount_dec_and_test(&bbio->refs))
5562 5563 5564
		kfree(bbio);
}

5565 5566 5567 5568 5569 5570
/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
/*
 * Please note that, discard won't be sent to target device of device
 * replace.
 */
static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5571
					 u64 logical, u64 *length_ret,
5572 5573 5574 5575 5576
					 struct btrfs_bio **bbio_ret)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_bio *bbio;
5577
	u64 length = *length_ret;
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
	u64 offset;
	u64 stripe_nr;
	u64 stripe_nr_end;
	u64 stripe_end_offset;
	u64 stripe_cnt;
	u64 stripe_len;
	u64 stripe_offset;
	u64 num_stripes;
	u32 stripe_index;
	u32 factor = 0;
	u32 sub_stripes = 0;
	u64 stripes_per_dev = 0;
	u32 remaining_stripes = 0;
	u32 last_stripe = 0;
	int ret = 0;
	int i;

	/* discard always return a bbio */
	ASSERT(bbio_ret);

5598
	em = btrfs_get_chunk_map(fs_info, logical, length);
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* we don't discard raid56 yet */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	offset = logical - em->start;
5610
	length = min_t(u64, em->start + em->len - logical, length);
5611
	*length_ret = length;
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

	stripe_len = map->stripe_len;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = div64_u64(offset, stripe_len);

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_nr * stripe_len;

	stripe_nr_end = round_up(offset + length, map->stripe_len);
5624
	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
	stripe_cnt = stripe_nr_end - stripe_nr;
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + length);
	/*
	 * after this, stripe_nr is the number of stripes on this
	 * device we have to walk to find the data, and stripe_index is
	 * the number of our device in the stripe array
	 */
	num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			 BTRFS_BLOCK_GROUP_RAID10)) {
		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
			sub_stripes = 1;
		else
			sub_stripes = map->sub_stripes;

		factor = map->num_stripes / sub_stripes;
		num_stripes = min_t(u64, map->num_stripes,
				    sub_stripes * stripe_cnt);
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
		stripe_index *= sub_stripes;
		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
					      &remaining_stripes);
		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
		last_stripe *= sub_stripes;
5651
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
				BTRFS_BLOCK_GROUP_DUP)) {
		num_stripes = map->num_stripes;
	} else {
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
					&stripe_index);
	}

	bbio = alloc_btrfs_bio(num_stripes, 0);
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical =
			map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;

		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID10)) {
			bbio->stripes[i].length = stripes_per_dev *
				map->stripe_len;

			if (i / sub_stripes < remaining_stripes)
				bbio->stripes[i].length +=
					map->stripe_len;

			/*
			 * Special for the first stripe and
			 * the last stripe:
			 *
			 * |-------|...|-------|
			 *     |----------|
			 *    off     end_off
			 */
			if (i < sub_stripes)
				bbio->stripes[i].length -=
					stripe_offset;

			if (stripe_index >= last_stripe &&
			    stripe_index <= (last_stripe +
					     sub_stripes - 1))
				bbio->stripes[i].length -=
					stripe_end_offset;

			if (i == sub_stripes - 1)
				stripe_offset = 0;
		} else {
			bbio->stripes[i].length = length;
		}

		stripe_index++;
		if (stripe_index == map->num_stripes) {
			stripe_index = 0;
			stripe_nr++;
		}
	}

	*bbio_ret = bbio;
	bbio->map_type = map->type;
	bbio->num_stripes = num_stripes;
out:
	free_extent_map(em);
	return ret;
}

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
/*
 * In dev-replace case, for repair case (that's the only case where the mirror
 * is selected explicitly when calling btrfs_map_block), blocks left of the
 * left cursor can also be read from the target drive.
 *
 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 * array of stripes.
 * For READ, it also needs to be supported using the same mirror number.
 *
 * If the requested block is not left of the left cursor, EIO is returned. This
 * can happen because btrfs_num_copies() returns one more in the dev-replace
 * case.
 */
static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 u64 srcdev_devid, int *mirror_num,
					 u64 *physical)
{
	struct btrfs_bio *bbio = NULL;
	int num_stripes;
	int index_srcdev = 0;
	int found = 0;
	u64 physical_of_found = 0;
	int i;
	int ret = 0;

	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				logical, &length, &bbio, 0, 0);
	if (ret) {
		ASSERT(bbio == NULL);
		return ret;
	}

	num_stripes = bbio->num_stripes;
	if (*mirror_num > num_stripes) {
		/*
		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
		 * that means that the requested area is not left of the left
		 * cursor
		 */
		btrfs_put_bbio(bbio);
		return -EIO;
	}

	/*
	 * process the rest of the function using the mirror_num of the source
	 * drive. Therefore look it up first.  At the end, patch the device
	 * pointer to the one of the target drive.
	 */
	for (i = 0; i < num_stripes; i++) {
		if (bbio->stripes[i].dev->devid != srcdev_devid)
			continue;

		/*
		 * In case of DUP, in order to keep it simple, only add the
		 * mirror with the lowest physical address
		 */
		if (found &&
		    physical_of_found <= bbio->stripes[i].physical)
			continue;

		index_srcdev = i;
		found = 1;
		physical_of_found = bbio->stripes[i].physical;
	}

	btrfs_put_bbio(bbio);

	ASSERT(found);
	if (!found)
		return -EIO;

	*mirror_num = index_srcdev + 1;
	*physical = physical_of_found;
	return ret;
}

5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
				      struct btrfs_bio **bbio_ret,
				      struct btrfs_dev_replace *dev_replace,
				      int *num_stripes_ret, int *max_errors_ret)
{
	struct btrfs_bio *bbio = *bbio_ret;
	u64 srcdev_devid = dev_replace->srcdev->devid;
	int tgtdev_indexes = 0;
	int num_stripes = *num_stripes_ret;
	int max_errors = *max_errors_ret;
	int i;

	if (op == BTRFS_MAP_WRITE) {
		int index_where_to_add;

		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk to
		 * the new disk takes place at run time while the filesystem is
		 * mounted writable, the regular write operations to the old
		 * disk have to be duplicated to go to the new disk as well.
		 *
		 * Note that device->missing is handled by the caller, and that
		 * the write to the old disk is already set up in the stripes
		 * array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/* write to new disk, too */
				struct btrfs_bio_stripe *new =
					bbio->stripes + index_where_to_add;
				struct btrfs_bio_stripe *old =
					bbio->stripes + i;

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
				bbio->tgtdev_map[i] = index_where_to_add;
				index_where_to_add++;
				max_errors++;
				tgtdev_indexes++;
			}
		}
		num_stripes = index_where_to_add;
	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can also
		 * be used to read data in case it is needed to repair a corrupt
		 * block elsewhere. This is possible if the requested area is
		 * left of the left cursor. In this area, the target drive is a
		 * full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it simple,
				 * only add the mirror with the lowest physical
				 * address
				 */
				if (found &&
				    physical_of_found <=
				     bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found = bbio->stripes[i].physical;
			}
		}
		if (found) {
			struct btrfs_bio_stripe *tgtdev_stripe =
				bbio->stripes + num_stripes;

			tgtdev_stripe->physical = physical_of_found;
			tgtdev_stripe->length =
				bbio->stripes[index_srcdev].length;
			tgtdev_stripe->dev = dev_replace->tgtdev;
			bbio->tgtdev_map[index_srcdev] = num_stripes;

			tgtdev_indexes++;
			num_stripes++;
		}
	}

	*num_stripes_ret = num_stripes;
	*max_errors_ret = max_errors;
	bbio->num_tgtdevs = tgtdev_indexes;
	*bbio_ret = bbio;
}

5890 5891 5892 5893 5894
static bool need_full_stripe(enum btrfs_map_op op)
{
	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
}

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
/*
 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
 *		       tuple. This information is used to calculate how big a
 *		       particular bio can get before it straddles a stripe.
 *
 * @fs_info - the filesystem
 * @logical - address that we want to figure out the geometry of
 * @len	    - the length of IO we are going to perform, starting at @logical
 * @op      - type of operation - write or read
 * @io_geom - pointer used to return values
 *
 * Returns < 0 in case a chunk for the given logical address cannot be found,
 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 */
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5910
			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5911 5912 5913 5914 5915 5916 5917 5918 5919
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 offset;
	u64 stripe_offset;
	u64 stripe_nr;
	u64 stripe_len;
	u64 raid56_full_stripe_start = (u64)-1;
	int data_stripes;
5920
	int ret = 0;
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940

	ASSERT(op != BTRFS_MAP_DISCARD);

	em = btrfs_get_chunk_map(fs_info, logical, len);
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* Offset of this logical address in the chunk */
	offset = logical - em->start;
	/* Len of a stripe in a chunk */
	stripe_len = map->stripe_len;
	/* Stripe wher this block falls in */
	stripe_nr = div64_u64(offset, stripe_len);
	/* Offset of stripe in the chunk */
	stripe_offset = stripe_nr * stripe_len;
	if (offset < stripe_offset) {
		btrfs_crit(fs_info,
"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
			stripe_offset, offset, em->start, logical, stripe_len);
5941 5942
		ret = -EINVAL;
		goto out;
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
	}

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_offset;
	data_stripes = nr_data_stripes(map);

	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
		u64 max_len = stripe_len - stripe_offset;

		/*
		 * In case of raid56, we need to know the stripe aligned start
		 */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			unsigned long full_stripe_len = stripe_len * data_stripes;
			raid56_full_stripe_start = offset;

			/*
			 * Allow a write of a full stripe, but make sure we
			 * don't allow straddling of stripes
			 */
			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
					full_stripe_len);
			raid56_full_stripe_start *= full_stripe_len;

			/*
			 * For writes to RAID[56], allow a full stripeset across
			 * all disks. For other RAID types and for RAID[56]
			 * reads, just allow a single stripe (on a single disk).
			 */
			if (op == BTRFS_MAP_WRITE) {
				max_len = stripe_len * data_stripes -
					  (offset - raid56_full_stripe_start);
			}
		}
		len = min_t(u64, em->len - offset, max_len);
	} else {
		len = em->len - offset;
	}

	io_geom->len = len;
	io_geom->offset = offset;
	io_geom->stripe_len = stripe_len;
	io_geom->stripe_nr = stripe_nr;
	io_geom->stripe_offset = stripe_offset;
	io_geom->raid56_stripe_offset = raid56_full_stripe_start;

5989 5990 5991 5992
out:
	/* once for us */
	free_extent_map(em);
	return ret;
5993 5994
}

5995 5996
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
5997
			     u64 logical, u64 *length,
5998
			     struct btrfs_bio **bbio_ret,
5999
			     int mirror_num, int need_raid_map)
6000 6001 6002
{
	struct extent_map *em;
	struct map_lookup *map;
6003 6004
	u64 stripe_offset;
	u64 stripe_nr;
D
David Woodhouse 已提交
6005
	u64 stripe_len;
6006
	u32 stripe_index;
6007
	int data_stripes;
6008
	int i;
L
Li Zefan 已提交
6009
	int ret = 0;
6010
	int num_stripes;
6011
	int max_errors = 0;
6012
	int tgtdev_indexes = 0;
6013
	struct btrfs_bio *bbio = NULL;
6014 6015 6016
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
6017 6018
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
D
David Woodhouse 已提交
6019
	u64 raid56_full_stripe_start = (u64)-1;
6020 6021 6022
	struct btrfs_io_geometry geom;

	ASSERT(bbio_ret);
6023
	ASSERT(op != BTRFS_MAP_DISCARD);
6024

6025 6026 6027
	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
	if (ret < 0)
		return ret;
6028

6029
	em = btrfs_get_chunk_map(fs_info, logical, *length);
6030
	ASSERT(!IS_ERR(em));
6031
	map = em->map_lookup;
6032

6033 6034 6035 6036 6037
	*length = geom.len;
	stripe_len = geom.stripe_len;
	stripe_nr = geom.stripe_nr;
	stripe_offset = geom.stripe_offset;
	raid56_full_stripe_start = geom.raid56_stripe_offset;
6038
	data_stripes = nr_data_stripes(map);
6039

6040
	down_read(&dev_replace->rwsem);
6041
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6042 6043 6044 6045
	/*
	 * Hold the semaphore for read during the whole operation, write is
	 * requested at commit time but must wait.
	 */
6046
	if (!dev_replace_is_ongoing)
6047
		up_read(&dev_replace->rwsem);
6048

6049
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6050
	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6051 6052 6053 6054 6055
		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
						    dev_replace->srcdev->devid,
						    &mirror_num,
					    &physical_to_patch_in_first_stripe);
		if (ret)
6056
			goto out;
6057 6058
		else
			patch_the_first_stripe_for_dev_replace = 1;
6059 6060 6061 6062
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

6063
	num_stripes = 1;
6064
	stripe_index = 0;
6065
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6066 6067
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6068
		if (!need_full_stripe(op))
6069
			mirror_num = 1;
6070
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6071
		if (need_full_stripe(op))
6072
			num_stripes = map->num_stripes;
6073
		else if (mirror_num)
6074
			stripe_index = mirror_num - 1;
6075
		else {
6076 6077
			stripe_index = find_live_mirror(fs_info, map, 0,
					    dev_replace_is_ongoing);
6078
			mirror_num = stripe_index + 1;
6079
		}
6080

6081
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6082
		if (need_full_stripe(op)) {
6083
			num_stripes = map->num_stripes;
6084
		} else if (mirror_num) {
6085
			stripe_index = mirror_num - 1;
6086 6087 6088
		} else {
			mirror_num = 1;
		}
6089

C
Chris Mason 已提交
6090
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6091
		u32 factor = map->num_stripes / map->sub_stripes;
C
Chris Mason 已提交
6092

6093
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
C
Chris Mason 已提交
6094 6095
		stripe_index *= map->sub_stripes;

6096
		if (need_full_stripe(op))
6097
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
6098 6099
		else if (mirror_num)
			stripe_index += mirror_num - 1;
6100
		else {
J
Jan Schmidt 已提交
6101
			int old_stripe_index = stripe_index;
6102 6103 6104
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
					      dev_replace_is_ongoing);
J
Jan Schmidt 已提交
6105
			mirror_num = stripe_index - old_stripe_index + 1;
6106
		}
D
David Woodhouse 已提交
6107

6108
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6109
		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
D
David Woodhouse 已提交
6110
			/* push stripe_nr back to the start of the full stripe */
6111
			stripe_nr = div64_u64(raid56_full_stripe_start,
6112
					stripe_len * data_stripes);
D
David Woodhouse 已提交
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
6127
			stripe_nr = div_u64_rem(stripe_nr,
6128
					data_stripes, &stripe_index);
D
David Woodhouse 已提交
6129
			if (mirror_num > 1)
6130
				stripe_index = data_stripes + mirror_num - 2;
D
David Woodhouse 已提交
6131 6132

			/* We distribute the parity blocks across stripes */
6133 6134
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
6135
			if (!need_full_stripe(op) && mirror_num <= 1)
6136
				mirror_num = 1;
D
David Woodhouse 已提交
6137
		}
6138 6139
	} else {
		/*
6140 6141 6142
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
6143
		 */
6144 6145
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6146
		mirror_num = stripe_index + 1;
6147
	}
6148
	if (stripe_index >= map->num_stripes) {
J
Jeff Mahoney 已提交
6149 6150
		btrfs_crit(fs_info,
			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6151 6152 6153 6154
			   stripe_index, map->num_stripes);
		ret = -EINVAL;
		goto out;
	}
6155

6156
	num_alloc_stripes = num_stripes;
6157
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6158
		if (op == BTRFS_MAP_WRITE)
6159
			num_alloc_stripes <<= 1;
6160
		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6161
			num_alloc_stripes++;
6162
		tgtdev_indexes = num_stripes;
6163
	}
6164

6165
	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
L
Li Zefan 已提交
6166 6167 6168 6169
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}
6170 6171 6172 6173 6174 6175 6176

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
	}
L
Li Zefan 已提交
6177

6178
	/* build raid_map */
6179 6180
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
	    (need_full_stripe(op) || mirror_num > 1)) {
6181
		u64 tmp;
6182
		unsigned rot;
6183 6184

		/* Work out the disk rotation on this stripe-set */
6185
		div_u64_rem(stripe_nr, num_stripes, &rot);
6186 6187

		/* Fill in the logical address of each stripe */
6188 6189
		tmp = stripe_nr * data_stripes;
		for (i = 0; i < data_stripes; i++)
6190 6191 6192 6193 6194 6195 6196 6197
			bbio->raid_map[(i+rot) % num_stripes] =
				em->start + (tmp + i) * map->stripe_len;

		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
			bbio->raid_map[(i+rot+1) % num_stripes] =
				RAID6_Q_STRIPE;

6198
		sort_parity_stripes(bbio, num_stripes);
6199
	}
L
Li Zefan 已提交
6200

6201
	if (need_full_stripe(op))
6202
		max_errors = btrfs_chunk_max_errors(map);
L
Li Zefan 已提交
6203

6204
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6205
	    need_full_stripe(op)) {
6206 6207
		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
					  &max_errors);
6208 6209
	}

L
Li Zefan 已提交
6210
	*bbio_ret = bbio;
Z
Zhao Lei 已提交
6211
	bbio->map_type = map->type;
L
Li Zefan 已提交
6212 6213 6214
	bbio->num_stripes = num_stripes;
	bbio->max_errors = max_errors;
	bbio->mirror_num = mirror_num;
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
		bbio->stripes[0].dev = dev_replace->tgtdev;
		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
		bbio->mirror_num = map->num_stripes + 1;
	}
6227
out:
6228
	if (dev_replace_is_ongoing) {
6229 6230
		lockdep_assert_held(&dev_replace->rwsem);
		/* Unlock and let waiting writers proceed */
6231
		up_read(&dev_replace->rwsem);
6232
	}
6233
	free_extent_map(em);
L
Li Zefan 已提交
6234
	return ret;
6235 6236
}

6237
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6238
		      u64 logical, u64 *length,
6239
		      struct btrfs_bio **bbio_ret, int mirror_num)
6240
{
6241 6242 6243 6244
	if (op == BTRFS_MAP_DISCARD)
		return __btrfs_map_block_for_discard(fs_info, logical,
						     length, bbio_ret);

6245
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6246
				 mirror_num, 0);
6247 6248
}

6249
/* For Scrub/replace */
6250
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6251
		     u64 logical, u64 *length,
6252
		     struct btrfs_bio **bbio_ret)
6253
{
6254
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6255 6256
}

6257
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6258
{
6259 6260
	bio->bi_private = bbio->private;
	bio->bi_end_io = bbio->end_io;
6261
	bio_endio(bio);
6262

6263
	btrfs_put_bbio(bbio);
6264 6265
}

6266
static void btrfs_end_bio(struct bio *bio)
6267
{
6268
	struct btrfs_bio *bbio = bio->bi_private;
6269
	int is_orig_bio = 0;
6270

6271
	if (bio->bi_status) {
6272
		atomic_inc(&bbio->error);
6273 6274
		if (bio->bi_status == BLK_STS_IOERR ||
		    bio->bi_status == BLK_STS_TARGET) {
6275
			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6276

6277 6278 6279
			ASSERT(dev->bdev);
			if (bio_op(bio) == REQ_OP_WRITE)
				btrfs_dev_stat_inc_and_print(dev,
6280
						BTRFS_DEV_STAT_WRITE_ERRS);
6281 6282
			else if (!(bio->bi_opf & REQ_RAHEAD))
				btrfs_dev_stat_inc_and_print(dev,
6283
						BTRFS_DEV_STAT_READ_ERRS);
6284 6285
			if (bio->bi_opf & REQ_PREFLUSH)
				btrfs_dev_stat_inc_and_print(dev,
6286
						BTRFS_DEV_STAT_FLUSH_ERRS);
6287 6288
		}
	}
6289

6290
	if (bio == bbio->orig_bio)
6291 6292
		is_orig_bio = 1;

6293 6294
	btrfs_bio_counter_dec(bbio->fs_info);

6295
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6296 6297
		if (!is_orig_bio) {
			bio_put(bio);
6298
			bio = bbio->orig_bio;
6299
		}
6300

6301
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6302
		/* only send an error to the higher layers if it is
D
David Woodhouse 已提交
6303
		 * beyond the tolerance of the btrfs bio
6304
		 */
6305
		if (atomic_read(&bbio->error) > bbio->max_errors) {
6306
			bio->bi_status = BLK_STS_IOERR;
6307
		} else {
6308 6309 6310 6311
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
6312
			bio->bi_status = BLK_STS_OK;
6313
		}
6314

6315
		btrfs_end_bbio(bbio, bio);
6316
	} else if (!is_orig_bio) {
6317 6318 6319 6320
		bio_put(bio);
	}
}

6321
static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6322
			      u64 physical, struct btrfs_device *dev)
6323
{
6324
	struct btrfs_fs_info *fs_info = bbio->fs_info;
6325 6326

	bio->bi_private = bbio;
6327
	btrfs_io_bio(bio)->device = dev;
6328
	bio->bi_end_io = btrfs_end_bio;
6329
	bio->bi_iter.bi_sector = physical >> 9;
6330 6331 6332
	btrfs_debug_in_rcu(fs_info,
	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6333 6334
		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
		dev->devid, bio->bi_iter.bi_size);
6335
	bio_set_dev(bio, dev->bdev);
6336

6337
	btrfs_bio_counter_inc_noblocked(fs_info);
6338

6339
	btrfsic_submit_bio(bio);
6340 6341 6342 6343 6344 6345
}

static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
{
	atomic_inc(&bbio->error);
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6346
		/* Should be the original bio. */
6347 6348
		WARN_ON(bio != bbio->orig_bio);

6349
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6350
		bio->bi_iter.bi_sector = logical >> 9;
6351 6352 6353 6354
		if (atomic_read(&bbio->error) > bbio->max_errors)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_status = BLK_STS_OK;
6355
		btrfs_end_bbio(bbio, bio);
6356 6357 6358
	}
}

6359
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6360
			   int mirror_num)
6361 6362
{
	struct btrfs_device *dev;
6363
	struct bio *first_bio = bio;
6364
	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6365 6366 6367
	u64 length = 0;
	u64 map_length;
	int ret;
6368 6369
	int dev_nr;
	int total_devs;
6370
	struct btrfs_bio *bbio = NULL;
6371

6372
	length = bio->bi_iter.bi_size;
6373
	map_length = length;
6374

6375
	btrfs_bio_counter_inc_blocked(fs_info);
6376
	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
M
Mike Christie 已提交
6377
				&map_length, &bbio, mirror_num, 1);
6378
	if (ret) {
6379
		btrfs_bio_counter_dec(fs_info);
6380
		return errno_to_blk_status(ret);
6381
	}
6382

6383
	total_devs = bbio->num_stripes;
D
David Woodhouse 已提交
6384 6385 6386
	bbio->orig_bio = first_bio;
	bbio->private = first_bio->bi_private;
	bbio->end_io = first_bio->bi_end_io;
6387
	bbio->fs_info = fs_info;
D
David Woodhouse 已提交
6388 6389
	atomic_set(&bbio->stripes_pending, bbio->num_stripes);

6390
	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
M
Mike Christie 已提交
6391
	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
D
David Woodhouse 已提交
6392 6393
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
M
Mike Christie 已提交
6394
		if (bio_op(bio) == REQ_OP_WRITE) {
6395 6396
			ret = raid56_parity_write(fs_info, bio, bbio,
						  map_length);
D
David Woodhouse 已提交
6397
		} else {
6398 6399
			ret = raid56_parity_recover(fs_info, bio, bbio,
						    map_length, mirror_num, 1);
D
David Woodhouse 已提交
6400
		}
6401

6402
		btrfs_bio_counter_dec(fs_info);
6403
		return errno_to_blk_status(ret);
D
David Woodhouse 已提交
6404 6405
	}

6406
	if (map_length < length) {
6407
		btrfs_crit(fs_info,
J
Jeff Mahoney 已提交
6408 6409
			   "mapping failed logical %llu bio len %llu len %llu",
			   logical, length, map_length);
6410 6411
		BUG();
	}
6412

6413
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6414
		dev = bbio->stripes[dev_nr].dev;
6415 6416
		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
						   &dev->dev_state) ||
6417 6418
		    (bio_op(first_bio) == REQ_OP_WRITE &&
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6419 6420 6421 6422
			bbio_error(bbio, first_bio, logical);
			continue;
		}

6423
		if (dev_nr < total_devs - 1)
6424
			bio = btrfs_bio_clone(first_bio);
6425
		else
6426
			bio = first_bio;
6427

6428
		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6429
	}
6430
	btrfs_bio_counter_dec(fs_info);
6431
	return BLK_STS_OK;
6432 6433
}

6434 6435 6436 6437 6438 6439 6440 6441 6442
/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 *
 * If @seed is true, traverse through the seed devices.
 */
6443
struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6444 6445
				       u64 devid, u8 *uuid, u8 *fsid,
				       bool seed)
6446
{
Y
Yan Zheng 已提交
6447
	struct btrfs_device *device;
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
	struct btrfs_fs_devices *seed_devs;

	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
		list_for_each_entry(device, &fs_devices->devices, dev_list) {
			if (device->devid == devid &&
			    (!uuid || memcmp(device->uuid, uuid,
					     BTRFS_UUID_SIZE) == 0))
				return device;
		}
	}
Y
Yan Zheng 已提交
6458

6459
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
Y
Yan Zheng 已提交
6460
		if (!fsid ||
6461 6462
		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
			list_for_each_entry(device, &seed_devs->devices,
6463 6464 6465 6466 6467 6468
					    dev_list) {
				if (device->devid == devid &&
				    (!uuid || memcmp(device->uuid, uuid,
						     BTRFS_UUID_SIZE) == 0))
					return device;
			}
Y
Yan Zheng 已提交
6469 6470
		}
	}
6471

Y
Yan Zheng 已提交
6472
	return NULL;
6473 6474
}

6475
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6476 6477 6478
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
6479
	unsigned int nofs_flag;
6480

6481 6482 6483 6484 6485 6486 6487
	/*
	 * We call this under the chunk_mutex, so we want to use NOFS for this
	 * allocation, however we don't want to change btrfs_alloc_device() to
	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
	 * places.
	 */
	nofs_flag = memalloc_nofs_save();
6488
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6489
	memalloc_nofs_restore(nofs_flag);
6490
	if (IS_ERR(device))
6491
		return device;
6492 6493

	list_add(&device->dev_list, &fs_devices->devices);
Y
Yan Zheng 已提交
6494
	device->fs_devices = fs_devices;
6495
	fs_devices->num_devices++;
6496

6497
	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6498
	fs_devices->missing_devices++;
6499

6500 6501 6502
	return device;
}

6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6513
 * on error.  Returned struct is not linked onto any lists and must be
6514
 * destroyed with btrfs_free_device.
6515 6516 6517 6518 6519 6520 6521 6522
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6523
	if (WARN_ON(!devid && !fs_info))
6524 6525
		return ERR_PTR(-EINVAL);

6526
	dev = __alloc_device(fs_info);
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
	if (IS_ERR(dev))
		return dev;

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
6537
			btrfs_free_device(dev);
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

	return dev;
}

6551
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6552
					u64 devid, u8 *uuid, bool error)
6553
{
6554 6555 6556 6557 6558 6559
	if (error)
		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
	else
		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
6560 6561
}

6562 6563 6564 6565
static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
{
	int index = btrfs_bg_flags_to_raid_index(type);
	int ncopies = btrfs_raid_array[index].ncopies;
6566
	const int nparity = btrfs_raid_array[index].nparity;
6567 6568
	int data_stripes;

6569 6570 6571
	if (nparity)
		data_stripes = num_stripes - nparity;
	else
6572
		data_stripes = num_stripes / ncopies;
6573

6574 6575 6576
	return div_u64(chunk_len, data_stripes);
}

6577
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6578 6579
			  struct btrfs_chunk *chunk)
{
6580
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6581
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

6596 6597 6598 6599 6600
	/*
	 * Only need to verify chunk item if we're reading from sys chunk array,
	 * as chunk item in tree block is already verified by tree-checker.
	 */
	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6601
		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6602 6603 6604
		if (ret)
			return ret;
	}
6605

6606 6607 6608
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, logical, 1);
	read_unlock(&map_tree->lock);
6609 6610 6611 6612 6613 6614 6615 6616 6617

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

6618
	em = alloc_extent_map();
6619 6620
	if (!em)
		return -ENOMEM;
6621
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6622 6623 6624 6625 6626
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

6627
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6628
	em->map_lookup = map;
6629 6630
	em->start = logical;
	em->len = length;
6631
	em->orig_start = 0;
6632
	em->block_start = 0;
C
Chris Mason 已提交
6633
	em->block_len = em->len;
6634

6635 6636 6637 6638 6639
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
6640
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6641
	map->verified_stripes = 0;
6642 6643
	em->orig_block_len = calc_stripe_length(map->type, em->len,
						map->num_stripes);
6644 6645 6646 6647
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6648 6649 6650
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
6651
		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6652
							devid, uuid, NULL, true);
6653
		if (!map->stripes[i].dev &&
6654
		    !btrfs_test_opt(fs_info, DEGRADED)) {
6655
			free_extent_map(em);
6656
			btrfs_report_missing_device(fs_info, devid, uuid, true);
6657
			return -ENOENT;
6658
		}
6659 6660
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
6661 6662
				add_missing_dev(fs_info->fs_devices, devid,
						uuid);
6663
			if (IS_ERR(map->stripes[i].dev)) {
6664
				free_extent_map(em);
6665 6666 6667 6668
				btrfs_err(fs_info,
					"failed to init missing dev %llu: %ld",
					devid, PTR_ERR(map->stripes[i].dev));
				return PTR_ERR(map->stripes[i].dev);
6669
			}
6670
			btrfs_report_missing_device(fs_info, devid, uuid, false);
6671
		}
6672 6673 6674
		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				&(map->stripes[i].dev->dev_state));

6675 6676
	}

6677 6678 6679
	write_lock(&map_tree->lock);
	ret = add_extent_mapping(map_tree, em, 0);
	write_unlock(&map_tree->lock);
6680 6681 6682 6683 6684
	if (ret < 0) {
		btrfs_err(fs_info,
			  "failed to add chunk map, start=%llu len=%llu: %d",
			  em->start, em->len, ret);
	}
6685 6686
	free_extent_map(em);

6687
	return ret;
6688 6689
}

6690
static void fill_device_from_item(struct extent_buffer *leaf,
6691 6692 6693 6694 6695 6696
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
6697 6698
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
6699
	device->commit_total_bytes = device->disk_total_bytes;
6700
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6701
	device->commit_bytes_used = device->bytes_used;
6702 6703 6704 6705
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6706
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6707
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6708

6709
	ptr = btrfs_device_uuid(dev_item);
6710
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6711 6712
}

6713
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6714
						  u8 *fsid)
Y
Yan Zheng 已提交
6715 6716 6717 6718
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

6719
	lockdep_assert_held(&uuid_mutex);
D
David Sterba 已提交
6720
	ASSERT(fsid);
Y
Yan Zheng 已提交
6721

6722
	/* This will match only for multi-device seed fs */
6723
	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6724
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6725 6726
			return fs_devices;

Y
Yan Zheng 已提交
6727

6728
	fs_devices = find_fsid(fsid, NULL);
Y
Yan Zheng 已提交
6729
	if (!fs_devices) {
6730
		if (!btrfs_test_opt(fs_info, DEGRADED))
6731 6732
			return ERR_PTR(-ENOENT);

6733
		fs_devices = alloc_fs_devices(fsid, NULL);
6734 6735 6736
		if (IS_ERR(fs_devices))
			return fs_devices;

6737
		fs_devices->seeding = true;
6738 6739
		fs_devices->opened = 1;
		return fs_devices;
Y
Yan Zheng 已提交
6740
	}
Y
Yan Zheng 已提交
6741

6742 6743 6744 6745
	/*
	 * Upon first call for a seed fs fsid, just create a private copy of the
	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
	 */
Y
Yan Zheng 已提交
6746
	fs_devices = clone_fs_devices(fs_devices);
6747 6748
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
6749

6750
	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6751 6752
	if (ret) {
		free_fs_devices(fs_devices);
6753
		return ERR_PTR(ret);
6754
	}
Y
Yan Zheng 已提交
6755 6756

	if (!fs_devices->seeding) {
6757
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
6758
		free_fs_devices(fs_devices);
6759
		return ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
6760 6761
	}

6762
	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6763

6764
	return fs_devices;
Y
Yan Zheng 已提交
6765 6766
}

6767
static int read_one_dev(struct extent_buffer *leaf,
6768 6769
			struct btrfs_dev_item *dev_item)
{
6770
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6771
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6772 6773 6774
	struct btrfs_device *device;
	u64 devid;
	int ret;
6775
	u8 fs_uuid[BTRFS_FSID_SIZE];
6776 6777
	u8 dev_uuid[BTRFS_UUID_SIZE];

6778
	devid = btrfs_device_id(leaf, dev_item);
6779
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6780
			   BTRFS_UUID_SIZE);
6781
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6782
			   BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
6783

6784
	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6785
		fs_devices = open_seed_devices(fs_info, fs_uuid);
6786 6787
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
6788 6789
	}

6790
	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6791
				   fs_uuid, true);
6792
	if (!device) {
6793
		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6794 6795
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, true);
6796
			return -ENOENT;
6797
		}
Y
Yan Zheng 已提交
6798

6799
		device = add_missing_dev(fs_devices, devid, dev_uuid);
6800 6801 6802 6803 6804 6805
		if (IS_ERR(device)) {
			btrfs_err(fs_info,
				"failed to add missing dev %llu: %ld",
				devid, PTR_ERR(device));
			return PTR_ERR(device);
		}
6806
		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6807
	} else {
6808
		if (!device->bdev) {
6809 6810 6811
			if (!btrfs_test_opt(fs_info, DEGRADED)) {
				btrfs_report_missing_device(fs_info,
						devid, dev_uuid, true);
6812
				return -ENOENT;
6813 6814 6815
			}
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, false);
6816
		}
6817

6818 6819
		if (!device->bdev &&
		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6820 6821 6822 6823 6824 6825
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
6826
			device->fs_devices->missing_devices++;
6827
			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
Y
Yan Zheng 已提交
6828
		}
6829 6830 6831

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
6832 6833
			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
							&device->dev_state));
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Y
Yan Zheng 已提交
6844 6845
	}

6846
	if (device->fs_devices != fs_info->fs_devices) {
6847
		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
Y
Yan Zheng 已提交
6848 6849 6850
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
6851
	}
6852 6853

	fill_device_from_item(leaf, dev_item, device);
6854
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6855
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6856
	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
Y
Yan Zheng 已提交
6857
		device->fs_devices->total_rw_bytes += device->total_bytes;
6858 6859
		atomic64_add(device->total_bytes - device->bytes_used,
				&fs_info->free_chunk_space);
6860
	}
6861 6862 6863 6864
	ret = 0;
	return ret;
}

6865
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6866
{
6867
	struct btrfs_root *root = fs_info->tree_root;
6868
	struct btrfs_super_block *super_copy = fs_info->super_copy;
6869
	struct extent_buffer *sb;
6870 6871
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
6872 6873
	u8 *array_ptr;
	unsigned long sb_array_offset;
6874
	int ret = 0;
6875 6876 6877
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
6878
	u32 cur_offset;
6879
	u64 type;
6880
	struct btrfs_key key;
6881

6882
	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6883 6884 6885 6886 6887
	/*
	 * This will create extent buffer of nodesize, superblock size is
	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
	 * overallocate but we can keep it as-is, only the first page is used.
	 */
6888
	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6889 6890
	if (IS_ERR(sb))
		return PTR_ERR(sb);
6891
	set_extent_buffer_uptodate(sb);
6892
	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6893
	/*
6894
	 * The sb extent buffer is artificial and just used to read the system array.
6895
	 * set_extent_buffer_uptodate() call does not properly mark all it's
6896 6897 6898 6899 6900 6901 6902 6903 6904
	 * pages up-to-date when the page is larger: extent does not cover the
	 * whole page and consequently check_page_uptodate does not find all
	 * the page's extents up-to-date (the hole beyond sb),
	 * write_extent_buffer then triggers a WARN_ON.
	 *
	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
	 * but sb spans only this function. Add an explicit SetPageUptodate call
	 * to silence the warning eg. on PowerPC 64.
	 */
6905
	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6906
		SetPageUptodate(sb->pages[0]);
6907

6908
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6909 6910
	array_size = btrfs_super_sys_array_size(super_copy);

6911 6912 6913
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
6914

6915 6916
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
6917 6918 6919 6920
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

6921 6922
		btrfs_disk_key_to_cpu(&key, disk_key);

6923 6924 6925
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6926

6927 6928 6929 6930 6931 6932 6933
		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
			btrfs_err(fs_info,
			    "unexpected item type %u in sys_array at offset %u",
				  (u32)key.type, cur_offset);
			ret = -EIO;
			break;
		}
6934

6935 6936 6937 6938 6939 6940 6941 6942
		chunk = (struct btrfs_chunk *)sb_array_offset;
		/*
		 * At least one btrfs_chunk with one stripe must be present,
		 * exact stripe count check comes afterwards
		 */
		len = btrfs_chunk_item_size(1);
		if (cur_offset + len > array_size)
			goto out_short_read;
6943

6944 6945 6946 6947 6948 6949 6950 6951
		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
		if (!num_stripes) {
			btrfs_err(fs_info,
			"invalid number of stripes %u in sys_array at offset %u",
				  num_stripes, cur_offset);
			ret = -EIO;
			break;
		}
6952

6953 6954
		type = btrfs_chunk_type(sb, chunk);
		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6955
			btrfs_err(fs_info,
6956 6957
			"invalid chunk type %llu in sys_array at offset %u",
				  type, cur_offset);
6958 6959
			ret = -EIO;
			break;
6960
		}
6961 6962 6963 6964 6965 6966 6967 6968 6969

		len = btrfs_chunk_item_size(num_stripes);
		if (cur_offset + len > array_size)
			goto out_short_read;

		ret = read_one_chunk(&key, sb, chunk);
		if (ret)
			break;

6970 6971 6972
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6973
	}
6974
	clear_extent_buffer_uptodate(sb);
6975
	free_extent_buffer_stale(sb);
6976
	return ret;
6977 6978

out_short_read:
6979
	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6980
			len, cur_offset);
6981
	clear_extent_buffer_uptodate(sb);
6982
	free_extent_buffer_stale(sb);
6983
	return -EIO;
6984 6985
}

6986 6987 6988
/*
 * Check if all chunks in the fs are OK for read-write degraded mount
 *
6989 6990
 * If the @failing_dev is specified, it's accounted as missing.
 *
6991 6992 6993
 * Return true if all chunks meet the minimal RW mount requirements.
 * Return false if any chunk doesn't meet the minimal RW mount requirements.
 */
6994 6995
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
					struct btrfs_device *failing_dev)
6996
{
6997
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6998 6999 7000 7001
	struct extent_map *em;
	u64 next_start = 0;
	bool ret = true;

7002 7003 7004
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
	read_unlock(&map_tree->lock);
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
	/* No chunk at all? Return false anyway */
	if (!em) {
		ret = false;
		goto out;
	}
	while (em) {
		struct map_lookup *map;
		int missing = 0;
		int max_tolerated;
		int i;

		map = em->map_lookup;
		max_tolerated =
			btrfs_get_num_tolerated_disk_barrier_failures(
					map->type);
		for (i = 0; i < map->num_stripes; i++) {
			struct btrfs_device *dev = map->stripes[i].dev;

7023 7024
			if (!dev || !dev->bdev ||
			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7025 7026
			    dev->last_flush_error)
				missing++;
7027 7028
			else if (failing_dev && failing_dev == dev)
				missing++;
7029 7030
		}
		if (missing > max_tolerated) {
7031 7032
			if (!failing_dev)
				btrfs_warn(fs_info,
7033
	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7034 7035 7036 7037 7038 7039 7040 7041
				   em->start, missing, max_tolerated);
			free_extent_map(em);
			ret = false;
			goto out;
		}
		next_start = extent_map_end(em);
		free_extent_map(em);

7042 7043
		read_lock(&map_tree->lock);
		em = lookup_extent_mapping(map_tree, next_start,
7044
					   (u64)(-1) - next_start);
7045
		read_unlock(&map_tree->lock);
7046 7047 7048 7049 7050
	}
out:
	return ret;
}

7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
static void readahead_tree_node_children(struct extent_buffer *node)
{
	int i;
	const int nr_items = btrfs_header_nritems(node);

	for (i = 0; i < nr_items; i++) {
		u64 start;

		start = btrfs_node_blockptr(node, i);
		readahead_tree_block(node->fs_info, start);
	}
}

7064
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7065
{
7066
	struct btrfs_root *root = fs_info->chunk_root;
7067 7068 7069 7070 7071 7072
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;
7073
	u64 total_dev = 0;
7074
	u64 last_ra_node = 0;
7075 7076 7077 7078 7079

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

7080 7081 7082 7083
	/*
	 * uuid_mutex is needed only if we are mounting a sprout FS
	 * otherwise we don't need it.
	 */
7084 7085
	mutex_lock(&uuid_mutex);

7086 7087 7088 7089 7090 7091 7092 7093
	/*
	 * It is possible for mount and umount to race in such a way that
	 * we execute this code path, but open_fs_devices failed to clear
	 * total_rw_bytes. We certainly want it cleared before reading the
	 * device items, so clear it here.
	 */
	fs_info->fs_devices->total_rw_bytes = 0;

7094 7095 7096 7097 7098
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7099 7100 7101 7102 7103
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7104 7105
	if (ret < 0)
		goto error;
C
Chris Mason 已提交
7106
	while (1) {
7107 7108
		struct extent_buffer *node;

7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
		/*
		 * The nodes on level 1 are not locked but we don't need to do
		 * that during mount time as nothing else can access the tree
		 */
		node = path->nodes[1];
		if (node) {
			if (last_ra_node != node->start) {
				readahead_tree_node_children(node);
				last_ra_node = node->start;
			}
		}
7130
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7131 7132 7133
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
7134
						  struct btrfs_dev_item);
7135
			ret = read_one_dev(leaf, dev_item);
7136 7137
			if (ret)
				goto error;
7138
			total_dev++;
7139 7140 7141
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7142
			mutex_lock(&fs_info->chunk_mutex);
7143
			ret = read_one_chunk(&found_key, leaf, chunk);
7144
			mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
7145 7146
			if (ret)
				goto error;
7147 7148 7149
		}
		path->slots[0]++;
	}
7150 7151 7152 7153 7154

	/*
	 * After loading chunk tree, we've got all device information,
	 * do another round of validation checks.
	 */
7155 7156
	if (total_dev != fs_info->fs_devices->total_devices) {
		btrfs_err(fs_info,
7157
	   "super_num_devices %llu mismatch with num_devices %llu found here",
7158
			  btrfs_super_num_devices(fs_info->super_copy),
7159 7160 7161 7162
			  total_dev);
		ret = -EINVAL;
		goto error;
	}
7163 7164 7165
	if (btrfs_super_total_bytes(fs_info->super_copy) <
	    fs_info->fs_devices->total_rw_bytes) {
		btrfs_err(fs_info,
7166
	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7167 7168
			  btrfs_super_total_bytes(fs_info->super_copy),
			  fs_info->fs_devices->total_rw_bytes);
7169 7170 7171
		ret = -EINVAL;
		goto error;
	}
7172 7173
	ret = 0;
error:
7174 7175
	mutex_unlock(&uuid_mutex);

Y
Yan Zheng 已提交
7176
	btrfs_free_path(path);
7177 7178
	return ret;
}
7179

7180 7181
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
7182
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7183 7184
	struct btrfs_device *device;

7185 7186 7187 7188 7189 7190 7191 7192
	fs_devices->fs_info = fs_info;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list)
		device->fs_info = fs_info;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
		list_for_each_entry(device, &seed_devs->devices, dev_list)
7193
			device->fs_info = fs_info;
7194

7195
		seed_devs->fs_info = fs_info;
7196
	}
7197
	mutex_unlock(&fs_devices->device_list_mutex);
7198 7199
}

7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
				 const struct btrfs_dev_stats_item *ptr,
				 int index)
{
	u64 val;

	read_extent_buffer(eb, &val,
			   offsetof(struct btrfs_dev_stats_item, values) +
			    ((unsigned long)ptr) + (index * sizeof(u64)),
			   sizeof(val));
	return val;
}

static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
				      struct btrfs_dev_stats_item *ptr,
				      int index, u64 val)
{
	write_extent_buffer(eb, &val,
			    offsetof(struct btrfs_dev_stats_item, values) +
			     ((unsigned long)ptr) + (index * sizeof(u64)),
			    sizeof(val));
}

7223 7224
static int btrfs_device_init_dev_stats(struct btrfs_device *device,
				       struct btrfs_path *path)
7225
{
7226
	struct btrfs_dev_stats_item *ptr;
7227
	struct extent_buffer *eb;
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
	struct btrfs_key key;
	int item_size;
	int i, ret, slot;

	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
	key.offset = device->devid;
	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
	if (ret) {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			btrfs_dev_stat_set(device, i, 0);
		device->dev_stats_valid = 1;
		btrfs_release_path(path);
7241
		return ret < 0 ? ret : 0;
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259
	}
	slot = path->slots[0];
	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, slot);

	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
		if (item_size >= (1 + i) * sizeof(__le64))
			btrfs_dev_stat_set(device, i,
					   btrfs_dev_stats_value(eb, ptr, i));
		else
			btrfs_dev_stat_set(device, i, 0);
	}

	device->dev_stats_valid = 1;
	btrfs_dev_stat_print_on_load(device);
	btrfs_release_path(path);
7260 7261

	return 0;
7262 7263 7264 7265 7266
}

int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7267 7268
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
7269
	int ret = 0;
7270 7271

	path = btrfs_alloc_path();
A
Anand Jain 已提交
7272 7273
	if (!path)
		return -ENOMEM;
7274 7275

	mutex_lock(&fs_devices->device_list_mutex);
7276 7277 7278 7279 7280
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		ret = btrfs_device_init_dev_stats(device, path);
		if (ret)
			goto out;
	}
7281
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7282 7283 7284 7285 7286
		list_for_each_entry(device, &seed_devs->devices, dev_list) {
			ret = btrfs_device_init_dev_stats(device, path);
			if (ret)
				goto out;
		}
7287
	}
7288
out:
7289 7290 7291
	mutex_unlock(&fs_devices->device_list_mutex);

	btrfs_free_path(path);
7292
	return ret;
7293 7294 7295 7296 7297
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_device *device)
{
7298
	struct btrfs_fs_info *fs_info = trans->fs_info;
7299
	struct btrfs_root *dev_root = fs_info->dev_root;
7300 7301 7302 7303 7304 7305 7306
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

7307 7308
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7309 7310 7311
	key.offset = device->devid;

	path = btrfs_alloc_path();
7312 7313
	if (!path)
		return -ENOMEM;
7314 7315
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
7316
		btrfs_warn_in_rcu(fs_info,
7317
			"error %d while searching for dev_stats item for device %s",
7318
			      ret, rcu_str_deref(device->name));
7319 7320 7321 7322 7323 7324 7325 7326
		goto out;
	}

	if (ret == 0 &&
	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
7327
			btrfs_warn_in_rcu(fs_info,
7328
				"delete too small dev_stats item for device %s failed %d",
7329
				      rcu_str_deref(device->name), ret);
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
7341
			btrfs_warn_in_rcu(fs_info,
7342 7343
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
7363
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7364
{
7365
	struct btrfs_fs_info *fs_info = trans->fs_info;
7366 7367
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
7368
	int stats_cnt;
7369 7370 7371 7372
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7373 7374
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
		if (!device->dev_stats_valid || stats_cnt == 0)
7375 7376
			continue;

7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390

		/*
		 * There is a LOAD-LOAD control dependency between the value of
		 * dev_stats_ccnt and updating the on-disk values which requires
		 * reading the in-memory counters. Such control dependencies
		 * require explicit read memory barriers.
		 *
		 * This memory barriers pairs with smp_mb__before_atomic in
		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
		 * barrier implied by atomic_xchg in
		 * btrfs_dev_stats_read_and_reset
		 */
		smp_rmb();

7391
		ret = update_dev_stat_item(trans, device);
7392
		if (!ret)
7393
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7394 7395 7396 7397 7398 7399
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

7400 7401 7402 7403 7404 7405
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

7406
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7407
{
7408 7409
	if (!dev->dev_stats_valid)
		return;
7410
	btrfs_err_rl_in_rcu(dev->fs_info,
7411
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7412
			   rcu_str_deref(dev->name),
7413 7414 7415
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7416 7417
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7418
}
7419

7420 7421
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
7422 7423 7424 7425 7426 7427 7428 7429
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

7430
	btrfs_info_in_rcu(dev->fs_info,
7431
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7432
	       rcu_str_deref(dev->name),
7433 7434 7435 7436 7437 7438 7439
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

7440
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7441
			struct btrfs_ioctl_get_dev_stats *stats)
7442 7443
{
	struct btrfs_device *dev;
7444
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7445 7446 7447
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
7448 7449
	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
				true);
7450 7451 7452
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
7453
		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7454
		return -ENODEV;
7455
	} else if (!dev->dev_stats_valid) {
7456
		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7457
		return -ENODEV;
7458
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7459 7460 7461 7462 7463
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
7464
				btrfs_dev_stat_set(dev, i, 0);
7465
		}
7466 7467
		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
			   current->comm, task_pid_nr(current));
7468 7469 7470 7471 7472 7473 7474 7475 7476
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
7477

7478
/*
7479 7480 7481 7482 7483
 * Update the size and bytes used for each device where it changed.  This is
 * delayed since we would otherwise get errors while writing out the
 * superblocks.
 *
 * Must be invoked during transaction commit.
7484
 */
7485
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7486 7487 7488
{
	struct btrfs_device *curr, *next;

7489
	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7490

7491
	if (list_empty(&trans->dev_update_list))
7492 7493
		return;

7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
	/*
	 * We don't need the device_list_mutex here.  This list is owned by the
	 * transaction and the transaction must complete before the device is
	 * released.
	 */
	mutex_lock(&trans->fs_info->chunk_mutex);
	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&curr->post_commit_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
		curr->commit_bytes_used = curr->bytes_used;
7505
	}
7506
	mutex_unlock(&trans->fs_info->chunk_mutex);
7507
}
7508

7509 7510 7511 7512 7513
/*
 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 */
int btrfs_bg_type_to_factor(u64 flags)
{
7514 7515 7516
	const int index = btrfs_bg_flags_to_raid_index(flags);

	return btrfs_raid_array[index].ncopies;
7517
}
7518 7519 7520 7521 7522 7523 7524



static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
				 u64 chunk_offset, u64 devid,
				 u64 physical_offset, u64 physical_len)
{
7525
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7526 7527
	struct extent_map *em;
	struct map_lookup *map;
7528
	struct btrfs_device *dev;
7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577
	u64 stripe_len;
	bool found = false;
	int ret = 0;
	int i;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
			  physical_offset, devid);
		ret = -EUCLEAN;
		goto out;
	}

	map = em->map_lookup;
	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
	if (physical_len != stripe_len) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
			  physical_offset, devid, em->start, physical_len,
			  stripe_len);
		ret = -EUCLEAN;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].dev->devid == devid &&
		    map->stripes[i].physical == physical_offset) {
			found = true;
			if (map->verified_stripes >= map->num_stripes) {
				btrfs_err(fs_info,
				"too many dev extents for chunk %llu found",
					  em->start);
				ret = -EUCLEAN;
				goto out;
			}
			map->verified_stripes++;
			break;
		}
	}
	if (!found) {
		btrfs_err(fs_info,
	"dev extent physical offset %llu devid %llu has no corresponding chunk",
			physical_offset, devid);
		ret = -EUCLEAN;
	}
7578 7579

	/* Make sure no dev extent is beyond device bondary */
7580
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7581 7582 7583 7584 7585
	if (!dev) {
		btrfs_err(fs_info, "failed to find devid %llu", devid);
		ret = -EUCLEAN;
		goto out;
	}
7586 7587 7588

	/* It's possible this device is a dummy for seed device */
	if (dev->disk_total_bytes == 0) {
7589 7590 7591 7592 7593
		struct btrfs_fs_devices *devs;

		devs = list_first_entry(&fs_info->fs_devices->seed_list,
					struct btrfs_fs_devices, seed_list);
		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7594 7595 7596 7597 7598 7599 7600 7601
		if (!dev) {
			btrfs_err(fs_info, "failed to find seed devid %llu",
				  devid);
			ret = -EUCLEAN;
			goto out;
		}
	}

7602 7603 7604 7605 7606 7607 7608 7609
	if (physical_offset + physical_len > dev->disk_total_bytes) {
		btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
			  devid, physical_offset, physical_len,
			  dev->disk_total_bytes);
		ret = -EUCLEAN;
		goto out;
	}
7610 7611 7612 7613 7614 7615 7616
out:
	free_extent_map(em);
	return ret;
}

static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
7617
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7618 7619 7620 7621 7622
	struct extent_map *em;
	struct rb_node *node;
	int ret = 0;

	read_lock(&em_tree->lock);
L
Liu Bo 已提交
7623
	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
		em = rb_entry(node, struct extent_map, rb_node);
		if (em->map_lookup->num_stripes !=
		    em->map_lookup->verified_stripes) {
			btrfs_err(fs_info,
			"chunk %llu has missing dev extent, have %d expect %d",
				  em->start, em->map_lookup->verified_stripes,
				  em->map_lookup->num_stripes);
			ret = -EUCLEAN;
			goto out;
		}
	}
out:
	read_unlock(&em_tree->lock);
	return ret;
}

/*
 * Ensure that all dev extents are mapped to correct chunk, otherwise
 * later chunk allocation/free would cause unexpected behavior.
 *
 * NOTE: This will iterate through the whole device tree, which should be of
 * the same size level as the chunk tree.  This slightly increases mount time.
 */
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
7652 7653
	u64 prev_devid = 0;
	u64 prev_dev_ext_end = 0;
7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	while (1) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_dev_extent *dext;
		int slot = path->slots[0];
		u64 chunk_offset;
		u64 physical_offset;
		u64 physical_len;
		u64 devid;

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		devid = key.objectid;
		physical_offset = key.offset;

		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
		physical_len = btrfs_dev_extent_length(leaf, dext);

7698 7699 7700 7701 7702 7703 7704 7705 7706
		/* Check if this dev extent overlaps with the previous one */
		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
			btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
				  devid, physical_offset, prev_dev_ext_end);
			ret = -EUCLEAN;
			goto out;
		}

7707 7708 7709 7710
		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
					    physical_offset, physical_len);
		if (ret < 0)
			goto out;
7711 7712 7713
		prev_devid = devid;
		prev_dev_ext_end = physical_offset + physical_len;

7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}

	/* Ensure all chunks have corresponding dev extents */
	ret = verify_chunk_dev_extent_mapping(fs_info);
out:
	btrfs_free_path(path);
	return ret;
}
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752

/*
 * Check whether the given block group or device is pinned by any inode being
 * used as a swapfile.
 */
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
	struct btrfs_swapfile_pin *sp;
	struct rb_node *node;

	spin_lock(&fs_info->swapfile_pins_lock);
	node = fs_info->swapfile_pins.rb_node;
	while (node) {
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
		if (ptr < sp->ptr)
			node = node->rb_left;
		else if (ptr > sp->ptr)
			node = node->rb_right;
		else
			break;
	}
	spin_unlock(&fs_info->swapfile_pins_lock);
	return node != NULL;
}