omap-dma.c 29.2 KB
Newer Older
1 2 3 4 5 6 7
/*
 * OMAP DMAengine support
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
8
#include <linux/delay.h>
9 10 11 12 13 14 15 16 17 18 19
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
20 21
#include <linux/of_dma.h>
#include <linux/of_device.h>
22 23

#include "virt-dma.h"
24

25 26 27 28 29
struct omap_dmadev {
	struct dma_device ddev;
	spinlock_t lock;
	struct tasklet_struct task;
	struct list_head pending;
30 31
	void __iomem *base;
	const struct omap_dma_reg *reg_map;
32
	struct omap_system_dma_plat_info *plat;
33 34 35 36
	bool legacy;
	spinlock_t irq_lock;
	uint32_t irq_enable_mask;
	struct omap_chan *lch_map[32];
37 38 39 40 41
};

struct omap_chan {
	struct virt_dma_chan vc;
	struct list_head node;
42 43
	void __iomem *channel_base;
	const struct omap_dma_reg *reg_map;
44
	uint32_t ccr;
45 46 47

	struct dma_slave_config	cfg;
	unsigned dma_sig;
48
	bool cyclic;
49
	bool paused;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

	int dma_ch;
	struct omap_desc *desc;
	unsigned sgidx;
};

struct omap_sg {
	dma_addr_t addr;
	uint32_t en;		/* number of elements (24-bit) */
	uint32_t fn;		/* number of frames (16-bit) */
};

struct omap_desc {
	struct virt_dma_desc vd;
	enum dma_transfer_direction dir;
	dma_addr_t dev_addr;

67
	int16_t fi;		/* for OMAP_DMA_SYNC_PACKET */
68
	uint8_t es;		/* CSDP_DATA_TYPE_xxx */
69
	uint32_t ccr;		/* CCR value */
70
	uint16_t clnk_ctrl;	/* CLNK_CTRL value */
71
	uint16_t cicr;		/* CICR value */
72
	uint32_t csdp;		/* CSDP value */
73 74 75 76 77

	unsigned sglen;
	struct omap_sg sg[0];
};

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
enum {
	CCR_FS			= BIT(5),
	CCR_READ_PRIORITY	= BIT(6),
	CCR_ENABLE		= BIT(7),
	CCR_AUTO_INIT		= BIT(8),	/* OMAP1 only */
	CCR_REPEAT		= BIT(9),	/* OMAP1 only */
	CCR_OMAP31_DISABLE	= BIT(10),	/* OMAP1 only */
	CCR_SUSPEND_SENSITIVE	= BIT(8),	/* OMAP2+ only */
	CCR_RD_ACTIVE		= BIT(9),	/* OMAP2+ only */
	CCR_WR_ACTIVE		= BIT(10),	/* OMAP2+ only */
	CCR_SRC_AMODE_CONSTANT	= 0 << 12,
	CCR_SRC_AMODE_POSTINC	= 1 << 12,
	CCR_SRC_AMODE_SGLIDX	= 2 << 12,
	CCR_SRC_AMODE_DBLIDX	= 3 << 12,
	CCR_DST_AMODE_CONSTANT	= 0 << 14,
	CCR_DST_AMODE_POSTINC	= 1 << 14,
	CCR_DST_AMODE_SGLIDX	= 2 << 14,
	CCR_DST_AMODE_DBLIDX	= 3 << 14,
	CCR_CONSTANT_FILL	= BIT(16),
	CCR_TRANSPARENT_COPY	= BIT(17),
	CCR_BS			= BIT(18),
	CCR_SUPERVISOR		= BIT(22),
	CCR_PREFETCH		= BIT(23),
	CCR_TRIGGER_SRC		= BIT(24),
	CCR_BUFFERING_DISABLE	= BIT(25),
	CCR_WRITE_PRIORITY	= BIT(26),
	CCR_SYNC_ELEMENT	= 0,
	CCR_SYNC_FRAME		= CCR_FS,
	CCR_SYNC_BLOCK		= CCR_BS,
	CCR_SYNC_PACKET		= CCR_BS | CCR_FS,

	CSDP_DATA_TYPE_8	= 0,
	CSDP_DATA_TYPE_16	= 1,
	CSDP_DATA_TYPE_32	= 2,
	CSDP_SRC_PORT_EMIFF	= 0 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_EMIFS	= 1 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T1	= 2 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_TIPB	= 3 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T2	= 4 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_MPUI	= 5 << 2, /* OMAP1 only */
	CSDP_SRC_PACKED		= BIT(6),
	CSDP_SRC_BURST_1	= 0 << 7,
	CSDP_SRC_BURST_16	= 1 << 7,
	CSDP_SRC_BURST_32	= 2 << 7,
	CSDP_SRC_BURST_64	= 3 << 7,
	CSDP_DST_PORT_EMIFF	= 0 << 9, /* OMAP1 only */
	CSDP_DST_PORT_EMIFS	= 1 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T1	= 2 << 9, /* OMAP1 only */
	CSDP_DST_PORT_TIPB	= 3 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T2	= 4 << 9, /* OMAP1 only */
	CSDP_DST_PORT_MPUI	= 5 << 9, /* OMAP1 only */
	CSDP_DST_PACKED		= BIT(13),
	CSDP_DST_BURST_1	= 0 << 14,
	CSDP_DST_BURST_16	= 1 << 14,
	CSDP_DST_BURST_32	= 2 << 14,
	CSDP_DST_BURST_64	= 3 << 14,

	CICR_TOUT_IE		= BIT(0),	/* OMAP1 only */
	CICR_DROP_IE		= BIT(1),
	CICR_HALF_IE		= BIT(2),
	CICR_FRAME_IE		= BIT(3),
	CICR_LAST_IE		= BIT(4),
	CICR_BLOCK_IE		= BIT(5),
	CICR_PKT_IE		= BIT(7),	/* OMAP2+ only */
	CICR_TRANS_ERR_IE	= BIT(8),	/* OMAP2+ only */
	CICR_SUPERVISOR_ERR_IE	= BIT(10),	/* OMAP2+ only */
	CICR_MISALIGNED_ERR_IE	= BIT(11),	/* OMAP2+ only */
	CICR_DRAIN_IE		= BIT(12),	/* OMAP2+ only */
	CICR_SUPER_BLOCK_IE	= BIT(14),	/* OMAP2+ only */

	CLNK_CTRL_ENABLE_LNK	= BIT(15),
};

151
static const unsigned es_bytes[] = {
152 153 154
	[CSDP_DATA_TYPE_8] = 1,
	[CSDP_DATA_TYPE_16] = 2,
	[CSDP_DATA_TYPE_32] = 4,
155 156
};

157 158 159 160
static struct of_dma_filter_info omap_dma_info = {
	.filter_fn = omap_dma_filter_fn,
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
{
	return container_of(d, struct omap_dmadev, ddev);
}

static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
{
	return container_of(c, struct omap_chan, vc.chan);
}

static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct omap_desc, vd.tx);
}

static void omap_dma_desc_free(struct virt_dma_desc *vd)
{
	kfree(container_of(vd, struct omap_desc, vd));
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
{
	switch (type) {
	case OMAP_DMA_REG_16BIT:
		writew_relaxed(val, addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		writew_relaxed(val, addr);
		writew_relaxed(val >> 16, addr + 2);
		break;
	case OMAP_DMA_REG_32BIT:
		writel_relaxed(val, addr);
		break;
	default:
		WARN_ON(1);
	}
}

static unsigned omap_dma_read(unsigned type, void __iomem *addr)
{
	unsigned val;

	switch (type) {
	case OMAP_DMA_REG_16BIT:
		val = readw_relaxed(addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		val = readw_relaxed(addr);
		val |= readw_relaxed(addr + 2) << 16;
		break;
	case OMAP_DMA_REG_32BIT:
		val = readl_relaxed(addr);
		break;
	default:
		WARN_ON(1);
		val = 0;
	}

	return val;
}

222 223
static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
{
224 225 226 227 228
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	omap_dma_write(val, r->type, od->base + r->offset);
229 230 231 232
}

static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
{
233 234 235 236 237
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	return omap_dma_read(r->type, od->base + r->offset);
238 239 240 241
}

static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
{
242 243 244
	const struct omap_dma_reg *r = c->reg_map + reg;

	omap_dma_write(val, r->type, c->channel_base + r->offset);
245 246 247 248
}

static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
{
249 250 251
	const struct omap_dma_reg *r = c->reg_map + reg;

	return omap_dma_read(r->type, c->channel_base + r->offset);
252 253
}

254 255 256
static void omap_dma_clear_csr(struct omap_chan *c)
{
	if (dma_omap1())
257
		omap_dma_chan_read(c, CSR);
258
	else
259
		omap_dma_chan_write(c, CSR, ~0);
260 261
}

262 263 264 265 266 267 268 269 270 271
static unsigned omap_dma_get_csr(struct omap_chan *c)
{
	unsigned val = omap_dma_chan_read(c, CSR);

	if (!dma_omap1())
		omap_dma_chan_write(c, CSR, val);

	return val;
}

272 273 274 275
static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
	unsigned lch)
{
	c->channel_base = od->base + od->plat->channel_stride * lch;
276 277

	od->lch_map[lch] = c;
278 279
}

280 281 282 283 284
static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);

	if (__dma_omap15xx(od->plat->dma_attr))
285
		omap_dma_chan_write(c, CPC, 0);
286
	else
287
		omap_dma_chan_write(c, CDAC, 0);
288

289
	omap_dma_clear_csr(c);
290 291

	/* Enable interrupts */
292
	omap_dma_chan_write(c, CICR, d->cicr);
293

294
	/* Enable channel */
295
	omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
296 297 298 299 300 301 302 303
}

static void omap_dma_stop(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	/* disable irq */
304
	omap_dma_chan_write(c, CICR, 0);
305

306
	omap_dma_clear_csr(c);
307

308
	val = omap_dma_chan_read(c, CCR);
309
	if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
310 311 312
		uint32_t sysconfig;
		unsigned i;

313
		sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
314 315
		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
316
		omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
317

318
		val = omap_dma_chan_read(c, CCR);
319
		val &= ~CCR_ENABLE;
320
		omap_dma_chan_write(c, CCR, val);
321 322 323

		/* Wait for sDMA FIFO to drain */
		for (i = 0; ; i++) {
324
			val = omap_dma_chan_read(c, CCR);
325
			if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
326 327 328 329 330 331 332 333
				break;

			if (i > 100)
				break;

			udelay(5);
		}

334
		if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
335 336 337 338
			dev_err(c->vc.chan.device->dev,
				"DMA drain did not complete on lch %d\n",
			        c->dma_ch);

339
		omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
340
	} else {
341
		val &= ~CCR_ENABLE;
342
		omap_dma_chan_write(c, CCR, val);
343 344 345 346 347
	}

	mb();

	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
348
		val = omap_dma_chan_read(c, CLNK_CTRL);
349 350 351 352

		if (dma_omap1())
			val |= 1 << 14; /* set the STOP_LNK bit */
		else
353
			val &= ~CLNK_CTRL_ENABLE_LNK;
354

355
		omap_dma_chan_write(c, CLNK_CTRL, val);
356 357 358
	}
}

359 360 361 362
static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
	unsigned idx)
{
	struct omap_sg *sg = d->sg + idx;
363
	unsigned cxsa, cxei, cxfi;
364 365

	if (d->dir == DMA_DEV_TO_MEM) {
366 367 368
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
369
	} else {
370 371 372
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
373 374
	}

375 376 377 378 379
	omap_dma_chan_write(c, cxsa, sg->addr);
	omap_dma_chan_write(c, cxei, 0);
	omap_dma_chan_write(c, cxfi, 0);
	omap_dma_chan_write(c, CEN, sg->en);
	omap_dma_chan_write(c, CFN, sg->fn);
380

381
	omap_dma_start(c, d);
382 383 384 385 386 387
}

static void omap_dma_start_desc(struct omap_chan *c)
{
	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
	struct omap_desc *d;
388
	unsigned cxsa, cxei, cxfi;
389

390 391 392 393 394 395 396 397 398 399
	if (!vd) {
		c->desc = NULL;
		return;
	}

	list_del(&vd->node);

	c->desc = d = to_omap_dma_desc(&vd->tx);
	c->sgidx = 0;

400 401 402 403 404 405 406
	/*
	 * This provides the necessary barrier to ensure data held in
	 * DMA coherent memory is visible to the DMA engine prior to
	 * the transfer starting.
	 */
	mb();

407
	omap_dma_chan_write(c, CCR, d->ccr);
408
	if (dma_omap1())
409
		omap_dma_chan_write(c, CCR2, d->ccr >> 16);
410

411
	if (d->dir == DMA_DEV_TO_MEM) {
412 413 414
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
415
	} else {
416 417 418
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
419 420
	}

421 422 423 424 425
	omap_dma_chan_write(c, cxsa, d->dev_addr);
	omap_dma_chan_write(c, cxei, 0);
	omap_dma_chan_write(c, cxfi, d->fi);
	omap_dma_chan_write(c, CSDP, d->csdp);
	omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
426

427 428 429 430 431 432 433 434 435 436 437 438
	omap_dma_start_sg(c, d, 0);
}

static void omap_dma_callback(int ch, u16 status, void *data)
{
	struct omap_chan *c = data;
	struct omap_desc *d;
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	d = c->desc;
	if (d) {
439 440 441 442 443 444 445
		if (!c->cyclic) {
			if (++c->sgidx < d->sglen) {
				omap_dma_start_sg(c, d, c->sgidx);
			} else {
				omap_dma_start_desc(c);
				vchan_cookie_complete(&d->vd);
			}
446
		} else {
447
			vchan_cyclic_callback(&d->vd);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		}
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

/*
 * This callback schedules all pending channels.  We could be more
 * clever here by postponing allocation of the real DMA channels to
 * this point, and freeing them when our virtual channel becomes idle.
 *
 * We would then need to deal with 'all channels in-use'
 */
static void omap_dma_sched(unsigned long data)
{
	struct omap_dmadev *d = (struct omap_dmadev *)data;
	LIST_HEAD(head);

	spin_lock_irq(&d->lock);
	list_splice_tail_init(&d->pending, &head);
	spin_unlock_irq(&d->lock);

	while (!list_empty(&head)) {
		struct omap_chan *c = list_first_entry(&head,
			struct omap_chan, node);

		spin_lock_irq(&c->vc.lock);
		list_del_init(&c->node);
		omap_dma_start_desc(c);
		spin_unlock_irq(&c->vc.lock);
	}
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static irqreturn_t omap_dma_irq(int irq, void *devid)
{
	struct omap_dmadev *od = devid;
	unsigned status, channel;

	spin_lock(&od->irq_lock);

	status = omap_dma_glbl_read(od, IRQSTATUS_L1);
	status &= od->irq_enable_mask;
	if (status == 0) {
		spin_unlock(&od->irq_lock);
		return IRQ_NONE;
	}

	while ((channel = ffs(status)) != 0) {
		unsigned mask, csr;
		struct omap_chan *c;

		channel -= 1;
		mask = BIT(channel);
		status &= ~mask;

		c = od->lch_map[channel];
		if (c == NULL) {
			/* This should never happen */
			dev_err(od->ddev.dev, "invalid channel %u\n", channel);
			continue;
		}

		csr = omap_dma_get_csr(c);
		omap_dma_glbl_write(od, IRQSTATUS_L1, mask);

		omap_dma_callback(channel, csr, c);
	}

	spin_unlock(&od->irq_lock);

	return IRQ_HANDLED;
}

520 521
static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
{
522
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
523
	struct omap_chan *c = to_omap_dma_chan(chan);
524 525
	int ret;

526 527 528 529 530 531 532
	if (od->legacy) {
		ret = omap_request_dma(c->dma_sig, "DMA engine",
				       omap_dma_callback, c, &c->dma_ch);
	} else {
		ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
				       &c->dma_ch);
	}
533

534 535
	dev_dbg(od->ddev.dev, "allocating channel %u for %u\n",
		c->dma_ch, c->dma_sig);
536

537
	if (ret >= 0) {
538 539
		omap_dma_assign(od, c, c->dma_ch);

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		if (!od->legacy) {
			unsigned val;

			spin_lock_irq(&od->irq_lock);
			val = BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQSTATUS_L1, val);
			od->irq_enable_mask |= val;
			omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);

			val = omap_dma_glbl_read(od, IRQENABLE_L0);
			val &= ~BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQENABLE_L0, val);
			spin_unlock_irq(&od->irq_lock);
		}
	}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	if (dma_omap1()) {
		if (__dma_omap16xx(od->plat->dma_attr)) {
			c->ccr = CCR_OMAP31_DISABLE;
			/* Duplicate what plat-omap/dma.c does */
			c->ccr |= c->dma_ch + 1;
		} else {
			c->ccr = c->dma_sig & 0x1f;
		}
	} else {
		c->ccr = c->dma_sig & 0x1f;
		c->ccr |= (c->dma_sig & ~0x1f) << 14;
	}
	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
		c->ccr |= CCR_BUFFERING_DISABLE;

571
	return ret;
572 573 574 575
}

static void omap_dma_free_chan_resources(struct dma_chan *chan)
{
576
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
577 578
	struct omap_chan *c = to_omap_dma_chan(chan);

579 580 581 582 583 584 585
	if (!od->legacy) {
		spin_lock_irq(&od->irq_lock);
		od->irq_enable_mask &= ~BIT(c->dma_ch);
		omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
		spin_unlock_irq(&od->irq_lock);
	}

586
	c->channel_base = NULL;
587
	od->lch_map[c->dma_ch] = NULL;
588 589 590
	vchan_free_chan_resources(&c->vc);
	omap_free_dma(c->dma_ch);

591
	dev_dbg(od->ddev.dev, "freeing channel for %u\n", c->dma_sig);
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static size_t omap_dma_sg_size(struct omap_sg *sg)
{
	return sg->en * sg->fn;
}

static size_t omap_dma_desc_size(struct omap_desc *d)
{
	unsigned i;
	size_t size;

	for (size = i = 0; i < d->sglen; i++)
		size += omap_dma_sg_size(&d->sg[i]);

	return size * es_bytes[d->es];
}

static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
{
	unsigned i;
	size_t size, es_size = es_bytes[d->es];

	for (size = i = 0; i < d->sglen; i++) {
		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;

		if (size)
			size += this_size;
		else if (addr >= d->sg[i].addr &&
			 addr < d->sg[i].addr + this_size)
			size += d->sg[i].addr + this_size - addr;
	}
	return size;
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
/*
 * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
 * read before the DMA controller finished disabling the channel.
 */
static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	val = omap_dma_chan_read(c, reg);
	if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
		val = omap_dma_chan_read(c, reg);

	return val;
}

643 644 645
static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
646
	dma_addr_t addr, cdac;
647

648
	if (__dma_omap15xx(od->plat->dma_attr)) {
649
		addr = omap_dma_chan_read(c, CPC);
650 651 652
	} else {
		addr = omap_dma_chan_read_3_3(c, CSAC);
		cdac = omap_dma_chan_read_3_3(c, CDAC);
653 654 655 656 657 658

		/*
		 * CDAC == 0 indicates that the DMA transfer on the channel has
		 * not been started (no data has been transferred so far).
		 * Return the programmed source start address in this case.
		 */
659
		if (cdac == 0)
660
			addr = omap_dma_chan_read(c, CSSA);
661 662 663
	}

	if (dma_omap1())
664
		addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
665 666 667 668 669 670 671 672 673

	return addr;
}

static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	dma_addr_t addr;

674
	if (__dma_omap15xx(od->plat->dma_attr)) {
675
		addr = omap_dma_chan_read(c, CPC);
676 677
	} else {
		addr = omap_dma_chan_read_3_3(c, CDAC);
678 679

		/*
680 681 682 683
		 * CDAC == 0 indicates that the DMA transfer on the channel
		 * has not been started (no data has been transferred so
		 * far).  Return the programmed destination start address in
		 * this case.
684 685
		 */
		if (addr == 0)
686
			addr = omap_dma_chan_read(c, CDSA);
687 688 689
	}

	if (dma_omap1())
690
		addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
691 692 693 694

	return addr;
}

695 696 697
static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
	dma_cookie_t cookie, struct dma_tx_state *txstate)
{
698 699 700 701 702 703
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
704
	if (ret == DMA_COMPLETE || !txstate)
705 706 707 708 709 710 711 712 713 714 715
		return ret;

	spin_lock_irqsave(&c->vc.lock, flags);
	vd = vchan_find_desc(&c->vc, cookie);
	if (vd) {
		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
		struct omap_desc *d = c->desc;
		dma_addr_t pos;

		if (d->dir == DMA_MEM_TO_DEV)
716
			pos = omap_dma_get_src_pos(c);
717
		else if (d->dir == DMA_DEV_TO_MEM)
718
			pos = omap_dma_get_dst_pos(c);
719 720 721 722 723 724 725 726 727 728
		else
			pos = 0;

		txstate->residue = omap_dma_desc_size_pos(d, pos);
	} else {
		txstate->residue = 0;
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);

	return ret;
729 730 731 732 733 734 735 736 737
}

static void omap_dma_issue_pending(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	if (vchan_issue_pending(&c->vc) && !c->desc) {
738 739 740 741 742 743 744 745 746 747 748 749 750 751
		/*
		 * c->cyclic is used only by audio and in this case the DMA need
		 * to be started without delay.
		 */
		if (!c->cyclic) {
			struct omap_dmadev *d = to_omap_dma_dev(chan->device);
			spin_lock(&d->lock);
			if (list_empty(&c->node))
				list_add_tail(&c->node, &d->pending);
			spin_unlock(&d->lock);
			tasklet_schedule(&d->task);
		} else {
			omap_dma_start_desc(c);
		}
752 753 754 755 756 757 758 759
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
760
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
761 762 763 764 765
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct scatterlist *sgent;
	struct omap_desc *d;
	dma_addr_t dev_addr;
766
	unsigned i, j = 0, es, en, frame_bytes;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
785
		es = CSDP_DATA_TYPE_8;
786 787
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
788
		es = CSDP_DATA_TYPE_16;
789 790
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
791
		es = CSDP_DATA_TYPE_32;
792 793 794 795 796 797 798 799 800 801 802 803 804
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->es = es;
805

806
	d->ccr = c->ccr | CCR_SYNC_FRAME;
807
	if (dir == DMA_DEV_TO_MEM)
808
		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
809
	else
810
		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
811

812
	d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
813
	d->csdp = es;
814

815
	if (dma_omap1()) {
816
		d->cicr |= CICR_TOUT_IE;
817 818

		if (dir == DMA_DEV_TO_MEM)
819
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
820
		else
821
			d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
822
	} else {
823
		if (dir == DMA_DEV_TO_MEM)
824
			d->ccr |= CCR_TRIGGER_SRC;
825

826
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
827
	}
828 829
	if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
		d->clnk_ctrl = c->dma_ch;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

	/*
	 * Build our scatterlist entries: each contains the address,
	 * the number of elements (EN) in each frame, and the number of
	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
	 *
	 * Burst size translates to number of elements with frame sync.
	 * Note: DMA engine defines burst to be the number of dev-width
	 * transfers.
	 */
	en = burst;
	frame_bytes = es_bytes[es] * en;
	for_each_sg(sgl, sgent, sglen, i) {
		d->sg[j].addr = sg_dma_address(sgent);
		d->sg[j].en = en;
		d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
		j++;
	}

	d->sglen = j;

	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

854 855
static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
856
	size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
857
{
858
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
859 860 861 862
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct omap_desc *d;
	dma_addr_t dev_addr;
863
	unsigned es;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
882
		es = CSDP_DATA_TYPE_8;
883 884
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
885
		es = CSDP_DATA_TYPE_16;
886 887
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
888
		es = CSDP_DATA_TYPE_32;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->fi = burst;
	d->es = es;
	d->sg[0].addr = buf_addr;
	d->sg[0].en = period_len / es_bytes[es];
	d->sg[0].fn = buf_len / period_len;
	d->sglen = 1;
907

908
	d->ccr = c->ccr;
909
	if (dir == DMA_DEV_TO_MEM)
910
		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
911
	else
912
		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
913

914
	d->cicr = CICR_DROP_IE;
915
	if (flags & DMA_PREP_INTERRUPT)
916
		d->cicr |= CICR_FRAME_IE;
917

918 919 920
	d->csdp = es;

	if (dma_omap1()) {
921
		d->cicr |= CICR_TOUT_IE;
922 923

		if (dir == DMA_DEV_TO_MEM)
924
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
925
		else
926
			d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
927
	} else {
928
		if (burst)
929 930 931
			d->ccr |= CCR_SYNC_PACKET;
		else
			d->ccr |= CCR_SYNC_ELEMENT;
932 933

		if (dir == DMA_DEV_TO_MEM)
934
			d->ccr |= CCR_TRIGGER_SRC;
935

936
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
937

938
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
939 940
	}

941 942 943 944 945
	if (__dma_omap15xx(od->plat->dma_attr))
		d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
	else
		d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;

946
	c->cyclic = true;
947

948
	return vchan_tx_prep(&c->vc, &d->vd, flags);
949 950
}

951
static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
952
{
953 954
	struct omap_chan *c = to_omap_dma_chan(chan);

955 956 957 958 959 960 961 962 963
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
		return -EINVAL;

	memcpy(&c->cfg, cfg, sizeof(c->cfg));

	return 0;
}

964
static int omap_dma_terminate_all(struct dma_chan *chan)
965
{
966
	struct omap_chan *c = to_omap_dma_chan(chan);
967 968 969 970 971 972 973 974 975 976 977 978 979
	struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&c->vc.lock, flags);

	/* Prevent this channel being scheduled */
	spin_lock(&d->lock);
	list_del_init(&c->node);
	spin_unlock(&d->lock);

	/*
	 * Stop DMA activity: we assume the callback will not be called
980
	 * after omap_dma_stop() returns (even if it does, it will see
981 982 983 984
	 * c->desc is NULL and exit.)
	 */
	if (c->desc) {
		c->desc = NULL;
985 986
		/* Avoid stopping the dma twice */
		if (!c->paused)
987
			omap_dma_stop(c);
988 989
	}

990 991
	if (c->cyclic) {
		c->cyclic = false;
992
		c->paused = false;
993 994
	}

995 996 997 998 999 1000 1001
	vchan_get_all_descriptors(&c->vc, &head);
	spin_unlock_irqrestore(&c->vc.lock, flags);
	vchan_dma_desc_free_list(&c->vc, &head);

	return 0;
}

1002
static int omap_dma_pause(struct dma_chan *chan)
1003
{
1004 1005
	struct omap_chan *c = to_omap_dma_chan(chan);

1006 1007 1008 1009 1010
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (!c->paused) {
1011
		omap_dma_stop(c);
1012 1013 1014 1015
		c->paused = true;
	}

	return 0;
1016 1017
}

1018
static int omap_dma_resume(struct dma_chan *chan)
1019
{
1020 1021
	struct omap_chan *c = to_omap_dma_chan(chan);

1022 1023 1024 1025 1026
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (c->paused) {
1027 1028
		mb();

1029 1030 1031
		/* Restore channel link register */
		omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);

1032
		omap_dma_start(c, c->desc);
1033 1034 1035 1036
		c->paused = false;
	}

	return 0;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig)
{
	struct omap_chan *c;

	c = kzalloc(sizeof(*c), GFP_KERNEL);
	if (!c)
		return -ENOMEM;

1047
	c->reg_map = od->reg_map;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	c->dma_sig = dma_sig;
	c->vc.desc_free = omap_dma_desc_free;
	vchan_init(&c->vc, &od->ddev);
	INIT_LIST_HEAD(&c->node);

	return 0;
}

static void omap_dma_free(struct omap_dmadev *od)
{
	tasklet_kill(&od->task);
	while (!list_empty(&od->ddev.channels)) {
		struct omap_chan *c = list_first_entry(&od->ddev.channels,
			struct omap_chan, vc.chan.device_node);

		list_del(&c->vc.chan.device_node);
		tasklet_kill(&c->vc.task);
		kfree(c);
	}
}

1069 1070 1071 1072 1073 1074 1075 1076
#define OMAP_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

static int omap_dma_device_slave_caps(struct dma_chan *dchan,
				      struct dma_slave_caps *caps)
{
	caps->src_addr_widths = OMAP_DMA_BUSWIDTHS;
1077
	caps->dst_addr_widths = OMAP_DMA_BUSWIDTHS;
1078 1079 1080 1081 1082 1083 1084 1085
	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	caps->cmd_pause = true;
	caps->cmd_terminate = true;
	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	return 0;
}

1086 1087 1088
static int omap_dma_probe(struct platform_device *pdev)
{
	struct omap_dmadev *od;
1089
	struct resource *res;
1090
	int rc, i, irq;
1091

1092
	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1093 1094 1095
	if (!od)
		return -ENOMEM;

1096 1097 1098 1099 1100
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	od->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(od->base))
		return PTR_ERR(od->base);

1101 1102 1103 1104
	od->plat = omap_get_plat_info();
	if (!od->plat)
		return -EPROBE_DEFER;

1105 1106
	od->reg_map = od->plat->reg_map;

1107
	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1108
	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1109 1110 1111 1112 1113
	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
	od->ddev.device_tx_status = omap_dma_tx_status;
	od->ddev.device_issue_pending = omap_dma_issue_pending;
	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1114
	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1115 1116 1117 1118
	od->ddev.device_config = omap_dma_config;
	od->ddev.device_pause = omap_dma_pause;
	od->ddev.device_resume = omap_dma_resume;
	od->ddev.device_terminate_all = omap_dma_terminate_all;
1119
	od->ddev.device_slave_caps = omap_dma_device_slave_caps;
1120 1121 1122 1123
	od->ddev.dev = &pdev->dev;
	INIT_LIST_HEAD(&od->ddev.channels);
	INIT_LIST_HEAD(&od->pending);
	spin_lock_init(&od->lock);
1124
	spin_lock_init(&od->irq_lock);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	tasklet_init(&od->task, omap_dma_sched, (unsigned long)od);

	for (i = 0; i < 127; i++) {
		rc = omap_dma_chan_init(od, i);
		if (rc) {
			omap_dma_free(od);
			return rc;
		}
	}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	irq = platform_get_irq(pdev, 1);
	if (irq <= 0) {
		dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
		od->legacy = true;
	} else {
		/* Disable all interrupts */
		od->irq_enable_mask = 0;
		omap_dma_glbl_write(od, IRQENABLE_L1, 0);

		rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
				      IRQF_SHARED, "omap-dma-engine", od);
		if (rc)
			return rc;
	}

1151 1152 1153 1154 1155
	rc = dma_async_device_register(&od->ddev);
	if (rc) {
		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
			rc);
		omap_dma_free(od);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		return rc;
	}

	platform_set_drvdata(pdev, od);

	if (pdev->dev.of_node) {
		omap_dma_info.dma_cap = od->ddev.cap_mask;

		/* Device-tree DMA controller registration */
		rc = of_dma_controller_register(pdev->dev.of_node,
				of_dma_simple_xlate, &omap_dma_info);
		if (rc) {
			pr_warn("OMAP-DMA: failed to register DMA controller\n");
			dma_async_device_unregister(&od->ddev);
			omap_dma_free(od);
		}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	}

	dev_info(&pdev->dev, "OMAP DMA engine driver\n");

	return rc;
}

static int omap_dma_remove(struct platform_device *pdev)
{
	struct omap_dmadev *od = platform_get_drvdata(pdev);

1183 1184 1185
	if (pdev->dev.of_node)
		of_dma_controller_free(pdev->dev.of_node);

1186
	dma_async_device_unregister(&od->ddev);
1187 1188 1189 1190 1191 1192

	if (!od->legacy) {
		/* Disable all interrupts */
		omap_dma_glbl_write(od, IRQENABLE_L0, 0);
	}

1193 1194 1195 1196 1197
	omap_dma_free(od);

	return 0;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static const struct of_device_id omap_dma_match[] = {
	{ .compatible = "ti,omap2420-sdma", },
	{ .compatible = "ti,omap2430-sdma", },
	{ .compatible = "ti,omap3430-sdma", },
	{ .compatible = "ti,omap3630-sdma", },
	{ .compatible = "ti,omap4430-sdma", },
	{},
};
MODULE_DEVICE_TABLE(of, omap_dma_match);

1208 1209 1210 1211 1212
static struct platform_driver omap_dma_driver = {
	.probe	= omap_dma_probe,
	.remove	= omap_dma_remove,
	.driver = {
		.name = "omap-dma-engine",
1213
		.of_match_table = of_match_ptr(omap_dma_match),
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	},
};

bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &omap_dma_driver.driver) {
		struct omap_chan *c = to_omap_dma_chan(chan);
		unsigned req = *(unsigned *)param;

		return req == c->dma_sig;
	}
	return false;
}
EXPORT_SYMBOL_GPL(omap_dma_filter_fn);

static int omap_dma_init(void)
{
1231
	return platform_driver_register(&omap_dma_driver);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
}
subsys_initcall(omap_dma_init);

static void __exit omap_dma_exit(void)
{
	platform_driver_unregister(&omap_dma_driver);
}
module_exit(omap_dma_exit);

MODULE_AUTHOR("Russell King");
MODULE_LICENSE("GPL");