mvneta.c 131.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
 *
 * Copyright (C) 2012 Marvell
 *
 * Rami Rosen <rosenr@marvell.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

14 15
#include <linux/clk.h>
#include <linux/cpu.h>
16
#include <linux/etherdevice.h>
17
#include <linux/if_vlan.h>
18 19
#include <linux/inetdevice.h>
#include <linux/interrupt.h>
20
#include <linux/io.h>
21 22 23 24
#include <linux/kernel.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/netdevice.h>
25
#include <linux/of.h>
26
#include <linux/of_address.h>
27 28 29 30
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy.h>
R
Russell King 已提交
31
#include <linux/phylink.h>
32 33
#include <linux/platform_device.h>
#include <linux/skbuff.h>
34
#include <net/hwbm.h>
35
#include "mvneta_bm.h"
36 37 38
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
39 40 41

/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42
#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 44 45 46
#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
#define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
#define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 48 49 50 51 52 53 54 55 56 57 58 59
#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 61 62
#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 64 65 66 67 68 69 70 71 72 73 74
#define MVNETA_PORT_RX_RESET                    0x1cc0
#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
#define MVNETA_PHY_ADDR                         0x2000
#define      MVNETA_PHY_ADDR_MASK               0x1f
#define MVNETA_MBUS_RETRY                       0x2010
#define MVNETA_UNIT_INTR_CAUSE                  0x2080
#define MVNETA_UNIT_CONTROL                     0x20B0
#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE                 0x2290
75
#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#define MVNETA_PORT_CONFIG                      0x2400
#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
						 MVNETA_DEF_RXQ_ARP(q)	 | \
						 MVNETA_DEF_RXQ_TCP(q)	 | \
						 MVNETA_DEF_RXQ_UDP(q)	 | \
						 MVNETA_DEF_RXQ_BPDU(q)	 | \
						 MVNETA_TX_UNSET_ERR_SUM | \
						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND                0x2404
#define MVNETA_MAC_ADDR_LOW                      0x2414
#define MVNETA_MAC_ADDR_HIGH                     0x2418
#define MVNETA_SDMA_CONFIG                       0x241c
#define      MVNETA_SDMA_BRST_SIZE_16            4
#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100
#define      MVNETA_DESC_SWAP                    BIT(6)
101 102 103 104 105
#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
#define MVNETA_PORT_STATUS                       0x2444
#define      MVNETA_TX_IN_PRGRS                  BIT(1)
#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106
#define MVNETA_SERDES_CFG			 0x24A0
107
#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108
#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 110 111 112 113 114
#define MVNETA_TYPE_PRIO                         0x24bc
#define      MVNETA_FORCE_UNI                    BIT(21)
#define MVNETA_TXQ_CMD_1                         0x24e4
#define MVNETA_TXQ_CMD                           0x2448
#define      MVNETA_TXQ_DISABLE_SHIFT            8
#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 116
#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 118
#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119
#define MVNETA_ACC_MODE                          0x2500
120
#define MVNETA_BM_ADDRESS                        0x2504
121 122 123
#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124
#define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125
#define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126
#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127

128 129 130 131 132 133 134
/* Exception Interrupt Port/Queue Cause register
 *
 * Their behavior depend of the mapping done using the PCPX2Q
 * registers. For a given CPU if the bit associated to a queue is not
 * set, then for the register a read from this CPU will always return
 * 0 and a write won't do anything
 */
135

136 137
#define MVNETA_INTR_NEW_CAUSE                    0x25a0
#define MVNETA_INTR_NEW_MASK                     0x25a4
138 139 140 141 142 143 144 145 146 147 148 149

/* bits  0..7  = TXQ SENT, one bit per queue.
 * bits  8..15 = RXQ OCCUP, one bit per queue.
 * bits 16..23 = RXQ FREE, one bit per queue.
 * bit  29 = OLD_REG_SUM, see old reg ?
 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 * bit  31 = MISC_SUM,   one bit for 4 ports
 */
#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150
#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151

152 153
#define MVNETA_INTR_OLD_CAUSE                    0x25a8
#define MVNETA_INTR_OLD_MASK                     0x25ac
154 155

/* Data Path Port/Queue Cause Register */
156 157
#define MVNETA_INTR_MISC_CAUSE                   0x25b0
#define MVNETA_INTR_MISC_MASK                    0x25b4
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
#define      MVNETA_CAUSE_PTP                    BIT(4)

#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)

#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))

#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))

180 181
#define MVNETA_INTR_ENABLE                       0x25b8
#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182
#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183

184 185 186 187 188 189 190 191
#define MVNETA_RXQ_CMD                           0x2680
#define      MVNETA_RXQ_DISABLE_SHIFT            8
#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0                       0x2c00
#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
192
#define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
193 194
#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
#define MVNETA_GMAC_CTRL_2                       0x2c08
195
#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
196
#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
197 198 199 200 201 202 203 204 205 206 207
#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
#define MVNETA_GMAC_STATUS                       0x2c10
#define      MVNETA_GMAC_LINK_UP                 BIT(0)
#define      MVNETA_GMAC_SPEED_1000              BIT(1)
#define      MVNETA_GMAC_SPEED_100               BIT(2)
#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
R
Russell King 已提交
208 209
#define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
#define      MVNETA_GMAC_SYNC_OK                 BIT(14)
210 211 212
#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
213
#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
214 215
#define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
#define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
216 217
#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
218
#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
219 220
#define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
#define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
221
#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
222
#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
223
#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
224
#define MVNETA_MIB_COUNTERS_BASE                 0x3000
225 226 227 228 229 230 231 232 233 234
#define      MVNETA_MIB_LATE_COLLISION           0x7c
#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
#define MVNETA_DA_FILT_UCAST_BASE                0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
235
#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
236 237 238 239 240 241 242 243 244 245 246
#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
#define MVNETA_PORT_TX_RESET                     0x3cf0
#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
#define MVNETA_TX_MTU                            0x3e0c
#define MVNETA_TX_TOKEN_SIZE                     0x3e14
#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff

R
Russell King 已提交
247 248 249 250 251 252
#define MVNETA_LPI_CTRL_0                        0x2cc0
#define MVNETA_LPI_CTRL_1                        0x2cc4
#define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
#define MVNETA_LPI_CTRL_2                        0x2cc8
#define MVNETA_LPI_STATUS                        0x2ccc

253 254 255 256 257 258 259 260 261
#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff

/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

/* Various constants */

/* Coalescing */
262
#define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
263 264 265
#define MVNETA_RX_COAL_PKTS		32
#define MVNETA_RX_COAL_USEC		100

266
/* The two bytes Marvell header. Either contains a special value used
267 268 269 270 271 272 273 274 275 276 277
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVNETA_MH_SIZE			2

#define MVNETA_VLAN_TAG_LEN             4

278
#define MVNETA_TX_CSUM_DEF_SIZE		1600
279
#define MVNETA_TX_CSUM_MAX_SIZE		9800
280 281 282 283
#define MVNETA_ACC_MODE_EXT1		1
#define MVNETA_ACC_MODE_EXT2		2

#define MVNETA_MAX_DECODE_WIN		6
284 285 286 287 288 289 290 291

/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000

#define MVNETA_TX_MTU_MAX		0x3ffff

292 293 294 295 296
/* The RSS lookup table actually has 256 entries but we do not use
 * them yet
 */
#define MVNETA_RSS_LU_TABLE_SIZE	1

297
/* Max number of Rx descriptors */
298
#define MVNETA_MAX_RXD 512
299 300

/* Max number of Tx descriptors */
301
#define MVNETA_MAX_TXD 1024
302

303 304 305 306 307
/* Max number of allowed TCP segments for software TSO */
#define MVNETA_MAX_TSO_SEGS 100

#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)

308 309 310
/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE	32

311 312 313 314 315 316
/* Number of bytes to be taken into account by HW when putting incoming data
 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 */
#define MVNETA_RX_PKT_OFFSET_CORRECTION		64

317 318 319
#define MVNETA_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
	      ETH_HLEN + ETH_FCS_LEN,			     \
320
	      cache_line_size())
321

322 323 324 325
#define IS_TSO_HEADER(txq, addr) \
	((addr >= txq->tso_hdrs_phys) && \
	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))

326 327
#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
328

R
Russell King 已提交
329 330
enum {
	ETHTOOL_STAT_EEE_WAKEUP,
331 332
	ETHTOOL_STAT_SKB_ALLOC_ERR,
	ETHTOOL_STAT_REFILL_ERR,
R
Russell King 已提交
333 334 335
	ETHTOOL_MAX_STATS,
};

R
Russell King 已提交
336 337 338 339 340 341 342 343
struct mvneta_statistic {
	unsigned short offset;
	unsigned short type;
	const char name[ETH_GSTRING_LEN];
};

#define T_REG_32	32
#define T_REG_64	64
R
Russell King 已提交
344
#define T_SW		1
R
Russell King 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

static const struct mvneta_statistic mvneta_statistics[] = {
	{ 0x3000, T_REG_64, "good_octets_received", },
	{ 0x3010, T_REG_32, "good_frames_received", },
	{ 0x3008, T_REG_32, "bad_octets_received", },
	{ 0x3014, T_REG_32, "bad_frames_received", },
	{ 0x3018, T_REG_32, "broadcast_frames_received", },
	{ 0x301c, T_REG_32, "multicast_frames_received", },
	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
	{ 0x3058, T_REG_32, "good_fc_received", },
	{ 0x305c, T_REG_32, "bad_fc_received", },
	{ 0x3060, T_REG_32, "undersize_received", },
	{ 0x3064, T_REG_32, "fragments_received", },
	{ 0x3068, T_REG_32, "oversize_received", },
	{ 0x306c, T_REG_32, "jabber_received", },
	{ 0x3070, T_REG_32, "mac_receive_error", },
	{ 0x3074, T_REG_32, "bad_crc_event", },
	{ 0x3078, T_REG_32, "collision", },
	{ 0x307c, T_REG_32, "late_collision", },
	{ 0x2484, T_REG_32, "rx_discard", },
	{ 0x2488, T_REG_32, "rx_overrun", },
	{ 0x3020, T_REG_32, "frames_64_octets", },
	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
	{ 0x3038, T_REG_64, "good_octets_sent", },
	{ 0x3040, T_REG_32, "good_frames_sent", },
	{ 0x3044, T_REG_32, "excessive_collision", },
	{ 0x3048, T_REG_32, "multicast_frames_sent", },
	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
	{ 0x3054, T_REG_32, "fc_sent", },
	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
R
Russell King 已提交
379
	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
380 381
	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
R
Russell King 已提交
382 383
};

384
struct mvneta_pcpu_stats {
385
	struct	u64_stats_sync syncp;
386 387 388 389
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
390 391
};

392 393 394 395 396 397 398 399 400 401 402
struct mvneta_pcpu_port {
	/* Pointer to the shared port */
	struct mvneta_port	*pp;

	/* Pointer to the CPU-local NAPI struct */
	struct napi_struct	napi;

	/* Cause of the previous interrupt */
	u32			cause_rx_tx;
};

403
struct mvneta_port {
404
	u8 id;
405 406 407
	struct mvneta_pcpu_port __percpu	*ports;
	struct mvneta_pcpu_stats __percpu	*stats;

408
	int pkt_size;
409
	unsigned int frag_size;
410 411 412 413
	void __iomem *base;
	struct mvneta_rx_queue *rxqs;
	struct mvneta_tx_queue *txqs;
	struct net_device *dev;
414 415
	struct hlist_node node_online;
	struct hlist_node node_dead;
416
	int rxq_def;
417 418 419 420
	/* Protect the access to the percpu interrupt registers,
	 * ensuring that the configuration remains coherent.
	 */
	spinlock_t lock;
421
	bool is_stopped;
422

423 424 425
	u32 cause_rx_tx;
	struct napi_struct napi;

426
	/* Core clock */
T
Thomas Petazzoni 已提交
427
	struct clk *clk;
428 429
	/* AXI clock */
	struct clk *clk_bus;
430 431 432 433 434
	u8 mcast_count[256];
	u16 tx_ring_size;
	u16 rx_ring_size;

	phy_interface_t phy_interface;
R
Russell King 已提交
435
	struct device_node *dn;
436
	unsigned int tx_csum_limit;
R
Russell King 已提交
437
	struct phylink *phylink;
R
Russell King 已提交
438

439 440 441 442 443
	struct mvneta_bm *bm_priv;
	struct mvneta_bm_pool *pool_long;
	struct mvneta_bm_pool *pool_short;
	int bm_win_id;

R
Russell King 已提交
444 445 446 447
	bool eee_enabled;
	bool eee_active;
	bool tx_lpi_enabled;

R
Russell King 已提交
448
	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
449 450

	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
451 452 453

	/* Flags for special SoC configurations */
	bool neta_armada3700;
454
	u16 rx_offset_correction;
455
	const struct mbus_dram_target_info *dram_target_info;
456 457
};

458
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
459 460 461
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
#define MVNETA_TX_L3_OFF_SHIFT	0
#define MVNETA_TX_IP_HLEN_SHIFT	8
#define MVNETA_TX_L4_UDP	BIT(16)
#define MVNETA_TX_L3_IP6	BIT(17)
#define MVNETA_TXD_IP_CSUM	BIT(18)
#define MVNETA_TXD_Z_PAD	BIT(19)
#define MVNETA_TXD_L_DESC	BIT(20)
#define MVNETA_TXD_F_DESC	BIT(21)
#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
				 MVNETA_TXD_L_DESC | \
				 MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
#define MVNETA_TX_L4_CSUM_NOT	BIT(31)

#define MVNETA_RXD_ERR_CRC		0x0
478 479
#define MVNETA_RXD_BM_POOL_SHIFT	13
#define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
480 481 482 483 484 485
#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
#define MVNETA_RXD_ERR_LEN		BIT(18)
#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4		BIT(25)
486 487 488 489
#define MVNETA_RXD_LAST_DESC		BIT(26)
#define MVNETA_RXD_FIRST_DESC		BIT(27)
#define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
					 MVNETA_RXD_LAST_DESC)
490 491
#define MVNETA_RXD_L4_CSUM_OK		BIT(30)

492
#if defined(__LITTLE_ENDIAN)
493 494 495 496 497 498 499 500 501 502 503
struct mvneta_tx_desc {
	u32  command;		/* Options used by HW for packet transmitting.*/
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u32  status;		/* Info about received packet		*/
504 505
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u16  data_size;		/* Size of received packet in bytes	*/
506

507 508
	u32  buf_phys_addr;	/* Physical address of the buffer	*/
	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
509

510 511 512
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
513

514 515 516
	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
#else
struct mvneta_tx_desc {
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u32  command;		/* Options used by HW for packet transmitting.*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u16  data_size;		/* Size of received packet in bytes	*/
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u32  status;		/* Info about received packet		*/

	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
	u32  buf_phys_addr;	/* Physical address of the buffer	*/

	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */

	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
#endif
543 544 545 546 547 548 549 550 551

struct mvneta_tx_queue {
	/* Number of this TX queue, in the range 0-7 */
	u8 id;

	/* Number of TX DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used TX DMA descriptor in the
552 553
	 * descriptor ring
	 */
554
	int count;
555
	int pending;
556 557
	int tx_stop_threshold;
	int tx_wake_threshold;
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

	/* Array of transmitted skb */
	struct sk_buff **tx_skb;

	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;

	u32 done_pkts_coal;

	/* Virtual address of the TX DMA descriptors array */
	struct mvneta_tx_desc *descs;

	/* DMA address of the TX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last TX DMA descriptor */
	int last_desc;

	/* Index of the next TX DMA descriptor to process */
	int next_desc_to_proc;
581 582 583 584 585 586

	/* DMA buffers for TSO headers */
	char *tso_hdrs;

	/* DMA address of TSO headers */
	dma_addr_t tso_hdrs_phys;
587 588 589

	/* Affinity mask for CPUs*/
	cpumask_t affinity_mask;
590 591 592 593 594 595 596 597 598 599 600 601
};

struct mvneta_rx_queue {
	/* rx queue number, in the range 0-7 */
	u8 id;

	/* num of rx descriptors in the rx descriptor ring */
	int size;

	u32 pkts_coal;
	u32 time_coal;

602 603 604
	/* Virtual address of the RX buffer */
	void  **buf_virt_addr;

605 606 607 608 609 610 611 612 613 614 615
	/* Virtual address of the RX DMA descriptors array */
	struct mvneta_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;
616

617 618 619 620 621 622 623 624
	/* Index of first RX DMA descriptor to refill */
	int first_to_refill;
	u32 refill_num;

	/* pointer to uncomplete skb buffer */
	struct sk_buff *skb;
	int left_size;

625 626 627
	/* error counters */
	u32 skb_alloc_err;
	u32 refill_err;
628 629
};

630
static enum cpuhp_state online_hpstate;
631 632 633
/* The hardware supports eight (8) rx queues, but we are only allowing
 * the first one to be used. Therefore, let's just allocate one queue.
 */
634
static int rxq_number = 8;
635 636 637 638
static int txq_number = 8;

static int rxq_def;

639
static int rx_copybreak __read_mostly = 256;
640
static int rx_header_size __read_mostly = 128;
641

642 643 644
/* HW BM need that each port be identify by a unique ID */
static int global_port_id;

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"

/* Utility/helper methods */

/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
	writel(data, pp->base + offset);
}

/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
	return readl(pp->base + offset);
}

/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
	txq->txq_get_index++;
	if (txq->txq_get_index == txq->size)
		txq->txq_get_index = 0;
}

/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
	txq->txq_put_index++;
	if (txq->txq_put_index == txq->size)
		txq->txq_put_index = 0;
}


/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
	int i;
	u32 dummy;

	/* Perform dummy reads from MIB counters */
	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
688 689
	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
690 691 692
}

/* Get System Network Statistics */
693
static void
694 695
mvneta_get_stats64(struct net_device *dev,
		   struct rtnl_link_stats64 *stats)
696 697 698
{
	struct mvneta_port *pp = netdev_priv(dev);
	unsigned int start;
699
	int cpu;
700

701 702 703 704 705 706
	for_each_possible_cpu(cpu) {
		struct mvneta_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 tx_packets;
		u64 tx_bytes;
707

708 709
		cpu_stats = per_cpu_ptr(pp->stats, cpu);
		do {
710
			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
711 712 713 714
			rx_packets = cpu_stats->rx_packets;
			rx_bytes   = cpu_stats->rx_bytes;
			tx_packets = cpu_stats->tx_packets;
			tx_bytes   = cpu_stats->tx_bytes;
715
		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
716

717 718 719 720 721
		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}
722 723 724 725 726 727 728 729 730

	stats->rx_errors	= dev->stats.rx_errors;
	stats->rx_dropped	= dev->stats.rx_dropped;

	stats->tx_dropped	= dev->stats.tx_dropped;
}

/* Rx descriptors helper methods */

731 732
/* Checks whether the RX descriptor having this status is both the first
 * and the last descriptor for the RX packet. Each RX packet is currently
733 734 735
 * received through a single RX descriptor, so not having each RX
 * descriptor with its first and last bits set is an error
 */
736
static int mvneta_rxq_desc_is_first_last(u32 status)
737
{
738
	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
739 740 741 742 743 744 745 746 747
		MVNETA_RXD_FIRST_LAST_DESC;
}

/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
					  struct mvneta_rx_queue *rxq,
					  int ndescs)
{
	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
748 749
	 * be added at once
	 */
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
	}

	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}

/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
					struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}

771
/* Update num of rx desc called upon return from rx path or
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
 * from mvneta_rxq_drop_pkts().
 */
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
				       struct mvneta_rx_queue *rxq,
				       int rx_done, int rx_filled)
{
	u32 val;

	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
		val = rx_done |
		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
		return;
	}

	/* Only 255 descriptors can be added at once */
	while ((rx_done > 0) || (rx_filled > 0)) {
		if (rx_done <= 0xff) {
			val = rx_done;
			rx_done = 0;
		} else {
			val = 0xff;
			rx_done -= 0xff;
		}
		if (rx_filled <= 0xff) {
			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled = 0;
		} else {
			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled -= 0xff;
		}
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
	}
}

/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
814
	prefetch(rxq->descs + rxq->next_desc_to_proc);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	return rxq->descs + rx_desc;
}

/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
	u32 val;

	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}


/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq,
				  int offset)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;

	/* Offset is in */
	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}


/* Tx descriptors helper methods */

/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int pend_desc)
{
	u32 val;

856 857 858 859 860 861 862 863
	pend_desc += txq->pending;

	/* Only 255 Tx descriptors can be added at once */
	do {
		val = min(pend_desc, 255);
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		pend_desc -= val;
	} while (pend_desc > 0);
864
	txq->pending = 0;
865 866 867 868 869 870 871 872 873 874 875 876 877
}

/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

/* Release the last allocated TX descriptor. Useful to handle DMA
878 879
 * mapping failures in the TX path.
 */
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq,
				    int buf_size)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));

	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}

/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/* Enable buffer management (BM) */
static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val |= MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for bigger packets */
static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
				     struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for smaller packets */
static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
				      struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Set port's receive buffer size for assigned BM pool */
static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
					      int buf_size,
					      u8 pool_id)
{
	u32 val;

	if (!IS_ALIGNED(buf_size, 8)) {
		dev_warn(pp->dev->dev.parent,
			 "illegal buf_size value %d, round to %d\n",
			 buf_size, ALIGN(buf_size, 8));
		buf_size = ALIGN(buf_size, 8);
	}

	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
}

/* Configure MBUS window in order to enable access BM internal SRAM */
static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
				  u8 target, u8 attr)
{
	u32 win_enable, win_protect;
	int i;

	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);

	if (pp->bm_win_id < 0) {
		/* Find first not occupied window */
		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
			if (win_enable & (1 << i)) {
				pp->bm_win_id = i;
				break;
			}
		}
		if (i == MVNETA_MAX_DECODE_WIN)
			return -ENOMEM;
	} else {
		i = pp->bm_win_id;
	}

	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

	if (i < 4)
		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);

	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
		    (attr << 8) | target);

	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);

	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
	win_protect |= 3 << (2 * i);
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);

	win_enable &= ~(1 << i);
	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);

	return 0;
}

1014
static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1015
{
1016
	u32 wsize;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	u8 target, attr;
	int err;

	/* Get BM window information */
	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
					 &target, &attr);
	if (err < 0)
		return err;

	pp->bm_win_id = -1;

	/* Open NETA -> BM window */
	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
				     target, attr);
	if (err < 0) {
		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
		return err;
	}
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	return 0;
}

/* Assign and initialize pools for port. In case of fail
 * buffer manager will remain disabled for current port.
 */
static int mvneta_bm_port_init(struct platform_device *pdev,
			       struct mvneta_port *pp)
{
	struct device_node *dn = pdev->dev.of_node;
	u32 long_pool_id, short_pool_id;

	if (!pp->neta_armada3700) {
		int ret;

		ret = mvneta_bm_port_mbus_init(pp);
		if (ret)
			return ret;
	}
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
		netdev_info(pp->dev, "missing long pool id\n");
		return -EINVAL;
	}

	/* Create port's long pool depending on mtu */
	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
					   MVNETA_BM_LONG, pp->id,
					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
	if (!pp->pool_long) {
		netdev_info(pp->dev, "fail to obtain long pool for port\n");
		return -ENOMEM;
	}

	pp->pool_long->port_map |= 1 << pp->id;

	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
				   pp->pool_long->id);

	/* If short pool id is not defined, assume using single pool */
	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
		short_pool_id = long_pool_id;

	/* Create port's short pool */
	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
					    MVNETA_BM_SHORT, pp->id,
					    MVNETA_BM_SHORT_PKT_SIZE);
	if (!pp->pool_short) {
		netdev_info(pp->dev, "fail to obtain short pool for port\n");
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		return -ENOMEM;
	}

	if (short_pool_id != long_pool_id) {
		pp->pool_short->port_map |= 1 << pp->id;
		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
					   pp->pool_short->id);
	}

	return 0;
}

/* Update settings of a pool for bigger packets */
static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
{
	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1101
	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1102 1103 1104 1105
	int num;

	/* Release all buffers from long pool */
	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1106
	if (hwbm_pool->buf_num) {
1107 1108 1109 1110 1111 1112 1113
		WARN(1, "cannot free all buffers in pool %d\n",
		     bm_pool->id);
		goto bm_mtu_err;
	}

	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1114 1115
	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1116 1117

	/* Fill entire long pool */
1118 1119
	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
	if (num != hwbm_pool->size) {
1120
		WARN(1, "pool %d: %d of %d allocated\n",
1121
		     bm_pool->id, num, hwbm_pool->size);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		goto bm_mtu_err;
	}
	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);

	return;

bm_mtu_err:
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);

	pp->bm_priv = NULL;
	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
	int queue;
	u32 q_map;

	/* Enable all initialized TXs. */
	q_map = 0;
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1147
		if (txq->descs)
1148 1149 1150 1151
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);

1152
	q_map = 0;
1153
	/* Enable all initialized RXQs. */
1154 1155 1156
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

1157
		if (rxq->descs)
1158 1159 1160
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
}

/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
	u32 val;
	int count;

	/* Stop Rx port activity. Check port Rx activity. */
	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;

	/* Issue stop command for active channels only */
	if (val != 0)
		mvreg_write(pp, MVNETA_RXQ_CMD,
			    val << MVNETA_RXQ_DISABLE_SHIFT);

	/* Wait for all Rx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
1182
				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1183 1184 1185 1186 1187 1188
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1189
	} while (val & MVNETA_RXQ_ENABLE_MASK);
1190 1191

	/* Stop Tx port activity. Check port Tx activity. Issue stop
1192 1193
	 * command for active channels only
	 */
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;

	if (val != 0)
		mvreg_write(pp, MVNETA_TXQ_CMD,
			    (val << MVNETA_TXQ_DISABLE_SHIFT));

	/* Wait for all Tx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for TX stopped status=0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		/* Check TX Command reg that all Txqs are stopped */
		val = mvreg_read(pp, MVNETA_TXQ_CMD);

1214
	} while (val & MVNETA_TXQ_ENABLE_MASK);
1215 1216 1217 1218 1219 1220

	/* Double check to verify that TX FIFO is empty */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
			netdev_warn(pp->dev,
1221
				    "TX FIFO empty timeout status=0x%08x\n",
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_PORT_STATUS);
	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
		 (val & MVNETA_TX_IN_PRGRS));

	udelay(200);
}

/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
	u32 val;

	/* Enable port */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val |= MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}

/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
	u32 val;

	/* Reset the Enable bit in the Serial Control Register */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);

	udelay(200);
}

/* Multicast tables methods */

/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}

/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);

}

/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
		val = 0;
	} else {
		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static void mvneta_percpu_unmask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are unmasked, but actually only the ones
	 * mapped to this CPU will be unmasked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
		    MVNETA_RX_INTR_MASK_ALL |
		    MVNETA_TX_INTR_MASK_ALL |
		    MVNETA_MISCINTR_INTR_MASK);
}

static void mvneta_percpu_mask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are masked, but actually only the ones
	 * mapped to this CPU will be masked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
}

static void mvneta_percpu_clear_intr_cause(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are cleared, but actually only the ones
	 * mapped to this CPU will be cleared
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/* This method sets defaults to the NETA port:
 *	Clears interrupt Cause and Mask registers.
 *	Clears all MAC tables.
 *	Sets defaults to all registers.
 *	Resets RX and TX descriptor rings.
 *	Resets PHY.
 * This method can be called after mvneta_port_down() to return the port
 *	settings to defaults.
 */
static void mvneta_defaults_set(struct mvneta_port *pp)
{
	int cpu;
	int queue;
	u32 val;
1365
	int max_cpu = num_present_cpus();
1366 1367

	/* Clear all Cause registers */
1368
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369 1370

	/* Mask all interrupts */
1371
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372 1373 1374 1375 1376
	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);

	/* Enable MBUS Retry bit16 */
	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);

1377 1378 1379 1380
	/* Set CPU queue access map. CPUs are assigned to the RX and
	 * TX queues modulo their number. If there is only one TX
	 * queue then it is assigned to the CPU associated to the
	 * default RX queue.
1381
	 */
1382 1383
	for_each_present_cpu(cpu) {
		int rxq_map = 0, txq_map = 0;
1384
		int rxq, txq;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		if (!pp->neta_armada3700) {
			for (rxq = 0; rxq < rxq_number; rxq++)
				if ((rxq % max_cpu) == cpu)
					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

			for (txq = 0; txq < txq_number; txq++)
				if ((txq % max_cpu) == cpu)
					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);

			/* With only one TX queue we configure a special case
			 * which will allow to get all the irq on a single
			 * CPU
			 */
			if (txq_number == 1)
				txq_map = (cpu == pp->rxq_def) ?
					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401

1402 1403 1404 1405
		} else {
			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
		}
1406 1407 1408

		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
	}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

	/* Reset RX and TX DMAs */
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
	for (queue = 0; queue < txq_number; queue++) {
		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
	}

	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);

	/* Set Port Acceleration Mode */
1425 1426 1427 1428 1429 1430
	if (pp->bm_priv)
		/* HW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT2;
	else
		/* SW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT1;
1431 1432
	mvreg_write(pp, MVNETA_ACC_MODE, val);

1433 1434 1435
	if (pp->bm_priv)
		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);

1436
	/* Update val of portCfg register accordingly with all RxQueue types */
1437
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	val = 0;
	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);

	/* Build PORT_SDMA_CONFIG_REG */
	val = 0;

	/* Default burst size */
	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450
	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451

1452 1453 1454
#if defined(__BIG_ENDIAN)
	val |= MVNETA_DESC_SWAP;
#endif
1455 1456 1457 1458

	/* Assign port SDMA configuration */
	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);

1459 1460 1461 1462 1463 1464 1465
	/* Disable PHY polling in hardware, since we're using the
	 * kernel phylib to do this.
	 */
	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
	val &= ~MVNETA_PHY_POLLING_ENABLE;
	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);

1466 1467 1468 1469 1470 1471 1472 1473
	mvneta_set_ucast_table(pp, -1);
	mvneta_set_special_mcast_table(pp, -1);
	mvneta_set_other_mcast_table(pp, -1);

	/* Set port interrupt enable register - default enable all */
	mvreg_write(pp, MVNETA_INTR_ENABLE,
		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1474 1475

	mvneta_mib_counters_clear(pp);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)

{
	u32 val, size, mtu;
	int queue;

	mtu = max_tx_size * 8;
	if (mtu > MVNETA_TX_MTU_MAX)
		mtu = MVNETA_TX_MTU_MAX;

	/* Set MTU */
	val = mvreg_read(pp, MVNETA_TX_MTU);
	val &= ~MVNETA_TX_MTU_MAX;
	val |= mtu;
	mvreg_write(pp, MVNETA_TX_MTU, val);

	/* TX token size and all TXQs token size must be larger that MTU */
	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);

	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
		val |= size;
		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
	}
	for (queue = 0; queue < txq_number; queue++) {
		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));

		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
		if (size < mtu) {
			size = mtu;
			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
		}
	}
}

/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
				  int queue)
{
	unsigned int unicast_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Locate the Unicast table entry */
	last_nibble = (0xf & last_nibble);

	/* offset from unicast tbl base */
	tbl_offset = (last_nibble / 4) * 4;

	/* offset within the above reg  */
	reg_offset = last_nibble % 4;

	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));

	if (queue == -1) {
		/* Clear accepts frame bit at specified unicast DA tbl entry */
		unicast_reg &= ~(0xff << (8 * reg_offset));
	} else {
		unicast_reg &= ~(0xff << (8 * reg_offset));
		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}

/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
				int queue)
{
	unsigned int mac_h;
	unsigned int mac_l;

	if (queue != -1) {
		mac_l = (addr[4] << 8) | (addr[5]);
		mac_h = (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | (addr[3] << 0);

		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
	}

	/* Accept frames of this address */
	mvneta_set_ucast_addr(pp, addr[5], queue);
}

1568 1569
/* Set the number of packets that will be received before RX interrupt
 * will be generated by HW.
1570 1571 1572 1573 1574 1575 1576 1577
 */
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
		    value | MVNETA_RXQ_NON_OCCUPIED(0));
}

1578 1579
/* Set the time delay in usec before RX interrupt will be generated by
 * HW.
1580 1581 1582 1583
 */
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
T
Thomas Petazzoni 已提交
1584 1585 1586 1587 1588
	u32 val;
	unsigned long clk_rate;

	clk_rate = clk_get_rate(pp->clk);
	val = (clk_rate / 1000000) * value;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
}

/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
					 struct mvneta_tx_queue *txq, u32 value)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));

	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);

	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
}

/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1609 1610
				u32 phys_addr, void *virt_addr,
				struct mvneta_rx_queue *rxq)
1611
{
1612 1613
	int i;

1614
	rx_desc->buf_phys_addr = phys_addr;
1615 1616
	i = rx_desc - rxq->descs;
	rxq->buf_virt_addr[i] = virt_addr;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
}

/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int sent_desc)
{
	u32 val;

	/* Only 255 TX descriptors can be updated at once */
	while (sent_desc > 0xff) {
		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		sent_desc = sent_desc - 0xff;
	}

	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
					struct mvneta_tx_queue *txq)
{
	u32 val;
	int sent_desc;

	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
		MVNETA_TXQ_SENT_DESC_SHIFT;

	return sent_desc;
}

1651
/* Get number of sent descriptors and decrement counter.
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
 *  The number of sent descriptors is returned.
 */
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq)
{
	int sent_desc;

	/* Get number of sent descriptors */
	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);

	/* Decrement sent descriptors counter */
	if (sent_desc)
		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);

	return sent_desc;
}

/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
				int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1676 1677 1678
	 * G_L4_chk, L4_type; required only for checksum
	 * calculation
	 */
1679 1680 1681
	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;

1682
	if (l3_proto == htons(ETH_P_IP))
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
		command |= MVNETA_TXD_IP_CSUM;
	else
		command |= MVNETA_TX_L3_IP6;

	if (l4_proto == IPPROTO_TCP)
		command |=  MVNETA_TX_L4_CSUM_FULL;
	else if (l4_proto == IPPROTO_UDP)
		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
	else
		command |= MVNETA_TX_L4_CSUM_NOT;

	return command;
}


/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)
{
	u32 status = rx_desc->status;

	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
	case MVNETA_RXD_ERR_CRC:
		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_OVERRUN:
		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_LEN:
		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_RESOURCE:
		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	}
}

1724 1725
/* Handle RX checksum offload based on the descriptor's status */
static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1726 1727
			   struct sk_buff *skb)
{
1728 1729
	if ((pp->dev->features & NETIF_F_RXCSUM) &&
	    (status & MVNETA_RXD_L3_IP4) &&
1730
	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1731 1732 1733 1734 1735 1736 1737 1738
		skb->csum = 0;
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		return;
	}

	skb->ip_summed = CHECKSUM_NONE;
}

1739 1740 1741 1742
/* Return tx queue pointer (find last set bit) according to <cause> returned
 * form tx_done reg. <cause> must not be null. The return value is always a
 * valid queue for matching the first one found in <cause>.
 */
1743 1744 1745 1746 1747
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
						     u32 cause)
{
	int queue = fls(cause) - 1;

1748
	return &pp->txqs[queue];
1749 1750 1751 1752
}

/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
M
Marcin Wojtas 已提交
1753 1754
				 struct mvneta_tx_queue *txq, int num,
				 struct netdev_queue *nq)
1755
{
M
Marcin Wojtas 已提交
1756
	unsigned int bytes_compl = 0, pkts_compl = 0;
1757 1758 1759 1760 1761 1762 1763
	int i;

	for (i = 0; i < num; i++) {
		struct mvneta_tx_desc *tx_desc = txq->descs +
			txq->txq_get_index;
		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];

M
Marcin Wojtas 已提交
1764 1765 1766 1767 1768
		if (skb) {
			bytes_compl += skb->len;
			pkts_compl++;
		}

1769 1770
		mvneta_txq_inc_get(txq);

1771 1772 1773 1774
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size, DMA_TO_DEVICE);
1775 1776
		if (!skb)
			continue;
1777 1778
		dev_kfree_skb_any(skb);
	}
M
Marcin Wojtas 已提交
1779 1780

	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1781 1782 1783
}

/* Handle end of transmission */
1784
static void mvneta_txq_done(struct mvneta_port *pp,
1785 1786 1787 1788 1789 1790
			   struct mvneta_tx_queue *txq)
{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
	int tx_done;

	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1791 1792 1793
	if (!tx_done)
		return;

M
Marcin Wojtas 已提交
1794
	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1795 1796 1797 1798

	txq->count -= tx_done;

	if (netif_tx_queue_stopped(nq)) {
1799
		if (txq->count <= txq->tx_wake_threshold)
1800 1801 1802 1803
			netif_tx_wake_queue(nq);
	}
}

1804
/* Refill processing for SW buffer management */
1805
/* Allocate page per descriptor */
1806
static int mvneta_rx_refill(struct mvneta_port *pp,
1807
			    struct mvneta_rx_desc *rx_desc,
1808 1809
			    struct mvneta_rx_queue *rxq,
			    gfp_t gfp_mask)
1810 1811
{
	dma_addr_t phys_addr;
1812
	struct page *page;
1813

1814 1815
	page = __dev_alloc_page(gfp_mask);
	if (!page)
1816 1817
		return -ENOMEM;

1818 1819 1820
	/* map page for use */
	phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
				 DMA_FROM_DEVICE);
1821
	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1822
		__free_page(page);
1823 1824 1825
		return -ENOMEM;
	}

1826
	phys_addr += pp->rx_offset_correction;
1827
	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1828 1829 1830 1831 1832 1833 1834 1835
	return 0;
}

/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
1836
		__be16 l3_proto = vlan_get_protocol(skb);
1837 1838
		u8 l4_proto;

1839
		if (l3_proto == htons(ETH_P_IP)) {
1840 1841 1842 1843 1844
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
1845
		} else if (l3_proto == htons(ETH_P_IPV6)) {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else
			return MVNETA_TX_L4_CSUM_NOT;

		return mvneta_txq_desc_csum(skb_network_offset(skb),
1856
					    l3_proto, ip_hdr_len, l4_proto);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	}

	return MVNETA_TX_L4_CSUM_NOT;
}

/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	int rx_done, i;

	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	if (rx_done)
		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	if (pp->bm_priv) {
		for (i = 0; i < rx_done; i++) {
			struct mvneta_rx_desc *rx_desc =
						  mvneta_rxq_next_desc_get(rxq);
			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
			struct mvneta_bm_pool *bm_pool;

			bm_pool = &pp->bm_priv->bm_pools[pool_id];
			/* Return dropped buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
		}
		return;
	}

1887 1888
	for (i = 0; i < rxq->size; i++) {
		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1889
		void *data = rxq->buf_virt_addr[i];
1890 1891
		if (!data || !(rx_desc->buf_phys_addr))
			continue;
1892 1893

		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1894
				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1895
		__free_page(data);
1896
	}
1897
}
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static inline
int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
{
	struct mvneta_rx_desc *rx_desc;
	int curr_desc = rxq->first_to_refill;
	int i;

	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
		rx_desc = rxq->descs + curr_desc;
		if (!(rx_desc->buf_phys_addr)) {
			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
				pr_err("Can't refill queue %d. Done %d from %d\n",
				       rxq->id, i, rxq->refill_num);
				rxq->refill_err++;
				break;
			}
		}
		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
	}
	rxq->refill_num -= i;
	rxq->first_to_refill = curr_desc;

	return i;
}

1924
/* Main rx processing when using software buffer management */
1925
static int mvneta_rx_swbm(struct napi_struct *napi,
1926
			  struct mvneta_port *pp, int budget,
1927 1928 1929
			  struct mvneta_rx_queue *rxq)
{
	struct net_device *dev = pp->dev;
1930 1931
	int rx_todo, rx_proc;
	int refill = 0;
1932 1933 1934 1935
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;

	/* Get number of received packets */
1936 1937
	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
	rx_proc = 0;
1938 1939

	/* Fairness NAPI loop */
1940
	while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1941 1942
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
		unsigned char *data;
1943
		struct page *page;
1944
		dma_addr_t phys_addr;
1945 1946 1947
		u32 rx_status, index;
		int rx_bytes, skb_size, copy_size;
		int frag_num, frag_size, frag_offset;
1948

1949
		index = rx_desc - rxq->descs;
1950 1951 1952 1953
		page = (struct page *)rxq->buf_virt_addr[index];
		data = page_address(page);
		/* Prefetch header */
		prefetch(data);
1954

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		phys_addr = rx_desc->buf_phys_addr;
		rx_status = rx_desc->status;
		rx_proc++;
		rxq->refill_num++;

		if (rx_status & MVNETA_RXD_FIRST_DESC) {
			/* Check errors only for FIRST descriptor */
			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
				mvneta_rx_error(pp, rx_desc);
				dev->stats.rx_errors++;
				/* leave the descriptor untouched */
				continue;
			}
			rx_bytes = rx_desc->data_size -
				   (ETH_FCS_LEN + MVNETA_MH_SIZE);
1970

1971 1972 1973 1974
			/* Allocate small skb for each new packet */
			skb_size = max(rx_copybreak, rx_header_size);
			rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
			if (unlikely(!rxq->skb)) {
1975 1976 1977
				netdev_err(dev,
					   "Can't allocate skb on queue %d\n",
					   rxq->id);
1978
				dev->stats.rx_dropped++;
1979
				rxq->skb_alloc_err++;
1980
				continue;
1981
			}
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
			copy_size = min(skb_size, rx_bytes);

			/* Copy data from buffer to SKB, skip Marvell header */
			memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
			       copy_size);
			skb_put(rxq->skb, copy_size);
			rxq->left_size = rx_bytes - copy_size;

			mvneta_rx_csum(pp, rx_status, rxq->skb);
			if (rxq->left_size == 0) {
				int size = copy_size + MVNETA_MH_SIZE;

				dma_sync_single_range_for_cpu(dev->dev.parent,
							      phys_addr, 0,
							      size,
							      DMA_FROM_DEVICE);

				/* leave the descriptor and buffer untouched */
			} else {
				/* refill descriptor with new buffer later */
				rx_desc->buf_phys_addr = 0;

				frag_num = 0;
				frag_offset = copy_size + MVNETA_MH_SIZE;
				frag_size = min(rxq->left_size,
						(int)(PAGE_SIZE - frag_offset));
				skb_add_rx_frag(rxq->skb, frag_num, page,
						frag_offset, frag_size,
						PAGE_SIZE);
				dma_unmap_single(dev->dev.parent, phys_addr,
						 PAGE_SIZE, DMA_FROM_DEVICE);
				rxq->left_size -= frag_size;
			}
		} else {
			/* Middle or Last descriptor */
			if (unlikely(!rxq->skb)) {
				pr_debug("no skb for rx_status 0x%x\n",
					 rx_status);
				continue;
			}
			if (!rxq->left_size) {
				/* last descriptor has only FCS */
				/* and can be discarded */
				dma_sync_single_range_for_cpu(dev->dev.parent,
							      phys_addr, 0,
							      ETH_FCS_LEN,
							      DMA_FROM_DEVICE);
				/* leave the descriptor and buffer untouched */
			} else {
				/* refill descriptor with new buffer later */
				rx_desc->buf_phys_addr = 0;

				frag_num = skb_shinfo(rxq->skb)->nr_frags;
				frag_offset = 0;
				frag_size = min(rxq->left_size,
						(int)(PAGE_SIZE - frag_offset));
				skb_add_rx_frag(rxq->skb, frag_num, page,
						frag_offset, frag_size,
						PAGE_SIZE);

				dma_unmap_single(dev->dev.parent, phys_addr,
						 PAGE_SIZE,
						 DMA_FROM_DEVICE);

				rxq->left_size -= frag_size;
			}
		} /* Middle or Last descriptor */
2049

2050 2051
		if (!(rx_status & MVNETA_RXD_LAST_DESC))
			/* no last descriptor this time */
2052 2053
			continue;

2054 2055 2056 2057 2058 2059 2060
		if (rxq->left_size) {
			pr_err("get last desc, but left_size (%d) != 0\n",
			       rxq->left_size);
			dev_kfree_skb_any(rxq->skb);
			rxq->left_size = 0;
			rxq->skb = NULL;
			continue;
2061 2062
		}
		rcvd_pkts++;
2063
		rcvd_bytes += rxq->skb->len;
2064 2065

		/* Linux processing */
2066
		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2067

2068 2069 2070 2071
		if (dev->features & NETIF_F_GRO)
			napi_gro_receive(napi, rxq->skb);
		else
			netif_receive_skb(rxq->skb);
2072

2073 2074 2075
		/* clean uncomplete skb pointer in queue */
		rxq->skb = NULL;
		rxq->left_size = 0;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	}

	if (rcvd_pkts) {
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
	}

2087 2088 2089
	/* return some buffers to hardware queue, one at a time is too slow */
	refill = mvneta_rx_refill_queue(pp, rxq);

2090
	/* Update rxq management counters */
2091
	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2092

2093
	return rcvd_pkts;
2094 2095
}

2096
/* Main rx processing when using hardware buffer management */
2097 2098
static int mvneta_rx_hwbm(struct napi_struct *napi,
			  struct mvneta_port *pp, int rx_todo,
2099
			  struct mvneta_rx_queue *rxq)
2100 2101
{
	struct net_device *dev = pp->dev;
2102
	int rx_done;
2103 2104
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2117
		struct mvneta_bm_pool *bm_pool = NULL;
2118
		struct sk_buff *skb;
2119
		unsigned char *data;
2120
		dma_addr_t phys_addr;
2121
		u32 rx_status, frag_size;
2122
		int rx_bytes, err;
2123
		u8 pool_id;
2124 2125 2126

		rx_done++;
		rx_status = rx_desc->status;
2127
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2128
		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2129
		phys_addr = rx_desc->buf_phys_addr;
2130 2131
		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2132

2133
		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2134
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2135 2136 2137 2138 2139
err_drop_frame_ret_pool:
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
err_drop_frame:
2140 2141
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
2142
			/* leave the descriptor untouched */
2143 2144 2145
			continue;
		}

2146 2147 2148 2149
		if (rx_bytes <= rx_copybreak) {
			/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
2150
				goto err_drop_frame_ret_pool;
2151 2152 2153 2154 2155 2156

			dma_sync_single_range_for_cpu(dev->dev.parent,
			                              rx_desc->buf_phys_addr,
			                              MVNETA_MH_SIZE + NET_SKB_PAD,
			                              rx_bytes,
			                              DMA_FROM_DEVICE);
2157 2158
			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
				     rx_bytes);
2159 2160 2161

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
2162
			napi_gro_receive(napi, skb);
2163 2164 2165 2166

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

2167 2168 2169 2170
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);

2171 2172 2173 2174
			/* leave the descriptor and buffer untouched */
			continue;
		}

2175
		/* Refill processing */
2176
		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2177 2178
		if (err) {
			netdev_err(dev, "Linux processing - Can't refill\n");
2179
			rxq->refill_err++;
2180
			goto err_drop_frame_ret_pool;
2181 2182
		}

2183
		frag_size = bm_pool->hwbm_pool.frag_size;
2184 2185

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2186

2187 2188 2189
		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
2190 2191
		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
				 bm_pool->buf_size, DMA_FROM_DEVICE);
2192 2193 2194
		if (!skb)
			goto err_drop_frame;

2195 2196
		rcvd_pkts++;
		rcvd_bytes += rx_bytes;
2197 2198

		/* Linux processing */
2199
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2200 2201 2202 2203
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

2204
		mvneta_rx_csum(pp, rx_status, skb);
2205

2206
		napi_gro_receive(napi, skb);
2207 2208
	}

2209
	if (rcvd_pkts) {
2210 2211 2212 2213 2214 2215
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
2216 2217
	}

2218
	/* Update rxq management counters */
2219
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2220 2221 2222 2223

	return rx_done;
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
static inline void
mvneta_tso_put_hdr(struct sk_buff *skb,
		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);

	txq->tx_skb[txq->txq_put_index] = NULL;
	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = hdr_len;
	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
	tx_desc->command |= MVNETA_TXD_F_DESC;
	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
				 txq->txq_put_index * TSO_HEADER_SIZE;
	mvneta_txq_inc_put(txq);
}

static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
		    struct sk_buff *skb, char *data, int size,
		    bool last_tcp, bool is_last)
{
	struct mvneta_tx_desc *tx_desc;

	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = size;
	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
						size, DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
		     tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		return -ENOMEM;
	}

	tx_desc->command = 0;
	txq->tx_skb[txq->txq_put_index] = NULL;

	if (last_tcp) {
		/* last descriptor in the TCP packet */
		tx_desc->command = MVNETA_TXD_L_DESC;

		/* last descriptor in SKB */
		if (is_last)
			txq->tx_skb[txq->txq_put_index] = skb;
	}
	mvneta_txq_inc_put(txq);
	return 0;
}

static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
			 struct mvneta_tx_queue *txq)
{
	int total_len, data_left;
	int desc_count = 0;
	struct mvneta_port *pp = netdev_priv(dev);
	struct tso_t tso;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	int i;

	/* Count needed descriptors */
	if ((txq->count + tso_count_descs(skb)) >= txq->size)
		return 0;

	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
		pr_info("*** Is this even  possible???!?!?\n");
		return 0;
	}

	/* Initialize the TSO handler, and prepare the first payload */
	tso_start(skb, &tso);

	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		char *hdr;

		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;
		desc_count++;

		/* prepare packet headers: MAC + IP + TCP */
		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);

		mvneta_tso_put_hdr(skb, pp, txq);

		while (data_left > 0) {
			int size;
			desc_count++;

			size = min_t(int, tso.size, data_left);

			if (mvneta_tso_put_data(dev, txq, skb,
						 tso.data, size,
						 size == data_left,
						 total_len == 0))
				goto err_release;
			data_left -= size;

			tso_build_data(skb, &tso, size);
		}
	}

	return desc_count;

err_release:
	/* Release all used data descriptors; header descriptors must not
	 * be DMA-unmapped.
	 */
	for (i = desc_count - 1; i >= 0; i--) {
		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2334
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2335 2336 2337 2338 2339 2340 2341 2342 2343
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}
	return 0;
}

2344 2345 2346 2347 2348
/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
				  struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
2349
	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2350

2351
	for (i = 0; i < nr_frags; i++) {
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = page_address(frag->page.p) + frag->page_offset;

		tx_desc = mvneta_txq_next_desc_get(txq);
		tx_desc->data_size = frag->size;

		tx_desc->buf_phys_addr =
			dma_map_single(pp->dev->dev.parent, addr,
				       tx_desc->data_size, DMA_TO_DEVICE);

		if (dma_mapping_error(pp->dev->dev.parent,
				      tx_desc->buf_phys_addr)) {
			mvneta_txq_desc_put(txq);
			goto error;
		}

2368
		if (i == nr_frags - 1) {
2369 2370 2371 2372 2373 2374 2375 2376
			/* Last descriptor */
			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
			txq->tx_skb[txq->txq_put_index] = skb;
		} else {
			/* Descriptor in the middle: Not First, Not Last */
			tx_desc->command = 0;
			txq->tx_skb[txq->txq_put_index] = NULL;
		}
2377
		mvneta_txq_inc_put(txq);
2378 2379 2380 2381 2382 2383
	}

	return 0;

error:
	/* Release all descriptors that were used to map fragments of
2384 2385
	 * this packet, as well as the corresponding DMA mappings
	 */
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	for (i = i - 1; i >= 0; i--) {
		tx_desc = txq->descs + i;
		dma_unmap_single(pp->dev->dev.parent,
				 tx_desc->buf_phys_addr,
				 tx_desc->data_size,
				 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}

	return -ENOMEM;
}

/* Main tx processing */
static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
2402 2403
	u16 txq_id = skb_get_queue_mapping(skb);
	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2404
	struct mvneta_tx_desc *tx_desc;
2405
	int len = skb->len;
2406 2407 2408 2409 2410 2411
	int frags = 0;
	u32 tx_cmd;

	if (!netif_running(dev))
		goto out;

2412 2413 2414 2415 2416
	if (skb_is_gso(skb)) {
		frags = mvneta_tx_tso(skb, dev, txq);
		goto out;
	}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvneta_txq_next_desc_get(txq);

	tx_cmd = mvneta_skb_tx_csum(pp, skb);

	tx_desc->data_size = skb_headlen(skb);

	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
						tx_desc->data_size,
						DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
				       tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		frags = 0;
		goto out;
	}

	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVNETA_TXD_FLZ_DESC;
		tx_desc->command = tx_cmd;
		txq->tx_skb[txq->txq_put_index] = skb;
		mvneta_txq_inc_put(txq);
	} else {
		/* First but not Last */
		tx_cmd |= MVNETA_TXD_F_DESC;
		txq->tx_skb[txq->txq_put_index] = NULL;
		mvneta_txq_inc_put(txq);
		tx_desc->command = tx_cmd;
		/* Continue with other skb fragments */
		if (mvneta_tx_frag_process(pp, skb, txq)) {
			dma_unmap_single(dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
			mvneta_txq_desc_put(txq);
			frags = 0;
			goto out;
		}
	}

out:
	if (frags > 0) {
2462
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2463 2464
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);

M
Marcin Wojtas 已提交
2465 2466
		netdev_tx_sent_queue(nq, len);

2467
		txq->count += frags;
2468
		if (txq->count >= txq->tx_stop_threshold)
2469
			netif_tx_stop_queue(nq);
2470

2471 2472 2473 2474 2475 2476
		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
			mvneta_txq_pend_desc_add(pp, txq, frags);
		else
			txq->pending += frags;

2477 2478
		u64_stats_update_begin(&stats->syncp);
		stats->tx_packets++;
2479
		stats->tx_bytes  += len;
2480
		u64_stats_update_end(&stats->syncp);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

	return NETDEV_TX_OK;
}


/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
				  struct mvneta_tx_queue *txq)

{
M
Marcin Wojtas 已提交
2495
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2496 2497
	int tx_done = txq->count;

M
Marcin Wojtas 已提交
2498
	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2499 2500 2501 2502 2503 2504 2505

	/* reset txq */
	txq->count = 0;
	txq->txq_put_index = 0;
	txq->txq_get_index = 0;
}

2506 2507 2508
/* Handle tx done - called in softirq context. The <cause_tx_done> argument
 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
 */
2509
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2510 2511 2512 2513
{
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;

2514
	while (cause_tx_done) {
2515 2516 2517 2518 2519
		txq = mvneta_tx_done_policy(pp, cause_tx_done);

		nq = netdev_get_tx_queue(pp->dev, txq->id);
		__netif_tx_lock(nq, smp_processor_id());

2520 2521
		if (txq->count)
			mvneta_txq_done(pp, txq);
2522 2523 2524 2525 2526 2527

		__netif_tx_unlock(nq);
		cause_tx_done &= ~((1 << txq->id));
	}
}

2528
/* Compute crc8 of the specified address, using a unique algorithm ,
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
 * according to hw spec, different than generic crc8 algorithm
 */
static int mvneta_addr_crc(unsigned char *addr)
{
	int crc = 0;
	int i;

	for (i = 0; i < ETH_ALEN; i++) {
		int j;

		crc = (crc ^ addr[i]) << 8;
		for (j = 7; j >= 0; j--) {
			if (crc & (0x100 << j))
				crc ^= 0x107 << j;
		}
	}

	return crc;
}

/* This method controls the net device special MAC multicast support.
 * The Special Multicast Table for MAC addresses supports MAC of the form
 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 * Table entries in the DA-Filter table. This method set the Special
 * Multicast Table appropriate entry.
 */
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
					  unsigned char last_byte,
					  int queue)
{
	unsigned int smc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Register offset from SMC table base    */
	tbl_offset = (last_byte / 4);
	/* Entry offset within the above reg */
	reg_offset = last_byte % 4;

	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
					+ tbl_offset * 4));

	if (queue == -1)
		smc_table_reg &= ~(0xff << (8 * reg_offset));
	else {
		smc_table_reg &= ~(0xff << (8 * reg_offset));
		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
		    smc_table_reg);
}

/* This method controls the network device Other MAC multicast support.
 * The Other Multicast Table is used for multicast of another type.
 * A CRC-8 is used as an index to the Other Multicast Table entries
 * in the DA-Filter table.
 * The method gets the CRC-8 value from the calling routine and
 * sets the Other Multicast Table appropriate entry according to the
 * specified CRC-8 .
 */
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
					unsigned char crc8,
					int queue)
{
	unsigned int omc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */

	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);

	if (queue == -1) {
		/* Clear accepts frame bit at specified Other DA table entry */
		omc_table_reg &= ~(0xff << (8 * reg_offset));
	} else {
		omc_table_reg &= ~(0xff << (8 * reg_offset));
		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}

/* The network device supports multicast using two tables:
 *    1) Special Multicast Table for MAC addresses of the form
 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 *       Table entries in the DA-Filter table.
 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
 *       is used as an index to the Other Multicast Table entries in the
 *       DA-Filter table.
 */
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
				 int queue)
{
	unsigned char crc_result = 0;

	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
		return 0;
	}

	crc_result = mvneta_addr_crc(p_addr);
	if (queue == -1) {
		if (pp->mcast_count[crc_result] == 0) {
			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
				    crc_result);
			return -EINVAL;
		}

		pp->mcast_count[crc_result]--;
		if (pp->mcast_count[crc_result] != 0) {
			netdev_info(pp->dev,
				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
				    pp->mcast_count[crc_result], crc_result);
			return -EINVAL;
		}
	} else
		pp->mcast_count[crc_result]++;

	mvneta_set_other_mcast_addr(pp, crc_result, queue);

	return 0;
}

/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
					  int is_promisc)
{
	u32 port_cfg_reg, val;

	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);

	val = mvreg_read(pp, MVNETA_TYPE_PRIO);

	/* Set / Clear UPM bit in port configuration register */
	if (is_promisc) {
		/* Accept all Unicast addresses */
		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
		val |= MVNETA_FORCE_UNI;
		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
	} else {
		/* Reject all Unicast addresses */
		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
		val &= ~MVNETA_FORCE_UNI;
	}

	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}

/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {
		/* Accept all: Multicast + Unicast */
		mvneta_rx_unicast_promisc_set(pp, 1);
2693 2694 2695
		mvneta_set_ucast_table(pp, pp->rxq_def);
		mvneta_set_special_mcast_table(pp, pp->rxq_def);
		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2696 2697 2698 2699
	} else {
		/* Accept single Unicast */
		mvneta_rx_unicast_promisc_set(pp, 0);
		mvneta_set_ucast_table(pp, -1);
2700
		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2701 2702 2703

		if (dev->flags & IFF_ALLMULTI) {
			/* Accept all multicast */
2704 2705
			mvneta_set_special_mcast_table(pp, pp->rxq_def);
			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2706 2707 2708 2709 2710 2711 2712 2713
		} else {
			/* Accept only initialized multicast */
			mvneta_set_special_mcast_table(pp, -1);
			mvneta_set_other_mcast_table(pp, -1);

			if (!netdev_mc_empty(dev)) {
				netdev_for_each_mc_addr(ha, dev) {
					mvneta_mcast_addr_set(pp, ha->addr,
2714
							      pp->rxq_def);
2715 2716 2717 2718 2719 2720 2721 2722
				}
			}
		}
	}
}

/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
{
	struct mvneta_port *pp = (struct mvneta_port *)dev_id;

	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	napi_schedule(&pp->napi);

	return IRQ_HANDLED;
}

/* Interrupt handling - the callback for request_percpu_irq() */
static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2734
{
2735
	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2736

2737 2738
	disable_percpu_irq(port->pp->dev->irq);
	napi_schedule(&port->napi);
2739 2740 2741 2742

	return IRQ_HANDLED;
}

R
Russell King 已提交
2743
static void mvneta_link_change(struct mvneta_port *pp)
2744 2745 2746
{
	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);

R
Russell King 已提交
2747
	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2748 2749
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
/* NAPI handler
 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
 * Bits 8 -15 of the cause Rx Tx register indicate that are received
 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
 * Each CPU has its own causeRxTx register
 */
static int mvneta_poll(struct napi_struct *napi, int budget)
{
	int rx_done = 0;
	u32 cause_rx_tx;
2761
	int rx_queue;
2762
	struct mvneta_port *pp = netdev_priv(napi->dev);
2763
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2764 2765

	if (!netif_running(pp->dev)) {
2766
		napi_complete(napi);
2767 2768 2769 2770
		return rx_done;
	}

	/* Read cause register */
2771 2772 2773 2774 2775
	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);

		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
R
Russell King 已提交
2776 2777

		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2778
				  MVNETA_CAUSE_LINK_CHANGE))
R
Russell King 已提交
2779
			mvneta_link_change(pp);
2780
	}
2781 2782 2783

	/* Release Tx descriptors */
	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2784
		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2785 2786
		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
	}
2787

2788
	/* For the case where the last mvneta_poll did not process all
2789 2790
	 * RX packets
	 */
2791 2792
	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));

2793 2794
	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
		port->cause_rx_tx;
2795 2796 2797

	if (rx_queue) {
		rx_queue = rx_queue - 1;
2798
		if (pp->bm_priv)
2799 2800
			rx_done = mvneta_rx_hwbm(napi, pp, budget,
						 &pp->rxqs[rx_queue]);
2801
		else
2802 2803
			rx_done = mvneta_rx_swbm(napi, pp, budget,
						 &pp->rxqs[rx_queue]);
2804 2805
	}

2806
	if (rx_done < budget) {
2807
		cause_rx_tx = 0;
2808
		napi_complete_done(napi, rx_done);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821

		if (pp->neta_armada3700) {
			unsigned long flags;

			local_irq_save(flags);
			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
				    MVNETA_RX_INTR_MASK(rxq_number) |
				    MVNETA_TX_INTR_MASK(txq_number) |
				    MVNETA_MISCINTR_INTR_MASK);
			local_irq_restore(flags);
		} else {
			enable_percpu_irq(pp->dev->irq, 0);
		}
2822 2823
	}

2824 2825 2826 2827 2828
	if (pp->neta_armada3700)
		pp->cause_rx_tx = cause_rx_tx;
	else
		port->cause_rx_tx = cause_rx_tx;

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	return rx_done;
}

/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
			   int num)
{
	int i;

	for (i = 0; i < num; i++) {
2839
		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2840 2841 2842 2843 2844
		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
				     GFP_KERNEL) != 0) {
			netdev_err(pp->dev,
				   "%s:rxq %d, %d of %d buffs  filled\n",
				   __func__, rxq->id, i, num);
2845 2846 2847 2848 2849
			break;
		}
	}

	/* Add this number of RX descriptors as non occupied (ready to
2850 2851
	 * get packets)
	 */
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	mvneta_rxq_non_occup_desc_add(pp, rxq, i);

	return i;
}

/* Free all packets pending transmit from all TXQs and reset TX port */
static void mvneta_tx_reset(struct mvneta_port *pp)
{
	int queue;

2862
	/* free the skb's in the tx ring */
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_done_force(pp, &pp->txqs[queue]);

	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
}

static void mvneta_rx_reset(struct mvneta_port *pp)
{
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
}

/* Rx/Tx queue initialization/cleanup methods */

2878 2879
static int mvneta_rxq_sw_init(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
2880 2881 2882 2883 2884 2885 2886
{
	rxq->size = pp->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
					&rxq->descs_phys, GFP_KERNEL);
2887
	if (!rxq->descs)
2888 2889 2890 2891
		return -ENOMEM;

	rxq->last_desc = rxq->size - 1;

2892 2893 2894 2895 2896 2897
	return 0;
}

static void mvneta_rxq_hw_init(struct mvneta_port *pp,
			       struct mvneta_rx_queue *rxq)
{
2898 2899 2900 2901 2902 2903 2904 2905
	/* Set Rx descriptors queue starting address */
	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);

	/* Set coalescing pkts and time */
	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);

2906
	if (!pp->bm_priv) {
2907 2908 2909
		/* Set Offset */
		mvneta_rxq_offset_set(pp, rxq, 0);
		mvneta_rxq_buf_size_set(pp, rxq, pp->frag_size);
2910
		mvneta_rxq_bm_disable(pp, rxq);
2911
		mvneta_rxq_fill(pp, rxq, rxq->size);
2912
	} else {
2913 2914 2915 2916
		/* Set Offset */
		mvneta_rxq_offset_set(pp, rxq,
				      NET_SKB_PAD - pp->rx_offset_correction);

2917
		mvneta_rxq_bm_enable(pp, rxq);
2918
		/* Fill RXQ with buffers from RX pool */
2919 2920
		mvneta_rxq_long_pool_set(pp, rxq);
		mvneta_rxq_short_pool_set(pp, rxq);
2921
		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2922
	}
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
}

/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
			   struct mvneta_rx_queue *rxq)

{
	int ret;

	ret = mvneta_rxq_sw_init(pp, rxq);
	if (ret < 0)
		return ret;

	mvneta_rxq_hw_init(pp, rxq);
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946
	return 0;
}

/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
{
	mvneta_rxq_drop_pkts(pp, rxq);

2947 2948 2949
	if (rxq->skb)
		dev_kfree_skb_any(rxq->skb);

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
	if (rxq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
				  rxq->descs,
				  rxq->descs_phys);

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
	rxq->descs_phys        = 0;
2960 2961 2962 2963
	rxq->first_to_refill   = 0;
	rxq->refill_num        = 0;
	rxq->skb               = NULL;
	rxq->left_size         = 0;
2964 2965
}

2966 2967
static int mvneta_txq_sw_init(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
2968
{
2969 2970
	int cpu;

2971 2972
	txq->size = pp->tx_ring_size;

2973 2974 2975 2976 2977 2978 2979
	/* A queue must always have room for at least one skb.
	 * Therefore, stop the queue when the free entries reaches
	 * the maximum number of descriptors per skb.
	 */
	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;

2980 2981 2982 2983
	/* Allocate memory for TX descriptors */
	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					txq->size * MVNETA_DESC_ALIGNED_SIZE,
					&txq->descs_phys, GFP_KERNEL);
2984
	if (!txq->descs)
2985 2986 2987 2988
		return -ENOMEM;

	txq->last_desc = txq->size - 1;

2989 2990
	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
				    GFP_KERNEL);
2991
	if (!txq->tx_skb) {
2992 2993 2994 2995 2996
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2997 2998 2999 3000 3001

	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
					   txq->size * TSO_HEADER_SIZE,
					   &txq->tso_hdrs_phys, GFP_KERNEL);
3002
	if (!txq->tso_hdrs) {
3003 3004 3005 3006 3007 3008
		kfree(txq->tx_skb);
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
3009

3010 3011 3012 3013 3014 3015 3016 3017
	/* Setup XPS mapping */
	if (txq_number > 1)
		cpu = txq->id % num_present_cpus();
	else
		cpu = pp->rxq_def % num_present_cpus();
	cpumask_set_cpu(cpu, &txq->affinity_mask);
	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);

3018 3019 3020
	return 0;
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
static void mvneta_txq_hw_init(struct mvneta_port *pp,
			       struct mvneta_tx_queue *txq)
{
	/* Set maximum bandwidth for enabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);

	/* Set Tx descriptors queue starting address */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);

	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
}

/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
			   struct mvneta_tx_queue *txq)
{
	int ret;

	ret = mvneta_txq_sw_init(pp, txq);
	if (ret < 0)
		return ret;

	mvneta_txq_hw_init(pp, txq);

	return 0;
}

3050
/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3051 3052
static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq)
3053
{
M
Marcin Wojtas 已提交
3054 3055
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);

3056 3057
	kfree(txq->tx_skb);

3058 3059 3060 3061
	if (txq->tso_hdrs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * TSO_HEADER_SIZE,
				  txq->tso_hdrs, txq->tso_hdrs_phys);
3062 3063 3064 3065 3066
	if (txq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);

M
Marcin Wojtas 已提交
3067 3068
	netdev_tx_reset_queue(nq);

3069 3070 3071 3072
	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
	txq->descs_phys        = 0;
3073
}
3074

3075 3076 3077
static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq)
{
3078 3079 3080 3081 3082 3083 3084 3085 3086
	/* Set minimum bandwidth for disabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}

3087 3088 3089 3090 3091 3092 3093
static void mvneta_txq_deinit(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
{
	mvneta_txq_sw_deinit(pp, txq);
	mvneta_txq_hw_deinit(pp, txq);
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_deinit(pp, &pp->txqs[queue]);
}

/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
3106 3107
	int queue;

3108
	for (queue = 0; queue < rxq_number; queue++)
3109
		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3110 3111 3112 3113 3114 3115
}


/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);

		if (err) {
			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
				   __func__, queue);
			mvneta_cleanup_rxqs(pp);
			return err;
		}
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	}

	return 0;
}

/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++) {
		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
		if (err) {
			netdev_err(pp->dev, "%s: can't create txq=%d\n",
				   __func__, queue);
			mvneta_cleanup_txqs(pp);
			return err;
		}
	}

	return 0;
}

static void mvneta_start_dev(struct mvneta_port *pp)
{
3152
	int cpu;
3153

3154 3155 3156 3157 3158 3159
	mvneta_max_rx_size_set(pp, pp->pkt_size);
	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);

	/* start the Rx/Tx activity */
	mvneta_port_enable(pp);

3160 3161 3162 3163 3164
	if (!pp->neta_armada3700) {
		/* Enable polling on the port */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
3165

3166 3167 3168 3169
			napi_enable(&port->napi);
		}
	} else {
		napi_enable(&pp->napi);
3170
	}
3171

3172
	/* Unmask interrupts. It has to be done from each CPU */
3173 3174
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);

3175 3176
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3177
		    MVNETA_CAUSE_LINK_CHANGE);
3178

R
Russell King 已提交
3179
	phylink_start(pp->phylink);
3180 3181 3182 3183 3184
	netif_tx_start_all_queues(pp->dev);
}

static void mvneta_stop_dev(struct mvneta_port *pp)
{
3185 3186
	unsigned int cpu;

R
Russell King 已提交
3187
	phylink_stop(pp->phylink);
3188

3189 3190 3191 3192
	if (!pp->neta_armada3700) {
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
3193

3194 3195 3196 3197
			napi_disable(&port->napi);
		}
	} else {
		napi_disable(&pp->napi);
3198
	}
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

	netif_carrier_off(pp->dev);

	mvneta_port_down(pp);
	netif_tx_stop_all_queues(pp->dev);

	/* Stop the port activity */
	mvneta_port_disable(pp);

	/* Clear all ethernet port interrupts */
3209
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3210 3211

	/* Mask all ethernet port interrupts */
3212
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3213 3214 3215 3216 3217

	mvneta_tx_reset(pp);
	mvneta_rx_reset(pp);
}

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
static void mvneta_percpu_enable(void *arg)
{
	struct mvneta_port *pp = arg;

	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
}

static void mvneta_percpu_disable(void *arg)
{
	struct mvneta_port *pp = arg;

	disable_percpu_irq(pp->dev->irq);
}

3232 3233 3234 3235 3236 3237
/* Change the device mtu */
static int mvneta_change_mtu(struct net_device *dev, int mtu)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

3238 3239 3240 3241 3242
	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
	}
3243 3244 3245

	dev->mtu = mtu;

3246
	if (!netif_running(dev)) {
3247 3248 3249
		if (pp->bm_priv)
			mvneta_bm_update_mtu(pp, mtu);

3250
		netdev_update_features(dev);
3251
		return 0;
3252
	}
3253

3254
	/* The interface is running, so we have to force a
3255
	 * reallocation of the queues
3256 3257
	 */
	mvneta_stop_dev(pp);
3258
	on_each_cpu(mvneta_percpu_disable, pp, true);
3259 3260 3261 3262

	mvneta_cleanup_txqs(pp);
	mvneta_cleanup_rxqs(pp);

3263 3264 3265
	if (pp->bm_priv)
		mvneta_bm_update_mtu(pp, mtu);

3266
	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3267 3268 3269

	ret = mvneta_setup_rxqs(pp);
	if (ret) {
3270
		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3271 3272 3273
		return ret;
	}

3274 3275 3276 3277 3278
	ret = mvneta_setup_txqs(pp);
	if (ret) {
		netdev_err(dev, "unable to setup txqs after MTU change\n");
		return ret;
	}
3279

3280
	on_each_cpu(mvneta_percpu_enable, pp, true);
3281 3282
	mvneta_start_dev(pp);

3283 3284
	netdev_update_features(dev);

3285 3286 3287
	return 0;
}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
static netdev_features_t mvneta_fix_features(struct net_device *dev,
					     netdev_features_t features)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
		netdev_info(dev,
			    "Disable IP checksum for MTU greater than %dB\n",
			    pp->tx_csum_limit);
	}

	return features;
}

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
/* Get mac address */
static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
{
	u32 mac_addr_l, mac_addr_h;

	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = (mac_addr_l >> 8) & 0xFF;
	addr[5] = mac_addr_l & 0xFF;
}

3318 3319 3320 3321
/* Handle setting mac address */
static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
{
	struct mvneta_port *pp = netdev_priv(dev);
3322 3323
	struct sockaddr *sockaddr = addr;
	int ret;
3324

3325 3326 3327
	ret = eth_prepare_mac_addr_change(dev, addr);
	if (ret < 0)
		return ret;
3328 3329 3330 3331
	/* Remove previous address table entry */
	mvneta_mac_addr_set(pp, dev->dev_addr, -1);

	/* Set new addr in hw */
3332
	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3333

3334
	eth_commit_mac_addr_change(dev, addr);
3335 3336 3337
	return 0;
}

R
Russell King 已提交
3338 3339 3340 3341 3342
static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
			    struct phylink_link_state *state)
{
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };

3343
	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
R
Russell King 已提交
3344 3345 3346
	if (state->interface != PHY_INTERFACE_MODE_NA &&
	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3347
	    !phy_interface_mode_is_8023z(state->interface) &&
R
Russell King 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356
	    !phy_interface_mode_is_rgmii(state->interface)) {
		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
		return;
	}

	/* Allow all the expected bits */
	phylink_set(mask, Autoneg);
	phylink_set_port_modes(mask);

3357 3358
	/* Asymmetric pause is unsupported */
	phylink_set(mask, Pause);
R
Russell King 已提交
3359 3360 3361
	/* Half-duplex at speeds higher than 100Mbit is unsupported */
	phylink_set(mask, 1000baseT_Full);
	phylink_set(mask, 1000baseX_Full);
3362 3363 3364 3365 3366 3367 3368 3369

	if (!phy_interface_mode_is_8023z(state->interface)) {
		/* 10M and 100M are only supported in non-802.3z mode */
		phylink_set(mask, 10baseT_Half);
		phylink_set(mask, 10baseT_Full);
		phylink_set(mask, 100baseT_Half);
		phylink_set(mask, 100baseT_Full);
	}
R
Russell King 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378

	bitmap_and(supported, supported, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
	bitmap_and(state->advertising, state->advertising, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
}

static int mvneta_mac_link_state(struct net_device *ndev,
				 struct phylink_link_state *state)
3379 3380
{
	struct mvneta_port *pp = netdev_priv(ndev);
R
Russell King 已提交
3381
	u32 gmac_stat;
3382

R
Russell King 已提交
3383
	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3384

R
Russell King 已提交
3385 3386 3387 3388 3389 3390
	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
		state->speed = SPEED_1000;
	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
		state->speed = SPEED_100;
	else
		state->speed = SPEED_10;
3391

R
Russell King 已提交
3392 3393 3394
	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3395

R
Russell King 已提交
3396
	state->pause = 0;
3397 3398 3399 3400
	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
		state->pause |= MLO_PAUSE_RX;
	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
		state->pause |= MLO_PAUSE_TX;
R
Russell King 已提交
3401 3402 3403 3404

	return 1;
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static void mvneta_mac_an_restart(struct net_device *ndev)
{
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);

	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
}

R
Russell King 已提交
3416 3417 3418 3419
static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
	const struct phylink_link_state *state)
{
	struct mvneta_port *pp = netdev_priv(ndev);
3420
	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
R
Russell King 已提交
3421 3422 3423 3424
	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);

3425
	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3426 3427
	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
				   MVNETA_GMAC2_PORT_RESET);
R
Russell King 已提交
3428 3429 3430 3431 3432 3433
	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
			     MVNETA_GMAC_INBAND_RESTART_AN |
			     MVNETA_GMAC_CONFIG_MII_SPEED |
			     MVNETA_GMAC_CONFIG_GMII_SPEED |
			     MVNETA_GMAC_AN_SPEED_EN |
3434 3435
			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
R
Russell King 已提交
3436 3437 3438 3439
			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
			     MVNETA_GMAC_AN_DUPLEX_EN);

3440 3441 3442 3443 3444 3445
	/* Even though it might look weird, when we're configured in
	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
	 */
	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;

	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3446 3447
	    state->interface == PHY_INTERFACE_MODE_SGMII ||
	    phy_interface_mode_is_8023z(state->interface))
3448 3449
		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;

3450 3451 3452 3453 3454
	if (phylink_test(state->advertising, Pause))
		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
	if (state->pause & MLO_PAUSE_TXRX_MASK)
		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;

R
Russell King 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463
	if (!phylink_autoneg_inband(mode)) {
		/* Phy or fixed speed */
		if (state->duplex)
			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

		if (state->speed == SPEED_1000)
			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
		else if (state->speed == SPEED_100)
			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3464
	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
R
Russell King 已提交
3465 3466 3467 3468 3469 3470 3471 3472
		/* SGMII mode receives the state from the PHY */
		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
				     MVNETA_GMAC_FORCE_LINK_PASS)) |
			 MVNETA_GMAC_INBAND_AN_ENABLE |
			 MVNETA_GMAC_AN_SPEED_EN |
			 MVNETA_GMAC_AN_DUPLEX_EN;
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	} else {
		/* 802.3z negotiation - only 1000base-X */
		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
				     MVNETA_GMAC_FORCE_LINK_PASS)) |
			 MVNETA_GMAC_INBAND_AN_ENABLE |
			 MVNETA_GMAC_CONFIG_GMII_SPEED |
			 /* The MAC only supports FD mode */
			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3483 3484 3485

		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
R
Russell King 已提交
3486
	}
3487

R
Russell King 已提交
3488 3489 3490
	/* Armada 370 documentation says we can only change the port mode
	 * and in-band enable when the link is down, so force it down
	 * while making these changes. We also do this for GMAC_CTRL2 */
3491 3492
	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
R
Russell King 已提交
3493 3494 3495 3496
	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
			    MVNETA_GMAC_FORCE_LINK_DOWN);
3497
	}
R
Russell King 已提交
3498

3499 3500
	if (new_ctrl0 != gmac_ctrl0)
		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
R
Russell King 已提交
3501 3502 3503 3504 3505 3506
	if (new_ctrl2 != gmac_ctrl2)
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
	if (new_clk != gmac_clk)
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
	if (new_an != gmac_an)
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3507 3508 3509 3510 3511 3512

	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
			MVNETA_GMAC2_PORT_RESET) != 0)
			continue;
	}
3513
}
3514

R
Russell King 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
{
	u32 lpi_ctl1;

	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
	if (enable)
		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
	else
		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
}

3527 3528
static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
				 phy_interface_t interface)
3529 3530 3531 3532
{
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 val;

R
Russell King 已提交
3533 3534 3535
	mvneta_port_down(pp);

	if (!phylink_autoneg_inband(mode)) {
3536 3537 3538 3539 3540
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
	}
R
Russell King 已提交
3541 3542 3543

	pp->eee_active = false;
	mvneta_set_eee(pp, false);
3544 3545
}

R
Russell King 已提交
3546
static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3547
			       phy_interface_t interface,
R
Russell King 已提交
3548
			       struct phy_device *phy)
3549 3550 3551 3552
{
	struct mvneta_port *pp = netdev_priv(ndev);
	u32 val;

R
Russell King 已提交
3553
	if (!phylink_autoneg_inband(mode)) {
3554 3555 3556 3557
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
		val |= MVNETA_GMAC_FORCE_LINK_PASS;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3558 3559
	}

3560
	mvneta_port_up(pp);
R
Russell King 已提交
3561 3562 3563 3564 3565

	if (phy && pp->eee_enabled) {
		pp->eee_active = phy_init_eee(phy, 0) >= 0;
		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
	}
3566 3567
}

R
Russell King 已提交
3568 3569 3570
static const struct phylink_mac_ops mvneta_phylink_ops = {
	.validate = mvneta_validate,
	.mac_link_state = mvneta_mac_link_state,
3571
	.mac_an_restart = mvneta_mac_an_restart,
R
Russell King 已提交
3572 3573 3574 3575
	.mac_config = mvneta_mac_config,
	.mac_link_down = mvneta_mac_link_down,
	.mac_link_up = mvneta_mac_link_up,
};
3576 3577 3578

static int mvneta_mdio_probe(struct mvneta_port *pp)
{
3579
	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
R
Russell King 已提交
3580
	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3581

R
Russell King 已提交
3582 3583
	if (err)
		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3584

R
Russell King 已提交
3585
	phylink_ethtool_get_wol(pp->phylink, &wol);
3586 3587
	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);

R
Russell King 已提交
3588
	return err;
3589 3590 3591 3592
}

static void mvneta_mdio_remove(struct mvneta_port *pp)
{
R
Russell King 已提交
3593
	phylink_disconnect_phy(pp->phylink);
3594 3595
}

3596 3597 3598 3599
/* Electing a CPU must be done in an atomic way: it should be done
 * after or before the removal/insertion of a CPU and this function is
 * not reentrant.
 */
3600 3601
static void mvneta_percpu_elect(struct mvneta_port *pp)
{
3602 3603 3604 3605 3606 3607 3608
	int elected_cpu = 0, max_cpu, cpu, i = 0;

	/* Use the cpu associated to the rxq when it is online, in all
	 * the other cases, use the cpu 0 which can't be offline.
	 */
	if (cpu_online(pp->rxq_def))
		elected_cpu = pp->rxq_def;
3609

3610
	max_cpu = num_present_cpus();
3611 3612

	for_each_online_cpu(cpu) {
3613 3614 3615 3616 3617 3618 3619
		int rxq_map = 0, txq_map = 0;
		int rxq;

		for (rxq = 0; rxq < rxq_number; rxq++)
			if ((rxq % max_cpu) == cpu)
				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

3620
		if (cpu == elected_cpu)
3621 3622
			/* Map the default receive queue queue to the
			 * elected CPU
3623
			 */
3624
			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3625 3626 3627 3628 3629 3630

		/* We update the TX queue map only if we have one
		 * queue. In this case we associate the TX queue to
		 * the CPU bound to the default RX queue
		 */
		if (txq_number == 1)
3631
			txq_map = (cpu == elected_cpu) ?
3632 3633 3634 3635 3636
				MVNETA_CPU_TXQ_ACCESS(1) : 0;
		else
			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;

3637 3638 3639 3640 3641 3642 3643
		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);

		/* Update the interrupt mask on each CPU according the
		 * new mapping
		 */
		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
					 pp, true);
3644
		i++;
3645

3646 3647 3648
	}
};

3649
static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3650
{
3651 3652 3653
	int other_cpu;
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
3654 3655 3656
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);


3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
	spin_lock(&pp->lock);
	/*
	 * Configuring the driver for a new CPU while the driver is
	 * stopping is racy, so just avoid it.
	 */
	if (pp->is_stopped) {
		spin_unlock(&pp->lock);
		return 0;
	}
	netif_tx_stop_all_queues(pp->dev);
3667

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	/*
	 * We have to synchronise on tha napi of each CPU except the one
	 * just being woken up
	 */
	for_each_online_cpu(other_cpu) {
		if (other_cpu != cpu) {
			struct mvneta_pcpu_port *other_port =
				per_cpu_ptr(pp->ports, other_cpu);

			napi_synchronize(&other_port->napi);
3678
		}
3679
	}
3680

3681 3682 3683
	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	napi_enable(&port->napi);
3684

3685 3686 3687 3688 3689
	/*
	 * Enable per-CPU interrupts on the CPU that is
	 * brought up.
	 */
	mvneta_percpu_enable(pp);
3690

3691 3692 3693 3694 3695
	/*
	 * Enable per-CPU interrupt on the one CPU we care
	 * about.
	 */
	mvneta_percpu_elect(pp);
3696

3697 3698 3699 3700
	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3701
		    MVNETA_CAUSE_LINK_CHANGE);
3702 3703 3704 3705
	netif_tx_start_all_queues(pp->dev);
	spin_unlock(&pp->lock);
	return 0;
}
3706

3707 3708 3709 3710 3711
static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3712

3713 3714 3715 3716 3717 3718 3719 3720
	/*
	 * Thanks to this lock we are sure that any pending cpu election is
	 * done.
	 */
	spin_lock(&pp->lock);
	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	spin_unlock(&pp->lock);
3721

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	napi_synchronize(&port->napi);
	napi_disable(&port->napi);
	/* Disable per-CPU interrupts on the CPU that is brought down. */
	mvneta_percpu_disable(pp);
	return 0;
}

static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_dead);

	/* Check if a new CPU must be elected now this on is down */
	spin_lock(&pp->lock);
	mvneta_percpu_elect(pp);
	spin_unlock(&pp->lock);
	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3742
		    MVNETA_CAUSE_LINK_CHANGE);
3743 3744
	netif_tx_start_all_queues(pp->dev);
	return 0;
3745 3746
}

3747 3748 3749
static int mvneta_open(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
3750
	int ret;
3751 3752

	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3753
	pp->frag_size = PAGE_SIZE;
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763

	ret = mvneta_setup_rxqs(pp);
	if (ret)
		return ret;

	ret = mvneta_setup_txqs(pp);
	if (ret)
		goto err_cleanup_rxqs;

	/* Connect to port interrupt line */
3764 3765 3766 3767 3768 3769
	if (pp->neta_armada3700)
		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
				  dev->name, pp);
	else
		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
					 dev->name, pp->ports);
3770 3771 3772 3773 3774
	if (ret) {
		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
		goto err_cleanup_txqs;
	}

3775 3776 3777 3778 3779
	if (!pp->neta_armada3700) {
		/* Enable per-CPU interrupt on all the CPU to handle our RX
		 * queue interrupts
		 */
		on_each_cpu(mvneta_percpu_enable, pp, true);
3780

3781 3782 3783 3784 3785 3786 3787 3788
		pp->is_stopped = false;
		/* Register a CPU notifier to handle the case where our CPU
		 * might be taken offline.
		 */
		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
						       &pp->node_online);
		if (ret)
			goto err_free_irq;
3789

3790 3791 3792 3793 3794
		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						       &pp->node_dead);
		if (ret)
			goto err_free_online_hp;
	}
3795

3796 3797 3798 3799 3800 3801
	/* In default link is down */
	netif_carrier_off(pp->dev);

	ret = mvneta_mdio_probe(pp);
	if (ret < 0) {
		netdev_err(dev, "cannot probe MDIO bus\n");
3802
		goto err_free_dead_hp;
3803 3804 3805 3806 3807 3808
	}

	mvneta_start_dev(pp);

	return 0;

3809
err_free_dead_hp:
3810 3811 3812
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
3813
err_free_online_hp:
3814 3815 3816
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
3817
err_free_irq:
3818 3819 3820 3821 3822 3823
	if (pp->neta_armada3700) {
		free_irq(pp->dev->irq, pp);
	} else {
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(pp->dev->irq, pp->ports);
	}
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
err_cleanup_txqs:
	mvneta_cleanup_txqs(pp);
err_cleanup_rxqs:
	mvneta_cleanup_rxqs(pp);
	return ret;
}

/* Stop the port, free port interrupt line */
static int mvneta_stop(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);

3836 3837 3838 3839 3840 3841 3842 3843 3844
	if (!pp->neta_armada3700) {
		/* Inform that we are stopping so we don't want to setup the
		 * driver for new CPUs in the notifiers. The code of the
		 * notifier for CPU online is protected by the same spinlock,
		 * so when we get the lock, the notifer work is done.
		 */
		spin_lock(&pp->lock);
		pp->is_stopped = true;
		spin_unlock(&pp->lock);
3845

3846 3847
		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);
3848

3849 3850 3851 3852
		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
3853 3854 3855 3856 3857 3858 3859 3860
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(dev->irq, pp->ports);
	} else {
		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);
		free_irq(dev->irq, pp);
	}

3861 3862 3863 3864 3865 3866
	mvneta_cleanup_rxqs(pp);
	mvneta_cleanup_txqs(pp);

	return 0;
}

3867 3868
static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
R
Russell King 已提交
3869
	struct mvneta_port *pp = netdev_priv(dev);
3870

R
Russell King 已提交
3871
	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3872 3873
}

3874 3875
/* Ethtool methods */

3876
/* Set link ksettings (phy address, speed) for ethtools */
3877 3878 3879
static int
mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
				  const struct ethtool_link_ksettings *cmd)
3880
{
3881
	struct mvneta_port *pp = netdev_priv(ndev);
3882

R
Russell King 已提交
3883 3884
	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
}
3885

R
Russell King 已提交
3886 3887 3888 3889 3890 3891
/* Get link ksettings for ethtools */
static int
mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
				  struct ethtool_link_ksettings *cmd)
{
	struct mvneta_port *pp = netdev_priv(ndev);
3892

R
Russell King 已提交
3893 3894
	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
}
3895

R
Russell King 已提交
3896 3897 3898
static int mvneta_ethtool_nway_reset(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
3899

R
Russell King 已提交
3900
	return phylink_ethtool_nway_reset(pp->phylink);
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
}

/* Set interrupt coalescing for ethtools */
static int mvneta_ethtool_set_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->done_pkts_coal = c->tx_max_coalesced_frames;
		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
	}

	return 0;
}

/* get coalescing for ethtools */
static int mvneta_ethtool_get_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);

	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;

	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
	return 0;
}


static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
				    struct ethtool_drvinfo *drvinfo)
{
	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}


static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
					 struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(netdev);

	ring->rx_max_pending = MVNETA_MAX_RXD;
	ring->tx_max_pending = MVNETA_MAX_TXD;
	ring->rx_pending = pp->rx_ring_size;
	ring->tx_pending = pp->tx_ring_size;
}

static int mvneta_ethtool_set_ringparam(struct net_device *dev,
					struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
		return -EINVAL;
	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
		ring->rx_pending : MVNETA_MAX_RXD;
3973 3974 3975 3976 3977 3978

	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
	if (pp->tx_ring_size != ring->tx_pending)
		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
			    pp->tx_ring_size, ring->tx_pending);
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

	if (netif_running(dev)) {
		mvneta_stop(dev);
		if (mvneta_open(dev)) {
			netdev_err(dev,
				   "error on opening device after ring param change\n");
			return -ENOMEM;
		}
	}

	return 0;
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
					  struct ethtool_pauseparam *pause)
{
	struct mvneta_port *pp = netdev_priv(dev);

	phylink_ethtool_get_pauseparam(pp->phylink, pause);
}

static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
					 struct ethtool_pauseparam *pause)
{
	struct mvneta_port *pp = netdev_priv(dev);

	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
}

R
Russell King 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
				       u8 *data)
{
	if (sset == ETH_SS_STATS) {
		int i;

		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
	}
}

static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
{
	const struct mvneta_statistic *s;
	void __iomem *base = pp->base;
R
Russell King 已提交
4024 4025
	u32 high, low;
	u64 val;
R
Russell King 已提交
4026 4027 4028 4029 4030
	int i;

	for (i = 0, s = mvneta_statistics;
	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
	     s++, i++) {
R
Russell King 已提交
4031 4032
		val = 0;

R
Russell King 已提交
4033 4034 4035 4036 4037 4038 4039 4040
		switch (s->type) {
		case T_REG_32:
			val = readl_relaxed(base + s->offset);
			break;
		case T_REG_64:
			/* Docs say to read low 32-bit then high */
			low = readl_relaxed(base + s->offset);
			high = readl_relaxed(base + s->offset + 4);
R
Russell King 已提交
4041 4042 4043 4044 4045 4046 4047
			val = (u64)high << 32 | low;
			break;
		case T_SW:
			switch (s->offset) {
			case ETHTOOL_STAT_EEE_WAKEUP:
				val = phylink_get_eee_err(pp->phylink);
				break;
4048 4049 4050 4051 4052 4053
			case ETHTOOL_STAT_SKB_ALLOC_ERR:
				val = pp->rxqs[0].skb_alloc_err;
				break;
			case ETHTOOL_STAT_REFILL_ERR:
				val = pp->rxqs[0].refill_err;
				break;
R
Russell King 已提交
4054
			}
R
Russell King 已提交
4055 4056
			break;
		}
R
Russell King 已提交
4057 4058

		pp->ethtool_stats[i] += val;
R
Russell King 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	}
}

static void mvneta_ethtool_get_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int i;

	mvneta_ethtool_update_stats(pp);

	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
		*data++ = pp->ethtool_stats[i];
}

static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
{
	if (sset == ETH_SS_STATS)
		return ARRAY_SIZE(mvneta_statistics);
	return -EOPNOTSUPP;
}

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
{
	return MVNETA_RSS_LU_TABLE_SIZE;
}

static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
				    struct ethtool_rxnfc *info,
				    u32 *rules __always_unused)
{
	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data =  rxq_number;
		return 0;
	case ETHTOOL_GRXFH:
		return -EOPNOTSUPP;
	default:
		return -EOPNOTSUPP;
	}
}

static int  mvneta_config_rss(struct mvneta_port *pp)
{
	int cpu;
	u32 val;

	netif_tx_stop_all_queues(pp->dev);

4108
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4109

4110 4111 4112 4113 4114
	if (!pp->neta_armada3700) {
		/* We have to synchronise on the napi of each CPU */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *pcpu_port =
				per_cpu_ptr(pp->ports, cpu);
4115

4116 4117 4118 4119 4120 4121
			napi_synchronize(&pcpu_port->napi);
			napi_disable(&pcpu_port->napi);
		}
	} else {
		napi_synchronize(&pp->napi);
		napi_disable(&pp->napi);
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	}

	pp->rxq_def = pp->indir[0];

	/* Update unicast mapping */
	mvneta_set_rx_mode(pp->dev);

	/* Update val of portCfg register accordingly with all RxQueue types */
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	/* Update the elected CPU matching the new rxq_def */
4134
	spin_lock(&pp->lock);
4135
	mvneta_percpu_elect(pp);
4136
	spin_unlock(&pp->lock);
4137

4138 4139 4140 4141 4142
	if (!pp->neta_armada3700) {
		/* We have to synchronise on the napi of each CPU */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *pcpu_port =
				per_cpu_ptr(pp->ports, cpu);
4143

4144 4145 4146 4147
			napi_enable(&pcpu_port->napi);
		}
	} else {
		napi_enable(&pp->napi);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
	}

	netif_tx_start_all_queues(pp->dev);

	return 0;
}

static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
				   const u8 *key, const u8 hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);
4159 4160 4161 4162 4163

	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
	/* We require at least one supported parameter to be changed
	 * and no change in any of the unsupported parameters
	 */
	if (key ||
	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
		return -EOPNOTSUPP;

	if (!indir)
		return 0;

	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);

	return mvneta_config_rss(pp);
}

static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
				   u8 *hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);

4184 4185 4186 4187
	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;

	if (!indir)
		return 0;

	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);

	return 0;
}

4199 4200 4201
static void mvneta_ethtool_get_wol(struct net_device *dev,
				   struct ethtool_wolinfo *wol)
{
R
Russell King 已提交
4202
	struct mvneta_port *pp = netdev_priv(dev);
4203

R
Russell King 已提交
4204
	phylink_ethtool_get_wol(pp->phylink, wol);
4205 4206 4207 4208 4209
}

static int mvneta_ethtool_set_wol(struct net_device *dev,
				  struct ethtool_wolinfo *wol)
{
R
Russell King 已提交
4210
	struct mvneta_port *pp = netdev_priv(dev);
4211 4212
	int ret;

R
Russell King 已提交
4213
	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4214 4215 4216 4217
	if (!ret)
		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);

	return ret;
4218 4219
}

R
Russell King 已提交
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
static int mvneta_ethtool_get_eee(struct net_device *dev,
				  struct ethtool_eee *eee)
{
	struct mvneta_port *pp = netdev_priv(dev);
	u32 lpi_ctl0;

	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);

	eee->eee_enabled = pp->eee_enabled;
	eee->eee_active = pp->eee_active;
	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;

	return phylink_ethtool_get_eee(pp->phylink, eee);
}

static int mvneta_ethtool_set_eee(struct net_device *dev,
				  struct ethtool_eee *eee)
{
	struct mvneta_port *pp = netdev_priv(dev);
	u32 lpi_ctl0;

	/* The Armada 37x documents do not give limits for this other than
	 * it being an 8-bit register. */
	if (eee->tx_lpi_enabled &&
	    (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
		return -EINVAL;

	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
	lpi_ctl0 &= ~(0xff << 8);
	lpi_ctl0 |= eee->tx_lpi_timer << 8;
	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);

	pp->eee_enabled = eee->eee_enabled;
	pp->tx_lpi_enabled = eee->tx_lpi_enabled;

	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);

	return phylink_ethtool_set_eee(pp->phylink, eee);
}

4261 4262 4263 4264 4265 4266 4267
static const struct net_device_ops mvneta_netdev_ops = {
	.ndo_open            = mvneta_open,
	.ndo_stop            = mvneta_stop,
	.ndo_start_xmit      = mvneta_tx,
	.ndo_set_rx_mode     = mvneta_set_rx_mode,
	.ndo_set_mac_address = mvneta_set_mac_addr,
	.ndo_change_mtu      = mvneta_change_mtu,
4268
	.ndo_fix_features    = mvneta_fix_features,
4269
	.ndo_get_stats64     = mvneta_get_stats64,
4270
	.ndo_do_ioctl        = mvneta_ioctl,
4271 4272
};

4273
static const struct ethtool_ops mvneta_eth_tool_ops = {
R
Russell King 已提交
4274
	.nway_reset	= mvneta_ethtool_nway_reset,
4275 4276 4277 4278 4279 4280
	.get_link       = ethtool_op_get_link,
	.set_coalesce   = mvneta_ethtool_set_coalesce,
	.get_coalesce   = mvneta_ethtool_get_coalesce,
	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
	.get_ringparam  = mvneta_ethtool_get_ringparam,
	.set_ringparam	= mvneta_ethtool_set_ringparam,
4281 4282
	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
R
Russell King 已提交
4283 4284 4285
	.get_strings	= mvneta_ethtool_get_strings,
	.get_ethtool_stats = mvneta_ethtool_get_stats,
	.get_sset_count	= mvneta_ethtool_get_sset_count,
4286 4287 4288 4289
	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
	.get_rxfh	= mvneta_ethtool_get_rxfh,
	.set_rxfh	= mvneta_ethtool_set_rxfh,
R
Russell King 已提交
4290
	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4291
	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4292 4293
	.get_wol        = mvneta_ethtool_get_wol,
	.set_wol        = mvneta_ethtool_set_wol,
R
Russell King 已提交
4294 4295
	.get_eee	= mvneta_ethtool_get_eee,
	.set_eee	= mvneta_ethtool_set_eee,
4296 4297 4298
};

/* Initialize hw */
4299
static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4300 4301 4302 4303 4304 4305 4306 4307 4308
{
	int queue;

	/* Disable port */
	mvneta_port_disable(pp);

	/* Set port default values */
	mvneta_defaults_set(pp);

4309
	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
	if (!pp->txqs)
		return -ENOMEM;

	/* Initialize TX descriptor rings */
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->id = queue;
		txq->size = pp->tx_ring_size;
		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
	}

4321
	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4322
	if (!pp->rxqs)
4323 4324 4325 4326 4327 4328 4329 4330 4331
		return -ENOMEM;

	/* Create Rx descriptor rings */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->id = queue;
		rxq->size = pp->rx_ring_size;
		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
		rxq->time_coal = MVNETA_RX_COAL_USEC;
4332 4333 4334 4335 4336
		rxq->buf_virt_addr
			= devm_kmalloc_array(pp->dev->dev.parent,
					     rxq->size,
					     sizeof(*rxq->buf_virt_addr),
					     GFP_KERNEL);
4337 4338
		if (!rxq->buf_virt_addr)
			return -ENOMEM;
4339 4340 4341 4342 4343 4344
	}

	return 0;
}

/* platform glue : initialize decoding windows */
G
Greg KH 已提交
4345 4346
static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
				     const struct mbus_dram_target_info *dram)
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
{
	u32 win_enable;
	u32 win_protect;
	int i;

	for (i = 0; i < 6; i++) {
		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

		if (i < 4)
			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
	}

	win_enable = 0x3f;
	win_protect = 0;

4363 4364 4365 4366 4367 4368 4369 4370
	if (dram) {
		for (i = 0; i < dram->num_cs; i++) {
			const struct mbus_dram_window *cs = dram->cs + i;

			mvreg_write(pp, MVNETA_WIN_BASE(i),
				    (cs->base & 0xffff0000) |
				    (cs->mbus_attr << 8) |
				    dram->mbus_dram_target_id);
4371

4372 4373
			mvreg_write(pp, MVNETA_WIN_SIZE(i),
				    (cs->size - 1) & 0xffff0000);
4374

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
			win_enable &= ~(1 << i);
			win_protect |= 3 << (2 * i);
		}
	} else {
		/* For Armada3700 open default 4GB Mbus window, leaving
		 * arbitration of target/attribute to a different layer
		 * of configuration.
		 */
		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
		win_enable &= ~BIT(0);
		win_protect = 3;
4386 4387 4388
	}

	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4389
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4390 4391 4392
}

/* Power up the port */
4393
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4394 4395 4396 4397
{
	/* MAC Cause register should be cleared */
	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);

4398
	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4399
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4400 4401
	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
		 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4402
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4403
	else if (!phy_interface_mode_is_rgmii(phy_mode))
4404 4405 4406
		return -EINVAL;

	return 0;
4407 4408 4409
}

/* Device initialization routine */
G
Greg KH 已提交
4410
static int mvneta_probe(struct platform_device *pdev)
4411
{
4412
	struct resource *res;
4413
	struct device_node *dn = pdev->dev.of_node;
4414
	struct device_node *bm_node;
4415 4416
	struct mvneta_port *pp;
	struct net_device *dev;
R
Russell King 已提交
4417
	struct phylink *phylink;
4418 4419 4420
	const char *dt_mac_addr;
	char hw_mac_addr[ETH_ALEN];
	const char *mac_from;
4421
	int tx_csum_limit;
4422 4423
	int phy_mode;
	int err;
4424
	int cpu;
4425

4426
	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	if (!dev)
		return -ENOMEM;

	dev->irq = irq_of_parse_and_map(dn, 0);
	if (dev->irq == 0) {
		err = -EINVAL;
		goto err_free_netdev;
	}

	phy_mode = of_get_phy_mode(dn);
	if (phy_mode < 0) {
		dev_err(&pdev->dev, "incorrect phy-mode\n");
		err = -EINVAL;
R
Russell King 已提交
4440 4441 4442 4443 4444 4445 4446 4447
		goto err_free_irq;
	}

	phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
				 &mvneta_phylink_ops);
	if (IS_ERR(phylink)) {
		err = PTR_ERR(phylink);
		goto err_free_irq;
4448 4449 4450 4451 4452 4453
	}

	dev->tx_queue_len = MVNETA_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvneta_netdev_ops;

4454
	dev->ethtool_ops = &mvneta_eth_tool_ops;
4455 4456

	pp = netdev_priv(dev);
4457
	spin_lock_init(&pp->lock);
R
Russell King 已提交
4458
	pp->phylink = phylink;
4459
	pp->phy_interface = phy_mode;
R
Russell King 已提交
4460
	pp->dn = dn;
4461

4462
	pp->rxq_def = rxq_def;
4463 4464
	pp->indir[0] = rxq_def;

4465 4466 4467 4468
	/* Get special SoC configurations */
	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
		pp->neta_armada3700 = true;

4469 4470 4471
	pp->clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(pp->clk))
		pp->clk = devm_clk_get(&pdev->dev, NULL);
T
Thomas Petazzoni 已提交
4472 4473
	if (IS_ERR(pp->clk)) {
		err = PTR_ERR(pp->clk);
R
Russell King 已提交
4474
		goto err_free_phylink;
T
Thomas Petazzoni 已提交
4475 4476 4477 4478
	}

	clk_prepare_enable(pp->clk);

4479 4480 4481 4482
	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);

4483 4484 4485 4486
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pp->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(pp->base)) {
		err = PTR_ERR(pp->base);
4487 4488 4489
		goto err_clk;
	}

4490 4491 4492 4493 4494 4495 4496
	/* Alloc per-cpu port structure */
	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
	if (!pp->ports) {
		err = -ENOMEM;
		goto err_clk;
	}

4497
	/* Alloc per-cpu stats */
4498
	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4499 4500
	if (!pp->stats) {
		err = -ENOMEM;
4501
		goto err_free_ports;
4502 4503
	}

4504
	dt_mac_addr = of_get_mac_address(dn);
4505
	if (dt_mac_addr) {
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
		mac_from = "device tree";
		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
	} else {
		mvneta_get_mac_addr(pp, hw_mac_addr);
		if (is_valid_ether_addr(hw_mac_addr)) {
			mac_from = "hardware";
			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
		} else {
			mac_from = "random";
			eth_hw_addr_random(dev);
		}
	}

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
		if (tx_csum_limit < 0 ||
		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
			dev_info(&pdev->dev,
				 "Wrong TX csum limit in DT, set to %dB\n",
				 MVNETA_TX_CSUM_DEF_SIZE);
		}
	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
	} else {
		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
	}

	pp->tx_csum_limit = tx_csum_limit;
4534

4535
	pp->dram_target_info = mv_mbus_dram_info();
4536 4537 4538 4539
	/* Armada3700 requires setting default configuration of Mbus
	 * windows, however without using filled mbus_dram_target_info
	 * structure.
	 */
4540 4541
	if (pp->dram_target_info || pp->neta_armada3700)
		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4542

4543 4544 4545 4546 4547 4548
	pp->tx_ring_size = MVNETA_MAX_TXD;
	pp->rx_ring_size = MVNETA_MAX_RXD;

	pp->dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

4549
	pp->id = global_port_id++;
4550
	pp->rx_offset_correction = 0; /* not relevant for SW BM */
4551 4552 4553

	/* Obtain access to BM resources if enabled and already initialized */
	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	if (bm_node) {
		pp->bm_priv = mvneta_bm_get(bm_node);
		if (pp->bm_priv) {
			err = mvneta_bm_port_init(pdev, pp);
			if (err < 0) {
				dev_info(&pdev->dev,
					 "use SW buffer management\n");
				mvneta_bm_put(pp->bm_priv);
				pp->bm_priv = NULL;
			}
4564
		}
4565 4566 4567 4568 4569 4570 4571
		/* Set RX packet offset correction for platforms, whose
		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
		 * platforms and 0B for 32-bit ones.
		 */
		pp->rx_offset_correction = max(0,
					       NET_SKB_PAD -
					       MVNETA_RX_PKT_OFFSET_CORRECTION);
4572
	}
4573
	of_node_put(bm_node);
4574

4575 4576
	err = mvneta_init(&pdev->dev, pp);
	if (err < 0)
4577
		goto err_netdev;
4578 4579 4580 4581

	err = mvneta_port_power_up(pp, phy_mode);
	if (err < 0) {
		dev_err(&pdev->dev, "can't power up port\n");
4582
		goto err_netdev;
4583
	}
4584

4585 4586 4587 4588 4589 4590 4591 4592 4593
	/* Armada3700 network controller does not support per-cpu
	 * operation, so only single NAPI should be initialized.
	 */
	if (pp->neta_armada3700) {
		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
	} else {
		for_each_present_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
4594

4595 4596 4597 4598
			netif_napi_add(dev, &port->napi, mvneta_poll,
				       NAPI_POLL_WEIGHT);
			port->pp = pp;
		}
4599
	}
4600

4601
	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4602 4603
	dev->hw_features |= dev->features;
	dev->vlan_features |= dev->features;
4604
	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4605
	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4606

4607 4608 4609 4610 4611
	/* MTU range: 68 - 9676 */
	dev->min_mtu = ETH_MIN_MTU;
	/* 9676 == 9700 - 20 and rounding to 8 */
	dev->max_mtu = 9676;

4612 4613 4614
	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register\n");
4615
		goto err_free_stats;
4616 4617
	}

4618 4619
	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
		    dev->dev_addr);
4620 4621 4622 4623 4624

	platform_set_drvdata(pdev, pp->dev);

	return 0;

4625 4626 4627 4628 4629 4630
err_netdev:
	unregister_netdev(dev);
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
4631
		mvneta_bm_put(pp->bm_priv);
4632
	}
4633 4634
err_free_stats:
	free_percpu(pp->stats);
4635 4636
err_free_ports:
	free_percpu(pp->ports);
4637
err_clk:
4638
	clk_disable_unprepare(pp->clk_bus);
4639
	clk_disable_unprepare(pp->clk);
R
Russell King 已提交
4640 4641 4642
err_free_phylink:
	if (pp->phylink)
		phylink_destroy(pp->phylink);
4643 4644 4645 4646 4647 4648 4649 4650
err_free_irq:
	irq_dispose_mapping(dev->irq);
err_free_netdev:
	free_netdev(dev);
	return err;
}

/* Device removal routine */
G
Greg KH 已提交
4651
static int mvneta_remove(struct platform_device *pdev)
4652 4653 4654 4655 4656
{
	struct net_device  *dev = platform_get_drvdata(pdev);
	struct mvneta_port *pp = netdev_priv(dev);

	unregister_netdev(dev);
4657
	clk_disable_unprepare(pp->clk_bus);
T
Thomas Petazzoni 已提交
4658
	clk_disable_unprepare(pp->clk);
4659
	free_percpu(pp->ports);
4660
	free_percpu(pp->stats);
4661
	irq_dispose_mapping(dev->irq);
R
Russell King 已提交
4662
	phylink_destroy(pp->phylink);
4663 4664
	free_netdev(dev);

4665 4666 4667 4668
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
4669
		mvneta_bm_put(pp->bm_priv);
4670 4671
	}

4672 4673 4674
	return 0;
}

4675 4676 4677
#ifdef CONFIG_PM_SLEEP
static int mvneta_suspend(struct device *device)
{
4678
	int queue;
4679 4680 4681
	struct net_device *dev = dev_get_drvdata(device);
	struct mvneta_port *pp = netdev_priv(dev);

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	if (!netif_running(dev))
		goto clean_exit;

	if (!pp->neta_armada3700) {
		spin_lock(&pp->lock);
		pp->is_stopped = true;
		spin_unlock(&pp->lock);

		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
	}

4696
	rtnl_lock();
4697
	mvneta_stop_dev(pp);
4698
	rtnl_unlock();
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

		mvneta_rxq_drop_pkts(pp, rxq);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];

		mvneta_txq_hw_deinit(pp, txq);
	}

clean_exit:
4713 4714 4715
	netif_device_detach(dev);
	clk_disable_unprepare(pp->clk_bus);
	clk_disable_unprepare(pp->clk);
4716

4717 4718 4719 4720 4721 4722 4723 4724
	return 0;
}

static int mvneta_resume(struct device *device)
{
	struct platform_device *pdev = to_platform_device(device);
	struct net_device *dev = dev_get_drvdata(device);
	struct mvneta_port *pp = netdev_priv(dev);
4725
	int err, queue;
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

	clk_prepare_enable(pp->clk);
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);
	if (pp->dram_target_info || pp->neta_armada3700)
		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
	if (pp->bm_priv) {
		err = mvneta_bm_port_init(pdev, pp);
		if (err < 0) {
			dev_info(&pdev->dev, "use SW buffer management\n");
			pp->bm_priv = NULL;
		}
	}
	mvneta_defaults_set(pp);
	err = mvneta_port_power_up(pp, pp->phy_interface);
	if (err < 0) {
		dev_err(device, "can't power up port\n");
		return err;
	}

	netif_device_attach(dev);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762

	if (!netif_running(dev))
		return 0;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

		rxq->next_desc_to_proc = 0;
		mvneta_rxq_hw_init(pp, rxq);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];

		txq->next_desc_to_proc = 0;
		mvneta_txq_hw_init(pp, txq);
4763
	}
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776

	if (!pp->neta_armada3700) {
		spin_lock(&pp->lock);
		pp->is_stopped = false;
		spin_unlock(&pp->lock);
		cpuhp_state_add_instance_nocalls(online_hpstate,
						 &pp->node_online);
		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						 &pp->node_dead);
	}

	rtnl_lock();
	mvneta_start_dev(pp);
4777
	rtnl_unlock();
4778
	mvneta_set_rx_mode(dev);
4779

4780 4781 4782 4783 4784 4785
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);

4786 4787
static const struct of_device_id mvneta_match[] = {
	{ .compatible = "marvell,armada-370-neta" },
4788
	{ .compatible = "marvell,armada-xp-neta" },
4789
	{ .compatible = "marvell,armada-3700-neta" },
4790 4791 4792 4793 4794 4795
	{ }
};
MODULE_DEVICE_TABLE(of, mvneta_match);

static struct platform_driver mvneta_driver = {
	.probe = mvneta_probe,
G
Greg KH 已提交
4796
	.remove = mvneta_remove,
4797 4798 4799
	.driver = {
		.name = MVNETA_DRIVER_NAME,
		.of_match_table = mvneta_match,
4800
		.pm = &mvneta_pm_ops,
4801 4802 4803
	},
};

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
static int __init mvneta_driver_init(void)
{
	int ret;

	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
				      mvneta_cpu_online,
				      mvneta_cpu_down_prepare);
	if (ret < 0)
		goto out;
	online_hpstate = ret;
	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
				      NULL, mvneta_cpu_dead);
	if (ret)
		goto err_dead;

	ret = platform_driver_register(&mvneta_driver);
	if (ret)
		goto err;
	return 0;

err:
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
err_dead:
	cpuhp_remove_multi_state(online_hpstate);
out:
	return ret;
}
module_init(mvneta_driver_init);

static void __exit mvneta_driver_exit(void)
{
	platform_driver_unregister(&mvneta_driver);
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
	cpuhp_remove_multi_state(online_hpstate);
}
module_exit(mvneta_driver_exit);
4840 4841 4842 4843 4844

MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_LICENSE("GPL");

4845 4846
module_param(rxq_number, int, 0444);
module_param(txq_number, int, 0444);
4847

4848 4849
module_param(rxq_def, int, 0444);
module_param(rx_copybreak, int, 0644);