rawnand.h 54.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
D
David Woodhouse 已提交
2 3 4
 *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
 *                        Steven J. Hill <sjhill@realitydiluted.com>
 *		          Thomas Gleixner <tglx@linutronix.de>
L
Linus Torvalds 已提交
5 6 7 8 9
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
10 11
 * Info:
 *	Contains standard defines and IDs for NAND flash devices
L
Linus Torvalds 已提交
12
 *
13 14
 * Changelog:
 *	See git changelog.
L
Linus Torvalds 已提交
15
 */
16 17
#ifndef __LINUX_MTD_RAWNAND_H
#define __LINUX_MTD_RAWNAND_H
L
Linus Torvalds 已提交
18 19 20 21

#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/mtd/mtd.h>
22
#include <linux/mtd/flashchip.h>
A
Alessandro Rubini 已提交
23
#include <linux/mtd/bbm.h>
24
#include <linux/of.h>
25
#include <linux/types.h>
L
Linus Torvalds 已提交
26

27
struct nand_chip;
28
struct nand_flash_dev;
29

L
Linus Torvalds 已提交
30
/* Scan and identify a NAND device */
31
int nand_scan_with_ids(struct nand_chip *chip, int max_chips,
32 33
		       struct nand_flash_dev *ids);

34
static inline int nand_scan(struct nand_chip *chip, int max_chips)
35
{
36
	return nand_scan_with_ids(chip, max_chips, NULL);
37 38
}

39
/* Internal helper for board drivers which need to override command function */
40
void nand_wait_ready(struct nand_chip *chip);
41

L
Linus Torvalds 已提交
42 43 44 45 46
/* The maximum number of NAND chips in an array */
#define NAND_MAX_CHIPS		8

/*
 * Constants for hardware specific CLE/ALE/NCE function
47 48 49 50
 *
 * These are bits which can be or'ed to set/clear multiple
 * bits in one go.
 */
L
Linus Torvalds 已提交
51
/* Select the chip by setting nCE to low */
52
#define NAND_NCE		0x01
L
Linus Torvalds 已提交
53
/* Select the command latch by setting CLE to high */
54
#define NAND_CLE		0x02
L
Linus Torvalds 已提交
55
/* Select the address latch by setting ALE to high */
56 57 58 59 60
#define NAND_ALE		0x04

#define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
#define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
#define NAND_CTRL_CHANGE	0x80
L
Linus Torvalds 已提交
61 62 63 64 65 66

/*
 * Standard NAND flash commands
 */
#define NAND_CMD_READ0		0
#define NAND_CMD_READ1		1
67
#define NAND_CMD_RNDOUT		5
L
Linus Torvalds 已提交
68 69 70 71 72
#define NAND_CMD_PAGEPROG	0x10
#define NAND_CMD_READOOB	0x50
#define NAND_CMD_ERASE1		0x60
#define NAND_CMD_STATUS		0x70
#define NAND_CMD_SEQIN		0x80
73
#define NAND_CMD_RNDIN		0x85
L
Linus Torvalds 已提交
74 75
#define NAND_CMD_READID		0x90
#define NAND_CMD_ERASE2		0xd0
76
#define NAND_CMD_PARAM		0xec
77 78
#define NAND_CMD_GET_FEATURES	0xee
#define NAND_CMD_SET_FEATURES	0xef
L
Linus Torvalds 已提交
79 80 81 82
#define NAND_CMD_RESET		0xff

/* Extended commands for large page devices */
#define NAND_CMD_READSTART	0x30
83
#define NAND_CMD_RNDOUTSTART	0xE0
L
Linus Torvalds 已提交
84 85
#define NAND_CMD_CACHEDPROG	0x15

86 87
#define NAND_CMD_NONE		-1

L
Linus Torvalds 已提交
88 89 90 91 92 93 94
/* Status bits */
#define NAND_STATUS_FAIL	0x01
#define NAND_STATUS_FAIL_N1	0x02
#define NAND_STATUS_TRUE_READY	0x20
#define NAND_STATUS_READY	0x40
#define NAND_STATUS_WP		0x80

95 96
#define NAND_DATA_IFACE_CHECK_ONLY	-1

97
/*
L
Linus Torvalds 已提交
98 99
 * Constants for ECC_MODES
 */
T
Thomas Gleixner 已提交
100 101 102 103 104
typedef enum {
	NAND_ECC_NONE,
	NAND_ECC_SOFT,
	NAND_ECC_HW,
	NAND_ECC_HW_SYNDROME,
105
	NAND_ECC_HW_OOB_FIRST,
106
	NAND_ECC_ON_DIE,
T
Thomas Gleixner 已提交
107
} nand_ecc_modes_t;
L
Linus Torvalds 已提交
108

109 110 111 112
enum nand_ecc_algo {
	NAND_ECC_UNKNOWN,
	NAND_ECC_HAMMING,
	NAND_ECC_BCH,
113
	NAND_ECC_RS,
114 115
};

L
Linus Torvalds 已提交
116 117
/*
 * Constants for Hardware ECC
118
 */
L
Linus Torvalds 已提交
119 120 121 122
/* Reset Hardware ECC for read */
#define NAND_ECC_READ		0
/* Reset Hardware ECC for write */
#define NAND_ECC_WRITE		1
123
/* Enable Hardware ECC before syndrome is read back from flash */
L
Linus Torvalds 已提交
124 125
#define NAND_ECC_READSYN	2

126 127 128 129 130 131 132
/*
 * Enable generic NAND 'page erased' check. This check is only done when
 * ecc.correct() returns -EBADMSG.
 * Set this flag if your implementation does not fix bitflips in erased
 * pages and you want to rely on the default implementation.
 */
#define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
133
#define NAND_ECC_MAXIMIZE		BIT(1)
134

135 136 137 138
/* Bit mask for flags passed to do_nand_read_ecc */
#define NAND_GET_DEVICE		0x80


S
Sebastian Andrzej Siewior 已提交
139 140 141 142
/*
 * Option constants for bizarre disfunctionality and real
 * features.
 */
143
/* Buswidth is 16 bit */
L
Linus Torvalds 已提交
144 145 146
#define NAND_BUSWIDTH_16	0x00000002
/* Chip has cache program function */
#define NAND_CACHEPRG		0x00000008
147 148 149 150 151 152 153
/*
 * Chip requires ready check on read (for auto-incremented sequential read).
 * True only for small page devices; large page devices do not support
 * autoincrement.
 */
#define NAND_NEED_READRDY	0x00000100

154 155 156
/* Chip does not allow subpage writes */
#define NAND_NO_SUBPAGE_WRITE	0x00000200

157 158 159 160 161 162
/* Device is one of 'new' xD cards that expose fake nand command set */
#define NAND_BROKEN_XD		0x00000400

/* Device behaves just like nand, but is readonly */
#define NAND_ROM		0x00000800

163 164 165
/* Device supports subpage reads */
#define NAND_SUBPAGE_READ	0x00001000

166 167 168 169 170 171
/*
 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
 * patterns.
 */
#define NAND_NEED_SCRAMBLING	0x00002000

172 173 174
/* Device needs 3rd row address cycle */
#define NAND_ROW_ADDR_3		0x00004000

L
Linus Torvalds 已提交
175
/* Options valid for Samsung large page devices */
176
#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
L
Linus Torvalds 已提交
177 178 179

/* Macros to identify the above */
#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
180
#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
181
#define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE)
L
Linus Torvalds 已提交
182 183

/* Non chip related options */
184
/* This option skips the bbt scan during initialization. */
185
#define NAND_SKIP_BBTSCAN	0x00010000
186
/* Chip may not exist, so silence any errors in scan */
187
#define NAND_SCAN_SILENT_NODEV	0x00040000
188 189 190 191 192 193 194
/*
 * Autodetect nand buswidth with readid/onfi.
 * This suppose the driver will configure the hardware in 8 bits mode
 * when calling nand_scan_ident, and update its configuration
 * before calling nand_scan_tail.
 */
#define NAND_BUSWIDTH_AUTO      0x00080000
195 196 197 198 199
/*
 * This option could be defined by controller drivers to protect against
 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
 */
#define NAND_USE_BOUNCE_BUFFER	0x00100000
200

201 202 203 204 205 206 207 208 209 210
/*
 * In case your controller is implementing ->cmd_ctrl() and is relying on the
 * default ->cmdfunc() implementation, you may want to let the core handle the
 * tCCS delay which is required when a column change (RNDIN or RNDOUT) is
 * requested.
 * If your controller already takes care of this delay, you don't need to set
 * this flag.
 */
#define NAND_WAIT_TCCS		0x00200000

211 212 213 214 215 216
/*
 * Whether the NAND chip is a boot medium. Drivers might use this information
 * to select ECC algorithms supported by the boot ROM or similar restrictions.
 */
#define NAND_IS_BOOT_MEDIUM	0x00400000

L
Linus Torvalds 已提交
217
/* Options set by nand scan */
T
Thomas Gleixner 已提交
218
/* Nand scan has allocated controller struct */
219
#define NAND_CONTROLLER_ALLOC	0x80000000
L
Linus Torvalds 已提交
220

221 222 223
/* Cell info constants */
#define NAND_CI_CHIPNR_MSK	0x03
#define NAND_CI_CELLTYPE_MSK	0x0C
224
#define NAND_CI_CELLTYPE_SHIFT	2
L
Linus Torvalds 已提交
225 226 227 228

/* Keep gcc happy */
struct nand_chip;

229 230 231 232 233 234 235 236 237 238 239
/* ONFI version bits */
#define ONFI_VERSION_1_0		BIT(1)
#define ONFI_VERSION_2_0		BIT(2)
#define ONFI_VERSION_2_1		BIT(3)
#define ONFI_VERSION_2_2		BIT(4)
#define ONFI_VERSION_2_3		BIT(5)
#define ONFI_VERSION_3_0		BIT(6)
#define ONFI_VERSION_3_1		BIT(7)
#define ONFI_VERSION_3_2		BIT(8)
#define ONFI_VERSION_4_0		BIT(9)

240 241 242 243
/* ONFI features */
#define ONFI_FEATURE_16_BIT_BUS		(1 << 0)
#define ONFI_FEATURE_EXT_PARAM_PAGE	(1 << 7)

244 245 246 247 248 249 250 251 252
/* ONFI timing mode, used in both asynchronous and synchronous mode */
#define ONFI_TIMING_MODE_0		(1 << 0)
#define ONFI_TIMING_MODE_1		(1 << 1)
#define ONFI_TIMING_MODE_2		(1 << 2)
#define ONFI_TIMING_MODE_3		(1 << 3)
#define ONFI_TIMING_MODE_4		(1 << 4)
#define ONFI_TIMING_MODE_5		(1 << 5)
#define ONFI_TIMING_MODE_UNKNOWN	(1 << 6)

253 254
/* ONFI feature number/address */
#define ONFI_FEATURE_NUMBER		256
255 256
#define ONFI_FEATURE_ADDR_TIMING_MODE	0x1

257 258
/* Vendor-specific feature address (Micron) */
#define ONFI_FEATURE_ADDR_READ_RETRY	0x89
259 260
#define ONFI_FEATURE_ON_DIE_ECC		0x90
#define   ONFI_FEATURE_ON_DIE_ECC_EN	BIT(3)
261

262 263 264
/* ONFI subfeature parameters length */
#define ONFI_SUBFEATURE_PARAM_LEN	4

265 266 267
/* ONFI optional commands SET/GET FEATURES supported? */
#define ONFI_OPT_CMD_SET_GET_FEATURES	(1 << 2)

268 269
struct nand_onfi_params {
	/* rev info and features block */
270 271 272 273 274
	/* 'O' 'N' 'F' 'I'  */
	u8 sig[4];
	__le16 revision;
	__le16 features;
	__le16 opt_cmd;
275 276 277 278
	u8 reserved0[2];
	__le16 ext_param_page_length; /* since ONFI 2.1 */
	u8 num_of_param_pages;        /* since ONFI 2.1 */
	u8 reserved1[17];
279 280

	/* manufacturer information block */
281 282 283 284 285
	char manufacturer[12];
	char model[20];
	u8 jedec_id;
	__le16 date_code;
	u8 reserved2[13];
286 287

	/* memory organization block */
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	__le32 byte_per_page;
	__le16 spare_bytes_per_page;
	__le32 data_bytes_per_ppage;
	__le16 spare_bytes_per_ppage;
	__le32 pages_per_block;
	__le32 blocks_per_lun;
	u8 lun_count;
	u8 addr_cycles;
	u8 bits_per_cell;
	__le16 bb_per_lun;
	__le16 block_endurance;
	u8 guaranteed_good_blocks;
	__le16 guaranteed_block_endurance;
	u8 programs_per_page;
	u8 ppage_attr;
	u8 ecc_bits;
	u8 interleaved_bits;
	u8 interleaved_ops;
	u8 reserved3[13];
307 308

	/* electrical parameter block */
309 310 311 312 313 314 315 316
	u8 io_pin_capacitance_max;
	__le16 async_timing_mode;
	__le16 program_cache_timing_mode;
	__le16 t_prog;
	__le16 t_bers;
	__le16 t_r;
	__le16 t_ccs;
	__le16 src_sync_timing_mode;
317
	u8 src_ssync_features;
318 319 320 321
	__le16 clk_pin_capacitance_typ;
	__le16 io_pin_capacitance_typ;
	__le16 input_pin_capacitance_typ;
	u8 input_pin_capacitance_max;
322
	u8 driver_strength_support;
323
	__le16 t_int_r;
324
	__le16 t_adl;
325
	u8 reserved4[8];
326 327

	/* vendor */
328 329
	__le16 vendor_revision;
	u8 vendor[88];
330 331

	__le16 crc;
B
Brian Norris 已提交
332
} __packed;
333 334 335

#define ONFI_CRC_BASE	0x4F4E

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/* Extended ECC information Block Definition (since ONFI 2.1) */
struct onfi_ext_ecc_info {
	u8 ecc_bits;
	u8 codeword_size;
	__le16 bb_per_lun;
	__le16 block_endurance;
	u8 reserved[2];
} __packed;

#define ONFI_SECTION_TYPE_0	0	/* Unused section. */
#define ONFI_SECTION_TYPE_1	1	/* for additional sections. */
#define ONFI_SECTION_TYPE_2	2	/* for ECC information. */
struct onfi_ext_section {
	u8 type;
	u8 length;
} __packed;

#define ONFI_EXT_SECTION_MAX 8

/* Extended Parameter Page Definition (since ONFI 2.1) */
struct onfi_ext_param_page {
	__le16 crc;
	u8 sig[4];             /* 'E' 'P' 'P' 'S' */
	u8 reserved0[10];
	struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX];

	/*
	 * The actual size of the Extended Parameter Page is in
	 * @ext_param_page_length of nand_onfi_params{}.
	 * The following are the variable length sections.
	 * So we do not add any fields below. Please see the ONFI spec.
	 */
} __packed;

370 371 372 373 374 375 376 377
struct jedec_ecc_info {
	u8 ecc_bits;
	u8 codeword_size;
	__le16 bb_per_lun;
	__le16 block_endurance;
	u8 reserved[2];
} __packed;

378 379 380
/* JEDEC features */
#define JEDEC_FEATURE_16_BIT_BUS	(1 << 0)

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
struct nand_jedec_params {
	/* rev info and features block */
	/* 'J' 'E' 'S' 'D'  */
	u8 sig[4];
	__le16 revision;
	__le16 features;
	u8 opt_cmd[3];
	__le16 sec_cmd;
	u8 num_of_param_pages;
	u8 reserved0[18];

	/* manufacturer information block */
	char manufacturer[12];
	char model[20];
	u8 jedec_id[6];
	u8 reserved1[10];

	/* memory organization block */
	__le32 byte_per_page;
	__le16 spare_bytes_per_page;
	u8 reserved2[6];
	__le32 pages_per_block;
	__le32 blocks_per_lun;
	u8 lun_count;
	u8 addr_cycles;
	u8 bits_per_cell;
	u8 programs_per_page;
	u8 multi_plane_addr;
	u8 multi_plane_op_attr;
	u8 reserved3[38];

	/* electrical parameter block */
	__le16 async_sdr_speed_grade;
	__le16 toggle_ddr_speed_grade;
	__le16 sync_ddr_speed_grade;
	u8 async_sdr_features;
	u8 toggle_ddr_features;
	u8 sync_ddr_features;
	__le16 t_prog;
	__le16 t_bers;
	__le16 t_r;
	__le16 t_r_multi_plane;
	__le16 t_ccs;
	__le16 io_pin_capacitance_typ;
	__le16 input_pin_capacitance_typ;
	__le16 clk_pin_capacitance_typ;
	u8 driver_strength_support;
428
	__le16 t_adl;
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	u8 reserved4[36];

	/* ECC and endurance block */
	u8 guaranteed_good_blocks;
	__le16 guaranteed_block_endurance;
	struct jedec_ecc_info ecc_info[4];
	u8 reserved5[29];

	/* reserved */
	u8 reserved6[148];

	/* vendor */
	__le16 vendor_rev_num;
	u8 reserved7[88];

	/* CRC for Parameter Page */
	__le16 crc;
} __packed;

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/**
 * struct onfi_params - ONFI specific parameters that will be reused
 * @version: ONFI version (BCD encoded), 0 if ONFI is not supported
 * @tPROG: Page program time
 * @tBERS: Block erase time
 * @tR: Page read time
 * @tCCS: Change column setup time
 * @async_timing_mode: Supported asynchronous timing mode
 * @vendor_revision: Vendor specific revision number
 * @vendor: Vendor specific data
 */
struct onfi_params {
	int version;
	u16 tPROG;
	u16 tBERS;
	u16 tR;
	u16 tCCS;
	u16 async_timing_mode;
	u16 vendor_revision;
	u8 vendor[88];
};

470 471 472 473
/**
 * struct nand_parameters - NAND generic parameters from the parameter page
 * @model: Model name
 * @supports_set_get_features: The NAND chip supports setting/getting features
474 475
 * @set_feature_list: Bitmap of features that can be set
 * @get_feature_list: Bitmap of features that can be get
476
 * @onfi: ONFI specific parameters
477 478
 */
struct nand_parameters {
479
	/* Generic parameters */
480
	const char *model;
481
	bool supports_set_get_features;
482 483
	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
484 485

	/* ONFI parameters */
486
	struct onfi_params *onfi;
487 488
};

489 490 491
/* The maximum expected count of bytes in the NAND ID sequence */
#define NAND_MAX_ID_LEN 8

492 493
/**
 * struct nand_id - NAND id structure
494
 * @data: buffer containing the id bytes.
495 496 497
 * @len: ID length.
 */
struct nand_id {
498
	u8 data[NAND_MAX_ID_LEN];
499 500 501
	int len;
};

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/**
 * struct nand_controller_ops - Controller operations
 *
 * @attach_chip: this method is called after the NAND detection phase after
 *		 flash ID and MTD fields such as erase size, page size and OOB
 *		 size have been set up. ECC requirements are available if
 *		 provided by the NAND chip or device tree. Typically used to
 *		 choose the appropriate ECC configuration and allocate
 *		 associated resources.
 *		 This hook is optional.
 * @detach_chip: free all resources allocated/claimed in
 *		 nand_controller_ops->attach_chip().
 *		 This hook is optional.
 */
struct nand_controller_ops {
	int (*attach_chip)(struct nand_chip *chip);
	void (*detach_chip)(struct nand_chip *chip);
};

L
Linus Torvalds 已提交
521
/**
522 523
 * struct nand_controller - Structure used to describe a NAND controller
 *
524
 * @lock:               protection lock
L
Linus Torvalds 已提交
525
 * @active:		the mtd device which holds the controller currently
S
Sebastian Andrzej Siewior 已提交
526 527 528
 * @wq:			wait queue to sleep on if a NAND operation is in
 *			progress used instead of the per chip wait queue
 *			when a hw controller is available.
529
 * @ops:		NAND controller operations.
L
Linus Torvalds 已提交
530
 */
531
struct nand_controller {
532
	spinlock_t lock;
L
Linus Torvalds 已提交
533
	struct nand_chip *active;
534
	wait_queue_head_t wq;
535
	const struct nand_controller_ops *ops;
L
Linus Torvalds 已提交
536 537
};

538
static inline void nand_controller_init(struct nand_controller *nfc)
539 540 541 542 543 544
{
	nfc->active = NULL;
	spin_lock_init(&nfc->lock);
	init_waitqueue_head(&nfc->wq);
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/**
 * struct nand_ecc_step_info - ECC step information of ECC engine
 * @stepsize: data bytes per ECC step
 * @strengths: array of supported strengths
 * @nstrengths: number of supported strengths
 */
struct nand_ecc_step_info {
	int stepsize;
	const int *strengths;
	int nstrengths;
};

/**
 * struct nand_ecc_caps - capability of ECC engine
 * @stepinfos: array of ECC step information
 * @nstepinfos: number of ECC step information
 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
 */
struct nand_ecc_caps {
	const struct nand_ecc_step_info *stepinfos;
	int nstepinfos;
	int (*calc_ecc_bytes)(int step_size, int strength);
};

569 570 571 572 573 574 575 576 577 578 579 580 581 582
/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
static const int __name##_strengths[] = { __VA_ARGS__ };	\
static const struct nand_ecc_step_info __name##_stepinfo = {	\
	.stepsize = __step,					\
	.strengths = __name##_strengths,			\
	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
};								\
static const struct nand_ecc_caps __name = {			\
	.stepinfos = &__name##_stepinfo,			\
	.nstepinfos = 1,					\
	.calc_ecc_bytes = __calc,				\
}

T
Thomas Gleixner 已提交
583
/**
584 585
 * struct nand_ecc_ctrl - Control structure for ECC
 * @mode:	ECC mode
586
 * @algo:	ECC algorithm
587 588 589
 * @steps:	number of ECC steps per page
 * @size:	data bytes per ECC step
 * @bytes:	ECC bytes per step
590
 * @strength:	max number of correctible bits per ECC step
591 592 593
 * @total:	total number of ECC bytes per page
 * @prepad:	padding information for syndrome based ECC generators
 * @postpad:	padding information for syndrome based ECC generators
594
 * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
595
 * @priv:	pointer to private ECC control data
596 597
 * @calc_buf:	buffer for calculated ECC, size is oobsize.
 * @code_buf:	buffer for ECC read from flash, size is oobsize.
598
 * @hwctl:	function to control hardware ECC generator. Must only
T
Thomas Gleixner 已提交
599
 *		be provided if an hardware ECC is available
600
 * @calculate:	function for ECC calculation or readback from ECC hardware
601 602 603 604 605 606 607
 * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
 *		Should return a positive number representing the number of
 *		corrected bitflips, -EBADMSG if the number of bitflips exceed
 *		ECC strength, or any other error code if the error is not
 *		directly related to correction.
 *		If -EBADMSG is returned the input buffers should be left
 *		untouched.
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
 * @read_page_raw:	function to read a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and always return contiguous in-band and
 *			out-of-band data even if they're not stored
 *			contiguously on the NAND chip (e.g.
 *			NAND_ECC_HW_SYNDROME interleaves in-band and
 *			out-of-band data).
 * @write_page_raw:	function to write a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and consider the passed data as contiguous
 *			in-band and out-of-band data. ECC controller is
 *			responsible for doing the appropriate transformations
 *			to adapt to its specific layout (e.g.
 *			NAND_ECC_HW_SYNDROME interleaves in-band and
 *			out-of-band data).
623
 * @read_page:	function to read a page according to the ECC generator
624
 *		requirements; returns maximum number of bitflips corrected in
625
 *		any single ECC step, -EIO hw error
626 627
 * @read_subpage:	function to read parts of the page covered by ECC;
 *			returns same as read_page()
628
 * @write_subpage:	function to write parts of the page covered by ECC.
629
 * @write_page:	function to write a page according to the ECC generator
S
Sebastian Andrzej Siewior 已提交
630
 *		requirements.
631
 * @write_oob_raw:	function to write chip OOB data without ECC
632
 * @read_oob_raw:	function to read chip OOB data without ECC
R
Randy Dunlap 已提交
633 634
 * @read_oob:	function to read chip OOB data
 * @write_oob:	function to write chip OOB data
T
Thomas Gleixner 已提交
635 636
 */
struct nand_ecc_ctrl {
637
	nand_ecc_modes_t mode;
638
	enum nand_ecc_algo algo;
639 640 641 642
	int steps;
	int size;
	int bytes;
	int total;
643
	int strength;
644 645
	int prepad;
	int postpad;
646
	unsigned int options;
647
	void *priv;
648 649
	u8 *calc_buf;
	u8 *code_buf;
650
	void (*hwctl)(struct nand_chip *chip, int mode);
651 652
	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
			 uint8_t *ecc_code);
653 654
	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
		       uint8_t *calc_ecc);
655 656
	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
			     int oob_required, int page);
657 658
	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
			      int oob_required, int page);
659 660 661 662
	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
			 int oob_required, int page);
	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
			    uint32_t len, uint8_t *buf, int page);
663 664 665 666 667 668
	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
			     uint32_t data_len, const uint8_t *data_buf,
			     int oob_required, int page);
	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
			  int oob_required, int page);
	int (*write_oob_raw)(struct nand_chip *chip, int page);
669 670
	int (*read_oob_raw)(struct nand_chip *chip, int page);
	int (*read_oob)(struct nand_chip *chip, int page);
671
	int (*write_oob)(struct nand_chip *chip, int page);
672 673
};

674 675 676 677 678 679 680 681 682 683 684
/**
 * struct nand_sdr_timings - SDR NAND chip timings
 *
 * This struct defines the timing requirements of a SDR NAND chip.
 * These information can be found in every NAND datasheets and the timings
 * meaning are described in the ONFI specifications:
 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
 * Parameters)
 *
 * All these timings are expressed in picoseconds.
 *
685 686 687 688
 * @tBERS_max: Block erase time
 * @tCCS_min: Change column setup time
 * @tPROG_max: Page program time
 * @tR_max: Page read time
689 690 691 692 693
 * @tALH_min: ALE hold time
 * @tADL_min: ALE to data loading time
 * @tALS_min: ALE setup time
 * @tAR_min: ALE to RE# delay
 * @tCEA_max: CE# access time
694
 * @tCEH_min: CE# high hold time
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
 * @tCH_min:  CE# hold time
 * @tCHZ_max: CE# high to output hi-Z
 * @tCLH_min: CLE hold time
 * @tCLR_min: CLE to RE# delay
 * @tCLS_min: CLE setup time
 * @tCOH_min: CE# high to output hold
 * @tCS_min: CE# setup time
 * @tDH_min: Data hold time
 * @tDS_min: Data setup time
 * @tFEAT_max: Busy time for Set Features and Get Features
 * @tIR_min: Output hi-Z to RE# low
 * @tITC_max: Interface and Timing Mode Change time
 * @tRC_min: RE# cycle time
 * @tREA_max: RE# access time
 * @tREH_min: RE# high hold time
 * @tRHOH_min: RE# high to output hold
 * @tRHW_min: RE# high to WE# low
 * @tRHZ_max: RE# high to output hi-Z
 * @tRLOH_min: RE# low to output hold
 * @tRP_min: RE# pulse width
 * @tRR_min: Ready to RE# low (data only)
 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 *	      rising edge of R/B#.
 * @tWB_max: WE# high to SR[6] low
 * @tWC_min: WE# cycle time
 * @tWH_min: WE# high hold time
 * @tWHR_min: WE# high to RE# low
 * @tWP_min: WE# pulse width
 * @tWW_min: WP# transition to WE# low
 */
struct nand_sdr_timings {
726
	u64 tBERS_max;
727
	u32 tCCS_min;
728 729
	u64 tPROG_max;
	u64 tR_max;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	u32 tALH_min;
	u32 tADL_min;
	u32 tALS_min;
	u32 tAR_min;
	u32 tCEA_max;
	u32 tCEH_min;
	u32 tCH_min;
	u32 tCHZ_max;
	u32 tCLH_min;
	u32 tCLR_min;
	u32 tCLS_min;
	u32 tCOH_min;
	u32 tCS_min;
	u32 tDH_min;
	u32 tDS_min;
	u32 tFEAT_max;
	u32 tIR_min;
	u32 tITC_max;
	u32 tRC_min;
	u32 tREA_max;
	u32 tREH_min;
	u32 tRHOH_min;
	u32 tRHW_min;
	u32 tRHZ_max;
	u32 tRLOH_min;
	u32 tRP_min;
	u32 tRR_min;
	u64 tRST_max;
	u32 tWB_max;
	u32 tWC_min;
	u32 tWH_min;
	u32 tWHR_min;
	u32 tWP_min;
	u32 tWW_min;
};

/**
 * enum nand_data_interface_type - NAND interface timing type
 * @NAND_SDR_IFACE:	Single Data Rate interface
 */
enum nand_data_interface_type {
	NAND_SDR_IFACE,
};

/**
 * struct nand_data_interface - NAND interface timing
776 777 778
 * @type:	 type of the timing
 * @timings:	 The timing, type according to @type
 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
 */
struct nand_data_interface {
	enum nand_data_interface_type type;
	union {
		struct nand_sdr_timings sdr;
	} timings;
};

/**
 * nand_get_sdr_timings - get SDR timing from data interface
 * @conf:	The data interface
 */
static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_data_interface *conf)
{
	if (conf->type != NAND_SDR_IFACE)
		return ERR_PTR(-EINVAL);

	return &conf->timings.sdr;
}

800 801 802 803 804 805 806
/**
 * struct nand_manufacturer_ops - NAND Manufacturer operations
 * @detect: detect the NAND memory organization and capabilities
 * @init: initialize all vendor specific fields (like the ->read_retry()
 *	  implementation) if any.
 * @cleanup: the ->init() function may have allocated resources, ->cleanup()
 *	     is here to let vendor specific code release those resources.
807 808
 * @fixup_onfi_param_page: apply vendor specific fixups to the ONFI parameter
 *			   page. This is called after the checksum is verified.
809 810 811 812 813
 */
struct nand_manufacturer_ops {
	void (*detect)(struct nand_chip *chip);
	int (*init)(struct nand_chip *chip);
	void (*cleanup)(struct nand_chip *chip);
814 815
	void (*fixup_onfi_param_page)(struct nand_chip *chip,
				      struct nand_onfi_params *p);
816 817
};

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/**
 * struct nand_op_cmd_instr - Definition of a command instruction
 * @opcode: the command to issue in one cycle
 */
struct nand_op_cmd_instr {
	u8 opcode;
};

/**
 * struct nand_op_addr_instr - Definition of an address instruction
 * @naddrs: length of the @addrs array
 * @addrs: array containing the address cycles to issue
 */
struct nand_op_addr_instr {
	unsigned int naddrs;
	const u8 *addrs;
};

/**
 * struct nand_op_data_instr - Definition of a data instruction
 * @len: number of data bytes to move
839 840 841
 * @buf: buffer to fill
 * @buf.in: buffer to fill when reading from the NAND chip
 * @buf.out: buffer to read from when writing to the NAND chip
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
 * @force_8bit: force 8-bit access
 *
 * Please note that "in" and "out" are inverted from the ONFI specification
 * and are from the controller perspective, so a "in" is a read from the NAND
 * chip while a "out" is a write to the NAND chip.
 */
struct nand_op_data_instr {
	unsigned int len;
	union {
		void *in;
		const void *out;
	} buf;
	bool force_8bit;
};

/**
 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
 */
struct nand_op_waitrdy_instr {
	unsigned int timeout_ms;
};

/**
 * enum nand_op_instr_type - Definition of all instruction types
 * @NAND_OP_CMD_INSTR: command instruction
 * @NAND_OP_ADDR_INSTR: address instruction
 * @NAND_OP_DATA_IN_INSTR: data in instruction
 * @NAND_OP_DATA_OUT_INSTR: data out instruction
 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
 */
enum nand_op_instr_type {
	NAND_OP_CMD_INSTR,
	NAND_OP_ADDR_INSTR,
	NAND_OP_DATA_IN_INSTR,
	NAND_OP_DATA_OUT_INSTR,
	NAND_OP_WAITRDY_INSTR,
};

/**
 * struct nand_op_instr - Instruction object
 * @type: the instruction type
884 885 886 887 888 889 890
 * @ctx:  extra data associated to the instruction. You'll have to use the
 *        appropriate element depending on @type
 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
 *	      or %NAND_OP_DATA_OUT_INSTR
 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
 * @delay_ns: delay the controller should apply after the instruction has been
 *	      issued on the bus. Most modern controllers have internal timings
 *	      control logic, and in this case, the controller driver can ignore
 *	      this field.
 */
struct nand_op_instr {
	enum nand_op_instr_type type;
	union {
		struct nand_op_cmd_instr cmd;
		struct nand_op_addr_instr addr;
		struct nand_op_data_instr data;
		struct nand_op_waitrdy_instr waitrdy;
	} ctx;
	unsigned int delay_ns;
};

/*
 * Special handling must be done for the WAITRDY timeout parameter as it usually
 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
 * tBERS (during an erase) which all of them are u64 values that cannot be
 * divided by usual kernel macros and must be handled with the special
 * DIV_ROUND_UP_ULL() macro.
913 914 915 916 917 918 919 920 921 922 923 924
 *
 * Cast to type of dividend is needed here to guarantee that the result won't
 * be an unsigned long long when the dividend is an unsigned long (or smaller),
 * which is what the compiler does when it sees ternary operator with 2
 * different return types (picks the largest type to make sure there's no
 * loss).
 */
#define __DIVIDE(dividend, divisor) ({						\
	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
			       DIV_ROUND_UP(dividend, divisor) :		\
			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
	})
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)

#define NAND_OP_CMD(id, ns)						\
	{								\
		.type = NAND_OP_CMD_INSTR,				\
		.ctx.cmd.opcode = id,					\
		.delay_ns = ns,						\
	}

#define NAND_OP_ADDR(ncycles, cycles, ns)				\
	{								\
		.type = NAND_OP_ADDR_INSTR,				\
		.ctx.addr = {						\
			.naddrs = ncycles,				\
			.addrs = cycles,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_DATA_IN(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_IN_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.in = b,					\
			.force_8bit = false,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_DATA_OUT(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_OUT_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.out = b,					\
			.force_8bit = false,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_IN_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.in = b,					\
			.force_8bit = true,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_OUT_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.out = b,					\
			.force_8bit = true,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_WAIT_RDY(tout_ms, ns)					\
	{								\
		.type = NAND_OP_WAITRDY_INSTR,				\
		.ctx.waitrdy.timeout_ms = tout_ms,			\
		.delay_ns = ns,						\
	}

/**
 * struct nand_subop - a sub operation
 * @instrs: array of instructions
 * @ninstrs: length of the @instrs array
 * @first_instr_start_off: offset to start from for the first instruction
 *			   of the sub-operation
 * @last_instr_end_off: offset to end at (excluded) for the last instruction
 *			of the sub-operation
 *
 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
 * address instructions.
 *
 * When an operation cannot be handled as is by the NAND controller, it will
 * be split by the parser into sub-operations which will be passed to the
 * controller driver.
 */
struct nand_subop {
	const struct nand_op_instr *instrs;
	unsigned int ninstrs;
	unsigned int first_instr_start_off;
	unsigned int last_instr_end_off;
};

1019 1020 1021 1022 1023 1024 1025 1026
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
					 unsigned int op_id);
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
				     unsigned int op_id);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

/**
 * struct nand_op_parser_addr_constraints - Constraints for address instructions
 * @maxcycles: maximum number of address cycles the controller can issue in a
 *	       single step
 */
struct nand_op_parser_addr_constraints {
	unsigned int maxcycles;
};

/**
 * struct nand_op_parser_data_constraints - Constraints for data instructions
 * @maxlen: maximum data length that the controller can handle in a single step
 */
struct nand_op_parser_data_constraints {
	unsigned int maxlen;
};

/**
 * struct nand_op_parser_pattern_elem - One element of a pattern
 * @type: the instructuction type
 * @optional: whether this element of the pattern is optional or mandatory
1049 1050 1051
 * @ctx: address or data constraint
 * @ctx.addr: address constraint (number of cycles)
 * @ctx.data: data constraint (data length)
1052 1053 1054 1055 1056 1057 1058
 */
struct nand_op_parser_pattern_elem {
	enum nand_op_instr_type type;
	bool optional;
	union {
		struct nand_op_parser_addr_constraints addr;
		struct nand_op_parser_data_constraints data;
1059
	} ctx;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
};

#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
	{							\
		.type = NAND_OP_CMD_INSTR,			\
		.optional = _opt,				\
	}

#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
	{							\
		.type = NAND_OP_ADDR_INSTR,			\
		.optional = _opt,				\
1072
		.ctx.addr.maxcycles = _maxcycles,		\
1073 1074 1075 1076 1077 1078
	}

#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
	{							\
		.type = NAND_OP_DATA_IN_INSTR,			\
		.optional = _opt,				\
1079
		.ctx.data.maxlen = _maxlen,			\
1080 1081 1082 1083 1084 1085
	}

#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
	{							\
		.type = NAND_OP_DATA_OUT_INSTR,			\
		.optional = _opt,				\
1086
		.ctx.data.maxlen = _maxlen,			\
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	}

#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
	{							\
		.type = NAND_OP_WAITRDY_INSTR,			\
		.optional = _opt,				\
	}

/**
 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
 * @elems: array of pattern elements
 * @nelems: number of pattern elements in @elems array
 * @exec: the function that will issue a sub-operation
 *
 * A pattern is a list of elements, each element reprensenting one instruction
 * with its constraints. The pattern itself is used by the core to match NAND
 * chip operation with NAND controller operations.
 * Once a match between a NAND controller operation pattern and a NAND chip
 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
 * hook is called so that the controller driver can issue the operation on the
 * bus.
 *
 * Controller drivers should declare as many patterns as they support and pass
 * this list of patterns (created with the help of the following macro) to
 * the nand_op_parser_exec_op() helper.
 */
struct nand_op_parser_pattern {
	const struct nand_op_parser_pattern_elem *elems;
	unsigned int nelems;
	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
};

#define NAND_OP_PARSER_PATTERN(_exec, ...)							\
	{											\
		.exec = _exec,									\
		.elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
			  sizeof(struct nand_op_parser_pattern_elem),				\
	}

/**
 * struct nand_op_parser - NAND controller operation parser descriptor
 * @patterns: array of supported patterns
 * @npatterns: length of the @patterns array
 *
 * The parser descriptor is just an array of supported patterns which will be
 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
 * NAND operation (or tries to determine if a specific operation is supported).
 *
 * It is worth mentioning that patterns will be tested in their declaration
 * order, and the first match will be taken, so it's important to order patterns
 * appropriately so that simple/inefficient patterns are placed at the end of
 * the list. Usually, this is where you put single instruction patterns.
 */
struct nand_op_parser {
	const struct nand_op_parser_pattern *patterns;
	unsigned int npatterns;
};

#define NAND_OP_PARSER(...)									\
	{											\
		.patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ },			\
		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
			     sizeof(struct nand_op_parser_pattern),				\
	}

/**
 * struct nand_operation - NAND operation descriptor
 * @instrs: array of instructions to execute
 * @ninstrs: length of the @instrs array
 *
 * The actual operation structure that will be passed to chip->exec_op().
 */
struct nand_operation {
	const struct nand_op_instr *instrs;
	unsigned int ninstrs;
};

#define NAND_OPERATION(_instrs)					\
	{							\
		.instrs = _instrs,				\
		.ninstrs = ARRAY_SIZE(_instrs),			\
	}

int nand_op_parser_exec_op(struct nand_chip *chip,
			   const struct nand_op_parser *parser,
			   const struct nand_operation *op, bool check_only);

L
Linus Torvalds 已提交
1175 1176
/**
 * struct nand_chip - NAND Private Flash Chip Data
1177
 * @mtd:		MTD device registered to the MTD framework
S
Sebastian Andrzej Siewior 已提交
1178 1179 1180 1181
 * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the
 *			flash device
 * @IO_ADDR_W:		[BOARDSPECIFIC] address to write the 8 I/O lines of the
 *			flash device.
L
Linus Torvalds 已提交
1182
 * @read_byte:		[REPLACEABLE] read one byte from the chip
1183 1184
 * @write_byte:		[REPLACEABLE] write a single byte to the chip on the
 *			low 8 I/O lines
L
Linus Torvalds 已提交
1185 1186 1187
 * @write_buf:		[REPLACEABLE] write data from the buffer to the chip
 * @read_buf:		[REPLACEABLE] read data from the chip into the buffer
 * @select_chip:	[REPLACEABLE] select chip nr
1188 1189
 * @block_bad:		[REPLACEABLE] check if a block is bad, using OOB markers
 * @block_markbad:	[REPLACEABLE] mark a block bad
L
Lucas De Marchi 已提交
1190
 * @cmd_ctrl:		[BOARDSPECIFIC] hardwarespecific function for controlling
1191
 *			ALE/CLE/nCE. Also used to write command and address
1192
 * @dev_ready:		[BOARDSPECIFIC] hardwarespecific function for accessing
S
Sebastian Andrzej Siewior 已提交
1193 1194 1195 1196 1197 1198 1199
 *			device ready/busy line. If set to NULL no access to
 *			ready/busy is available and the ready/busy information
 *			is read from the chip status register.
 * @cmdfunc:		[REPLACEABLE] hardwarespecific function for writing
 *			commands to the chip.
 * @waitfunc:		[REPLACEABLE] hardwarespecific function for wait on
 *			ready.
1200 1201 1202 1203
 * @exec_op:		controller specific method to execute NAND operations.
 *			This method replaces ->cmdfunc(),
 *			->{read,write}_{buf,byte,word}(), ->dev_ready() and
 *			->waifunc().
1204 1205
 * @setup_read_retry:	[FLASHSPECIFIC] flash (vendor) specific function for
 *			setting the read-retry mode. Mostly needed for MLC NAND.
1206
 * @ecc:		[BOARDSPECIFIC] ECC control structure
1207
 * @buf_align:		minimum buffer alignment required by a platform
1208 1209
 * @dummy_controller:	dummy controller implementation for drivers that can
 *			only control a single chip
1210
 * @erase:		[REPLACEABLE] erase function
L
Lucas De Marchi 已提交
1211
 * @chip_delay:		[BOARDSPECIFIC] chip dependent delay for transferring
S
Sebastian Andrzej Siewior 已提交
1212
 *			data from array to read regs (tR).
1213
 * @state:		[INTERN] the current state of the NAND device
1214 1215
 * @oob_poi:		"poison value buffer," used for laying out OOB data
 *			before writing
S
Sebastian Andrzej Siewior 已提交
1216 1217
 * @page_shift:		[INTERN] number of address bits in a page (column
 *			address bits).
L
Linus Torvalds 已提交
1218 1219 1220
 * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock
 * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry
 * @chip_shift:		[INTERN] number of address bits in one chip
S
Sebastian Andrzej Siewior 已提交
1221 1222 1223
 * @options:		[BOARDSPECIFIC] various chip options. They can partly
 *			be set to inform nand_scan about special functionality.
 *			See the defines for further explanation.
1224 1225 1226
 * @bbt_options:	[INTERN] bad block specific options. All options used
 *			here must come from bbm.h. By default, these options
 *			will be copied to the appropriate nand_bbt_descr's.
S
Sebastian Andrzej Siewior 已提交
1227 1228
 * @badblockpos:	[INTERN] position of the bad block marker in the oob
 *			area.
1229 1230 1231
 * @badblockbits:	[INTERN] minimum number of set bits in a good block's
 *			bad block marker position; i.e., BBM == 11110111b is
 *			not bad when badblockbits == 7
1232
 * @bits_per_cell:	[INTERN] number of bits per cell. i.e., 1 means SLC.
1233 1234 1235 1236
 * @ecc_strength_ds:	[INTERN] ECC correctability from the datasheet.
 *			Minimum amount of bit errors per @ecc_step_ds guaranteed
 *			to be correctable. If unknown, set to zero.
 * @ecc_step_ds:	[INTERN] ECC step required by the @ecc_strength_ds,
1237
 *			also from the datasheet. It is the recommended ECC step
1238
 *			size, if known; if unknown, set to zero.
1239
 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1240 1241 1242
 *			      set to the actually used ONFI mode if the chip is
 *			      ONFI compliant or deduced from the datasheet if
 *			      the NAND chip is not ONFI compliant.
L
Linus Torvalds 已提交
1243 1244 1245
 * @numchips:		[INTERN] number of physical chips
 * @chipsize:		[INTERN] the size of one chip for multichip arrays
 * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
1246
 * @data_buf:		[INTERN] buffer for data, size is (page size + oobsize).
S
Sebastian Andrzej Siewior 已提交
1247 1248
 * @pagebuf:		[INTERN] holds the pagenumber which is currently in
 *			data_buf.
1249 1250
 * @pagebuf_bitflips:	[INTERN] holds the bitflip count for the page which is
 *			currently in data_buf.
1251
 * @subpagesize:	[INTERN] holds the subpagesize
1252
 * @id:			[INTERN] holds NAND ID
1253 1254
 * @parameters:		[INTERN] holds generic parameters under an easily
 *			readable form.
1255 1256 1257
 * @max_bb_per_die:	[INTERN] the max number of bad blocks each die of a
 *			this nand device will encounter their life times.
 * @blocks_per_die:	[INTERN] The number of PEBs in a die
1258
 * @data_interface:	[INTERN] NAND interface timing information
1259
 * @read_retries:	[INTERN] the number of read retry modes supported
1260 1261
 * @set_features:	[REPLACEABLE] set the NAND chip features
 * @get_features:	[REPLACEABLE] get the NAND chip features
1262 1263 1264 1265
 * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
 *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
 *			  means the configuration should not be applied but
 *			  only checked.
L
Linus Torvalds 已提交
1266
 * @bbt:		[INTERN] bad block table pointer
S
Sebastian Andrzej Siewior 已提交
1267 1268
 * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
 *			lookup.
L
Linus Torvalds 已提交
1269
 * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor
S
Sebastian Andrzej Siewior 已提交
1270 1271 1272
 * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial
 *			bad block scan.
 * @controller:		[REPLACEABLE] a pointer to a hardware controller
1273
 *			structure which is shared among multiple independent
S
Sebastian Andrzej Siewior 已提交
1274
 *			devices.
1275
 * @priv:		[OPTIONAL] pointer to private chip data
1276
 * @manufacturer:	[INTERN] Contains manufacturer information
1277 1278
 * @manufacturer.desc:	[INTERN] Contains manufacturer's description
 * @manufacturer.priv:	[INTERN] Contains manufacturer private information
L
Linus Torvalds 已提交
1279
 */
1280

L
Linus Torvalds 已提交
1281
struct nand_chip {
1282
	struct mtd_info mtd;
1283 1284 1285 1286
	void __iomem *IO_ADDR_R;
	void __iomem *IO_ADDR_W;

	uint8_t (*read_byte)(struct mtd_info *mtd);
1287
	void (*write_byte)(struct mtd_info *mtd, uint8_t byte);
1288 1289 1290
	void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
	void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
	void (*select_chip)(struct mtd_info *mtd, int chip);
1291
	int (*block_bad)(struct mtd_info *mtd, loff_t ofs);
1292 1293 1294 1295 1296 1297
	int (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
	void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
	int (*dev_ready)(struct mtd_info *mtd);
	void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column,
			int page_addr);
	int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
1298 1299 1300
	int (*exec_op)(struct nand_chip *chip,
		       const struct nand_operation *op,
		       bool check_only);
1301
	int (*erase)(struct mtd_info *mtd, int page);
1302 1303 1304 1305
	int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip,
			    int feature_addr, uint8_t *subfeature_para);
	int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip,
			    int feature_addr, uint8_t *subfeature_para);
1306
	int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
1307 1308
	int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
				    const struct nand_data_interface *conf);
1309

1310 1311
	int chip_delay;
	unsigned int options;
1312
	unsigned int bbt_options;
1313 1314 1315 1316 1317 1318 1319 1320

	int page_shift;
	int phys_erase_shift;
	int bbt_erase_shift;
	int chip_shift;
	int numchips;
	uint64_t chipsize;
	int pagemask;
1321
	u8 *data_buf;
1322
	int pagebuf;
1323
	unsigned int pagebuf_bitflips;
1324
	int subpagesize;
1325
	uint8_t bits_per_cell;
1326 1327
	uint16_t ecc_strength_ds;
	uint16_t ecc_step_ds;
1328
	int onfi_timing_mode_default;
1329 1330 1331
	int badblockpos;
	int badblockbits;

1332
	struct nand_id id;
1333
	struct nand_parameters parameters;
1334 1335
	u16 max_bb_per_die;
	u32 blocks_per_die;
1336

1337
	struct nand_data_interface data_interface;
1338

1339 1340
	int read_retries;

1341
	flstate_t state;
1342

1343
	uint8_t *oob_poi;
1344
	struct nand_controller *controller;
1345 1346

	struct nand_ecc_ctrl ecc;
1347
	unsigned long buf_align;
1348
	struct nand_controller dummy_controller;
1349

1350 1351 1352
	uint8_t *bbt;
	struct nand_bbt_descr *bbt_td;
	struct nand_bbt_descr *bbt_md;
1353

1354
	struct nand_bbt_descr *badblock_pattern;
1355

1356
	void *priv;
1357 1358 1359 1360 1361

	struct {
		const struct nand_manufacturer *desc;
		void *priv;
	} manufacturer;
L
Linus Torvalds 已提交
1362 1363
};

1364 1365 1366 1367 1368 1369 1370 1371 1372
static inline int nand_exec_op(struct nand_chip *chip,
			       const struct nand_operation *op)
{
	if (!chip->exec_op)
		return -ENOTSUPP;

	return chip->exec_op(chip, op, false);
}

1373 1374 1375
extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;

1376 1377 1378
static inline void nand_set_flash_node(struct nand_chip *chip,
				       struct device_node *np)
{
1379
	mtd_set_of_node(&chip->mtd, np);
1380 1381 1382 1383
}

static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
{
1384
	return mtd_get_of_node(&chip->mtd);
1385 1386
}

1387 1388
static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
{
B
Boris BREZILLON 已提交
1389
	return container_of(mtd, struct nand_chip, mtd);
1390 1391
}

1392 1393 1394 1395 1396
static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
{
	return &chip->mtd;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static inline void *nand_get_controller_data(struct nand_chip *chip)
{
	return chip->priv;
}

static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
{
	chip->priv = priv;
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static inline void nand_set_manufacturer_data(struct nand_chip *chip,
					      void *priv)
{
	chip->manufacturer.priv = priv;
}

static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
{
	return chip->manufacturer.priv;
}

L
Linus Torvalds 已提交
1418 1419 1420 1421
/*
 * NAND Flash Manufacturer ID Codes
 */
#define NAND_MFR_TOSHIBA	0x98
1422
#define NAND_MFR_ESMT		0xc8
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427
#define NAND_MFR_SAMSUNG	0xec
#define NAND_MFR_FUJITSU	0x04
#define NAND_MFR_NATIONAL	0x8f
#define NAND_MFR_RENESAS	0x07
#define NAND_MFR_STMICRO	0x20
1428
#define NAND_MFR_HYNIX		0xad
1429
#define NAND_MFR_MICRON		0x2c
1430
#define NAND_MFR_AMD		0x01
1431
#define NAND_MFR_MACRONIX	0xc2
1432
#define NAND_MFR_EON		0x92
1433
#define NAND_MFR_SANDISK	0x45
1434
#define NAND_MFR_INTEL		0x89
1435
#define NAND_MFR_ATO		0x9b
1436
#define NAND_MFR_WINBOND	0xef
L
Linus Torvalds 已提交
1437

1438

1439 1440 1441
/*
 * A helper for defining older NAND chips where the second ID byte fully
 * defined the chip, including the geometry (chip size, eraseblock size, page
1442
 * size). All these chips have 512 bytes NAND page size.
1443
 */
1444 1445 1446
#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

/*
 * A helper for defining newer chips which report their page size and
 * eraseblock size via the extended ID bytes.
 *
 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
 * device ID now only represented a particular total chip size (and voltage,
 * buswidth), and the page size, eraseblock size, and OOB size could vary while
 * using the same device ID.
 */
1458 1459
#define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1460 1461
	  .options = (opts) }

1462 1463 1464 1465 1466
#define NAND_ECC_INFO(_strength, _step)	\
			{ .strength_ds = (_strength), .step_ds = (_step) }
#define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
#define NAND_ECC_STEP(type)		((type)->ecc.step_ds)

L
Linus Torvalds 已提交
1467 1468
/**
 * struct nand_flash_dev - NAND Flash Device ID Structure
1469 1470
 * @name: a human-readable name of the NAND chip
 * @dev_id: the device ID (the second byte of the full chip ID array)
1471 1472 1473 1474 1475
 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
 *          memory address as @id[0])
 * @dev_id: device ID part of the full chip ID array (refers the same memory
 *          address as @id[1])
 * @id: full device ID array
1476 1477 1478 1479
 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
 *            well as the eraseblock size) is determined from the extended NAND
 *            chip ID array)
 * @chipsize: total chip size in MiB
1480
 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1481
 * @options: stores various chip bit options
1482 1483
 * @id_len: The valid length of the @id.
 * @oobsize: OOB size
1484
 * @ecc: ECC correctability and step information from the datasheet.
1485 1486 1487 1488 1489 1490
 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
 *                   @ecc_strength_ds in nand_chip{}.
 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
 *               @ecc_step_ds in nand_chip{}, also from the datasheet.
 *               For example, the "4bit ECC for each 512Byte" can be set with
 *               NAND_ECC_INFO(4, 512).
1491 1492 1493 1494
 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
 *			      reset. Should be deduced from timings described
 *			      in the datasheet.
 *
L
Linus Torvalds 已提交
1495 1496 1497
 */
struct nand_flash_dev {
	char *name;
1498 1499 1500 1501 1502
	union {
		struct {
			uint8_t mfr_id;
			uint8_t dev_id;
		};
1503
		uint8_t id[NAND_MAX_ID_LEN];
1504
	};
1505 1506 1507 1508
	unsigned int pagesize;
	unsigned int chipsize;
	unsigned int erasesize;
	unsigned int options;
1509 1510
	uint16_t id_len;
	uint16_t oobsize;
1511 1512 1513 1514
	struct {
		uint16_t strength_ds;
		uint16_t step_ds;
	} ecc;
1515
	int onfi_timing_mode_default;
L
Linus Torvalds 已提交
1516 1517 1518
};

/**
1519
 * struct nand_manufacturer - NAND Flash Manufacturer structure
L
Linus Torvalds 已提交
1520
 * @name:	Manufacturer name
1521
 * @id:		manufacturer ID code of device.
1522
 * @ops:	manufacturer operations
L
Linus Torvalds 已提交
1523
*/
1524
struct nand_manufacturer {
L
Linus Torvalds 已提交
1525
	int id;
S
Sebastian Andrzej Siewior 已提交
1526
	char *name;
1527
	const struct nand_manufacturer_ops *ops;
L
Linus Torvalds 已提交
1528 1529
};

1530 1531 1532 1533 1534 1535 1536 1537
const struct nand_manufacturer *nand_get_manufacturer(u8 id);

static inline const char *
nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
{
	return manufacturer ? manufacturer->name : "Unknown";
}

L
Linus Torvalds 已提交
1538 1539
extern struct nand_flash_dev nand_flash_ids[];

1540
extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops;
1541
extern const struct nand_manufacturer_ops samsung_nand_manuf_ops;
1542
extern const struct nand_manufacturer_ops hynix_nand_manuf_ops;
1543
extern const struct nand_manufacturer_ops micron_nand_manuf_ops;
1544
extern const struct nand_manufacturer_ops amd_nand_manuf_ops;
1545
extern const struct nand_manufacturer_ops macronix_nand_manuf_ops;
1546

1547
int nand_create_bbt(struct nand_chip *chip);
1548 1549 1550 1551 1552
int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs);
int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs);
int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt);
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
		    int allowbbt);
L
Linus Torvalds 已提交
1553

1554 1555 1556
/**
 * struct platform_nand_chip - chip level device structure
 * @nr_chips:		max. number of chips to scan for
R
Randy Dunlap 已提交
1557
 * @chip_offset:	chip number offset
1558
 * @nr_partitions:	number of partitions pointed to by partitions (or zero)
1559 1560 1561
 * @partitions:		mtd partition list
 * @chip_delay:		R/B delay value in us
 * @options:		Option flags, e.g. 16bit buswidth
1562
 * @bbt_options:	BBT option flags, e.g. NAND_BBT_USE_FLASH
1563
 * @part_probe_types:	NULL-terminated array of probe types
1564 1565
 */
struct platform_nand_chip {
1566 1567 1568 1569 1570 1571
	int nr_chips;
	int chip_offset;
	int nr_partitions;
	struct mtd_partition *partitions;
	int chip_delay;
	unsigned int options;
1572
	unsigned int bbt_options;
1573
	const char **part_probe_types;
1574 1575
};

1576 1577 1578
/* Keep gcc happy */
struct platform_device;

1579 1580
/**
 * struct platform_nand_ctrl - controller level device structure
1581 1582
 * @probe:		platform specific function to probe/setup hardware
 * @remove:		platform specific function to remove/teardown hardware
1583 1584
 * @dev_ready:		platform specific function to read ready/busy pin
 * @select_chip:	platform specific chip select function
1585 1586
 * @cmd_ctrl:		platform specific function for controlling
 *			ALE/CLE/nCE. Also used to write command and address
1587 1588
 * @write_buf:		platform specific function for write buffer
 * @read_buf:		platform specific function for read buffer
R
Randy Dunlap 已提交
1589
 * @priv:		private data to transport driver specific settings
1590 1591 1592 1593
 *
 * All fields are optional and depend on the hardware driver requirements
 */
struct platform_nand_ctrl {
1594 1595
	int (*probe)(struct platform_device *pdev);
	void (*remove)(struct platform_device *pdev);
1596 1597 1598 1599 1600
	int (*dev_ready)(struct nand_chip *chip);
	void (*select_chip)(struct nand_chip *chip, int cs);
	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
	void (*write_buf)(struct nand_chip *chip, const uint8_t *buf, int len);
	void (*read_buf)(struct nand_chip *chip, uint8_t *buf, int len);
1601
	void *priv;
1602 1603
};

1604 1605 1606 1607 1608 1609
/**
 * struct platform_nand_data - container structure for platform-specific data
 * @chip:		chip level chip structure
 * @ctrl:		controller level device structure
 */
struct platform_nand_data {
1610 1611
	struct platform_nand_chip chip;
	struct platform_nand_ctrl ctrl;
1612 1613
};

1614 1615 1616
/* return the supported asynchronous timing mode. */
static inline int onfi_get_async_timing_mode(struct nand_chip *chip)
{
1617
	if (!chip->parameters.onfi)
1618 1619
		return ONFI_TIMING_MODE_UNKNOWN;

1620
	return chip->parameters.onfi->async_timing_mode;
1621 1622
}

1623
int onfi_fill_data_interface(struct nand_chip *chip,
1624 1625 1626
			     enum nand_data_interface_type type,
			     int timing_mode);

1627 1628 1629 1630 1631 1632 1633
/*
 * Check if it is a SLC nand.
 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
 * We do not distinguish the MLC and TLC now.
 */
static inline bool nand_is_slc(struct nand_chip *chip)
{
1634 1635
	WARN(chip->bits_per_cell == 0,
	     "chip->bits_per_cell is used uninitialized\n");
1636
	return chip->bits_per_cell == 1;
1637
}
1638 1639 1640 1641 1642 1643 1644

/**
 * Check if the opcode's address should be sent only on the lower 8 bits
 * @command: opcode to check
 */
static inline int nand_opcode_8bits(unsigned int command)
{
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	switch (command) {
	case NAND_CMD_READID:
	case NAND_CMD_PARAM:
	case NAND_CMD_GET_FEATURES:
	case NAND_CMD_SET_FEATURES:
		return 1;
	default:
		break;
	}
	return 0;
1655 1656
}

1657 1658
/* get timing characteristics from ONFI timing mode. */
const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode);
1659 1660 1661 1662 1663

int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int threshold);
1664

1665 1666 1667
int nand_ecc_choose_conf(struct nand_chip *chip,
			 const struct nand_ecc_caps *caps, int oobavail);

1668
/* Default write_oob implementation */
1669
int nand_write_oob_std(struct nand_chip *chip, int page);
1670 1671

/* Default write_oob syndrome implementation */
1672
int nand_write_oob_syndrome(struct nand_chip *chip, int page);
1673 1674

/* Default read_oob implementation */
1675
int nand_read_oob_std(struct nand_chip *chip, int page);
1676 1677

/* Default read_oob syndrome implementation */
1678
int nand_read_oob_syndrome(struct nand_chip *chip, int page);
1679

1680 1681 1682
/* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */
int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
1683
/* Stub used by drivers that do not support GET/SET FEATURES operations */
1684 1685
int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
				  int addr, u8 *subfeature_param);
1686

1687
/* Default read_page_raw implementation */
1688 1689 1690 1691
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
		       int page);
int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
			       int oob_required, int page);
1692 1693

/* Default write_page_raw implementation */
1694 1695 1696 1697
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
			int oob_required, int page);
int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
				int oob_required, int page);
1698

1699
/* Reset and initialize a NAND device */
1700
int nand_reset(struct nand_chip *chip, int chipnr);
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/* NAND operation helpers */
int nand_reset_op(struct nand_chip *chip);
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
		   unsigned int len);
int nand_status_op(struct nand_chip *chip, u8 *status);
int nand_exit_status_op(struct nand_chip *chip);
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, void *buf, unsigned int len);
int nand_change_read_column_op(struct nand_chip *chip,
			       unsigned int offset_in_page, void *buf,
			       unsigned int len, bool force_8bit);
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
		     unsigned int offset_in_page, void *buf, unsigned int len);
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
			    unsigned int offset_in_page, const void *buf,
			    unsigned int len);
int nand_prog_page_end_op(struct nand_chip *chip);
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, const void *buf,
		      unsigned int len);
int nand_change_write_column_op(struct nand_chip *chip,
				unsigned int offset_in_page, const void *buf,
				unsigned int len, bool force_8bit);
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
		      bool force_8bit);
int nand_write_data_op(struct nand_chip *chip, const void *buf,
		       unsigned int len, bool force_8bit);

1731 1732 1733 1734
/*
 * Free resources held by the NAND device, must be called on error after a
 * sucessful nand_scan().
 */
1735
void nand_cleanup(struct nand_chip *chip);
1736
/* Unregister the MTD device and calls nand_cleanup() */
1737
void nand_release(struct nand_chip *chip);
1738

1739 1740
/* Default extended ID decoding function */
void nand_decode_ext_id(struct nand_chip *chip);
1741 1742 1743 1744 1745 1746 1747

/*
 * External helper for controller drivers that have to implement the WAITRDY
 * instruction and have no physical pin to check it.
 */
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);

1748
#endif /* __LINUX_MTD_RAWNAND_H */