mt7530.c 81.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12
/*
 * Mediatek MT7530 DSA Switch driver
 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
 */
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
13
#include <linux/of_irq.h>
14 15 16
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
17
#include <linux/phylink.h>
18 19 20
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
21
#include <linux/gpio/consumer.h>
22
#include <linux/gpio/driver.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include <net/dsa.h>

#include "mt7530.h"

/* String, offset, and register size in bytes if different from 4 bytes */
static const struct mt7530_mib_desc mt7530_mib[] = {
	MIB_DESC(1, 0x00, "TxDrop"),
	MIB_DESC(1, 0x04, "TxCrcErr"),
	MIB_DESC(1, 0x08, "TxUnicast"),
	MIB_DESC(1, 0x0c, "TxMulticast"),
	MIB_DESC(1, 0x10, "TxBroadcast"),
	MIB_DESC(1, 0x14, "TxCollision"),
	MIB_DESC(1, 0x18, "TxSingleCollision"),
	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
	MIB_DESC(1, 0x20, "TxDeferred"),
	MIB_DESC(1, 0x24, "TxLateCollision"),
	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
	MIB_DESC(1, 0x2c, "TxPause"),
	MIB_DESC(1, 0x30, "TxPktSz64"),
	MIB_DESC(1, 0x34, "TxPktSz65To127"),
	MIB_DESC(1, 0x38, "TxPktSz128To255"),
	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
	MIB_DESC(1, 0x44, "Tx1024ToMax"),
	MIB_DESC(2, 0x48, "TxBytes"),
	MIB_DESC(1, 0x60, "RxDrop"),
	MIB_DESC(1, 0x64, "RxFiltering"),
	MIB_DESC(1, 0x6c, "RxMulticast"),
	MIB_DESC(1, 0x70, "RxBroadcast"),
	MIB_DESC(1, 0x74, "RxAlignErr"),
	MIB_DESC(1, 0x78, "RxCrcErr"),
	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
	MIB_DESC(1, 0x80, "RxFragErr"),
	MIB_DESC(1, 0x84, "RxOverSzErr"),
	MIB_DESC(1, 0x88, "RxJabberErr"),
	MIB_DESC(1, 0x8c, "RxPause"),
	MIB_DESC(1, 0x90, "RxPktSz64"),
	MIB_DESC(1, 0x94, "RxPktSz65To127"),
	MIB_DESC(1, 0x98, "RxPktSz128To255"),
	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
	MIB_DESC(2, 0xa8, "RxBytes"),
	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
	MIB_DESC(1, 0xb4, "RxIngressDrop"),
	MIB_DESC(1, 0xb8, "RxArlDrop"),
};

71 72 73 74 75
/* Since phy_device has not yet been created and
 * phy_{read,write}_mmd_indirect is not available, we provide our own
 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
 * to complete this function.
 */
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static int
core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
{
	struct mii_bus *bus = priv->bus;
	int value, ret;

	/* Write the desired MMD Devad */
	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
	if (ret < 0)
		goto err;

	/* Write the desired MMD register address */
	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
	if (ret < 0)
		goto err;

	/* Select the Function : DATA with no post increment */
	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
	if (ret < 0)
		goto err;

	/* Read the content of the MMD's selected register */
	value = bus->read(bus, 0, MII_MMD_DATA);

	return value;
err:
	dev_err(&bus->dev,  "failed to read mmd register\n");

	return ret;
}

static int
core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
			int devad, u32 data)
{
	struct mii_bus *bus = priv->bus;
	int ret;

	/* Write the desired MMD Devad */
	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
	if (ret < 0)
		goto err;

	/* Write the desired MMD register address */
	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
	if (ret < 0)
		goto err;

	/* Select the Function : DATA with no post increment */
	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
	if (ret < 0)
		goto err;

	/* Write the data into MMD's selected register */
	ret = bus->write(bus, 0, MII_MMD_DATA, data);
err:
	if (ret < 0)
		dev_err(&bus->dev,
			"failed to write mmd register\n");
	return ret;
}

static void
core_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
{
	struct mii_bus *bus = priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
	val &= ~mask;
	val |= set;
	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
core_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
	core_rmw(priv, reg, 0, val);
}

static void
core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
	core_rmw(priv, reg, val, 0);
}

static int
mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;
	u16 page, r, lo, hi;
	int ret;

	page = (reg >> 6) & 0x3ff;
	r  = (reg >> 2) & 0xf;
	lo = val & 0xffff;
	hi = val >> 16;

	/* MT7530 uses 31 as the pseudo port */
	ret = bus->write(bus, 0x1f, 0x1f, page);
	if (ret < 0)
		goto err;

	ret = bus->write(bus, 0x1f, r,  lo);
	if (ret < 0)
		goto err;

	ret = bus->write(bus, 0x1f, 0x10, hi);
err:
	if (ret < 0)
		dev_err(&bus->dev,
			"failed to write mt7530 register\n");
	return ret;
}

static u32
mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
{
	struct mii_bus *bus = priv->bus;
	u16 page, r, lo, hi;
	int ret;

	page = (reg >> 6) & 0x3ff;
	r = (reg >> 2) & 0xf;

	/* MT7530 uses 31 as the pseudo port */
	ret = bus->write(bus, 0x1f, 0x1f, page);
	if (ret < 0) {
		dev_err(&bus->dev,
			"failed to read mt7530 register\n");
		return ret;
	}

	lo = bus->read(bus, 0x1f, r);
	hi = bus->read(bus, 0x1f, 0x10);

	return (hi << 16) | (lo & 0xffff);
}

static void
mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	mt7530_mii_write(priv, reg, val);

	mutex_unlock(&bus->mdio_lock);
}

243 244 245 246 247 248
static u32
_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
{
	return mt7530_mii_read(p->priv, p->reg);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static u32
_mt7530_read(struct mt7530_dummy_poll *p)
{
	struct mii_bus		*bus = p->priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(p->priv, p->reg);

	mutex_unlock(&bus->mdio_lock);

	return val;
}

static u32
mt7530_read(struct mt7530_priv *priv, u32 reg)
{
	struct mt7530_dummy_poll p;

	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
	return _mt7530_read(&p);
}

static void
mt7530_rmw(struct mt7530_priv *priv, u32 reg,
	   u32 mask, u32 set)
{
	struct mii_bus *bus = priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(priv, reg);
	val &= ~mask;
	val |= set;
	mt7530_mii_write(priv, reg, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7530_rmw(priv, reg, 0, val);
}

static void
mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7530_rmw(priv, reg, val, 0);
}

static int
mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
{
	u32 val;
	int ret;
	struct mt7530_dummy_poll p;

	/* Set the command operating upon the MAC address entries */
	val = ATC_BUSY | ATC_MAT(0) | cmd;
	mt7530_write(priv, MT7530_ATC, val);

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
	ret = readx_poll_timeout(_mt7530_read, &p, val,
				 !(val & ATC_BUSY), 20, 20000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	/* Additional sanity for read command if the specified
	 * entry is invalid
	 */
	val = mt7530_read(priv, MT7530_ATC);
	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
		return -EINVAL;

	if (rsp)
		*rsp = val;

	return 0;
}

static void
mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
{
	u32 reg[3];
	int i;

	/* Read from ARL table into an array */
	for (i = 0; i < 3; i++) {
		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));

		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
			__func__, __LINE__, i, reg[i]);
	}

	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
}

static void
mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
		 u8 port_mask, const u8 *mac,
		 u8 aging, u8 type)
{
	u32 reg[3] = { 0 };
	int i;

	reg[1] |= vid & CVID_MASK;
369 370
	reg[1] |= ATA2_IVL;
	reg[1] |= ATA2_FID(FID_BRIDGED);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
	/* STATIC_ENT indicate that entry is static wouldn't
	 * be aged out and STATIC_EMP specified as erasing an
	 * entry
	 */
	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
	reg[1] |= mac[5] << MAC_BYTE_5;
	reg[1] |= mac[4] << MAC_BYTE_4;
	reg[0] |= mac[3] << MAC_BYTE_3;
	reg[0] |= mac[2] << MAC_BYTE_2;
	reg[0] |= mac[1] << MAC_BYTE_1;
	reg[0] |= mac[0] << MAC_BYTE_0;

	/* Write array into the ARL table */
	for (i = 0; i < 3; i++)
		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
}

390
/* Setup TX circuit including relevant PAD and driving */
391
static int
392
mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
393 394
{
	struct mt7530_priv *priv = ds->priv;
395 396 397 398 399 400 401 402 403 404
	u32 ncpo1, ssc_delta, trgint, i, xtal;

	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;

	if (xtal == HWTRAP_XTAL_20MHZ) {
		dev_err(priv->dev,
			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
			__func__);
		return -EINVAL;
	}
405

406
	switch (interface) {
407 408
	case PHY_INTERFACE_MODE_RGMII:
		trgint = 0;
409
		/* PLL frequency: 125MHz */
410 411 412 413
		ncpo1 = 0x0c80;
		break;
	case PHY_INTERFACE_MODE_TRGMII:
		trgint = 1;
414 415 416 417 418 419 420 421 422 423 424 425
		if (priv->id == ID_MT7621) {
			/* PLL frequency: 150MHz: 1.2GBit */
			if (xtal == HWTRAP_XTAL_40MHZ)
				ncpo1 = 0x0780;
			if (xtal == HWTRAP_XTAL_25MHZ)
				ncpo1 = 0x0a00;
		} else { /* PLL frequency: 250MHz: 2.0Gbit */
			if (xtal == HWTRAP_XTAL_40MHZ)
				ncpo1 = 0x0c80;
			if (xtal == HWTRAP_XTAL_25MHZ)
				ncpo1 = 0x1400;
		}
426 427
		break;
	default:
428 429
		dev_err(priv->dev, "xMII interface %d not supported\n",
			interface);
430 431 432
		return -EINVAL;
	}

433 434 435 436 437
	if (xtal == HWTRAP_XTAL_25MHZ)
		ssc_delta = 0x57;
	else
		ssc_delta = 0x87;

438 439 440 441 442 443 444 445
	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
		   P6_INTF_MODE(trgint));

	/* Lower Tx Driving for TRGMII path */
	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
			     TD_DM_DRVP(8) | TD_DM_DRVN(8));

446 447 448
	/* Disable MT7530 core and TRGMII Tx clocks */
	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
		   REG_GSWCK_EN | REG_TRGMIICK_EN);
449

450 451 452
	/* Setup core clock for MT7530 */
	/* Disable PLL */
	core_write(priv, CORE_GSWPLL_GRP1, 0);
453 454 455 456 457 458 459 460 461 462 463 464

	/* Set core clock into 500Mhz */
	core_write(priv, CORE_GSWPLL_GRP2,
		   RG_GSWPLL_POSDIV_500M(1) |
		   RG_GSWPLL_FBKDIV_500M(25));

	/* Enable PLL */
	core_write(priv, CORE_GSWPLL_GRP1,
		   RG_GSWPLL_EN_PRE |
		   RG_GSWPLL_POSDIV_200M(2) |
		   RG_GSWPLL_FBKDIV_200M(32));

465 466 467 468 469 470 471 472 473 474 475 476 477 478
	/* Setup the MT7530 TRGMII Tx Clock */
	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
	core_write(priv, CORE_PLL_GROUP4,
		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
		   RG_SYSPLL_BIAS_LPF_EN);
	core_write(priv, CORE_PLL_GROUP2,
		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
		   RG_SYSPLL_POSDIV(1));
	core_write(priv, CORE_PLL_GROUP7,
		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
479 480

	/* Enable MT7530 core and TRGMII Tx clocks */
481 482 483 484 485 486 487 488 489 490
	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
		 REG_GSWCK_EN | REG_TRGMIICK_EN);

	if (!trgint)
		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
				   RD_TAP_MASK, RD_TAP(16));
	return 0;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
{
	u32 val;

	val = mt7530_read(priv, MT7531_TOP_SIG_SR);

	return (val & PAD_DUAL_SGMII_EN) != 0;
}

static int
mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;
	u32 top_sig;
	u32 hwstrap;
	u32 xtal;
	u32 val;

	if (mt7531_dual_sgmii_supported(priv))
		return 0;

	val = mt7530_read(priv, MT7531_CREV);
	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
	if ((val & CHIP_REV_M) > 0)
		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
						    HWTRAP_XTAL_FSEL_25MHZ;
	else
		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;

	/* Step 1 : Disable MT7531 COREPLL */
	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val &= ~EN_COREPLL;
	mt7530_write(priv, MT7531_PLLGP_EN, val);

	/* Step 2: switch to XTAL output */
	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val |= SW_CLKSW;
	mt7530_write(priv, MT7531_PLLGP_EN, val);

	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val &= ~RG_COREPLL_EN;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);

	/* Step 3: disable PLLGP and enable program PLLGP */
	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val |= SW_PLLGP;
	mt7530_write(priv, MT7531_PLLGP_EN, val);

	/* Step 4: program COREPLL output frequency to 500MHz */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val &= ~RG_COREPLL_POSDIV_M;
	val |= 2 << RG_COREPLL_POSDIV_S;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);
	usleep_range(25, 35);

	switch (xtal) {
	case HWTRAP_XTAL_FSEL_25MHZ:
		val = mt7530_read(priv, MT7531_PLLGP_CR0);
		val &= ~RG_COREPLL_SDM_PCW_M;
		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
		mt7530_write(priv, MT7531_PLLGP_CR0, val);
		break;
	case HWTRAP_XTAL_FSEL_40MHZ:
		val = mt7530_read(priv, MT7531_PLLGP_CR0);
		val &= ~RG_COREPLL_SDM_PCW_M;
		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
		mt7530_write(priv, MT7531_PLLGP_CR0, val);
		break;
560
	}
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/* Set feedback divide ratio update signal to high */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val |= RG_COREPLL_SDM_PCW_CHG;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);
	/* Wait for at least 16 XTAL clocks */
	usleep_range(10, 20);

	/* Step 5: set feedback divide ratio update signal to low */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val &= ~RG_COREPLL_SDM_PCW_CHG;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);

	/* Enable 325M clock for SGMII */
	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);

	/* Enable 250SSC clock for RGMII */
	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);

	/* Step 6: Enable MT7531 PLL */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val |= RG_COREPLL_EN;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);

	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val |= EN_COREPLL;
	mt7530_write(priv, MT7531_PLLGP_EN, val);
	usleep_range(25, 35);

	return 0;
}

593 594 595 596 597 598 599 600 601
static void
mt7530_mib_reset(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;

	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
}

602
static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
603 604 605 606
{
	return mdiobus_read_nested(priv->bus, port, regnum);
}

607
static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
608
			    u16 val)
609 610 611 612
{
	return mdiobus_write_nested(priv->bus, port, regnum, val);
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static int
mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
			int regnum)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	u32 reg, val;
	int ret;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad);
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
			 int regnum, u32 data)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	u32 val, reg;
	int ret;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad) | data;
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	int ret;
	u32 val;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_REG_ADDR(regnum);

	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
			 u16 data)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	int ret;
	u32 reg;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_REG_ADDR(regnum) | data;

	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
787
mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
{
	int devad;
	int ret;

	if (regnum & MII_ADDR_C45) {
		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
		ret = mt7531_ind_c45_phy_read(priv, port, devad,
					      regnum & MII_REGADDR_C45_MASK);
	} else {
		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
	}

	return ret;
}

static int
804
mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
		     u16 data)
{
	int devad;
	int ret;

	if (regnum & MII_ADDR_C45) {
		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
		ret = mt7531_ind_c45_phy_write(priv, port, devad,
					       regnum & MII_REGADDR_C45_MASK,
					       data);
	} else {
		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
	}

	return ret;
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static int
mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
{
	struct mt7530_priv *priv = bus->priv;

	return priv->info->phy_read(priv, port, regnum);
}

static int
mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
{
	struct mt7530_priv *priv = bus->priv;

	return priv->info->phy_write(priv, port, regnum, val);
}

838
static void
839 840
mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
		   uint8_t *data)
841 842 843
{
	int i;

844 845 846
	if (stringset != ETH_SS_STATS)
		return;

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
			ETH_GSTRING_LEN);
}

static void
mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
			 uint64_t *data)
{
	struct mt7530_priv *priv = ds->priv;
	const struct mt7530_mib_desc *mib;
	u32 reg, i;
	u64 hi;

	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
		mib = &mt7530_mib[i];
		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;

		data[i] = mt7530_read(priv, reg);
		if (mib->size == 2) {
			hi = mt7530_read(priv, reg + 4);
			data[i] |= hi << 32;
		}
	}
}

static int
874
mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
875
{
876 877 878
	if (sset != ETH_SS_STATS)
		return 0;

879 880 881
	return ARRAY_SIZE(mt7530_mib);
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static int
mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
{
	struct mt7530_priv *priv = ds->priv;
	unsigned int secs = msecs / 1000;
	unsigned int tmp_age_count;
	unsigned int error = -1;
	unsigned int age_count;
	unsigned int age_unit;

	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
		return -ERANGE;

	/* iterate through all possible age_count to find the closest pair */
	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;

		if (tmp_age_unit <= AGE_UNIT_MAX) {
			unsigned int tmp_error = secs -
				(tmp_age_count + 1) * (tmp_age_unit + 1);

			/* found a closer pair */
			if (error > tmp_error) {
				error = tmp_error;
				age_count = tmp_age_count;
				age_unit = tmp_age_unit;
			}

			/* found the exact match, so break the loop */
			if (!error)
				break;
		}
	}

	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));

	return 0;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;
	u8 tx_delay = 0;
	int val;

	mutex_lock(&priv->reg_mutex);

	val = mt7530_read(priv, MT7530_MHWTRAP);

	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;

	switch (priv->p5_intf_sel) {
	case P5_INTF_SEL_PHY_P0:
		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
		val |= MHWTRAP_PHY0_SEL;
939
		fallthrough;
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	case P5_INTF_SEL_PHY_P4:
		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;

		/* Setup the MAC by default for the cpu port */
		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
		break;
	case P5_INTF_SEL_GMAC5:
		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
		val &= ~MHWTRAP_P5_DIS;
		break;
	case P5_DISABLED:
		interface = PHY_INTERFACE_MODE_NA;
		break;
	default:
		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
			priv->p5_intf_sel);
		goto unlock_exit;
	}

	/* Setup RGMII settings */
	if (phy_interface_mode_is_rgmii(interface)) {
		val |= MHWTRAP_P5_RGMII_MODE;

		/* P5 RGMII RX Clock Control: delay setting for 1000M */
		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);

		/* Don't set delay in DSA mode */
		if (!dsa_is_dsa_port(priv->ds, 5) &&
		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
		     interface == PHY_INTERFACE_MODE_RGMII_ID))
			tx_delay = 4; /* n * 0.5 ns */

		/* P5 RGMII TX Clock Control: delay x */
		mt7530_write(priv, MT7530_P5RGMIITXCR,
			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));

		/* reduce P5 RGMII Tx driving, 8mA */
		mt7530_write(priv, MT7530_IO_DRV_CR,
			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
	}

	mt7530_write(priv, MT7530_MHWTRAP, val);

	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));

	priv->p5_interface = interface;

unlock_exit:
	mutex_unlock(&priv->reg_mutex);
}

993
static int
994
mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
995
{
996
	struct mt7530_priv *priv = ds->priv;
997
	int ret;
998 999

	/* Setup max capability of CPU port at first */
1000 1001 1002 1003 1004
	if (priv->info->cpu_port_config) {
		ret = priv->info->cpu_port_config(ds, port);
		if (ret)
			return ret;
	}
1005

1006 1007 1008 1009
	/* Enable Mediatek header mode on the cpu port */
	mt7530_write(priv, MT7530_PVC_P(port),
		     PORT_SPEC_TAG);

1010 1011 1012
	/* Disable flooding by default */
	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1013

1014 1015 1016 1017
	/* Set CPU port number */
	if (priv->id == ID_MT7621)
		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));

1018
	/* CPU port gets connected to all user ports of
1019
	 * the switch.
1020 1021
	 */
	mt7530_write(priv, MT7530_PCR_P(port),
1022
		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1023

1024 1025 1026 1027
	/* Set to fallback mode for independent VLAN learning */
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
		   MT7530_PORT_FALLBACK_MODE);

1028 1029 1030 1031 1032 1033 1034 1035 1036
	return 0;
}

static int
mt7530_port_enable(struct dsa_switch *ds, int port,
		   struct phy_device *phy)
{
	struct mt7530_priv *priv = ds->priv;

1037 1038 1039
	if (!dsa_is_user_port(ds, port))
		return 0;

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	mutex_lock(&priv->reg_mutex);

	/* Allow the user port gets connected to the cpu port and also
	 * restore the port matrix if the port is the member of a certain
	 * bridge.
	 */
	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
	priv->ports[port].enable = true;
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
		   priv->ports[port].pm);
1050
	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1051 1052 1053 1054 1055 1056 1057

	mutex_unlock(&priv->reg_mutex);

	return 0;
}

static void
1058
mt7530_port_disable(struct dsa_switch *ds, int port)
1059 1060 1061
{
	struct mt7530_priv *priv = ds->priv;

1062 1063 1064
	if (!dsa_is_user_port(ds, port))
		return;

1065 1066 1067 1068 1069 1070 1071 1072
	mutex_lock(&priv->reg_mutex);

	/* Clear up all port matrix which could be restored in the next
	 * enablement for the port.
	 */
	priv->ports[port].enable = false;
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
		   PCR_MATRIX_CLR);
1073
	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1074 1075 1076 1077

	mutex_unlock(&priv->reg_mutex);
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static int
mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
	struct mt7530_priv *priv = ds->priv;
	struct mii_bus *bus = priv->bus;
	int length;
	u32 val;

	/* When a new MTU is set, DSA always set the CPU port's MTU to the
	 * largest MTU of the slave ports. Because the switch only has a global
	 * RX length register, only allowing CPU port here is enough.
	 */
	if (!dsa_is_cpu_port(ds, port))
		return 0;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(priv, MT7530_GMACCR);
	val &= ~MAX_RX_PKT_LEN_MASK;

	/* RX length also includes Ethernet header, MTK tag, and FCS length */
	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
	if (length <= 1522) {
		val |= MAX_RX_PKT_LEN_1522;
	} else if (length <= 1536) {
		val |= MAX_RX_PKT_LEN_1536;
	} else if (length <= 1552) {
		val |= MAX_RX_PKT_LEN_1552;
	} else {
		val &= ~MAX_RX_JUMBO_MASK;
		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
		val |= MAX_RX_PKT_LEN_JUMBO;
	}

	mt7530_mii_write(priv, MT7530_GMACCR, val);

	mutex_unlock(&bus->mdio_lock);

	return 0;
}

static int
mt7530_port_max_mtu(struct dsa_switch *ds, int port)
{
	return MT7530_MAX_MTU;
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static void
mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
		stp_state = MT7530_STP_DISABLED;
		break;
	case BR_STATE_BLOCKING:
		stp_state = MT7530_STP_BLOCKING;
		break;
	case BR_STATE_LISTENING:
		stp_state = MT7530_STP_LISTENING;
		break;
	case BR_STATE_LEARNING:
		stp_state = MT7530_STP_LEARNING;
		break;
	case BR_STATE_FORWARDING:
	default:
		stp_state = MT7530_STP_FORWARDING;
		break;
	}

1150 1151
	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
		   FID_PST(FID_BRIDGED, stp_state));
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static int
mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
			     struct switchdev_brport_flags flags,
			     struct netlink_ext_ack *extack)
{
	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
			   BR_BCAST_FLOOD))
		return -EINVAL;

	return 0;
}

static int
mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
			 struct switchdev_brport_flags flags,
			 struct netlink_ext_ack *extack)
{
	struct mt7530_priv *priv = ds->priv;

	if (flags.mask & BR_LEARNING)
		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
			   flags.val & BR_LEARNING ? 0 : SA_DIS);

	if (flags.mask & BR_FLOOD)
		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);

	if (flags.mask & BR_MCAST_FLOOD)
		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);

	if (flags.mask & BR_BCAST_FLOOD)
		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);

	return 0;
}

static int
mt7530_port_set_mrouter(struct dsa_switch *ds, int port, bool mrouter,
			struct netlink_ext_ack *extack)
{
	struct mt7530_priv *priv = ds->priv;

	mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
		   mrouter ? UNM_FFP(BIT(port)) : 0);

	return 0;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
static int
mt7530_port_bridge_join(struct dsa_switch *ds, int port,
			struct net_device *bridge)
{
	struct mt7530_priv *priv = ds->priv;
	u32 port_bitmap = BIT(MT7530_CPU_PORT);
	int i;

	mutex_lock(&priv->reg_mutex);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Add this port to the port matrix of the other ports in the
		 * same bridge. If the port is disabled, port matrix is kept
		 * and not being setup until the port becomes enabled.
		 */
1219
		if (dsa_is_user_port(ds, i) && i != port) {
V
Vivien Didelot 已提交
1220
			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
				continue;
			if (priv->ports[i].enable)
				mt7530_set(priv, MT7530_PCR_P(i),
					   PCR_MATRIX(BIT(port)));
			priv->ports[i].pm |= PCR_MATRIX(BIT(port));

			port_bitmap |= BIT(i);
		}
	}

	/* Add the all other ports to this port matrix. */
	if (priv->ports[port].enable)
		mt7530_rmw(priv, MT7530_PCR_P(port),
			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);

1237 1238 1239 1240
	/* Set to fallback mode for independent VLAN learning */
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
		   MT7530_PORT_FALLBACK_MODE);

1241 1242 1243 1244 1245
	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1246 1247 1248 1249 1250 1251 1252
static void
mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;
	bool all_user_ports_removed = true;
	int i;

1253 1254
	/* This is called after .port_bridge_leave when leaving a VLAN-aware
	 * bridge. Don't set standalone ports to fallback mode.
1255
	 */
1256 1257 1258 1259
	if (dsa_to_port(ds, port)->bridge_dev)
		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
			   MT7530_PORT_FALLBACK_MODE);

1260 1261 1262
	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1263

1264 1265 1266 1267
	/* Set PVID to 0 */
	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
		   G0_PORT_VID_DEF);

1268 1269
	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		if (dsa_is_user_port(ds, i) &&
1270
		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			all_user_ports_removed = false;
			break;
		}
	}

	/* CPU port also does the same thing until all user ports belonging to
	 * the CPU port get out of VLAN filtering mode.
	 */
	if (all_user_ports_removed) {
		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1282 1283
		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1284 1285 1286 1287 1288 1289 1290 1291 1292
	}
}

static void
mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;

	/* Trapped into security mode allows packet forwarding through VLAN
1293
	 * table lookup.
1294
	 */
1295
	if (dsa_is_user_port(ds, port)) {
1296 1297
		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
			   MT7530_PORT_SECURITY_MODE);
1298 1299 1300
		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
			   G0_PORT_VID(priv->ports[port].pvid));
	}
1301 1302 1303 1304

	/* Set the port as a user port which is to be able to recognize VID
	 * from incoming packets before fetching entry within the VLAN table.
	 */
1305 1306 1307
	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
		   VLAN_ATTR(MT7530_VLAN_USER) |
		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1308 1309
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static void
mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
			 struct net_device *bridge)
{
	struct mt7530_priv *priv = ds->priv;
	int i;

	mutex_lock(&priv->reg_mutex);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Remove this port from the port matrix of the other ports
		 * in the same bridge. If the port is disabled, port matrix
		 * is kept and not being setup until the port becomes enabled.
1323 1324
		 * And the other port's port matrix cannot be broken when the
		 * other port is still a VLAN-aware port.
1325
		 */
1326
		if (dsa_is_user_port(ds, i) && i != port &&
1327
		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
V
Vivien Didelot 已提交
1328
			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
				continue;
			if (priv->ports[i].enable)
				mt7530_clear(priv, MT7530_PCR_P(i),
					     PCR_MATRIX(BIT(port)));
			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
		}
	}

	/* Set the cpu port to be the only one in the port matrix of
	 * this port.
	 */
	if (priv->ports[port].enable)
		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));

1345 1346 1347 1348 1349 1350 1351
	/* When a port is removed from the bridge, the port would be set up
	 * back to the default as is at initial boot which is a VLAN-unaware
	 * port.
	 */
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
		   MT7530_PORT_MATRIX_MODE);

1352 1353 1354 1355 1356
	mutex_unlock(&priv->reg_mutex);
}

static int
mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1357
		    const unsigned char *addr, u16 vid)
1358 1359
{
	struct mt7530_priv *priv = ds->priv;
1360
	int ret;
1361 1362 1363
	u8 port_mask = BIT(port);

	mutex_lock(&priv->reg_mutex);
1364
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1365
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1366
	mutex_unlock(&priv->reg_mutex);
1367 1368

	return ret;
1369 1370 1371 1372
}

static int
mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1373
		    const unsigned char *addr, u16 vid)
1374 1375 1376 1377 1378 1379
{
	struct mt7530_priv *priv = ds->priv;
	int ret;
	u8 port_mask = BIT(port);

	mutex_lock(&priv->reg_mutex);
1380
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1381
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1382 1383 1384 1385 1386 1387 1388
	mutex_unlock(&priv->reg_mutex);

	return ret;
}

static int
mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1389
		     dsa_fdb_dump_cb_t *cb, void *data)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
{
	struct mt7530_priv *priv = ds->priv;
	struct mt7530_fdb _fdb = { 0 };
	int cnt = MT7530_NUM_FDB_RECORDS;
	int ret = 0;
	u32 rsp = 0;

	mutex_lock(&priv->reg_mutex);

	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
	if (ret < 0)
		goto err;

	do {
		if (rsp & ATC_SRCH_HIT) {
			mt7530_fdb_read(priv, &_fdb);
			if (_fdb.port_mask & BIT(port)) {
1407 1408
				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
					 data);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
				if (ret < 0)
					break;
			}
		}
	} while (--cnt &&
		 !(rsp & ATC_SRCH_END) &&
		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
err:
	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static int
mt7530_port_mdb_add(struct dsa_switch *ds, int port,
		    const struct switchdev_obj_port_mdb *mdb)
{
	struct mt7530_priv *priv = ds->priv;
	const u8 *addr = mdb->addr;
	u16 vid = mdb->vid;
	u8 port_mask = 0;
	int ret;

	mutex_lock(&priv->reg_mutex);

	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
			    & PORT_MAP_MASK;

	port_mask |= BIT(port);
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);

	mutex_unlock(&priv->reg_mutex);

	return ret;
}

static int
mt7530_port_mdb_del(struct dsa_switch *ds, int port,
		    const struct switchdev_obj_port_mdb *mdb)
{
	struct mt7530_priv *priv = ds->priv;
	const u8 *addr = mdb->addr;
	u16 vid = mdb->vid;
	u8 port_mask = 0;
	int ret;

	mutex_lock(&priv->reg_mutex);

	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
			    & PORT_MAP_MASK;

	port_mask &= ~BIT(port);
	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
			 port_mask ? STATIC_ENT : STATIC_EMP);
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);

	mutex_unlock(&priv->reg_mutex);

	return ret;
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static int
mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
{
	struct mt7530_dummy_poll p;
	u32 val;
	int ret;

	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
	mt7530_write(priv, MT7530_VTCR, val);

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
	ret = readx_poll_timeout(_mt7530_read, &p, val,
				 !(val & VTCR_BUSY), 20, 20000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		return ret;
	}

	val = mt7530_read(priv, MT7530_VTCR);
	if (val & VTCR_INVALID) {
		dev_err(priv->dev, "read VTCR invalid\n");
		return -EINVAL;
	}

	return 0;
}

static int
1503 1504
mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
			   struct netlink_ext_ack *extack)
1505 1506 1507 1508 1509 1510 1511 1512 1513
{
	if (vlan_filtering) {
		/* The port is being kept as VLAN-unaware port when bridge is
		 * set up with vlan_filtering not being set, Otherwise, the
		 * port and the corresponding CPU port is required the setup
		 * for becoming a VLAN-aware port.
		 */
		mt7530_port_set_vlan_aware(ds, port);
		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1514 1515
	} else {
		mt7530_port_set_vlan_unaware(ds, port);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	}

	return 0;
}

static void
mt7530_hw_vlan_add(struct mt7530_priv *priv,
		   struct mt7530_hw_vlan_entry *entry)
{
	u8 new_members;
	u32 val;

	new_members = entry->old_members | BIT(entry->port) |
		      BIT(MT7530_CPU_PORT);

	/* Validate the entry with independent learning, create egress tag per
	 * VLAN and joining the port as one of the port members.
	 */
1534 1535
	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
	      VLAN_VALID;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	mt7530_write(priv, MT7530_VAWD1, val);

	/* Decide whether adding tag or not for those outgoing packets from the
	 * port inside the VLAN.
	 */
	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
				MT7530_VLAN_EGRESS_TAG;
	mt7530_rmw(priv, MT7530_VAWD2,
		   ETAG_CTRL_P_MASK(entry->port),
		   ETAG_CTRL_P(entry->port, val));

	/* CPU port is always taken as a tagged port for serving more than one
	 * VLANs across and also being applied with egress type stack mode for
	 * that VLAN tags would be appended after hardware special tag used as
	 * DSA tag.
	 */
	mt7530_rmw(priv, MT7530_VAWD2,
		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
		   ETAG_CTRL_P(MT7530_CPU_PORT,
			       MT7530_VLAN_EGRESS_STACK));
}

static void
mt7530_hw_vlan_del(struct mt7530_priv *priv,
		   struct mt7530_hw_vlan_entry *entry)
{
	u8 new_members;
	u32 val;

	new_members = entry->old_members & ~BIT(entry->port);

	val = mt7530_read(priv, MT7530_VAWD1);
	if (!(val & VLAN_VALID)) {
		dev_err(priv->dev,
			"Cannot be deleted due to invalid entry\n");
		return;
	}

	/* If certain member apart from CPU port is still alive in the VLAN,
	 * the entry would be kept valid. Otherwise, the entry is got to be
	 * disabled.
	 */
	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
		      VLAN_VALID;
		mt7530_write(priv, MT7530_VAWD1, val);
	} else {
		mt7530_write(priv, MT7530_VAWD1, 0);
		mt7530_write(priv, MT7530_VAWD2, 0);
	}
}

static void
mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
		      struct mt7530_hw_vlan_entry *entry,
		      mt7530_vlan_op vlan_op)
{
	u32 val;

	/* Fetch entry */
	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);

	val = mt7530_read(priv, MT7530_VAWD1);

	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;

	/* Manipulate entry */
	vlan_op(priv, entry);

	/* Flush result to hardware */
	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
}

1609
static int
1610
mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1611 1612
		     const struct switchdev_obj_port_vlan *vlan,
		     struct netlink_ext_ack *extack)
1613 1614 1615 1616 1617 1618 1619 1620
{
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	struct mt7530_hw_vlan_entry new_entry;
	struct mt7530_priv *priv = ds->priv;

	mutex_lock(&priv->reg_mutex);

1621 1622
	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1623 1624

	if (pvid) {
1625
		priv->ports[port].pvid = vlan->vid;
1626 1627 1628 1629 1630 1631

		/* Only configure PVID if VLAN filtering is enabled */
		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
			mt7530_rmw(priv, MT7530_PPBV1_P(port),
				   G0_PORT_VID_MASK,
				   G0_PORT_VID(vlan->vid));
1632 1633 1634
	}

	mutex_unlock(&priv->reg_mutex);
1635 1636

	return 0;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
}

static int
mt7530_port_vlan_del(struct dsa_switch *ds, int port,
		     const struct switchdev_obj_port_vlan *vlan)
{
	struct mt7530_hw_vlan_entry target_entry;
	struct mt7530_priv *priv = ds->priv;

	mutex_lock(&priv->reg_mutex);

1648 1649 1650
	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
			      mt7530_hw_vlan_del);
1651

1652 1653 1654
	/* PVID is being restored to the default whenever the PVID port
	 * is being removed from the VLAN.
	 */
1655 1656 1657 1658 1659
	if (priv->ports[port].pvid == vlan->vid) {
		priv->ports[port].pvid = G0_PORT_VID_DEF;
		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
			   G0_PORT_VID_DEF);
	}
1660 1661 1662 1663 1664 1665 1666


	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static int mt753x_mirror_port_get(unsigned int id, u32 val)
{
	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
				   MIRROR_PORT(val);
}

static int mt753x_mirror_port_set(unsigned int id, u32 val)
{
	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
				   MIRROR_PORT(val);
}

static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1680 1681 1682 1683
				  struct dsa_mall_mirror_tc_entry *mirror,
				  bool ingress)
{
	struct mt7530_priv *priv = ds->priv;
1684
	int monitor_port;
1685 1686 1687 1688 1689 1690
	u32 val;

	/* Check for existent entry */
	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
		return -EEXIST;

1691
	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1692 1693

	/* MT7530 only supports one monitor port */
1694 1695 1696
	monitor_port = mt753x_mirror_port_get(priv->id, val);
	if (val & MT753X_MIRROR_EN(priv->id) &&
	    monitor_port != mirror->to_local_port)
1697 1698
		return -EEXIST;

1699 1700 1701 1702
	val |= MT753X_MIRROR_EN(priv->id);
	val &= ~MT753X_MIRROR_MASK(priv->id);
	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	val = mt7530_read(priv, MT7530_PCR_P(port));
	if (ingress) {
		val |= PORT_RX_MIR;
		priv->mirror_rx |= BIT(port);
	} else {
		val |= PORT_TX_MIR;
		priv->mirror_tx |= BIT(port);
	}
	mt7530_write(priv, MT7530_PCR_P(port), val);

	return 0;
}

1717
static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
				   struct dsa_mall_mirror_tc_entry *mirror)
{
	struct mt7530_priv *priv = ds->priv;
	u32 val;

	val = mt7530_read(priv, MT7530_PCR_P(port));
	if (mirror->ingress) {
		val &= ~PORT_RX_MIR;
		priv->mirror_rx &= ~BIT(port);
	} else {
		val &= ~PORT_TX_MIR;
		priv->mirror_tx &= ~BIT(port);
	}
	mt7530_write(priv, MT7530_PCR_P(port), val);

	if (!priv->mirror_rx && !priv->mirror_tx) {
1734 1735 1736
		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
		val &= ~MT753X_MIRROR_EN(priv->id);
		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1737 1738 1739
	}
}

1740
static enum dsa_tag_protocol
1741 1742
mtk_get_tag_protocol(struct dsa_switch *ds, int port,
		     enum dsa_tag_protocol mp)
1743
{
1744
	return DSA_TAG_PROTO_MTK;
1745 1746
}

1747
#ifdef CONFIG_GPIOLIB
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static inline u32
mt7530_gpio_to_bit(unsigned int offset)
{
	/* Map GPIO offset to register bit
	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
	 */
	return BIT(offset + offset / 3);
}

static int
mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
}

static void
mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	if (value)
		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
	else
		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
}

static int
mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}

static int
mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);

	return 0;
}

static int
mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);

	if (value)
		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
	else
		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);

	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);

	return 0;
}

static int
mt7530_setup_gpio(struct mt7530_priv *priv)
{
	struct device *dev = priv->dev;
	struct gpio_chip *gc;

	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
	if (!gc)
		return -ENOMEM;

	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
	mt7530_write(priv, MT7530_LED_IO_MODE, 0);

	gc->label = "mt7530";
	gc->parent = dev;
	gc->owner = THIS_MODULE;
	gc->get_direction = mt7530_gpio_get_direction;
	gc->direction_input = mt7530_gpio_direction_input;
	gc->direction_output = mt7530_gpio_direction_output;
	gc->get = mt7530_gpio_get;
	gc->set = mt7530_gpio_set;
	gc->base = -1;
	gc->ngpio = 15;
	gc->can_sleep = true;

	return devm_gpiochip_add_data(dev, gc, priv);
}
1850
#endif /* CONFIG_GPIOLIB */
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static irqreturn_t
mt7530_irq_thread_fn(int irq, void *dev_id)
{
	struct mt7530_priv *priv = dev_id;
	bool handled = false;
	u32 val;
	int p;

	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
	mutex_unlock(&priv->bus->mdio_lock);

	for (p = 0; p < MT7530_NUM_PHYS; p++) {
		if (BIT(p) & val) {
			unsigned int irq;

			irq = irq_find_mapping(priv->irq_domain, p);
			handle_nested_irq(irq);
			handled = true;
		}
	}

	return IRQ_RETVAL(handled);
}

static void
mt7530_irq_mask(struct irq_data *d)
{
	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);

	priv->irq_enable &= ~BIT(d->hwirq);
}

static void
mt7530_irq_unmask(struct irq_data *d)
{
	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);

	priv->irq_enable |= BIT(d->hwirq);
}

static void
mt7530_irq_bus_lock(struct irq_data *d)
{
	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);

	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
}

static void
mt7530_irq_bus_sync_unlock(struct irq_data *d)
{
	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);

	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
	mutex_unlock(&priv->bus->mdio_lock);
}

static struct irq_chip mt7530_irq_chip = {
	.name = KBUILD_MODNAME,
	.irq_mask = mt7530_irq_mask,
	.irq_unmask = mt7530_irq_unmask,
	.irq_bus_lock = mt7530_irq_bus_lock,
	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
};

static int
mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
	       irq_hw_number_t hwirq)
{
	irq_set_chip_data(irq, domain->host_data);
	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
	irq_set_nested_thread(irq, true);
	irq_set_noprobe(irq);

	return 0;
}

static const struct irq_domain_ops mt7530_irq_domain_ops = {
	.map = mt7530_irq_map,
	.xlate = irq_domain_xlate_onecell,
};

static void
mt7530_setup_mdio_irq(struct mt7530_priv *priv)
{
	struct dsa_switch *ds = priv->ds;
	int p;

	for (p = 0; p < MT7530_NUM_PHYS; p++) {
		if (BIT(p) & ds->phys_mii_mask) {
			unsigned int irq;

			irq = irq_create_mapping(priv->irq_domain, p);
			ds->slave_mii_bus->irq[p] = irq;
		}
	}
}

static int
mt7530_setup_irq(struct mt7530_priv *priv)
{
	struct device *dev = priv->dev;
	struct device_node *np = dev->of_node;
	int ret;

	if (!of_property_read_bool(np, "interrupt-controller")) {
		dev_info(dev, "no interrupt support\n");
		return 0;
	}

	priv->irq = of_irq_get(np, 0);
	if (priv->irq <= 0) {
		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
		return priv->irq ? : -EINVAL;
	}

	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
						 &mt7530_irq_domain_ops, priv);
	if (!priv->irq_domain) {
		dev_err(dev, "failed to create IRQ domain\n");
		return -ENOMEM;
	}

	/* This register must be set for MT7530 to properly fire interrupts */
	if (priv->id != ID_MT7531)
		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);

	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
	if (ret) {
		irq_domain_remove(priv->irq_domain);
		dev_err(dev, "failed to request IRQ: %d\n", ret);
		return ret;
	}

	return 0;
}

static void
mt7530_free_mdio_irq(struct mt7530_priv *priv)
{
	int p;

	for (p = 0; p < MT7530_NUM_PHYS; p++) {
		if (BIT(p) & priv->ds->phys_mii_mask) {
			unsigned int irq;

			irq = irq_find_mapping(priv->irq_domain, p);
			irq_dispose_mapping(irq);
		}
	}
}

static void
mt7530_free_irq_common(struct mt7530_priv *priv)
{
	free_irq(priv->irq, priv);
	irq_domain_remove(priv->irq_domain);
}

static void
mt7530_free_irq(struct mt7530_priv *priv)
{
	mt7530_free_mdio_irq(priv);
	mt7530_free_irq_common(priv);
}

static int
mt7530_setup_mdio(struct mt7530_priv *priv)
{
	struct dsa_switch *ds = priv->ds;
	struct device *dev = priv->dev;
	struct mii_bus *bus;
	static int idx;
	int ret;

	bus = devm_mdiobus_alloc(dev);
	if (!bus)
		return -ENOMEM;

	ds->slave_mii_bus = bus;
	bus->priv = priv;
	bus->name = KBUILD_MODNAME "-mii";
	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
	bus->read = mt753x_phy_read;
	bus->write = mt753x_phy_write;
	bus->parent = dev;
	bus->phy_mask = ~ds->phys_mii_mask;

	if (priv->irq)
		mt7530_setup_mdio_irq(priv);

	ret = mdiobus_register(bus);
	if (ret) {
		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
		if (priv->irq)
			mt7530_free_mdio_irq(priv);
	}

	return ret;
}

2056 2057 2058 2059
static int
mt7530_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;
2060 2061
	struct device_node *phy_node;
	struct device_node *mac_np;
2062
	struct mt7530_dummy_poll p;
2063
	phy_interface_t interface;
2064 2065 2066
	struct device_node *dn;
	u32 id, val;
	int ret, i;
2067

2068
	/* The parent node of master netdev which holds the common system
2069 2070 2071
	 * controller also is the container for two GMACs nodes representing
	 * as two netdev instances.
	 */
2072
	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2073
	ds->assisted_learning_on_cpu_port = true;
2074
	ds->mtu_enforcement_ingress = true;
2075

2076 2077 2078 2079 2080 2081 2082 2083
	if (priv->id == ID_MT7530) {
		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
		ret = regulator_enable(priv->core_pwr);
		if (ret < 0) {
			dev_err(priv->dev,
				"Failed to enable core power: %d\n", ret);
			return ret;
		}
2084

2085 2086 2087 2088 2089 2090 2091
		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
		ret = regulator_enable(priv->io_pwr);
		if (ret < 0) {
			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
				ret);
			return ret;
		}
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	}

	/* Reset whole chip through gpio pin or memory-mapped registers for
	 * different type of hardware
	 */
	if (priv->mcm) {
		reset_control_assert(priv->rstc);
		usleep_range(1000, 1100);
		reset_control_deassert(priv->rstc);
	} else {
		gpiod_set_value_cansleep(priv->reset, 0);
		usleep_range(1000, 1100);
		gpiod_set_value_cansleep(priv->reset, 1);
	}

	/* Waiting for MT7530 got to stable */
	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
				 20, 1000000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	id = mt7530_read(priv, MT7530_CREV);
	id >>= CHIP_NAME_SHIFT;
	if (id != MT7530_ID) {
		dev_err(priv->dev, "chip %x can't be supported\n", id);
		return -ENODEV;
	}

	/* Reset the switch through internal reset */
	mt7530_write(priv, MT7530_SYS_CTRL,
		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
		     SYS_CTRL_REG_RST);

	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
	val = mt7530_read(priv, MT7530_MHWTRAP);
	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
	val |= MHWTRAP_MANUAL;
	mt7530_write(priv, MT7530_MHWTRAP, val);

2134 2135
	priv->p6_interface = PHY_INTERFACE_MODE_NA;

2136 2137 2138 2139 2140 2141 2142 2143
	/* Enable and reset MIB counters */
	mt7530_mib_reset(ds);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Disable forwarding by default on all ports */
		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
			   PCR_MATRIX_CLR);

2144 2145 2146
		/* Disable learning by default on all ports */
		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);

2147 2148 2149 2150
		if (dsa_is_cpu_port(ds, i)) {
			ret = mt753x_cpu_port_enable(ds, i);
			if (ret)
				return ret;
2151
		} else {
2152
			mt7530_port_disable(ds, i);
2153 2154 2155 2156

			/* Set default PVID to 0 on all user ports */
			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
				   G0_PORT_VID_DEF);
2157
		}
2158 2159 2160
		/* Enable consistent egress tag */
		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2161 2162
	}

2163 2164 2165 2166 2167 2168
	/* Setup port 5 */
	priv->p5_intf_sel = P5_DISABLED;
	interface = PHY_INTERFACE_MODE_NA;

	if (!dsa_is_unused_port(ds, 5)) {
		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2169 2170 2171
		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
		if (ret && ret != -ENODEV)
			return ret;
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	} else {
		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
		for_each_child_of_node(dn, mac_np) {
			if (!of_device_is_compatible(mac_np,
						     "mediatek,eth-mac"))
				continue;

			ret = of_property_read_u32(mac_np, "reg", &id);
			if (ret < 0 || id != 1)
				continue;

			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2184 2185 2186
			if (!phy_node)
				continue;

2187
			if (phy_node->parent == priv->dev->of_node->parent) {
2188
				ret = of_get_phy_mode(mac_np, &interface);
2189 2190
				if (ret && ret != -ENODEV) {
					of_node_put(mac_np);
2191
					return ret;
2192
				}
2193 2194 2195 2196 2197 2198
				id = of_mdio_parse_addr(ds->dev, phy_node);
				if (id == 0)
					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
				if (id == 4)
					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
			}
2199
			of_node_put(mac_np);
2200 2201 2202 2203 2204
			of_node_put(phy_node);
			break;
		}
	}

2205
#ifdef CONFIG_GPIOLIB
2206 2207 2208 2209 2210
	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
		ret = mt7530_setup_gpio(priv);
		if (ret)
			return ret;
	}
2211
#endif /* CONFIG_GPIOLIB */
2212

2213 2214
	mt7530_setup_port5(ds, interface);

2215
	/* Flush the FDB table */
2216
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2217 2218 2219 2220 2221 2222
	if (ret < 0)
		return ret;

	return 0;
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static int
mt7531_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;
	struct mt7530_dummy_poll p;
	u32 val, id;
	int ret, i;

	/* Reset whole chip through gpio pin or memory-mapped registers for
	 * different type of hardware
	 */
	if (priv->mcm) {
		reset_control_assert(priv->rstc);
		usleep_range(1000, 1100);
		reset_control_deassert(priv->rstc);
	} else {
		gpiod_set_value_cansleep(priv->reset, 0);
		usleep_range(1000, 1100);
		gpiod_set_value_cansleep(priv->reset, 1);
	}

	/* Waiting for MT7530 got to stable */
	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
				 20, 1000000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	id = mt7530_read(priv, MT7531_CREV);
	id >>= CHIP_NAME_SHIFT;

	if (id != MT7531_ID) {
		dev_err(priv->dev, "chip %x can't be supported\n", id);
		return -ENODEV;
	}

	/* Reset the switch through internal reset */
	mt7530_write(priv, MT7530_SYS_CTRL,
		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
		     SYS_CTRL_REG_RST);

	if (mt7531_dual_sgmii_supported(priv)) {
		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;

		/* Let ds->slave_mii_bus be able to access external phy. */
		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
			   MT7531_EXT_P_MDC_11);
		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
			   MT7531_EXT_P_MDIO_12);
	} else {
		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
	}
	dev_dbg(ds->dev, "P5 support %s interface\n",
		p5_intf_modes(priv->p5_intf_sel));

	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
		   MT7531_GPIO0_INTERRUPT);

	/* Let phylink decide the interface later. */
	priv->p5_interface = PHY_INTERFACE_MODE_NA;
	priv->p6_interface = PHY_INTERFACE_MODE_NA;

	/* Enable PHY core PLL, since phy_device has not yet been created
	 * provided for phy_[read,write]_mmd_indirect is called, we provide
	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
	 * function.
	 */
	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
	val |= MT7531_PHY_PLL_BYPASS_MODE;
	val &= ~MT7531_PHY_PLL_OFF;
	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
				 CORE_PLL_GROUP4, val);

	/* BPDU to CPU port */
	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
		   BIT(MT7530_CPU_PORT));
	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
		   MT753X_BPDU_CPU_ONLY);

	/* Enable and reset MIB counters */
	mt7530_mib_reset(ds);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Disable forwarding by default on all ports */
		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
			   PCR_MATRIX_CLR);

2313 2314 2315
		/* Disable learning by default on all ports */
		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);

2316 2317
		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);

2318 2319 2320 2321
		if (dsa_is_cpu_port(ds, i)) {
			ret = mt753x_cpu_port_enable(ds, i);
			if (ret)
				return ret;
2322
		} else {
2323
			mt7530_port_disable(ds, i);
2324 2325 2326 2327

			/* Set default PVID to 0 on all user ports */
			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
				   G0_PORT_VID_DEF);
2328 2329
		}

2330 2331 2332 2333 2334
		/* Enable consistent egress tag */
		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
	}

2335
	ds->assisted_learning_on_cpu_port = true;
2336
	ds->mtu_enforcement_ingress = true;
2337 2338 2339 2340 2341 2342 2343 2344 2345

	/* Flush the FDB table */
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
	if (ret < 0)
		return ret;

	return 0;
}

2346 2347 2348
static bool
mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
			  const struct phylink_link_state *state)
2349 2350 2351 2352
{
	struct mt7530_priv *priv = ds->priv;

	switch (port) {
2353
	case 0 ... 4: /* Internal phy */
2354
		if (state->interface != PHY_INTERFACE_MODE_GMII)
2355
			return false;
2356
		break;
2357 2358 2359 2360
	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
		if (!phy_interface_mode_is_rgmii(state->interface) &&
		    state->interface != PHY_INTERFACE_MODE_MII &&
		    state->interface != PHY_INTERFACE_MODE_GMII)
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
			return false;
		break;
	case 6: /* 1st cpu port */
		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
		    state->interface != PHY_INTERFACE_MODE_TRGMII)
			return false;
		break;
	default:
		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
			port);
		return false;
	}

	return true;
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
{
	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
}

static bool
mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
			  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	switch (port) {
	case 0 ... 4: /* Internal phy */
		if (state->interface != PHY_INTERFACE_MODE_GMII)
			return false;
		break;
	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
		if (mt7531_is_rgmii_port(priv, port))
			return phy_interface_mode_is_rgmii(state->interface);
		fallthrough;
	case 6: /* 1st cpu port supports sgmii/8023z only */
		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
		    !phy_interface_mode_is_8023z(state->interface))
			return false;
		break;
	default:
		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
			port);
		return false;
	}

	return true;
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static bool
mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
			  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->phy_mode_supported(ds, port, state);
}

static int
mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->pad_setup(ds, state->interface);
}

static int
mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
		  phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;

	/* Only need to setup port5. */
	if (port != 5)
		return 0;

	mt7530_setup_port5(priv->ds, interface);

	return 0;
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
			      phy_interface_t interface,
			      struct phy_device *phydev)
{
	u32 val;

	if (!mt7531_is_rgmii_port(priv, port)) {
		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
			port);
		return -EINVAL;
	}

	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
	val |= GP_CLK_EN;
	val &= ~GP_MODE_MASK;
	val |= GP_MODE(MT7531_GP_MODE_RGMII);
	val &= ~CLK_SKEW_IN_MASK;
	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
	val &= ~CLK_SKEW_OUT_MASK;
	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;

	/* Do not adjust rgmii delay when vendor phy driver presents. */
	if (!phydev || phy_driver_is_genphy(phydev)) {
		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
		switch (interface) {
		case PHY_INTERFACE_MODE_RGMII:
			val |= TXCLK_NO_REVERSE;
			val |= RXCLK_NO_DELAY;
			break;
		case PHY_INTERFACE_MODE_RGMII_RXID:
			val |= TXCLK_NO_REVERSE;
			break;
		case PHY_INTERFACE_MODE_RGMII_TXID:
			val |= RXCLK_NO_DELAY;
			break;
		case PHY_INTERFACE_MODE_RGMII_ID:
			break;
		default:
			return -EINVAL;
		}
	}
	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);

	return 0;
}

static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
				  unsigned long *supported)
{
	/* Port5 supports ethier RGMII or SGMII.
	 * Port6 supports SGMII only.
	 */
	switch (port) {
	case 5:
		if (mt7531_is_rgmii_port(priv, port))
			break;
		fallthrough;
	case 6:
		phylink_set(supported, 1000baseX_Full);
		phylink_set(supported, 2500baseX_Full);
		phylink_set(supported, 2500baseT_Full);
	}
}

static void
mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
			   unsigned int mode, phy_interface_t interface,
			   int speed, int duplex)
{
	struct mt7530_priv *priv = ds->priv;
	unsigned int val;

	/* For adjusting speed and duplex of SGMII force mode. */
	if (interface != PHY_INTERFACE_MODE_SGMII ||
	    phylink_autoneg_inband(mode))
		return;

	/* SGMII force mode setting */
	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
	val &= ~MT7531_SGMII_IF_MODE_MASK;

	switch (speed) {
	case SPEED_10:
		val |= MT7531_SGMII_FORCE_SPEED_10;
		break;
	case SPEED_100:
		val |= MT7531_SGMII_FORCE_SPEED_100;
		break;
	case SPEED_1000:
		val |= MT7531_SGMII_FORCE_SPEED_1000;
		break;
	}

	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
	 */
	if ((speed == SPEED_10 || speed == SPEED_100) &&
	    duplex != DUPLEX_FULL)
		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;

	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
}

static bool mt753x_is_mac_port(u32 port)
{
	return (port == 5 || port == 6);
}

static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
					 phy_interface_t interface)
{
	u32 val;

	if (!mt753x_is_mac_port(port))
		return -EINVAL;

	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
		   MT7531_SGMII_PHYA_PWD);

	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
	val &= ~MT7531_RG_TPHY_SPEED_MASK;
	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
	 * encoding.
	 */
	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);

	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);

	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
	 */
	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
		   MT7531_SGMII_FORCE_SPEED_1000);

	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);

	return 0;
}

static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
				      phy_interface_t interface)
{
	if (!mt753x_is_mac_port(port))
		return -EINVAL;

	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
		   MT7531_SGMII_PHYA_PWD);

	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);

	mt7530_set(priv, MT7531_SGMII_MODE(port),
		   MT7531_SGMII_REMOTE_FAULT_DIS |
		   MT7531_SGMII_SPEED_DUPLEX_AN);

	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
		   MT7531_SGMII_TX_CONFIG_MASK, 1);

	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);

	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);

	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);

	return 0;
}

static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;
	u32 val;

	/* Only restart AN when AN is enabled */
	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
	if (val & MT7531_SGMII_AN_ENABLE) {
		val |= MT7531_SGMII_AN_RESTART;
		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
	}
}

static int
mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
		  phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;
	struct phy_device *phydev;
	struct dsa_port *dp;

	if (!mt753x_is_mac_port(port)) {
		dev_err(priv->dev, "port %d is not a MAC port\n", port);
		return -EINVAL;
	}

	switch (interface) {
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
	case PHY_INTERFACE_MODE_RGMII_RXID:
	case PHY_INTERFACE_MODE_RGMII_TXID:
		dp = dsa_to_port(ds, port);
		phydev = dp->slave->phydev;
		return mt7531_rgmii_setup(priv, port, interface, phydev);
	case PHY_INTERFACE_MODE_SGMII:
		return mt7531_sgmii_setup_mode_an(priv, port, interface);
	case PHY_INTERFACE_MODE_NA:
	case PHY_INTERFACE_MODE_1000BASEX:
	case PHY_INTERFACE_MODE_2500BASEX:
		if (phylink_autoneg_inband(mode))
			return -EINVAL;

		return mt7531_sgmii_setup_mode_force(priv, port, interface);
	default:
		return -EINVAL;
	}

	return -EINVAL;
}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static int
mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
		  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->mac_port_config(ds, port, mode, state->interface);
}

static void
mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
			  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 mcr_cur, mcr_new;

	if (!mt753x_phy_mode_supported(ds, port, state))
		goto unsupported;

	switch (port) {
	case 0 ... 4: /* Internal phy */
		if (state->interface != PHY_INTERFACE_MODE_GMII)
			goto unsupported;
		break;
	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
		if (priv->p5_interface == state->interface)
			break;

		if (mt753x_mac_config(ds, port, mode, state) < 0)
			goto unsupported;
2694

2695 2696
		if (priv->p5_intf_sel != P5_DISABLED)
			priv->p5_interface = state->interface;
2697
		break;
2698 2699 2700 2701
	case 6: /* 1st cpu port */
		if (priv->p6_interface == state->interface)
			break;

2702
		mt753x_pad_setup(ds, state);
2703

2704 2705
		if (mt753x_mac_config(ds, port, mode, state) < 0)
			goto unsupported;
2706 2707 2708 2709

		priv->p6_interface = state->interface;
		break;
	default:
2710 2711 2712
unsupported:
		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
			__func__, phy_modes(state->interface), port);
2713 2714 2715
		return;
	}

2716 2717
	if (phylink_autoneg_inband(mode) &&
	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2718 2719 2720 2721 2722 2723 2724
		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
			__func__);
		return;
	}

	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
	mcr_new = mcr_cur;
2725
	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2726
	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2727
		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2728

2729 2730 2731 2732
	/* Are we connected to external phy */
	if (port == 5 && dsa_is_user_port(ds, 5))
		mcr_new |= PMCR_EXT_PHY;

2733 2734 2735 2736
	if (mcr_new != mcr_cur)
		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
static void
mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;

	if (!priv->info->mac_pcs_an_restart)
		return;

	priv->info->mac_pcs_an_restart(ds, port);
}

static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2749 2750 2751 2752 2753
					 unsigned int mode,
					 phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;

2754
	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2755 2756
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
				   unsigned int mode, phy_interface_t interface,
				   int speed, int duplex)
{
	struct mt7530_priv *priv = ds->priv;

	if (!priv->info->mac_pcs_link_up)
		return;

	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
}

static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2770 2771
				       unsigned int mode,
				       phy_interface_t interface,
2772 2773 2774
				       struct phy_device *phydev,
				       int speed, int duplex,
				       bool tx_pause, bool rx_pause)
2775 2776
{
	struct mt7530_priv *priv = ds->priv;
2777 2778
	u32 mcr;

2779 2780
	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);

2781 2782
	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;

2783 2784 2785 2786 2787 2788 2789 2790 2791
	/* MT753x MAC works in 1G full duplex mode for all up-clocked
	 * variants.
	 */
	if (interface == PHY_INTERFACE_MODE_TRGMII ||
	    (phy_interface_mode_is_8023z(interface))) {
		speed = SPEED_1000;
		duplex = DUPLEX_FULL;
	}

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	switch (speed) {
	case SPEED_1000:
		mcr |= PMCR_FORCE_SPEED_1000;
		break;
	case SPEED_100:
		mcr |= PMCR_FORCE_SPEED_100;
		break;
	}
	if (duplex == DUPLEX_FULL) {
		mcr |= PMCR_FORCE_FDX;
		if (tx_pause)
			mcr |= PMCR_TX_FC_EN;
		if (rx_pause)
			mcr |= PMCR_RX_FC_EN;
	}
2807

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
		switch (speed) {
		case SPEED_1000:
			mcr |= PMCR_FORCE_EEE1G;
			break;
		case SPEED_100:
			mcr |= PMCR_FORCE_EEE100;
			break;
		}
	}

2819
	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2820 2821
}

2822 2823 2824 2825 2826 2827
static int
mt7531_cpu_port_config(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;
	phy_interface_t interface;
	int speed;
2828
	int ret;
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

	switch (port) {
	case 5:
		if (mt7531_is_rgmii_port(priv, port))
			interface = PHY_INTERFACE_MODE_RGMII;
		else
			interface = PHY_INTERFACE_MODE_2500BASEX;

		priv->p5_interface = interface;
		break;
	case 6:
		interface = PHY_INTERFACE_MODE_2500BASEX;

		mt7531_pad_setup(ds, interface);

		priv->p6_interface = interface;
		break;
2846 2847
	default:
		return -EINVAL;
2848 2849 2850 2851 2852 2853 2854
	}

	if (interface == PHY_INTERFACE_MODE_2500BASEX)
		speed = SPEED_2500;
	else
		speed = SPEED_1000;

2855 2856 2857
	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
	if (ret)
		return ret;
2858 2859 2860 2861 2862 2863 2864 2865
	mt7530_write(priv, MT7530_PMCR_P(port),
		     PMCR_CPU_PORT_SETTING(priv->id));
	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
				   speed, DUPLEX_FULL, true, true);

	return 0;
}

2866 2867 2868 2869 2870 2871 2872 2873
static void
mt7530_mac_port_validate(struct dsa_switch *ds, int port,
			 unsigned long *supported)
{
	if (port == 5)
		phylink_set(supported, 1000baseX_Full);
}

2874 2875 2876 2877 2878 2879 2880 2881
static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
				     unsigned long *supported)
{
	struct mt7530_priv *priv = ds->priv;

	mt7531_sgmii_validate(priv, port, supported);
}

2882 2883 2884 2885
static void
mt753x_phylink_validate(struct dsa_switch *ds, int port,
			unsigned long *supported,
			struct phylink_link_state *state)
2886 2887
{
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2888
	struct mt7530_priv *priv = ds->priv;
2889

2890 2891
	if (state->interface != PHY_INTERFACE_MODE_NA &&
	    !mt753x_phy_mode_supported(ds, port, state)) {
2892 2893 2894 2895 2896 2897
		linkmode_zero(supported);
		return;
	}

	phylink_set_port_modes(mask);

2898 2899
	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
	    !phy_interface_mode_is_8023z(state->interface)) {
2900 2901 2902 2903
		phylink_set(mask, 10baseT_Half);
		phylink_set(mask, 10baseT_Full);
		phylink_set(mask, 100baseT_Half);
		phylink_set(mask, 100baseT_Full);
2904
		phylink_set(mask, Autoneg);
2905
	}
2906

2907 2908 2909 2910 2911 2912
	/* This switch only supports 1G full-duplex. */
	if (state->interface != PHY_INTERFACE_MODE_MII)
		phylink_set(mask, 1000baseT_Full);

	priv->info->mac_port_validate(ds, port, mask);

2913 2914 2915 2916 2917
	phylink_set(mask, Pause);
	phylink_set(mask, Asym_Pause);

	linkmode_and(supported, supported, mask);
	linkmode_and(state->advertising, state->advertising, mask);
2918 2919 2920 2921 2922

	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
	 * to advertise both, only report advertising at 2500BaseX.
	 */
	phylink_helper_basex_speed(state);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
}

static int
mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
			      struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 pmsr;

	if (port < 0 || port >= MT7530_NUM_PORTS)
		return -EINVAL;

	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));

	state->link = (pmsr & PMSR_LINK);
	state->an_complete = state->link;
	state->duplex = !!(pmsr & PMSR_DPX);

	switch (pmsr & PMSR_SPEED_MASK) {
	case PMSR_SPEED_10:
		state->speed = SPEED_10;
		break;
	case PMSR_SPEED_100:
		state->speed = SPEED_100;
		break;
	case PMSR_SPEED_1000:
		state->speed = SPEED_1000;
		break;
	default:
		state->speed = SPEED_UNKNOWN;
		break;
	}

	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
	if (pmsr & PMSR_RX_FC)
		state->pause |= MLO_PAUSE_RX;
	if (pmsr & PMSR_TX_FC)
		state->pause |= MLO_PAUSE_TX;

	return 1;
}

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
static int
mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
			      struct phylink_link_state *state)
{
	u32 status, val;
	u16 config_reg;

	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
	    (status & MT7531_SGMII_AN_ENABLE)) {
		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
		config_reg = val >> 16;

		switch (config_reg & LPA_SGMII_SPD_MASK) {
		case LPA_SGMII_1000:
			state->speed = SPEED_1000;
			break;
		case LPA_SGMII_100:
			state->speed = SPEED_100;
			break;
		case LPA_SGMII_10:
			state->speed = SPEED_10;
			break;
		default:
			dev_err(priv->dev, "invalid sgmii PHY speed\n");
			state->link = false;
			return -EINVAL;
		}

		if (config_reg & LPA_SGMII_FULL_DUPLEX)
			state->duplex = DUPLEX_FULL;
		else
			state->duplex = DUPLEX_HALF;
	}

	return 0;
}

static int
mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
			      struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	if (state->interface == PHY_INTERFACE_MODE_SGMII)
		return mt7531_sgmii_pcs_get_state_an(priv, port, state);

	return -EOPNOTSUPP;
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
static int
mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
			      struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->mac_port_get_state(ds, port, state);
}

static int
mt753x_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;
3029
	int ret = priv->info->sw_setup(ds);
3030

3031 3032
	if (ret)
		return ret;
3033

3034 3035 3036
	ret = mt7530_setup_irq(priv);
	if (ret)
		return ret;
3037

3038 3039 3040
	ret = mt7530_setup_mdio(priv);
	if (ret && priv->irq)
		mt7530_free_irq_common(priv);
3041

3042
	return ret;
3043 3044
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
	struct mt7530_priv *priv = ds->priv;
	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));

	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);

	return 0;
}

static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
	struct mt7530_priv *priv = ds->priv;
	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;

	if (e->tx_lpi_timer > 0xFFF)
		return -EINVAL;

	set = SET_LPI_THRESH(e->tx_lpi_timer);
	if (!e->tx_lpi_enabled)
		/* Force LPI Mode without a delay */
		set |= LPI_MODE_EN;
	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);

	return 0;
}

3075
static const struct dsa_switch_ops mt7530_switch_ops = {
3076
	.get_tag_protocol	= mtk_get_tag_protocol,
3077
	.setup			= mt753x_setup,
3078 3079 3080
	.get_strings		= mt7530_get_strings,
	.get_ethtool_stats	= mt7530_get_ethtool_stats,
	.get_sset_count		= mt7530_get_sset_count,
3081
	.set_ageing_time	= mt7530_set_ageing_time,
3082 3083
	.port_enable		= mt7530_port_enable,
	.port_disable		= mt7530_port_disable,
3084 3085
	.port_change_mtu	= mt7530_port_change_mtu,
	.port_max_mtu		= mt7530_port_max_mtu,
3086
	.port_stp_state_set	= mt7530_stp_state_set,
3087 3088 3089
	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
	.port_bridge_flags	= mt7530_port_bridge_flags,
	.port_set_mrouter	= mt7530_port_set_mrouter,
3090 3091 3092 3093 3094
	.port_bridge_join	= mt7530_port_bridge_join,
	.port_bridge_leave	= mt7530_port_bridge_leave,
	.port_fdb_add		= mt7530_port_fdb_add,
	.port_fdb_del		= mt7530_port_fdb_del,
	.port_fdb_dump		= mt7530_port_fdb_dump,
3095 3096
	.port_mdb_add		= mt7530_port_mdb_add,
	.port_mdb_del		= mt7530_port_mdb_del,
3097 3098 3099
	.port_vlan_filtering	= mt7530_port_vlan_filtering,
	.port_vlan_add		= mt7530_port_vlan_add,
	.port_vlan_del		= mt7530_port_vlan_del,
3100 3101
	.port_mirror_add	= mt753x_port_mirror_add,
	.port_mirror_del	= mt753x_port_mirror_del,
3102 3103 3104
	.phylink_validate	= mt753x_phylink_validate,
	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
	.phylink_mac_config	= mt753x_phylink_mac_config,
3105 3106 3107
	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3108 3109
	.get_mac_eee		= mt753x_get_mac_eee,
	.set_mac_eee		= mt753x_set_mac_eee,
3110 3111
};

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
static const struct mt753x_info mt753x_table[] = {
	[ID_MT7621] = {
		.id = ID_MT7621,
		.sw_setup = mt7530_setup,
		.phy_read = mt7530_phy_read,
		.phy_write = mt7530_phy_write,
		.pad_setup = mt7530_pad_clk_setup,
		.phy_mode_supported = mt7530_phy_mode_supported,
		.mac_port_validate = mt7530_mac_port_validate,
		.mac_port_get_state = mt7530_phylink_mac_link_state,
		.mac_port_config = mt7530_mac_config,
	},
	[ID_MT7530] = {
		.id = ID_MT7530,
		.sw_setup = mt7530_setup,
		.phy_read = mt7530_phy_read,
		.phy_write = mt7530_phy_write,
		.pad_setup = mt7530_pad_clk_setup,
		.phy_mode_supported = mt7530_phy_mode_supported,
		.mac_port_validate = mt7530_mac_port_validate,
		.mac_port_get_state = mt7530_phylink_mac_link_state,
		.mac_port_config = mt7530_mac_config,
	},
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	[ID_MT7531] = {
		.id = ID_MT7531,
		.sw_setup = mt7531_setup,
		.phy_read = mt7531_ind_phy_read,
		.phy_write = mt7531_ind_phy_write,
		.pad_setup = mt7531_pad_setup,
		.cpu_port_config = mt7531_cpu_port_config,
		.phy_mode_supported = mt7531_phy_mode_supported,
		.mac_port_validate = mt7531_mac_port_validate,
		.mac_port_get_state = mt7531_phylink_mac_link_state,
		.mac_port_config = mt7531_mac_config,
		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
	},
3149 3150
};

3151
static const struct of_device_id mt7530_of_match[] = {
3152 3153
	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3154
	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3155 3156 3157 3158
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mt7530_of_match);

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static int
mt7530_probe(struct mdio_device *mdiodev)
{
	struct mt7530_priv *priv;
	struct device_node *dn;

	dn = mdiodev->dev.of_node;

	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

3171
	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3172 3173 3174
	if (!priv->ds)
		return -ENOMEM;

3175 3176 3177
	priv->ds->dev = &mdiodev->dev;
	priv->ds->num_ports = DSA_MAX_PORTS;

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	/* Use medatek,mcm property to distinguish hardware type that would
	 * casues a little bit differences on power-on sequence.
	 */
	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
	if (priv->mcm) {
		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");

		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
		if (IS_ERR(priv->rstc)) {
			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
			return PTR_ERR(priv->rstc);
		}
	}

3192 3193 3194
	/* Get the hardware identifier from the devicetree node.
	 * We will need it for some of the clock and regulator setup.
	 */
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	priv->info = of_device_get_match_data(&mdiodev->dev);
	if (!priv->info)
		return -EINVAL;

	/* Sanity check if these required device operations are filled
	 * properly.
	 */
	if (!priv->info->sw_setup || !priv->info->pad_setup ||
	    !priv->info->phy_read || !priv->info->phy_write ||
	    !priv->info->phy_mode_supported ||
	    !priv->info->mac_port_validate ||
	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
		return -EINVAL;

	priv->id = priv->info->id;
3210

3211 3212 3213 3214 3215 3216 3217 3218 3219
	if (priv->id == ID_MT7530) {
		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
		if (IS_ERR(priv->core_pwr))
			return PTR_ERR(priv->core_pwr);

		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
		if (IS_ERR(priv->io_pwr))
			return PTR_ERR(priv->io_pwr);
	}
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

	/* Not MCM that indicates switch works as the remote standalone
	 * integrated circuit so the GPIO pin would be used to complete
	 * the reset, otherwise memory-mapped register accessing used
	 * through syscon provides in the case of MCM.
	 */
	if (!priv->mcm) {
		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
						      GPIOD_OUT_LOW);
		if (IS_ERR(priv->reset)) {
			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
			return PTR_ERR(priv->reset);
		}
	}

	priv->bus = mdiodev->bus;
	priv->dev = &mdiodev->dev;
	priv->ds->priv = priv;
	priv->ds->ops = &mt7530_switch_ops;
	mutex_init(&priv->reg_mutex);
	dev_set_drvdata(&mdiodev->dev, priv);

3242
	return dsa_register_switch(priv->ds);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
}

static void
mt7530_remove(struct mdio_device *mdiodev)
{
	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
	int ret = 0;

	ret = regulator_disable(priv->core_pwr);
	if (ret < 0)
		dev_err(priv->dev,
			"Failed to disable core power: %d\n", ret);

	ret = regulator_disable(priv->io_pwr);
	if (ret < 0)
		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
			ret);

3261 3262 3263
	if (priv->irq)
		mt7530_free_irq(priv);

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	dsa_unregister_switch(priv->ds);
	mutex_destroy(&priv->reg_mutex);
}

static struct mdio_driver mt7530_mdio_driver = {
	.probe  = mt7530_probe,
	.remove = mt7530_remove,
	.mdiodrv.driver = {
		.name = "mt7530",
		.of_match_table = mt7530_of_match,
	},
};

mdio_module_driver(mt7530_mdio_driver);

MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
MODULE_LICENSE("GPL");