mt7530.c 76.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Mediatek MT7530 DSA Switch driver
 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
 */
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
16
#include <linux/phylink.h>
17 18 19
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/gpio/driver.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <net/dsa.h>

#include "mt7530.h"

/* String, offset, and register size in bytes if different from 4 bytes */
static const struct mt7530_mib_desc mt7530_mib[] = {
	MIB_DESC(1, 0x00, "TxDrop"),
	MIB_DESC(1, 0x04, "TxCrcErr"),
	MIB_DESC(1, 0x08, "TxUnicast"),
	MIB_DESC(1, 0x0c, "TxMulticast"),
	MIB_DESC(1, 0x10, "TxBroadcast"),
	MIB_DESC(1, 0x14, "TxCollision"),
	MIB_DESC(1, 0x18, "TxSingleCollision"),
	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
	MIB_DESC(1, 0x20, "TxDeferred"),
	MIB_DESC(1, 0x24, "TxLateCollision"),
	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
	MIB_DESC(1, 0x2c, "TxPause"),
	MIB_DESC(1, 0x30, "TxPktSz64"),
	MIB_DESC(1, 0x34, "TxPktSz65To127"),
	MIB_DESC(1, 0x38, "TxPktSz128To255"),
	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
	MIB_DESC(1, 0x44, "Tx1024ToMax"),
	MIB_DESC(2, 0x48, "TxBytes"),
	MIB_DESC(1, 0x60, "RxDrop"),
	MIB_DESC(1, 0x64, "RxFiltering"),
	MIB_DESC(1, 0x6c, "RxMulticast"),
	MIB_DESC(1, 0x70, "RxBroadcast"),
	MIB_DESC(1, 0x74, "RxAlignErr"),
	MIB_DESC(1, 0x78, "RxCrcErr"),
	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
	MIB_DESC(1, 0x80, "RxFragErr"),
	MIB_DESC(1, 0x84, "RxOverSzErr"),
	MIB_DESC(1, 0x88, "RxJabberErr"),
	MIB_DESC(1, 0x8c, "RxPause"),
	MIB_DESC(1, 0x90, "RxPktSz64"),
	MIB_DESC(1, 0x94, "RxPktSz65To127"),
	MIB_DESC(1, 0x98, "RxPktSz128To255"),
	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
	MIB_DESC(2, 0xa8, "RxBytes"),
	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
	MIB_DESC(1, 0xb4, "RxIngressDrop"),
	MIB_DESC(1, 0xb8, "RxArlDrop"),
};

70 71 72 73 74
/* Since phy_device has not yet been created and
 * phy_{read,write}_mmd_indirect is not available, we provide our own
 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
 * to complete this function.
 */
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static int
core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
{
	struct mii_bus *bus = priv->bus;
	int value, ret;

	/* Write the desired MMD Devad */
	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
	if (ret < 0)
		goto err;

	/* Write the desired MMD register address */
	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
	if (ret < 0)
		goto err;

	/* Select the Function : DATA with no post increment */
	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
	if (ret < 0)
		goto err;

	/* Read the content of the MMD's selected register */
	value = bus->read(bus, 0, MII_MMD_DATA);

	return value;
err:
	dev_err(&bus->dev,  "failed to read mmd register\n");

	return ret;
}

static int
core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
			int devad, u32 data)
{
	struct mii_bus *bus = priv->bus;
	int ret;

	/* Write the desired MMD Devad */
	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
	if (ret < 0)
		goto err;

	/* Write the desired MMD register address */
	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
	if (ret < 0)
		goto err;

	/* Select the Function : DATA with no post increment */
	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
	if (ret < 0)
		goto err;

	/* Write the data into MMD's selected register */
	ret = bus->write(bus, 0, MII_MMD_DATA, data);
err:
	if (ret < 0)
		dev_err(&bus->dev,
			"failed to write mmd register\n");
	return ret;
}

static void
core_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
{
	struct mii_bus *bus = priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
	val &= ~mask;
	val |= set;
	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
core_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
	core_rmw(priv, reg, 0, val);
}

static void
core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
	core_rmw(priv, reg, val, 0);
}

static int
mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;
	u16 page, r, lo, hi;
	int ret;

	page = (reg >> 6) & 0x3ff;
	r  = (reg >> 2) & 0xf;
	lo = val & 0xffff;
	hi = val >> 16;

	/* MT7530 uses 31 as the pseudo port */
	ret = bus->write(bus, 0x1f, 0x1f, page);
	if (ret < 0)
		goto err;

	ret = bus->write(bus, 0x1f, r,  lo);
	if (ret < 0)
		goto err;

	ret = bus->write(bus, 0x1f, 0x10, hi);
err:
	if (ret < 0)
		dev_err(&bus->dev,
			"failed to write mt7530 register\n");
	return ret;
}

static u32
mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
{
	struct mii_bus *bus = priv->bus;
	u16 page, r, lo, hi;
	int ret;

	page = (reg >> 6) & 0x3ff;
	r = (reg >> 2) & 0xf;

	/* MT7530 uses 31 as the pseudo port */
	ret = bus->write(bus, 0x1f, 0x1f, page);
	if (ret < 0) {
		dev_err(&bus->dev,
			"failed to read mt7530 register\n");
		return ret;
	}

	lo = bus->read(bus, 0x1f, r);
	hi = bus->read(bus, 0x1f, 0x10);

	return (hi << 16) | (lo & 0xffff);
}

static void
mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
	struct mii_bus *bus = priv->bus;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	mt7530_mii_write(priv, reg, val);

	mutex_unlock(&bus->mdio_lock);
}

242 243 244 245 246 247
static u32
_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
{
	return mt7530_mii_read(p->priv, p->reg);
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static u32
_mt7530_read(struct mt7530_dummy_poll *p)
{
	struct mii_bus		*bus = p->priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(p->priv, p->reg);

	mutex_unlock(&bus->mdio_lock);

	return val;
}

static u32
mt7530_read(struct mt7530_priv *priv, u32 reg)
{
	struct mt7530_dummy_poll p;

	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
	return _mt7530_read(&p);
}

static void
mt7530_rmw(struct mt7530_priv *priv, u32 reg,
	   u32 mask, u32 set)
{
	struct mii_bus *bus = priv->bus;
	u32 val;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(priv, reg);
	val &= ~mask;
	val |= set;
	mt7530_mii_write(priv, reg, val);

	mutex_unlock(&bus->mdio_lock);
}

static void
mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7530_rmw(priv, reg, 0, val);
}

static void
mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
	mt7530_rmw(priv, reg, val, 0);
}

static int
mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
{
	u32 val;
	int ret;
	struct mt7530_dummy_poll p;

	/* Set the command operating upon the MAC address entries */
	val = ATC_BUSY | ATC_MAT(0) | cmd;
	mt7530_write(priv, MT7530_ATC, val);

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
	ret = readx_poll_timeout(_mt7530_read, &p, val,
				 !(val & ATC_BUSY), 20, 20000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	/* Additional sanity for read command if the specified
	 * entry is invalid
	 */
	val = mt7530_read(priv, MT7530_ATC);
	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
		return -EINVAL;

	if (rsp)
		*rsp = val;

	return 0;
}

static void
mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
{
	u32 reg[3];
	int i;

	/* Read from ARL table into an array */
	for (i = 0; i < 3; i++) {
		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));

		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
			__func__, __LINE__, i, reg[i]);
	}

	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
}

static void
mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
		 u8 port_mask, const u8 *mac,
		 u8 aging, u8 type)
{
	u32 reg[3] = { 0 };
	int i;

	reg[1] |= vid & CVID_MASK;
	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
	/* STATIC_ENT indicate that entry is static wouldn't
	 * be aged out and STATIC_EMP specified as erasing an
	 * entry
	 */
	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
	reg[1] |= mac[5] << MAC_BYTE_5;
	reg[1] |= mac[4] << MAC_BYTE_4;
	reg[0] |= mac[3] << MAC_BYTE_3;
	reg[0] |= mac[2] << MAC_BYTE_2;
	reg[0] |= mac[1] << MAC_BYTE_1;
	reg[0] |= mac[0] << MAC_BYTE_0;

	/* Write array into the ARL table */
	for (i = 0; i < 3; i++)
		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
}

387
/* Setup TX circuit including relevant PAD and driving */
388
static int
389
mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
390 391
{
	struct mt7530_priv *priv = ds->priv;
392 393 394 395 396 397 398 399 400 401
	u32 ncpo1, ssc_delta, trgint, i, xtal;

	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;

	if (xtal == HWTRAP_XTAL_20MHZ) {
		dev_err(priv->dev,
			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
			__func__);
		return -EINVAL;
	}
402

403
	switch (interface) {
404 405
	case PHY_INTERFACE_MODE_RGMII:
		trgint = 0;
406
		/* PLL frequency: 125MHz */
407 408 409 410
		ncpo1 = 0x0c80;
		break;
	case PHY_INTERFACE_MODE_TRGMII:
		trgint = 1;
411 412 413 414 415 416 417 418 419 420 421 422
		if (priv->id == ID_MT7621) {
			/* PLL frequency: 150MHz: 1.2GBit */
			if (xtal == HWTRAP_XTAL_40MHZ)
				ncpo1 = 0x0780;
			if (xtal == HWTRAP_XTAL_25MHZ)
				ncpo1 = 0x0a00;
		} else { /* PLL frequency: 250MHz: 2.0Gbit */
			if (xtal == HWTRAP_XTAL_40MHZ)
				ncpo1 = 0x0c80;
			if (xtal == HWTRAP_XTAL_25MHZ)
				ncpo1 = 0x1400;
		}
423 424
		break;
	default:
425 426
		dev_err(priv->dev, "xMII interface %d not supported\n",
			interface);
427 428 429
		return -EINVAL;
	}

430 431 432 433 434
	if (xtal == HWTRAP_XTAL_25MHZ)
		ssc_delta = 0x57;
	else
		ssc_delta = 0x87;

435 436 437 438 439 440 441 442
	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
		   P6_INTF_MODE(trgint));

	/* Lower Tx Driving for TRGMII path */
	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
			     TD_DM_DRVP(8) | TD_DM_DRVN(8));

443 444 445
	/* Disable MT7530 core and TRGMII Tx clocks */
	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
		   REG_GSWCK_EN | REG_TRGMIICK_EN);
446

447 448 449
	/* Setup core clock for MT7530 */
	/* Disable PLL */
	core_write(priv, CORE_GSWPLL_GRP1, 0);
450 451 452 453 454 455 456 457 458 459 460 461

	/* Set core clock into 500Mhz */
	core_write(priv, CORE_GSWPLL_GRP2,
		   RG_GSWPLL_POSDIV_500M(1) |
		   RG_GSWPLL_FBKDIV_500M(25));

	/* Enable PLL */
	core_write(priv, CORE_GSWPLL_GRP1,
		   RG_GSWPLL_EN_PRE |
		   RG_GSWPLL_POSDIV_200M(2) |
		   RG_GSWPLL_FBKDIV_200M(32));

462 463 464 465 466 467 468 469 470 471 472 473 474 475
	/* Setup the MT7530 TRGMII Tx Clock */
	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
	core_write(priv, CORE_PLL_GROUP4,
		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
		   RG_SYSPLL_BIAS_LPF_EN);
	core_write(priv, CORE_PLL_GROUP2,
		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
		   RG_SYSPLL_POSDIV(1));
	core_write(priv, CORE_PLL_GROUP7,
		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
476 477

	/* Enable MT7530 core and TRGMII Tx clocks */
478 479 480 481 482 483 484 485 486 487
	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
		 REG_GSWCK_EN | REG_TRGMIICK_EN);

	if (!trgint)
		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
				   RD_TAP_MASK, RD_TAP(16));
	return 0;
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
{
	u32 val;

	val = mt7530_read(priv, MT7531_TOP_SIG_SR);

	return (val & PAD_DUAL_SGMII_EN) != 0;
}

static int
mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;
	u32 top_sig;
	u32 hwstrap;
	u32 xtal;
	u32 val;

	if (mt7531_dual_sgmii_supported(priv))
		return 0;

	val = mt7530_read(priv, MT7531_CREV);
	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
	if ((val & CHIP_REV_M) > 0)
		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
						    HWTRAP_XTAL_FSEL_25MHZ;
	else
		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;

	/* Step 1 : Disable MT7531 COREPLL */
	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val &= ~EN_COREPLL;
	mt7530_write(priv, MT7531_PLLGP_EN, val);

	/* Step 2: switch to XTAL output */
	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val |= SW_CLKSW;
	mt7530_write(priv, MT7531_PLLGP_EN, val);

	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val &= ~RG_COREPLL_EN;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);

	/* Step 3: disable PLLGP and enable program PLLGP */
	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val |= SW_PLLGP;
	mt7530_write(priv, MT7531_PLLGP_EN, val);

	/* Step 4: program COREPLL output frequency to 500MHz */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val &= ~RG_COREPLL_POSDIV_M;
	val |= 2 << RG_COREPLL_POSDIV_S;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);
	usleep_range(25, 35);

	switch (xtal) {
	case HWTRAP_XTAL_FSEL_25MHZ:
		val = mt7530_read(priv, MT7531_PLLGP_CR0);
		val &= ~RG_COREPLL_SDM_PCW_M;
		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
		mt7530_write(priv, MT7531_PLLGP_CR0, val);
		break;
	case HWTRAP_XTAL_FSEL_40MHZ:
		val = mt7530_read(priv, MT7531_PLLGP_CR0);
		val &= ~RG_COREPLL_SDM_PCW_M;
		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
		mt7530_write(priv, MT7531_PLLGP_CR0, val);
		break;
557
	}
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

	/* Set feedback divide ratio update signal to high */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val |= RG_COREPLL_SDM_PCW_CHG;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);
	/* Wait for at least 16 XTAL clocks */
	usleep_range(10, 20);

	/* Step 5: set feedback divide ratio update signal to low */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val &= ~RG_COREPLL_SDM_PCW_CHG;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);

	/* Enable 325M clock for SGMII */
	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);

	/* Enable 250SSC clock for RGMII */
	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);

	/* Step 6: Enable MT7531 PLL */
	val = mt7530_read(priv, MT7531_PLLGP_CR0);
	val |= RG_COREPLL_EN;
	mt7530_write(priv, MT7531_PLLGP_CR0, val);

	val = mt7530_read(priv, MT7531_PLLGP_EN);
	val |= EN_COREPLL;
	mt7530_write(priv, MT7531_PLLGP_EN, val);
	usleep_range(25, 35);

	return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static void
mt7530_mib_reset(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;

	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
}

static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mt7530_priv *priv = ds->priv;

	return mdiobus_read_nested(priv->bus, port, regnum);
}

606 607
static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
			    u16 val)
608 609 610 611 612 613
{
	struct mt7530_priv *priv = ds->priv;

	return mdiobus_write_nested(priv->bus, port, regnum, val);
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static int
mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
			int regnum)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	u32 reg, val;
	int ret;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad);
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
			 int regnum, u32 data)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	u32 val, reg;
	int ret;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_DEV_ADDR(devad) | data;
	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	int ret;
	u32 val;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_REG_ADDR(regnum);

	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
			 u16 data)
{
	struct mii_bus *bus = priv->bus;
	struct mt7530_dummy_poll p;
	int ret;
	u32 reg;

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
	      MT7531_MDIO_REG_ADDR(regnum) | data;

	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);

	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		goto out;
	}

out:
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int
mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mt7530_priv *priv = ds->priv;
	int devad;
	int ret;

	if (regnum & MII_ADDR_C45) {
		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
		ret = mt7531_ind_c45_phy_read(priv, port, devad,
					      regnum & MII_REGADDR_C45_MASK);
	} else {
		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
	}

	return ret;
}

static int
mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum,
		     u16 data)
{
	struct mt7530_priv *priv = ds->priv;
	int devad;
	int ret;

	if (regnum & MII_ADDR_C45) {
		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
		ret = mt7531_ind_c45_phy_write(priv, port, devad,
					       regnum & MII_REGADDR_C45_MASK,
					       data);
	} else {
		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
	}

	return ret;
}

825
static void
826 827
mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
		   uint8_t *data)
828 829 830
{
	int i;

831 832 833
	if (stringset != ETH_SS_STATS)
		return;

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
			ETH_GSTRING_LEN);
}

static void
mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
			 uint64_t *data)
{
	struct mt7530_priv *priv = ds->priv;
	const struct mt7530_mib_desc *mib;
	u32 reg, i;
	u64 hi;

	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
		mib = &mt7530_mib[i];
		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;

		data[i] = mt7530_read(priv, reg);
		if (mib->size == 2) {
			hi = mt7530_read(priv, reg + 4);
			data[i] |= hi << 32;
		}
	}
}

static int
861
mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
862
{
863 864 865
	if (sset != ETH_SS_STATS)
		return 0;

866 867 868
	return ARRAY_SIZE(mt7530_mib);
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static int
mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
{
	struct mt7530_priv *priv = ds->priv;
	unsigned int secs = msecs / 1000;
	unsigned int tmp_age_count;
	unsigned int error = -1;
	unsigned int age_count;
	unsigned int age_unit;

	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
		return -ERANGE;

	/* iterate through all possible age_count to find the closest pair */
	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;

		if (tmp_age_unit <= AGE_UNIT_MAX) {
			unsigned int tmp_error = secs -
				(tmp_age_count + 1) * (tmp_age_unit + 1);

			/* found a closer pair */
			if (error > tmp_error) {
				error = tmp_error;
				age_count = tmp_age_count;
				age_unit = tmp_age_unit;
			}

			/* found the exact match, so break the loop */
			if (!error)
				break;
		}
	}

	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));

	return 0;
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;
	u8 tx_delay = 0;
	int val;

	mutex_lock(&priv->reg_mutex);

	val = mt7530_read(priv, MT7530_MHWTRAP);

	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;

	switch (priv->p5_intf_sel) {
	case P5_INTF_SEL_PHY_P0:
		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
		val |= MHWTRAP_PHY0_SEL;
926
		fallthrough;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	case P5_INTF_SEL_PHY_P4:
		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;

		/* Setup the MAC by default for the cpu port */
		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
		break;
	case P5_INTF_SEL_GMAC5:
		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
		val &= ~MHWTRAP_P5_DIS;
		break;
	case P5_DISABLED:
		interface = PHY_INTERFACE_MODE_NA;
		break;
	default:
		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
			priv->p5_intf_sel);
		goto unlock_exit;
	}

	/* Setup RGMII settings */
	if (phy_interface_mode_is_rgmii(interface)) {
		val |= MHWTRAP_P5_RGMII_MODE;

		/* P5 RGMII RX Clock Control: delay setting for 1000M */
		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);

		/* Don't set delay in DSA mode */
		if (!dsa_is_dsa_port(priv->ds, 5) &&
		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
		     interface == PHY_INTERFACE_MODE_RGMII_ID))
			tx_delay = 4; /* n * 0.5 ns */

		/* P5 RGMII TX Clock Control: delay x */
		mt7530_write(priv, MT7530_P5RGMIITXCR,
			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));

		/* reduce P5 RGMII Tx driving, 8mA */
		mt7530_write(priv, MT7530_IO_DRV_CR,
			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
	}

	mt7530_write(priv, MT7530_MHWTRAP, val);

	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));

	priv->p5_interface = interface;

unlock_exit:
	mutex_unlock(&priv->reg_mutex);
}

980
static int
981
mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
982
{
983
	struct mt7530_priv *priv = ds->priv;
984
	int ret;
985 986

	/* Setup max capability of CPU port at first */
987 988 989 990 991
	if (priv->info->cpu_port_config) {
		ret = priv->info->cpu_port_config(ds, port);
		if (ret)
			return ret;
	}
992

993 994 995 996
	/* Enable Mediatek header mode on the cpu port */
	mt7530_write(priv, MT7530_PVC_P(port),
		     PORT_SPEC_TAG);

997 998 999
	/* Disable flooding by default */
	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1000

1001 1002 1003 1004
	/* Set CPU port number */
	if (priv->id == ID_MT7621)
		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));

1005
	/* CPU port gets connected to all user ports of
1006
	 * the switch.
1007 1008
	 */
	mt7530_write(priv, MT7530_PCR_P(port),
1009
		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	return 0;
}

static int
mt7530_port_enable(struct dsa_switch *ds, int port,
		   struct phy_device *phy)
{
	struct mt7530_priv *priv = ds->priv;

1020 1021 1022
	if (!dsa_is_user_port(ds, port))
		return 0;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	mutex_lock(&priv->reg_mutex);

	/* Allow the user port gets connected to the cpu port and also
	 * restore the port matrix if the port is the member of a certain
	 * bridge.
	 */
	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
	priv->ports[port].enable = true;
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
		   priv->ports[port].pm);
1033
	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1034 1035 1036 1037 1038 1039 1040

	mutex_unlock(&priv->reg_mutex);

	return 0;
}

static void
1041
mt7530_port_disable(struct dsa_switch *ds, int port)
1042 1043 1044
{
	struct mt7530_priv *priv = ds->priv;

1045 1046 1047
	if (!dsa_is_user_port(ds, port))
		return;

1048 1049 1050 1051 1052 1053 1054 1055
	mutex_lock(&priv->reg_mutex);

	/* Clear up all port matrix which could be restored in the next
	 * enablement for the port.
	 */
	priv->ports[port].enable = false;
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
		   PCR_MATRIX_CLR);
1056
	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1057 1058 1059 1060

	mutex_unlock(&priv->reg_mutex);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static int
mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
	struct mt7530_priv *priv = ds->priv;
	struct mii_bus *bus = priv->bus;
	int length;
	u32 val;

	/* When a new MTU is set, DSA always set the CPU port's MTU to the
	 * largest MTU of the slave ports. Because the switch only has a global
	 * RX length register, only allowing CPU port here is enough.
	 */
	if (!dsa_is_cpu_port(ds, port))
		return 0;

	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);

	val = mt7530_mii_read(priv, MT7530_GMACCR);
	val &= ~MAX_RX_PKT_LEN_MASK;

	/* RX length also includes Ethernet header, MTK tag, and FCS length */
	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
	if (length <= 1522) {
		val |= MAX_RX_PKT_LEN_1522;
	} else if (length <= 1536) {
		val |= MAX_RX_PKT_LEN_1536;
	} else if (length <= 1552) {
		val |= MAX_RX_PKT_LEN_1552;
	} else {
		val &= ~MAX_RX_JUMBO_MASK;
		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
		val |= MAX_RX_PKT_LEN_JUMBO;
	}

	mt7530_mii_write(priv, MT7530_GMACCR, val);

	mutex_unlock(&bus->mdio_lock);

	return 0;
}

static int
mt7530_port_max_mtu(struct dsa_switch *ds, int port)
{
	return MT7530_MAX_MTU;
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static void
mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
		stp_state = MT7530_STP_DISABLED;
		break;
	case BR_STATE_BLOCKING:
		stp_state = MT7530_STP_BLOCKING;
		break;
	case BR_STATE_LISTENING:
		stp_state = MT7530_STP_LISTENING;
		break;
	case BR_STATE_LEARNING:
		stp_state = MT7530_STP_LEARNING;
		break;
	case BR_STATE_FORWARDING:
	default:
		stp_state = MT7530_STP_FORWARDING;
		break;
	}

	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static int
mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
			     struct switchdev_brport_flags flags,
			     struct netlink_ext_ack *extack)
{
	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
			   BR_BCAST_FLOOD))
		return -EINVAL;

	return 0;
}

static int
mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
			 struct switchdev_brport_flags flags,
			 struct netlink_ext_ack *extack)
{
	struct mt7530_priv *priv = ds->priv;

	if (flags.mask & BR_LEARNING)
		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
			   flags.val & BR_LEARNING ? 0 : SA_DIS);

	if (flags.mask & BR_FLOOD)
		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);

	if (flags.mask & BR_MCAST_FLOOD)
		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);

	if (flags.mask & BR_BCAST_FLOOD)
		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);

	return 0;
}

static int
mt7530_port_set_mrouter(struct dsa_switch *ds, int port, bool mrouter,
			struct netlink_ext_ack *extack)
{
	struct mt7530_priv *priv = ds->priv;

	mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
		   mrouter ? UNM_FFP(BIT(port)) : 0);

	return 0;
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
static int
mt7530_port_bridge_join(struct dsa_switch *ds, int port,
			struct net_device *bridge)
{
	struct mt7530_priv *priv = ds->priv;
	u32 port_bitmap = BIT(MT7530_CPU_PORT);
	int i;

	mutex_lock(&priv->reg_mutex);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Add this port to the port matrix of the other ports in the
		 * same bridge. If the port is disabled, port matrix is kept
		 * and not being setup until the port becomes enabled.
		 */
1201
		if (dsa_is_user_port(ds, i) && i != port) {
V
Vivien Didelot 已提交
1202
			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
				continue;
			if (priv->ports[i].enable)
				mt7530_set(priv, MT7530_PCR_P(i),
					   PCR_MATRIX(BIT(port)));
			priv->ports[i].pm |= PCR_MATRIX(BIT(port));

			port_bitmap |= BIT(i);
		}
	}

	/* Add the all other ports to this port matrix. */
	if (priv->ports[port].enable)
		mt7530_rmw(priv, MT7530_PCR_P(port),
			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);

	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static void
mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;
	bool all_user_ports_removed = true;
	int i;

	/* When a port is removed from the bridge, the port would be set up
	 * back to the default as is at initial boot which is a VLAN-unaware
	 * port.
	 */
	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
		   MT7530_PORT_MATRIX_MODE);
1237 1238 1239
	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1240 1241 1242

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		if (dsa_is_user_port(ds, i) &&
1243
		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			all_user_ports_removed = false;
			break;
		}
	}

	/* CPU port also does the same thing until all user ports belonging to
	 * the CPU port get out of VLAN filtering mode.
	 */
	if (all_user_ports_removed) {
		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1255 1256
		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	}
}

static void
mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;

	/* The real fabric path would be decided on the membership in the
	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
	 * means potential VLAN can be consisting of certain subset of all
	 * ports.
	 */
	mt7530_rmw(priv, MT7530_PCR_P(port),
		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));

	/* Trapped into security mode allows packet forwarding through VLAN
1274 1275
	 * table lookup. CPU port is set to fallback mode to let untagged
	 * frames pass through.
1276
	 */
1277 1278 1279 1280 1281 1282
	if (dsa_is_cpu_port(ds, port))
		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
			   MT7530_PORT_FALLBACK_MODE);
	else
		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
			   MT7530_PORT_SECURITY_MODE);
1283 1284 1285 1286

	/* Set the port as a user port which is to be able to recognize VID
	 * from incoming packets before fetching entry within the VLAN table.
	 */
1287 1288 1289
	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
		   VLAN_ATTR(MT7530_VLAN_USER) |
		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static void
mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
			 struct net_device *bridge)
{
	struct mt7530_priv *priv = ds->priv;
	int i;

	mutex_lock(&priv->reg_mutex);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Remove this port from the port matrix of the other ports
		 * in the same bridge. If the port is disabled, port matrix
		 * is kept and not being setup until the port becomes enabled.
1305 1306
		 * And the other port's port matrix cannot be broken when the
		 * other port is still a VLAN-aware port.
1307
		 */
1308
		if (dsa_is_user_port(ds, i) && i != port &&
1309
		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
V
Vivien Didelot 已提交
1310
			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
				continue;
			if (priv->ports[i].enable)
				mt7530_clear(priv, MT7530_PCR_P(i),
					     PCR_MATRIX(BIT(port)));
			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
		}
	}

	/* Set the cpu port to be the only one in the port matrix of
	 * this port.
	 */
	if (priv->ports[port].enable)
		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));

	mutex_unlock(&priv->reg_mutex);
}

static int
mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1332
		    const unsigned char *addr, u16 vid)
1333 1334
{
	struct mt7530_priv *priv = ds->priv;
1335
	int ret;
1336 1337 1338
	u8 port_mask = BIT(port);

	mutex_lock(&priv->reg_mutex);
1339
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1340
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1341
	mutex_unlock(&priv->reg_mutex);
1342 1343

	return ret;
1344 1345 1346 1347
}

static int
mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1348
		    const unsigned char *addr, u16 vid)
1349 1350 1351 1352 1353 1354
{
	struct mt7530_priv *priv = ds->priv;
	int ret;
	u8 port_mask = BIT(port);

	mutex_lock(&priv->reg_mutex);
1355
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1356
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1357 1358 1359 1360 1361 1362 1363
	mutex_unlock(&priv->reg_mutex);

	return ret;
}

static int
mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1364
		     dsa_fdb_dump_cb_t *cb, void *data)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
{
	struct mt7530_priv *priv = ds->priv;
	struct mt7530_fdb _fdb = { 0 };
	int cnt = MT7530_NUM_FDB_RECORDS;
	int ret = 0;
	u32 rsp = 0;

	mutex_lock(&priv->reg_mutex);

	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
	if (ret < 0)
		goto err;

	do {
		if (rsp & ATC_SRCH_HIT) {
			mt7530_fdb_read(priv, &_fdb);
			if (_fdb.port_mask & BIT(port)) {
1382 1383
				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
					 data);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
				if (ret < 0)
					break;
			}
		}
	} while (--cnt &&
		 !(rsp & ATC_SRCH_END) &&
		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
err:
	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static int
mt7530_port_mdb_add(struct dsa_switch *ds, int port,
		    const struct switchdev_obj_port_mdb *mdb)
{
	struct mt7530_priv *priv = ds->priv;
	const u8 *addr = mdb->addr;
	u16 vid = mdb->vid;
	u8 port_mask = 0;
	int ret;

	mutex_lock(&priv->reg_mutex);

	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
			    & PORT_MAP_MASK;

	port_mask |= BIT(port);
	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);

	mutex_unlock(&priv->reg_mutex);

	return ret;
}

static int
mt7530_port_mdb_del(struct dsa_switch *ds, int port,
		    const struct switchdev_obj_port_mdb *mdb)
{
	struct mt7530_priv *priv = ds->priv;
	const u8 *addr = mdb->addr;
	u16 vid = mdb->vid;
	u8 port_mask = 0;
	int ret;

	mutex_lock(&priv->reg_mutex);

	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
			    & PORT_MAP_MASK;

	port_mask &= ~BIT(port);
	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
			 port_mask ? STATIC_ENT : STATIC_EMP);
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);

	mutex_unlock(&priv->reg_mutex);

	return ret;
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static int
mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
{
	struct mt7530_dummy_poll p;
	u32 val;
	int ret;

	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
	mt7530_write(priv, MT7530_VTCR, val);

	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
	ret = readx_poll_timeout(_mt7530_read, &p, val,
				 !(val & VTCR_BUSY), 20, 20000);
	if (ret < 0) {
		dev_err(priv->dev, "poll timeout\n");
		return ret;
	}

	val = mt7530_read(priv, MT7530_VTCR);
	if (val & VTCR_INVALID) {
		dev_err(priv->dev, "read VTCR invalid\n");
		return -EINVAL;
	}

	return 0;
}

static int
1478 1479
mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
			   struct netlink_ext_ack *extack)
1480 1481 1482 1483 1484 1485 1486 1487 1488
{
	if (vlan_filtering) {
		/* The port is being kept as VLAN-unaware port when bridge is
		 * set up with vlan_filtering not being set, Otherwise, the
		 * port and the corresponding CPU port is required the setup
		 * for becoming a VLAN-aware port.
		 */
		mt7530_port_set_vlan_aware(ds, port);
		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1489 1490
	} else {
		mt7530_port_set_vlan_unaware(ds, port);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	}

	return 0;
}

static void
mt7530_hw_vlan_add(struct mt7530_priv *priv,
		   struct mt7530_hw_vlan_entry *entry)
{
	u8 new_members;
	u32 val;

	new_members = entry->old_members | BIT(entry->port) |
		      BIT(MT7530_CPU_PORT);

	/* Validate the entry with independent learning, create egress tag per
	 * VLAN and joining the port as one of the port members.
	 */
	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
	mt7530_write(priv, MT7530_VAWD1, val);

	/* Decide whether adding tag or not for those outgoing packets from the
	 * port inside the VLAN.
	 */
	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
				MT7530_VLAN_EGRESS_TAG;
	mt7530_rmw(priv, MT7530_VAWD2,
		   ETAG_CTRL_P_MASK(entry->port),
		   ETAG_CTRL_P(entry->port, val));

	/* CPU port is always taken as a tagged port for serving more than one
	 * VLANs across and also being applied with egress type stack mode for
	 * that VLAN tags would be appended after hardware special tag used as
	 * DSA tag.
	 */
	mt7530_rmw(priv, MT7530_VAWD2,
		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
		   ETAG_CTRL_P(MT7530_CPU_PORT,
			       MT7530_VLAN_EGRESS_STACK));
}

static void
mt7530_hw_vlan_del(struct mt7530_priv *priv,
		   struct mt7530_hw_vlan_entry *entry)
{
	u8 new_members;
	u32 val;

	new_members = entry->old_members & ~BIT(entry->port);

	val = mt7530_read(priv, MT7530_VAWD1);
	if (!(val & VLAN_VALID)) {
		dev_err(priv->dev,
			"Cannot be deleted due to invalid entry\n");
		return;
	}

	/* If certain member apart from CPU port is still alive in the VLAN,
	 * the entry would be kept valid. Otherwise, the entry is got to be
	 * disabled.
	 */
	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
		      VLAN_VALID;
		mt7530_write(priv, MT7530_VAWD1, val);
	} else {
		mt7530_write(priv, MT7530_VAWD1, 0);
		mt7530_write(priv, MT7530_VAWD2, 0);
	}
}

static void
mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
		      struct mt7530_hw_vlan_entry *entry,
		      mt7530_vlan_op vlan_op)
{
	u32 val;

	/* Fetch entry */
	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);

	val = mt7530_read(priv, MT7530_VAWD1);

	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;

	/* Manipulate entry */
	vlan_op(priv, entry);

	/* Flush result to hardware */
	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
}

1583
static int
1584
mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1585 1586
		     const struct switchdev_obj_port_vlan *vlan,
		     struct netlink_ext_ack *extack)
1587 1588 1589 1590 1591 1592 1593 1594
{
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	struct mt7530_hw_vlan_entry new_entry;
	struct mt7530_priv *priv = ds->priv;

	mutex_lock(&priv->reg_mutex);

1595 1596
	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1597 1598 1599

	if (pvid) {
		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1600 1601
			   G0_PORT_VID(vlan->vid));
		priv->ports[port].pvid = vlan->vid;
1602 1603 1604
	}

	mutex_unlock(&priv->reg_mutex);
1605 1606

	return 0;
1607 1608 1609 1610 1611 1612 1613 1614
}

static int
mt7530_port_vlan_del(struct dsa_switch *ds, int port,
		     const struct switchdev_obj_port_vlan *vlan)
{
	struct mt7530_hw_vlan_entry target_entry;
	struct mt7530_priv *priv = ds->priv;
1615
	u16 pvid;
1616 1617 1618 1619

	mutex_lock(&priv->reg_mutex);

	pvid = priv->ports[port].pvid;
1620 1621 1622
	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
			      mt7530_hw_vlan_del);
1623

1624 1625 1626 1627 1628
	/* PVID is being restored to the default whenever the PVID port
	 * is being removed from the VLAN.
	 */
	if (pvid == vlan->vid)
		pvid = G0_PORT_VID_DEF;
1629 1630 1631 1632 1633 1634 1635 1636 1637

	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
	priv->ports[port].pvid = pvid;

	mutex_unlock(&priv->reg_mutex);

	return 0;
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static int mt753x_mirror_port_get(unsigned int id, u32 val)
{
	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
				   MIRROR_PORT(val);
}

static int mt753x_mirror_port_set(unsigned int id, u32 val)
{
	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
				   MIRROR_PORT(val);
}

static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1651 1652 1653 1654
				  struct dsa_mall_mirror_tc_entry *mirror,
				  bool ingress)
{
	struct mt7530_priv *priv = ds->priv;
1655
	int monitor_port;
1656 1657 1658 1659 1660 1661
	u32 val;

	/* Check for existent entry */
	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
		return -EEXIST;

1662
	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1663 1664

	/* MT7530 only supports one monitor port */
1665 1666 1667
	monitor_port = mt753x_mirror_port_get(priv->id, val);
	if (val & MT753X_MIRROR_EN(priv->id) &&
	    monitor_port != mirror->to_local_port)
1668 1669
		return -EEXIST;

1670 1671 1672 1673
	val |= MT753X_MIRROR_EN(priv->id);
	val &= ~MT753X_MIRROR_MASK(priv->id);
	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	val = mt7530_read(priv, MT7530_PCR_P(port));
	if (ingress) {
		val |= PORT_RX_MIR;
		priv->mirror_rx |= BIT(port);
	} else {
		val |= PORT_TX_MIR;
		priv->mirror_tx |= BIT(port);
	}
	mt7530_write(priv, MT7530_PCR_P(port), val);

	return 0;
}

1688
static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
				   struct dsa_mall_mirror_tc_entry *mirror)
{
	struct mt7530_priv *priv = ds->priv;
	u32 val;

	val = mt7530_read(priv, MT7530_PCR_P(port));
	if (mirror->ingress) {
		val &= ~PORT_RX_MIR;
		priv->mirror_rx &= ~BIT(port);
	} else {
		val &= ~PORT_TX_MIR;
		priv->mirror_tx &= ~BIT(port);
	}
	mt7530_write(priv, MT7530_PCR_P(port), val);

	if (!priv->mirror_rx && !priv->mirror_tx) {
1705 1706 1707
		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
		val &= ~MT753X_MIRROR_EN(priv->id);
		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1708 1709 1710
	}
}

1711
static enum dsa_tag_protocol
1712 1713
mtk_get_tag_protocol(struct dsa_switch *ds, int port,
		     enum dsa_tag_protocol mp)
1714 1715 1716
{
	struct mt7530_priv *priv = ds->priv;

1717
	if (port != MT7530_CPU_PORT) {
1718 1719 1720 1721 1722 1723 1724 1725
		dev_warn(priv->dev,
			 "port not matched with tagging CPU port\n");
		return DSA_TAG_PROTO_NONE;
	} else {
		return DSA_TAG_PROTO_MTK;
	}
}

1726
#ifdef CONFIG_GPIOLIB
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static inline u32
mt7530_gpio_to_bit(unsigned int offset)
{
	/* Map GPIO offset to register bit
	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
	 */
	return BIT(offset + offset / 3);
}

static int
mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
}

static void
mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	if (value)
		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
	else
		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
}

static int
mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}

static int
mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);

	return 0;
}

static int
mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
{
	struct mt7530_priv *priv = gpiochip_get_data(gc);
	u32 bit = mt7530_gpio_to_bit(offset);

	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);

	if (value)
		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
	else
		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);

	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);

	return 0;
}

static int
mt7530_setup_gpio(struct mt7530_priv *priv)
{
	struct device *dev = priv->dev;
	struct gpio_chip *gc;

	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
	if (!gc)
		return -ENOMEM;

	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
	mt7530_write(priv, MT7530_LED_IO_MODE, 0);

	gc->label = "mt7530";
	gc->parent = dev;
	gc->owner = THIS_MODULE;
	gc->get_direction = mt7530_gpio_get_direction;
	gc->direction_input = mt7530_gpio_direction_input;
	gc->direction_output = mt7530_gpio_direction_output;
	gc->get = mt7530_gpio_get;
	gc->set = mt7530_gpio_set;
	gc->base = -1;
	gc->ngpio = 15;
	gc->can_sleep = true;

	return devm_gpiochip_add_data(dev, gc, priv);
}
1829
#endif /* CONFIG_GPIOLIB */
1830

1831 1832 1833 1834
static int
mt7530_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;
1835 1836
	struct device_node *phy_node;
	struct device_node *mac_np;
1837
	struct mt7530_dummy_poll p;
1838
	phy_interface_t interface;
1839 1840 1841
	struct device_node *dn;
	u32 id, val;
	int ret, i;
1842

1843
	/* The parent node of master netdev which holds the common system
1844 1845 1846
	 * controller also is the container for two GMACs nodes representing
	 * as two netdev instances.
	 */
1847
	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
1848
	ds->mtu_enforcement_ingress = true;
1849

1850 1851 1852 1853 1854 1855 1856 1857
	if (priv->id == ID_MT7530) {
		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
		ret = regulator_enable(priv->core_pwr);
		if (ret < 0) {
			dev_err(priv->dev,
				"Failed to enable core power: %d\n", ret);
			return ret;
		}
1858

1859 1860 1861 1862 1863 1864 1865
		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
		ret = regulator_enable(priv->io_pwr);
		if (ret < 0) {
			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
				ret);
			return ret;
		}
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	}

	/* Reset whole chip through gpio pin or memory-mapped registers for
	 * different type of hardware
	 */
	if (priv->mcm) {
		reset_control_assert(priv->rstc);
		usleep_range(1000, 1100);
		reset_control_deassert(priv->rstc);
	} else {
		gpiod_set_value_cansleep(priv->reset, 0);
		usleep_range(1000, 1100);
		gpiod_set_value_cansleep(priv->reset, 1);
	}

	/* Waiting for MT7530 got to stable */
	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
				 20, 1000000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	id = mt7530_read(priv, MT7530_CREV);
	id >>= CHIP_NAME_SHIFT;
	if (id != MT7530_ID) {
		dev_err(priv->dev, "chip %x can't be supported\n", id);
		return -ENODEV;
	}

	/* Reset the switch through internal reset */
	mt7530_write(priv, MT7530_SYS_CTRL,
		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
		     SYS_CTRL_REG_RST);

	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
	val = mt7530_read(priv, MT7530_MHWTRAP);
	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
	val |= MHWTRAP_MANUAL;
	mt7530_write(priv, MT7530_MHWTRAP, val);

1908 1909
	priv->p6_interface = PHY_INTERFACE_MODE_NA;

1910 1911 1912 1913 1914 1915 1916 1917
	/* Enable and reset MIB counters */
	mt7530_mib_reset(ds);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Disable forwarding by default on all ports */
		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
			   PCR_MATRIX_CLR);

1918 1919 1920 1921
		if (dsa_is_cpu_port(ds, i)) {
			ret = mt753x_cpu_port_enable(ds, i);
			if (ret)
				return ret;
1922
		} else {
1923
			mt7530_port_disable(ds, i);
1924

1925 1926 1927
			/* Disable learning by default on all user ports */
			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
		}
1928 1929 1930
		/* Enable consistent egress tag */
		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1931 1932
	}

1933 1934 1935 1936 1937 1938
	/* Setup port 5 */
	priv->p5_intf_sel = P5_DISABLED;
	interface = PHY_INTERFACE_MODE_NA;

	if (!dsa_is_unused_port(ds, 5)) {
		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1939 1940 1941
		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
		if (ret && ret != -ENODEV)
			return ret;
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	} else {
		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
		for_each_child_of_node(dn, mac_np) {
			if (!of_device_is_compatible(mac_np,
						     "mediatek,eth-mac"))
				continue;

			ret = of_property_read_u32(mac_np, "reg", &id);
			if (ret < 0 || id != 1)
				continue;

			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
1954 1955 1956
			if (!phy_node)
				continue;

1957
			if (phy_node->parent == priv->dev->of_node->parent) {
1958
				ret = of_get_phy_mode(mac_np, &interface);
1959 1960
				if (ret && ret != -ENODEV) {
					of_node_put(mac_np);
1961
					return ret;
1962
				}
1963 1964 1965 1966 1967 1968
				id = of_mdio_parse_addr(ds->dev, phy_node);
				if (id == 0)
					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
				if (id == 4)
					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
			}
1969
			of_node_put(mac_np);
1970 1971 1972 1973 1974
			of_node_put(phy_node);
			break;
		}
	}

1975
#ifdef CONFIG_GPIOLIB
1976 1977 1978 1979 1980
	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
		ret = mt7530_setup_gpio(priv);
		if (ret)
			return ret;
	}
1981
#endif /* CONFIG_GPIOLIB */
1982

1983 1984
	mt7530_setup_port5(ds, interface);

1985
	/* Flush the FDB table */
1986
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1987 1988 1989 1990 1991 1992
	if (ret < 0)
		return ret;

	return 0;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static int
mt7531_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;
	struct mt7530_dummy_poll p;
	u32 val, id;
	int ret, i;

	/* Reset whole chip through gpio pin or memory-mapped registers for
	 * different type of hardware
	 */
	if (priv->mcm) {
		reset_control_assert(priv->rstc);
		usleep_range(1000, 1100);
		reset_control_deassert(priv->rstc);
	} else {
		gpiod_set_value_cansleep(priv->reset, 0);
		usleep_range(1000, 1100);
		gpiod_set_value_cansleep(priv->reset, 1);
	}

	/* Waiting for MT7530 got to stable */
	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
				 20, 1000000);
	if (ret < 0) {
		dev_err(priv->dev, "reset timeout\n");
		return ret;
	}

	id = mt7530_read(priv, MT7531_CREV);
	id >>= CHIP_NAME_SHIFT;

	if (id != MT7531_ID) {
		dev_err(priv->dev, "chip %x can't be supported\n", id);
		return -ENODEV;
	}

	/* Reset the switch through internal reset */
	mt7530_write(priv, MT7530_SYS_CTRL,
		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
		     SYS_CTRL_REG_RST);

	if (mt7531_dual_sgmii_supported(priv)) {
		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;

		/* Let ds->slave_mii_bus be able to access external phy. */
		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
			   MT7531_EXT_P_MDC_11);
		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
			   MT7531_EXT_P_MDIO_12);
	} else {
		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
	}
	dev_dbg(ds->dev, "P5 support %s interface\n",
		p5_intf_modes(priv->p5_intf_sel));

	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
		   MT7531_GPIO0_INTERRUPT);

	/* Let phylink decide the interface later. */
	priv->p5_interface = PHY_INTERFACE_MODE_NA;
	priv->p6_interface = PHY_INTERFACE_MODE_NA;

	/* Enable PHY core PLL, since phy_device has not yet been created
	 * provided for phy_[read,write]_mmd_indirect is called, we provide
	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
	 * function.
	 */
	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
	val |= MT7531_PHY_PLL_BYPASS_MODE;
	val &= ~MT7531_PHY_PLL_OFF;
	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
				 CORE_PLL_GROUP4, val);

	/* BPDU to CPU port */
	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
		   BIT(MT7530_CPU_PORT));
	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
		   MT753X_BPDU_CPU_ONLY);

	/* Enable and reset MIB counters */
	mt7530_mib_reset(ds);

	for (i = 0; i < MT7530_NUM_PORTS; i++) {
		/* Disable forwarding by default on all ports */
		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
			   PCR_MATRIX_CLR);

		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);

2085 2086 2087 2088
		if (dsa_is_cpu_port(ds, i)) {
			ret = mt753x_cpu_port_enable(ds, i);
			if (ret)
				return ret;
2089
		} else {
2090 2091
			mt7530_port_disable(ds, i);

2092 2093 2094 2095
			/* Disable learning by default on all user ports */
			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
		}

2096 2097 2098 2099 2100
		/* Enable consistent egress tag */
		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
	}

2101
	ds->mtu_enforcement_ingress = true;
2102 2103 2104 2105 2106 2107 2108 2109 2110

	/* Flush the FDB table */
	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
	if (ret < 0)
		return ret;

	return 0;
}

2111 2112 2113
static bool
mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
			  const struct phylink_link_state *state)
2114 2115 2116 2117
{
	struct mt7530_priv *priv = ds->priv;

	switch (port) {
2118
	case 0 ... 4: /* Internal phy */
2119
		if (state->interface != PHY_INTERFACE_MODE_GMII)
2120
			return false;
2121
		break;
2122 2123 2124 2125
	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
		if (!phy_interface_mode_is_rgmii(state->interface) &&
		    state->interface != PHY_INTERFACE_MODE_MII &&
		    state->interface != PHY_INTERFACE_MODE_GMII)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
			return false;
		break;
	case 6: /* 1st cpu port */
		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
		    state->interface != PHY_INTERFACE_MODE_TRGMII)
			return false;
		break;
	default:
		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
			port);
		return false;
	}

	return true;
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
{
	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
}

static bool
mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
			  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	switch (port) {
	case 0 ... 4: /* Internal phy */
		if (state->interface != PHY_INTERFACE_MODE_GMII)
			return false;
		break;
	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
		if (mt7531_is_rgmii_port(priv, port))
			return phy_interface_mode_is_rgmii(state->interface);
		fallthrough;
	case 6: /* 1st cpu port supports sgmii/8023z only */
		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
		    !phy_interface_mode_is_8023z(state->interface))
			return false;
		break;
	default:
		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
			port);
		return false;
	}

	return true;
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
static bool
mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
			  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->phy_mode_supported(ds, port, state);
}

static int
mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->pad_setup(ds, state->interface);
}

static int
mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
		  phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;

	/* Only need to setup port5. */
	if (port != 5)
		return 0;

	mt7530_setup_port5(priv->ds, interface);

	return 0;
}

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
			      phy_interface_t interface,
			      struct phy_device *phydev)
{
	u32 val;

	if (!mt7531_is_rgmii_port(priv, port)) {
		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
			port);
		return -EINVAL;
	}

	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
	val |= GP_CLK_EN;
	val &= ~GP_MODE_MASK;
	val |= GP_MODE(MT7531_GP_MODE_RGMII);
	val &= ~CLK_SKEW_IN_MASK;
	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
	val &= ~CLK_SKEW_OUT_MASK;
	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;

	/* Do not adjust rgmii delay when vendor phy driver presents. */
	if (!phydev || phy_driver_is_genphy(phydev)) {
		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
		switch (interface) {
		case PHY_INTERFACE_MODE_RGMII:
			val |= TXCLK_NO_REVERSE;
			val |= RXCLK_NO_DELAY;
			break;
		case PHY_INTERFACE_MODE_RGMII_RXID:
			val |= TXCLK_NO_REVERSE;
			break;
		case PHY_INTERFACE_MODE_RGMII_TXID:
			val |= RXCLK_NO_DELAY;
			break;
		case PHY_INTERFACE_MODE_RGMII_ID:
			break;
		default:
			return -EINVAL;
		}
	}
	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);

	return 0;
}

static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
				  unsigned long *supported)
{
	/* Port5 supports ethier RGMII or SGMII.
	 * Port6 supports SGMII only.
	 */
	switch (port) {
	case 5:
		if (mt7531_is_rgmii_port(priv, port))
			break;
		fallthrough;
	case 6:
		phylink_set(supported, 1000baseX_Full);
		phylink_set(supported, 2500baseX_Full);
		phylink_set(supported, 2500baseT_Full);
	}
}

static void
mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
			   unsigned int mode, phy_interface_t interface,
			   int speed, int duplex)
{
	struct mt7530_priv *priv = ds->priv;
	unsigned int val;

	/* For adjusting speed and duplex of SGMII force mode. */
	if (interface != PHY_INTERFACE_MODE_SGMII ||
	    phylink_autoneg_inband(mode))
		return;

	/* SGMII force mode setting */
	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
	val &= ~MT7531_SGMII_IF_MODE_MASK;

	switch (speed) {
	case SPEED_10:
		val |= MT7531_SGMII_FORCE_SPEED_10;
		break;
	case SPEED_100:
		val |= MT7531_SGMII_FORCE_SPEED_100;
		break;
	case SPEED_1000:
		val |= MT7531_SGMII_FORCE_SPEED_1000;
		break;
	}

	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
	 */
	if ((speed == SPEED_10 || speed == SPEED_100) &&
	    duplex != DUPLEX_FULL)
		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;

	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
}

static bool mt753x_is_mac_port(u32 port)
{
	return (port == 5 || port == 6);
}

static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
					 phy_interface_t interface)
{
	u32 val;

	if (!mt753x_is_mac_port(port))
		return -EINVAL;

	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
		   MT7531_SGMII_PHYA_PWD);

	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
	val &= ~MT7531_RG_TPHY_SPEED_MASK;
	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
	 * encoding.
	 */
	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);

	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);

	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
	 */
	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
		   MT7531_SGMII_FORCE_SPEED_1000);

	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);

	return 0;
}

static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
				      phy_interface_t interface)
{
	if (!mt753x_is_mac_port(port))
		return -EINVAL;

	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
		   MT7531_SGMII_PHYA_PWD);

	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);

	mt7530_set(priv, MT7531_SGMII_MODE(port),
		   MT7531_SGMII_REMOTE_FAULT_DIS |
		   MT7531_SGMII_SPEED_DUPLEX_AN);

	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
		   MT7531_SGMII_TX_CONFIG_MASK, 1);

	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);

	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);

	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);

	return 0;
}

static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;
	u32 val;

	/* Only restart AN when AN is enabled */
	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
	if (val & MT7531_SGMII_AN_ENABLE) {
		val |= MT7531_SGMII_AN_RESTART;
		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
	}
}

static int
mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
		  phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;
	struct phy_device *phydev;
	struct dsa_port *dp;

	if (!mt753x_is_mac_port(port)) {
		dev_err(priv->dev, "port %d is not a MAC port\n", port);
		return -EINVAL;
	}

	switch (interface) {
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
	case PHY_INTERFACE_MODE_RGMII_RXID:
	case PHY_INTERFACE_MODE_RGMII_TXID:
		dp = dsa_to_port(ds, port);
		phydev = dp->slave->phydev;
		return mt7531_rgmii_setup(priv, port, interface, phydev);
	case PHY_INTERFACE_MODE_SGMII:
		return mt7531_sgmii_setup_mode_an(priv, port, interface);
	case PHY_INTERFACE_MODE_NA:
	case PHY_INTERFACE_MODE_1000BASEX:
	case PHY_INTERFACE_MODE_2500BASEX:
		if (phylink_autoneg_inband(mode))
			return -EINVAL;

		return mt7531_sgmii_setup_mode_force(priv, port, interface);
	default:
		return -EINVAL;
	}

	return -EINVAL;
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
static int
mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
		  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->mac_port_config(ds, port, mode, state->interface);
}

static void
mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
			  const struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 mcr_cur, mcr_new;

	if (!mt753x_phy_mode_supported(ds, port, state))
		goto unsupported;

	switch (port) {
	case 0 ... 4: /* Internal phy */
		if (state->interface != PHY_INTERFACE_MODE_GMII)
			goto unsupported;
		break;
	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
		if (priv->p5_interface == state->interface)
			break;

		if (mt753x_mac_config(ds, port, mode, state) < 0)
			goto unsupported;
2459

2460 2461
		if (priv->p5_intf_sel != P5_DISABLED)
			priv->p5_interface = state->interface;
2462
		break;
2463 2464 2465 2466
	case 6: /* 1st cpu port */
		if (priv->p6_interface == state->interface)
			break;

2467
		mt753x_pad_setup(ds, state);
2468

2469 2470
		if (mt753x_mac_config(ds, port, mode, state) < 0)
			goto unsupported;
2471 2472 2473 2474

		priv->p6_interface = state->interface;
		break;
	default:
2475 2476 2477
unsupported:
		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
			__func__, phy_modes(state->interface), port);
2478 2479 2480
		return;
	}

2481 2482
	if (phylink_autoneg_inband(mode) &&
	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2483 2484 2485 2486 2487 2488 2489
		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
			__func__);
		return;
	}

	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
	mcr_new = mcr_cur;
2490
	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2491
	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2492
		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2493

2494 2495 2496 2497
	/* Are we connected to external phy */
	if (port == 5 && dsa_is_user_port(ds, 5))
		mcr_new |= PMCR_EXT_PHY;

2498 2499 2500 2501
	if (mcr_new != mcr_cur)
		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
static void
mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;

	if (!priv->info->mac_pcs_an_restart)
		return;

	priv->info->mac_pcs_an_restart(ds, port);
}

static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2514 2515 2516 2517 2518
					 unsigned int mode,
					 phy_interface_t interface)
{
	struct mt7530_priv *priv = ds->priv;

2519
	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2520 2521
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
				   unsigned int mode, phy_interface_t interface,
				   int speed, int duplex)
{
	struct mt7530_priv *priv = ds->priv;

	if (!priv->info->mac_pcs_link_up)
		return;

	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
}

static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2535 2536
				       unsigned int mode,
				       phy_interface_t interface,
2537 2538 2539
				       struct phy_device *phydev,
				       int speed, int duplex,
				       bool tx_pause, bool rx_pause)
2540 2541
{
	struct mt7530_priv *priv = ds->priv;
2542 2543
	u32 mcr;

2544 2545
	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);

2546 2547
	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;

2548 2549 2550 2551 2552 2553 2554 2555 2556
	/* MT753x MAC works in 1G full duplex mode for all up-clocked
	 * variants.
	 */
	if (interface == PHY_INTERFACE_MODE_TRGMII ||
	    (phy_interface_mode_is_8023z(interface))) {
		speed = SPEED_1000;
		duplex = DUPLEX_FULL;
	}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	switch (speed) {
	case SPEED_1000:
		mcr |= PMCR_FORCE_SPEED_1000;
		break;
	case SPEED_100:
		mcr |= PMCR_FORCE_SPEED_100;
		break;
	}
	if (duplex == DUPLEX_FULL) {
		mcr |= PMCR_FORCE_FDX;
		if (tx_pause)
			mcr |= PMCR_TX_FC_EN;
		if (rx_pause)
			mcr |= PMCR_RX_FC_EN;
	}
2572

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
		switch (speed) {
		case SPEED_1000:
			mcr |= PMCR_FORCE_EEE1G;
			break;
		case SPEED_100:
			mcr |= PMCR_FORCE_EEE100;
			break;
		}
	}

2584
	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2585 2586
}

2587 2588 2589 2590 2591 2592
static int
mt7531_cpu_port_config(struct dsa_switch *ds, int port)
{
	struct mt7530_priv *priv = ds->priv;
	phy_interface_t interface;
	int speed;
2593
	int ret;
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	switch (port) {
	case 5:
		if (mt7531_is_rgmii_port(priv, port))
			interface = PHY_INTERFACE_MODE_RGMII;
		else
			interface = PHY_INTERFACE_MODE_2500BASEX;

		priv->p5_interface = interface;
		break;
	case 6:
		interface = PHY_INTERFACE_MODE_2500BASEX;

		mt7531_pad_setup(ds, interface);

		priv->p6_interface = interface;
		break;
2611 2612
	default:
		return -EINVAL;
2613 2614 2615 2616 2617 2618 2619
	}

	if (interface == PHY_INTERFACE_MODE_2500BASEX)
		speed = SPEED_2500;
	else
		speed = SPEED_1000;

2620 2621 2622
	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
	if (ret)
		return ret;
2623 2624 2625 2626 2627 2628 2629 2630
	mt7530_write(priv, MT7530_PMCR_P(port),
		     PMCR_CPU_PORT_SETTING(priv->id));
	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
				   speed, DUPLEX_FULL, true, true);

	return 0;
}

2631 2632 2633 2634 2635 2636 2637 2638
static void
mt7530_mac_port_validate(struct dsa_switch *ds, int port,
			 unsigned long *supported)
{
	if (port == 5)
		phylink_set(supported, 1000baseX_Full);
}

2639 2640 2641 2642 2643 2644 2645 2646
static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
				     unsigned long *supported)
{
	struct mt7530_priv *priv = ds->priv;

	mt7531_sgmii_validate(priv, port, supported);
}

2647 2648 2649 2650
static void
mt753x_phylink_validate(struct dsa_switch *ds, int port,
			unsigned long *supported,
			struct phylink_link_state *state)
2651 2652
{
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2653
	struct mt7530_priv *priv = ds->priv;
2654

2655 2656
	if (state->interface != PHY_INTERFACE_MODE_NA &&
	    !mt753x_phy_mode_supported(ds, port, state)) {
2657 2658 2659 2660 2661 2662
		linkmode_zero(supported);
		return;
	}

	phylink_set_port_modes(mask);

2663 2664
	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
	    !phy_interface_mode_is_8023z(state->interface)) {
2665 2666 2667 2668
		phylink_set(mask, 10baseT_Half);
		phylink_set(mask, 10baseT_Full);
		phylink_set(mask, 100baseT_Half);
		phylink_set(mask, 100baseT_Full);
2669
		phylink_set(mask, Autoneg);
2670
	}
2671

2672 2673 2674 2675 2676 2677
	/* This switch only supports 1G full-duplex. */
	if (state->interface != PHY_INTERFACE_MODE_MII)
		phylink_set(mask, 1000baseT_Full);

	priv->info->mac_port_validate(ds, port, mask);

2678 2679 2680 2681 2682
	phylink_set(mask, Pause);
	phylink_set(mask, Asym_Pause);

	linkmode_and(supported, supported, mask);
	linkmode_and(state->advertising, state->advertising, mask);
2683 2684 2685 2686 2687

	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
	 * to advertise both, only report advertising at 2500BaseX.
	 */
	phylink_helper_basex_speed(state);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
}

static int
mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
			      struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;
	u32 pmsr;

	if (port < 0 || port >= MT7530_NUM_PORTS)
		return -EINVAL;

	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));

	state->link = (pmsr & PMSR_LINK);
	state->an_complete = state->link;
	state->duplex = !!(pmsr & PMSR_DPX);

	switch (pmsr & PMSR_SPEED_MASK) {
	case PMSR_SPEED_10:
		state->speed = SPEED_10;
		break;
	case PMSR_SPEED_100:
		state->speed = SPEED_100;
		break;
	case PMSR_SPEED_1000:
		state->speed = SPEED_1000;
		break;
	default:
		state->speed = SPEED_UNKNOWN;
		break;
	}

	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
	if (pmsr & PMSR_RX_FC)
		state->pause |= MLO_PAUSE_RX;
	if (pmsr & PMSR_TX_FC)
		state->pause |= MLO_PAUSE_TX;

	return 1;
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
static int
mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
			      struct phylink_link_state *state)
{
	u32 status, val;
	u16 config_reg;

	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
	    (status & MT7531_SGMII_AN_ENABLE)) {
		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
		config_reg = val >> 16;

		switch (config_reg & LPA_SGMII_SPD_MASK) {
		case LPA_SGMII_1000:
			state->speed = SPEED_1000;
			break;
		case LPA_SGMII_100:
			state->speed = SPEED_100;
			break;
		case LPA_SGMII_10:
			state->speed = SPEED_10;
			break;
		default:
			dev_err(priv->dev, "invalid sgmii PHY speed\n");
			state->link = false;
			return -EINVAL;
		}

		if (config_reg & LPA_SGMII_FULL_DUPLEX)
			state->duplex = DUPLEX_FULL;
		else
			state->duplex = DUPLEX_HALF;
	}

	return 0;
}

static int
mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
			      struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	if (state->interface == PHY_INTERFACE_MODE_SGMII)
		return mt7531_sgmii_pcs_get_state_an(priv, port, state);

	return -EOPNOTSUPP;
}

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static int
mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
			      struct phylink_link_state *state)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->mac_port_get_state(ds, port, state);
}

static int
mt753x_setup(struct dsa_switch *ds)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->sw_setup(ds);
}

static int
mt753x_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->phy_read(ds, port, regnum);
}

static int
mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mt7530_priv *priv = ds->priv;

	return priv->info->phy_write(ds, port, regnum, val);
}

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
	struct mt7530_priv *priv = ds->priv;
	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));

	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);

	return 0;
}

static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
	struct mt7530_priv *priv = ds->priv;
	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;

	if (e->tx_lpi_timer > 0xFFF)
		return -EINVAL;

	set = SET_LPI_THRESH(e->tx_lpi_timer);
	if (!e->tx_lpi_enabled)
		/* Force LPI Mode without a delay */
		set |= LPI_MODE_EN;
	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);

	return 0;
}

2844
static const struct dsa_switch_ops mt7530_switch_ops = {
2845
	.get_tag_protocol	= mtk_get_tag_protocol,
2846
	.setup			= mt753x_setup,
2847
	.get_strings		= mt7530_get_strings,
2848 2849
	.phy_read		= mt753x_phy_read,
	.phy_write		= mt753x_phy_write,
2850 2851
	.get_ethtool_stats	= mt7530_get_ethtool_stats,
	.get_sset_count		= mt7530_get_sset_count,
2852
	.set_ageing_time	= mt7530_set_ageing_time,
2853 2854
	.port_enable		= mt7530_port_enable,
	.port_disable		= mt7530_port_disable,
2855 2856
	.port_change_mtu	= mt7530_port_change_mtu,
	.port_max_mtu		= mt7530_port_max_mtu,
2857
	.port_stp_state_set	= mt7530_stp_state_set,
2858 2859 2860
	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
	.port_bridge_flags	= mt7530_port_bridge_flags,
	.port_set_mrouter	= mt7530_port_set_mrouter,
2861 2862 2863 2864 2865
	.port_bridge_join	= mt7530_port_bridge_join,
	.port_bridge_leave	= mt7530_port_bridge_leave,
	.port_fdb_add		= mt7530_port_fdb_add,
	.port_fdb_del		= mt7530_port_fdb_del,
	.port_fdb_dump		= mt7530_port_fdb_dump,
2866 2867
	.port_mdb_add		= mt7530_port_mdb_add,
	.port_mdb_del		= mt7530_port_mdb_del,
2868 2869 2870
	.port_vlan_filtering	= mt7530_port_vlan_filtering,
	.port_vlan_add		= mt7530_port_vlan_add,
	.port_vlan_del		= mt7530_port_vlan_del,
2871 2872
	.port_mirror_add	= mt753x_port_mirror_add,
	.port_mirror_del	= mt753x_port_mirror_del,
2873 2874 2875
	.phylink_validate	= mt753x_phylink_validate,
	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
	.phylink_mac_config	= mt753x_phylink_mac_config,
2876 2877 2878
	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2879 2880
	.get_mac_eee		= mt753x_get_mac_eee,
	.set_mac_eee		= mt753x_set_mac_eee,
2881 2882
};

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
static const struct mt753x_info mt753x_table[] = {
	[ID_MT7621] = {
		.id = ID_MT7621,
		.sw_setup = mt7530_setup,
		.phy_read = mt7530_phy_read,
		.phy_write = mt7530_phy_write,
		.pad_setup = mt7530_pad_clk_setup,
		.phy_mode_supported = mt7530_phy_mode_supported,
		.mac_port_validate = mt7530_mac_port_validate,
		.mac_port_get_state = mt7530_phylink_mac_link_state,
		.mac_port_config = mt7530_mac_config,
	},
	[ID_MT7530] = {
		.id = ID_MT7530,
		.sw_setup = mt7530_setup,
		.phy_read = mt7530_phy_read,
		.phy_write = mt7530_phy_write,
		.pad_setup = mt7530_pad_clk_setup,
		.phy_mode_supported = mt7530_phy_mode_supported,
		.mac_port_validate = mt7530_mac_port_validate,
		.mac_port_get_state = mt7530_phylink_mac_link_state,
		.mac_port_config = mt7530_mac_config,
	},
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	[ID_MT7531] = {
		.id = ID_MT7531,
		.sw_setup = mt7531_setup,
		.phy_read = mt7531_ind_phy_read,
		.phy_write = mt7531_ind_phy_write,
		.pad_setup = mt7531_pad_setup,
		.cpu_port_config = mt7531_cpu_port_config,
		.phy_mode_supported = mt7531_phy_mode_supported,
		.mac_port_validate = mt7531_mac_port_validate,
		.mac_port_get_state = mt7531_phylink_mac_link_state,
		.mac_port_config = mt7531_mac_config,
		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
	},
2920 2921
};

2922
static const struct of_device_id mt7530_of_match[] = {
2923 2924
	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
2925
	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
2926 2927 2928 2929
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mt7530_of_match);

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
static int
mt7530_probe(struct mdio_device *mdiodev)
{
	struct mt7530_priv *priv;
	struct device_node *dn;

	dn = mdiodev->dev.of_node;

	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

2942
	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
2943 2944 2945
	if (!priv->ds)
		return -ENOMEM;

2946 2947 2948
	priv->ds->dev = &mdiodev->dev;
	priv->ds->num_ports = DSA_MAX_PORTS;

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	/* Use medatek,mcm property to distinguish hardware type that would
	 * casues a little bit differences on power-on sequence.
	 */
	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
	if (priv->mcm) {
		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");

		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
		if (IS_ERR(priv->rstc)) {
			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
			return PTR_ERR(priv->rstc);
		}
	}

2963 2964 2965
	/* Get the hardware identifier from the devicetree node.
	 * We will need it for some of the clock and regulator setup.
	 */
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	priv->info = of_device_get_match_data(&mdiodev->dev);
	if (!priv->info)
		return -EINVAL;

	/* Sanity check if these required device operations are filled
	 * properly.
	 */
	if (!priv->info->sw_setup || !priv->info->pad_setup ||
	    !priv->info->phy_read || !priv->info->phy_write ||
	    !priv->info->phy_mode_supported ||
	    !priv->info->mac_port_validate ||
	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
		return -EINVAL;

	priv->id = priv->info->id;
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990
	if (priv->id == ID_MT7530) {
		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
		if (IS_ERR(priv->core_pwr))
			return PTR_ERR(priv->core_pwr);

		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
		if (IS_ERR(priv->io_pwr))
			return PTR_ERR(priv->io_pwr);
	}
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	/* Not MCM that indicates switch works as the remote standalone
	 * integrated circuit so the GPIO pin would be used to complete
	 * the reset, otherwise memory-mapped register accessing used
	 * through syscon provides in the case of MCM.
	 */
	if (!priv->mcm) {
		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
						      GPIOD_OUT_LOW);
		if (IS_ERR(priv->reset)) {
			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
			return PTR_ERR(priv->reset);
		}
	}

	priv->bus = mdiodev->bus;
	priv->dev = &mdiodev->dev;
	priv->ds->priv = priv;
	priv->ds->ops = &mt7530_switch_ops;
	mutex_init(&priv->reg_mutex);
	dev_set_drvdata(&mdiodev->dev, priv);

3013
	return dsa_register_switch(priv->ds);
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
}

static void
mt7530_remove(struct mdio_device *mdiodev)
{
	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
	int ret = 0;

	ret = regulator_disable(priv->core_pwr);
	if (ret < 0)
		dev_err(priv->dev,
			"Failed to disable core power: %d\n", ret);

	ret = regulator_disable(priv->io_pwr);
	if (ret < 0)
		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
			ret);

	dsa_unregister_switch(priv->ds);
	mutex_destroy(&priv->reg_mutex);
}

static struct mdio_driver mt7530_mdio_driver = {
	.probe  = mt7530_probe,
	.remove = mt7530_remove,
	.mdiodrv.driver = {
		.name = "mt7530",
		.of_match_table = mt7530_of_match,
	},
};

mdio_module_driver(mt7530_mdio_driver);

MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
MODULE_LICENSE("GPL");