mv88e6xxx.c 72.0 KB
Newer Older
1 2 3 4
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
5 6 7
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
8 9 10 11 12 13
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

14
#include <linux/delay.h>
15
#include <linux/etherdevice.h>
16
#include <linux/ethtool.h>
17
#include <linux/if_bridge.h>
18
#include <linux/jiffies.h>
19
#include <linux/list.h>
20
#include <linux/module.h>
21
#include <linux/netdevice.h>
22
#include <linux/gpio/consumer.h>
23
#include <linux/phy.h>
24
#include <net/dsa.h>
25
#include <net/switchdev.h>
26 27
#include "mv88e6xxx.h"

28 29 30 31 32 33 34 35 36 37
static void assert_smi_lock(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
		dev_err(ds->master_dev, "SMI lock not held!\n");
		dump_stack();
	}
}

38
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
52
		ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
53 54 55
		if (ret < 0)
			return ret;

56
		if ((ret & SMI_CMD_BUSY) == 0)
57 58 59 60 61 62
			return 0;
	}

	return -ETIMEDOUT;
}

63 64
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
				int reg)
65 66 67 68
{
	int ret;

	if (sw_addr == 0)
69
		return mdiobus_read_nested(bus, addr, reg);
70

71
	/* Wait for the bus to become free. */
72 73 74 75
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

76
	/* Transmit the read command. */
77 78
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
79 80 81
	if (ret < 0)
		return ret;

82
	/* Wait for the read command to complete. */
83 84 85 86
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

87
	/* Read the data. */
88
	ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
89 90 91 92 93 94
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

95
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
96
{
97
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
98 99
	int ret;

100 101
	assert_smi_lock(ds);

102 103 104 105
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
106 107 108 109 110 111
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

112 113 114
	return ret;
}

115 116 117 118 119 120 121 122 123 124 125 126
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

127 128
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
				 int reg, u16 val)
129 130 131 132
{
	int ret;

	if (sw_addr == 0)
133
		return mdiobus_write_nested(bus, addr, reg, val);
134

135
	/* Wait for the bus to become free. */
136 137 138 139
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

140
	/* Transmit the data to write. */
141
	ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
142 143 144
	if (ret < 0)
		return ret;

145
	/* Transmit the write command. */
146 147
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
148 149 150
	if (ret < 0)
		return ret;

151
	/* Wait for the write command to complete. */
152 153 154 155 156 157 158
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

159 160
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
161
{
162
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
163

164 165
	assert_smi_lock(ds);

166 167 168
	if (bus == NULL)
		return -EINVAL;

169 170 171
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

172 173 174 175 176 177 178 179
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

180
	mutex_lock(&ps->smi_mutex);
181
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
182 183 184 185 186
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

187 188
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
189 190 191
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
192 193 194 195

	return 0;
}

196 197 198 199 200 201 202 203
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

204
		/* Write the MAC address byte. */
205 206
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
207

208
		/* Wait for the write to complete. */
209
		for (j = 0; j < 16; j++) {
210 211
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
212 213 214 215 216 217 218 219 220
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

221
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
222 223
{
	if (addr >= 0)
224
		return _mv88e6xxx_reg_read(ds, addr, regnum);
225 226 227
	return 0xffff;
}

228 229
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
230 231
{
	if (addr >= 0)
232
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
233 234 235
	return 0;
}

236 237 238 239
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
240
	unsigned long timeout;
241

242 243 244
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
245

246 247
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
248
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
249
		usleep_range(1000, 2000);
250 251
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
252
			return 0;
253 254 255 256 257 258 259 260
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
261
	unsigned long timeout;
262

263 264
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
265

266 267
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
268
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
269
		usleep_range(1000, 2000);
270 271
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
272
			return 0;
273 274 275 276 277 278 279 280 281 282 283
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
284
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
285

286 287 288
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
289 290 291 292 293 294 295 296 297 298 299 300
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
301
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
302 303 304 305
	int ret;

	mutex_lock(&ps->ppu_mutex);

306
	/* If the PHY polling unit is enabled, disable it so that
307 308 309 310 311
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
312 313 314 315 316 317
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
318
	} else {
319 320
		del_timer(&ps->ppu_timer);
		ret = 0;
321 322 323 324 325 326 327
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
328
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
329

330
	/* Schedule a timer to re-enable the PHY polling unit. */
331 332 333 334 335 336
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
337
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
338 339 340 341 342 343 344 345 346 347 348 349 350 351

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
352 353
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
354 355 356 357 358 359 360 361 362 363 364 365
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
366 367
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
368 369 370 371 372 373
	}

	return ret;
}
#endif

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

445
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
446 447 448 449 450 451 452 453 454 455 456
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6320:
	case PORT_SWITCH_ID_6321:
		return true;
	}
	return false;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

471 472 473 474 475 476 477
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
478 479
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
480 481 482 483 484
		return true;
	}
	return false;
}

485 486 487 488 489 490 491 492
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
			   struct phy_device *phydev)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
493 494
	u32 reg;
	int ret;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
			reg |= PORT_PCS_CTRL_LINK_UP;

	if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

537 538 539 540 541 542 543 544 545 546
	if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
	    (port >= ps->num_ports - 2)) {
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
547 548 549 550 551 552
	_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);

out:
	mutex_unlock(&ps->smi_mutex);
}

553
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
554 555 556 557 558
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
559
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
560
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
561 562 563 564 565 566
			return 0;
	}

	return -ETIMEDOUT;
}

567
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
568 569 570
{
	int ret;

571
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
572 573
		port = (port + 1) << 5;

574
	/* Snapshot the hardware statistics counters for this port. */
575 576 577 578 579
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
580

581
	/* Wait for the snapshotting to complete. */
582
	ret = _mv88e6xxx_stats_wait(ds);
583 584 585 586 587 588
	if (ret < 0)
		return ret;

	return 0;
}

589
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
590 591 592 593 594 595
{
	u32 _val;
	int ret;

	*val = 0;

596 597 598
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
599 600 601
	if (ret < 0)
		return;

602
	ret = _mv88e6xxx_stats_wait(ds);
603 604 605
	if (ret < 0)
		return;

606
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
607 608 609 610 611
	if (ret < 0)
		return;

	_val = ret << 16;

612
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
613 614 615 616 617 618
	if (ret < 0)
		return;

	*val = _val | ret;
}

619
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
679 680
};

681 682
static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
			       struct mv88e6xxx_hw_stat *stat)
683
{
684 685
	switch (stat->type) {
	case BANK0:
686
		return true;
687 688 689 690 691 692 693 694 695
	case BANK1:
		return mv88e6xxx_6320_family(ds);
	case PORT:
		return mv88e6xxx_6095_family(ds) ||
			mv88e6xxx_6185_family(ds) ||
			mv88e6xxx_6097_family(ds) ||
			mv88e6xxx_6165_family(ds) ||
			mv88e6xxx_6351_family(ds) ||
			mv88e6xxx_6352_family(ds);
696
	}
697
	return false;
698 699
}

700
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
701
					    struct mv88e6xxx_hw_stat *s,
702 703 704 705 706 707 708
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

709 710 711
	switch (s->type) {
	case PORT:
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
712 713 714 715 716 717
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
718
						  s->reg + 1);
719 720 721 722
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
723 724 725
		break;
	case BANK0:
	case BANK1:
726 727 728 729 730 731 732 733
		_mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
	}
	value = (((u64)high) << 16) | low;
	return value;
}

734
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
735
{
736 737
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
738

739 740 741 742 743 744 745
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
746
	}
747 748 749 750
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
751 752 753 754 755 756 757 758 759
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat))
			j++;
	}
	return j;
760 761 762 763 764 765
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->smi_mutex);
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
			j++;
		}
	}

	mutex_unlock(&ps->smi_mutex);
787 788
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

813 814
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
815 816 817 818 819 820
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

821 822 823
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
824 825 826 827 828 829 830 831
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

832 833 834 835 836 837 838 839 840 841 842 843 844
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
845
{
846 847
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
848 849 850 851
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
852 853
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
854 855 856 857
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
858 859
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
860 861
}

862 863
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
864 865
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
866 867
}

868 869
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
870 871 872
{
	int ret;

873 874 875 876 877
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
878

879
	ret = _mv88e6xxx_phy_wait(ds);
880 881 882
	if (ret < 0)
		return ret;

883
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
884 885
}

886 887
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
888
{
889 890 891 892 893
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
894

895 896 897 898 899
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
900 901
}

902 903
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
904
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
905 906
	int reg;

907
	mutex_lock(&ps->smi_mutex);
908 909

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
910
	if (reg < 0)
911
		goto out;
912 913 914 915

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

916
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
917
	if (reg < 0)
918
		goto out;
919

920
	e->eee_active = !!(reg & PORT_STATUS_EEE);
921
	reg = 0;
922

923
out:
924
	mutex_unlock(&ps->smi_mutex);
925
	return reg;
926 927 928 929 930
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
931 932
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
933 934
	int ret;

935
	mutex_lock(&ps->smi_mutex);
936

937 938 939 940 941 942 943 944 945 946 947 948
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
949
	mutex_unlock(&ps->smi_mutex);
950 951

	return ret;
952 953
}

954
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd)
955 956 957
{
	int ret;

958
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
959 960 961 962 963 964
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}

988 989 990
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
991
{
992 993
	int op;
	int err;
994

995 996 997
	err = _mv88e6xxx_atu_wait(ds);
	if (err)
		return err;
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	err = _mv88e6xxx_atu_data_write(ds, entry);
	if (err)
		return err;

	if (entry->fid) {
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID,
					   entry->fid);
		if (err)
			return err;

		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

	return _mv88e6xxx_atu_cmd(ds, op);
}

static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1025

1026 1027 1028
	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
			       int to_port, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
				 bool static_too)
{
	/* Destination port 0xF means remove the entries */
	return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
}

1054 1055 1056 1057 1058 1059 1060 1061
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

static int _mv88e6xxx_port_state(struct dsa_switch *ds, int port, u8 state)
1062
{
1063
	int reg, ret = 0;
1064 1065
	u8 oldstate;

1066
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1067 1068
	if (reg < 0)
		return reg;
1069

1070
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1071

1072 1073 1074 1075 1076
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1077 1078 1079 1080
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
		     oldstate == PORT_CONTROL_STATE_FORWARDING)
		    && (state == PORT_CONTROL_STATE_DISABLED ||
			state == PORT_CONTROL_STATE_BLOCKING)) {
1081
			ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1082
			if (ret)
1083
				return ret;
1084
		}
1085

1086 1087 1088
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1089 1090 1091 1092 1093 1094
		if (ret)
			return ret;

		netdev_dbg(ds->ports[port], "PortState %s (was %s)\n",
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1095 1096 1097 1098 1099
	}

	return ret;
}

1100
static int _mv88e6xxx_port_based_vlan_map(struct dsa_switch *ds, int port)
1101 1102
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1103
	struct net_device *bridge = ps->ports[port].bridge_dev;
1104
	const u16 mask = (1 << ps->num_ports) - 1;
1105
	u16 output_ports = 0;
1106
	int reg;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
		for (i = 0; i < ps->num_ports; ++i) {
			/* allow sending frames to every group member */
			if (bridge && ps->ports[i].bridge_dev == bridge)
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1126

1127 1128 1129
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (reg < 0)
		return reg;
1130

1131 1132
	reg &= ~mask;
	reg |= output_ports & mask;
1133

1134
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1135 1136 1137 1138 1139 1140 1141 1142 1143
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1144
		stp_state = PORT_CONTROL_STATE_DISABLED;
1145 1146 1147
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1148
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1149 1150
		break;
	case BR_STATE_LEARNING:
1151
		stp_state = PORT_CONTROL_STATE_LEARNING;
1152 1153 1154
		break;
	case BR_STATE_FORWARDING:
	default:
1155
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1156 1157 1158 1159 1160 1161
		break;
	}

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
1162
	ps->ports[port].state = stp_state;
1163
	set_bit(port, ps->port_state_update_mask);
1164 1165 1166 1167 1168
	schedule_work(&ps->bridge_work);

	return 0;
}

1169 1170
static int _mv88e6xxx_port_pvid(struct dsa_switch *ds, int port, u16 *new,
				u16 *old)
1171
{
1172
	u16 pvid;
1173 1174 1175 1176 1177 1178
	int ret;

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new,
			   pvid);
	}

	if (old)
		*old = pvid;
1196 1197 1198 1199

	return 0;
}

1200 1201 1202 1203 1204
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	return _mv88e6xxx_port_pvid(ds, port, NULL, pvid);
}

1205
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1206
{
1207
	return _mv88e6xxx_port_pvid(ds, port, &pvid, NULL);
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
			       GLOBAL_VTU_OP_BUSY);
}

static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_wait(ds);
}

static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3] = { 0 };
	int i;
	int ret;

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1292 1293 1294 1295 1296 1297 1298
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
{
	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
				    vid & GLOBAL_VTU_VID_MASK);
}

static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
		if (ret < 0)
			return ret;

		if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
		    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;

			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
			     struct switchdev_obj_port_vlan *vlan,
			     int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &next);
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
		vlan->vid_begin = vlan->vid_end = next.vid;
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
	if (ret < 0)
		return ret;

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
		if (ret < 0)
			return ret;

		reg = entry->fid & GLOBAL_VTU_FID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
		if (ret < 0)
			return ret;
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static int _mv88e6xxx_port_fid(struct dsa_switch *ds, int port, u16 *new,
			       u16 *old)
{
	u16 fid;
	int ret;

	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN,
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_1);
	if (ret < 0)
		return ret;

	fid |= (ret & PORT_CONTROL_1_FID_11_4_MASK) << 4;

	if (new) {
		ret &= ~PORT_CONTROL_1_FID_11_4_MASK;
		ret |= (*new >> 4) & PORT_CONTROL_1_FID_11_4_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1,
					   ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid);
	}

	if (old)
		*old = fid;

	return 0;
}

static int _mv88e6xxx_port_fid_get(struct dsa_switch *ds, int port, u16 *fid)
{
	return _mv88e6xxx_port_fid(ds, port, NULL, fid);
}

static int _mv88e6xxx_port_fid_set(struct dsa_switch *ds, int port, u16 fid)
{
	return _mv88e6xxx_port_fid(ds, port, &fid, NULL);
}

1569 1570
static int _mv88e6xxx_fid_new(struct dsa_switch *ds, u16 *fid)
{
1571
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1572 1573
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1574
	int i, err;
1575 1576 1577

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1578 1579 1580 1581 1582 1583 1584 1585 1586
	/* Set every FID bit used by the (un)bridged ports */
	for (i = 0; i < ps->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(ds, i, fid);
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/* Set every FID bit used by the VLAN entries */
	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
	if (unlikely(*fid == MV88E6XXX_N_FID))
		return -ENOSPC;

	/* Clear the database */
	return _mv88e6xxx_atu_flush(ds, *fid, true);
}

1614 1615
static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry)
1616 1617 1618 1619 1620 1621
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1622 1623 1624 1625 1626
	int i, err;

	err = _mv88e6xxx_fid_new(ds, &vlan.fid);
	if (err)
		return err;
1627

1628
	/* exclude all ports except the CPU and DSA ports */
1629
	for (i = 0; i < ps->num_ports; ++i)
1630 1631 1632
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
		err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

			err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

	err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
	if (err)
		return err;

	err = _mv88e6xxx_vtu_getnext(ds, entry);
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

		err = _mv88e6xxx_vtu_new(ds, vid, entry);
	}

	return err;
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

		for (i = 0; i < ps->num_ports; ++i) {
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

			if (ps->ports[i].bridge_dev ==
			    ps->ports[port].bridge_dev)
				break; /* same bridge, check next VLAN */

			netdev_warn(ds->ports[port],
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
				    netdev_name(ps->ports[i].bridge_dev));
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
				  bool vlan_filtering)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_2);
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1768 1769 1770
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2,
					   ret);
		if (ret < 0)
			goto unlock;

		netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n",
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1781

1782
	ret = 0;
1783 1784 1785 1786 1787 1788
unlock:
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1789 1790 1791 1792
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_vlan *vlan,
				struct switchdev_trans *trans)
{
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	int err;

	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1803 1804 1805 1806 1807 1808 1809 1810
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
				    bool untagged)
1811 1812 1813 1814
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1815
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true);
1816
	if (err)
1817
		return err;
1818 1819 1820 1821 1822

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
}

int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
		if (err)
			goto unlock;
	}

	/* no PVID with ranges, otherwise it's a bug */
	if (pvid)
R
Russell King 已提交
1846
		err = _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end);
1847 1848 1849 1850 1851 1852
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1853
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1854 1855 1856 1857 1858
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1859
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1860
	if (err)
1861
		return err;
1862

1863 1864
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1865
		return -EOPNOTSUPP;
1866 1867 1868 1869

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1870
	vlan.valid = false;
1871
	for (i = 0; i < ps->num_ports; ++i) {
1872
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1873 1874 1875
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1876
			vlan.valid = true;
1877 1878 1879 1880 1881
			break;
		}
	}

	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	if (err)
		return err;

	return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
}

int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 pvid, vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1898 1899 1900
	if (err)
		goto unlock;

1901 1902 1903 1904 1905 1906
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_del(ds, port, vid);
		if (err)
			goto unlock;

		if (vid == pvid) {
1907
			err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1908 1909 1910 1911 1912
			if (err)
				goto unlock;
		}
	}

1913 1914 1915 1916 1917 1918
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1919 1920
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
				    const unsigned char *addr)
1921 1922 1923 1924
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1925 1926 1927
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1928 1929 1930 1931 1932 1933 1934
		if (ret < 0)
			return ret;
	}

	return 0;
}

1935
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1936 1937 1938 1939
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1940 1941
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1942 1943 1944 1945 1946 1947 1948 1949 1950
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

1951 1952
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
			       struct mv88e6xxx_atu_entry *entry)
1953
{
1954 1955
	int ret;

1956 1957 1958 1959
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

1960
	ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1961 1962 1963
	if (ret < 0)
		return ret;

1964
	ret = _mv88e6xxx_atu_data_write(ds, entry);
1965
	if (ret < 0)
1966 1967
		return ret;

1968 1969 1970 1971 1972
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB);
1973
}
1974

1975 1976 1977 1978 1979
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
1980 1981 1982
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1983 1984 1985 1986 1987
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
		err = _mv88e6xxx_port_fid_get(ds, port, &vlan.fid);
	else
		err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1988 1989
	if (err)
		return err;
1990

1991
	entry.fid = vlan.fid;
1992 1993 1994 1995 1996 1997 1998 1999
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

	return _mv88e6xxx_atu_load(ds, &entry);
2000 2001
}

V
Vivien Didelot 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_fdb *fdb,
			       struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2012
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2013 2014
			   const struct switchdev_obj_port_fdb *fdb,
			   struct switchdev_trans *trans)
2015
{
2016
	int state = is_multicast_ether_addr(fdb->addr) ?
2017 2018
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2019
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2020 2021 2022
	int ret;

	mutex_lock(&ps->smi_mutex);
2023
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
2024 2025 2026 2027 2028
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

2029
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2030
			   const struct switchdev_obj_port_fdb *fdb)
2031 2032 2033 2034 2035
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
2036
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
2037
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2038 2039 2040 2041 2042
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

2043 2044
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
				  struct mv88e6xxx_atu_entry *entry)
2045
{
2046 2047 2048 2049
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2050

2051 2052 2053
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;
2054

2055 2056 2057 2058 2059
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB);
2060 2061
	if (ret < 0)
		return ret;
2062

2063 2064 2065
	ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
	if (ret < 0)
		return ret;
2066

2067
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
2068 2069
	if (ret < 0)
		return ret;
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2087

2088
	*entry = next;
2089 2090 2091
	return 0;
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid,
					int port,
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

	err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(ds, fid, &addr);
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2133 2134 2135 2136 2137 2138 2139 2140
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
			    struct switchdev_obj_port_fdb *fdb,
			    int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2141
	u16 fid;
2142 2143 2144 2145
	int err;

	mutex_lock(&ps->smi_mutex);

2146 2147 2148 2149 2150 2151 2152 2153 2154
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
	err = _mv88e6xxx_port_fid_get(ds, port, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fdb_dump_one(ds, fid, 0, port, fdb, cb);
	if (err)
		goto unlock;

2155
	/* Dump VLANs' Filtering Information Databases */
2156 2157 2158 2159 2160 2161 2162
	err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
2163
			break;
2164 2165 2166 2167

		if (!vlan.valid)
			break;

2168 2169
		err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port,
						   fdb, cb);
2170
		if (err)
2171
			break;
2172 2173 2174 2175 2176 2177 2178 2179
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

2180 2181
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
			       struct net_device *bridge)
2182
{
2183
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	u16 fid;
	int i, err;

	mutex_lock(&ps->smi_mutex);

	/* Get or create the bridge FID and assign it to the port */
	for (i = 0; i < ps->num_ports; ++i)
		if (ps->ports[i].bridge_dev == bridge)
			break;

	if (i < ps->num_ports)
		err = _mv88e6xxx_port_fid_get(ds, i, &fid);
	else
		err = _mv88e6xxx_fid_new(ds, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fid_set(ds, port, fid);
	if (err)
		goto unlock;
2204

2205
	/* Assign the bridge and remap each port's VLANTable */
2206
	ps->ports[port].bridge_dev = bridge;
2207 2208 2209 2210 2211 2212 2213 2214 2215

	for (i = 0; i < ps->num_ports; ++i) {
		if (ps->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(ds, i);
			if (err)
				break;
		}
	}

2216 2217
unlock:
	mutex_unlock(&ps->smi_mutex);
2218

2219
	return err;
2220 2221
}

2222
int mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2223
{
2224
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2225
	struct net_device *bridge = ps->ports[port].bridge_dev;
2226
	u16 fid;
2227
	int i, err;
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

	mutex_lock(&ps->smi_mutex);

	/* Give the port a fresh Filtering Information Database */
	err = _mv88e6xxx_fid_new(ds, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fid_set(ds, port, fid);
	if (err)
		goto unlock;
2239

2240
	/* Unassign the bridge and remap each port's VLANTable */
2241
	ps->ports[port].bridge_dev = NULL;
2242 2243 2244 2245 2246 2247 2248 2249 2250

	for (i = 0; i < ps->num_ports; ++i) {
		if (i == port || ps->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(ds, i);
			if (err)
				break;
		}
	}

2251 2252
unlock:
	mutex_unlock(&ps->smi_mutex);
2253

2254
	return err;
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

2266 2267 2268 2269 2270 2271 2272 2273 2274
	mutex_lock(&ps->smi_mutex);

	for (port = 0; port < ps->num_ports; ++port)
		if (test_and_clear_bit(port, ps->port_state_update_mask) &&
		    _mv88e6xxx_port_state(ds, port, ps->ports[port].state))
			netdev_warn(ds->ports[port], "failed to update state to %s\n",
				    mv88e6xxx_port_state_names[ps->ports[port].state]);

	mutex_unlock(&ps->smi_mutex);
2275 2276
}

2277
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
2278 2279
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2280
	int ret;
2281
	u16 reg;
2282 2283 2284

	mutex_lock(&ps->smi_mutex);

2285 2286 2287
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2288
	    mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
2289 2290 2291 2292 2293 2294 2295
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
2296
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2297
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2334
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
2335 2336 2337 2338 2339 2340 2341
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2342 2343
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2344 2345 2346 2347
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
2348 2349
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2350 2351 2352 2353 2354
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2355
		    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2356 2357 2358 2359
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
2360 2361 2362 2363 2364 2365
	if (dsa_is_dsa_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2366
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2367 2368
		}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

2380
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2381
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2382 2383 2384
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2385 2386 2387 2388
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2389
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
2390 2391 2392
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2393
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2406
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2420 2421 2422 2423 2424 2425
	reg = 1 << port;
	/* Disable learning for DSA and CPU ports */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
		reg = PORT_ASSOC_VECTOR_LOCKED_PORT;

	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2436 2437
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2487 2488
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2489 2490 2491 2492 2493 2494 2495
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

2496 2497
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2498
	 */
2499
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2500 2501 2502
	if (ret)
		goto abort;

2503
	/* Port based VLAN map: give each port its own address
2504 2505
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2506
	 */
2507 2508 2509 2510
	ret = _mv88e6xxx_port_fid_set(ds, port, port + 1);
	if (ret)
		goto abort;

2511
	ret = _mv88e6xxx_port_based_vlan_map(ds, port);
2512 2513 2514 2515 2516 2517
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2518 2519
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
2520 2521 2522 2523 2524
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

2539 2540 2541 2542 2543 2544
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);

2545
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2546

2547 2548
	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

2549 2550 2551
	return 0;
}

2552 2553 2554
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2555
	int ret;
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2619 2620
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2639 2640
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2641 2642 2643 2644 2645 2646 2647 2648 2649
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

2650 2651 2652 2653
	/* Clear the statistics counters for all ports */
	REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);

	/* Wait for the flush to complete. */
2654 2655
	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_stats_wait(ds);
2656 2657 2658
	if (ret < 0)
		goto unlock;

2659 2660 2661 2662 2663
	/* Clear all ATU entries */
	ret = _mv88e6xxx_atu_flush(ds, 0, true);
	if (ret < 0)
		goto unlock;

2664 2665 2666
	/* Clear all the VTU and STU entries */
	ret = _mv88e6xxx_vtu_stu_flush(ds);
unlock:
2667
	mutex_unlock(&ps->smi_mutex);
2668

2669
	return ret;
2670 2671
}

2672 2673 2674 2675
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2676
	struct gpio_desc *gpiod = ds->pd->reset;
2677 2678 2679 2680 2681 2682
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
2683 2684
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2685 2686 2687 2688 2689
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

2690 2691 2692 2693 2694 2695 2696 2697
	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

2721 2722 2723 2724 2725
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2726
	mutex_lock(&ps->smi_mutex);
2727
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2728 2729
	if (ret < 0)
		goto error;
2730
	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
2731
error:
2732
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2733
	mutex_unlock(&ps->smi_mutex);
2734 2735 2736 2737 2738 2739 2740 2741 2742
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2743
	mutex_lock(&ps->smi_mutex);
2744
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2745 2746 2747
	if (ret < 0)
		goto error;

2748
	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
2749
error:
2750
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2751
	mutex_unlock(&ps->smi_mutex);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2774
	mutex_lock(&ps->smi_mutex);
2775
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2776
	mutex_unlock(&ps->smi_mutex);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2790
	mutex_lock(&ps->smi_mutex);
2791
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2792
	mutex_unlock(&ps->smi_mutex);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2806
	mutex_lock(&ps->smi_mutex);
2807
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2808
	mutex_unlock(&ps->smi_mutex);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2823
	mutex_lock(&ps->smi_mutex);
2824
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2825
	mutex_unlock(&ps->smi_mutex);
2826 2827 2828
	return ret;
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*alarm = false;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
			    const struct mv88e6xxx_switch_id *table,
			    unsigned int num)
{
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
	int i, ret;

	if (!bus)
		return NULL;

	ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
	if (ret < 0)
		return NULL;

	/* Look up the exact switch ID */
	for (i = 0; i < num; ++i)
		if (table[i].id == ret)
			return table[i].name;

	/* Look up only the product number */
	for (i = 0; i < num; ++i) {
		if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
			dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
				 ret & PORT_SWITCH_ID_REV_MASK,
				 ret & PORT_SWITCH_ID_PROD_NUM_MASK);
			return table[i].name;
		}
	}

	return NULL;
}

2987 2988 2989 2990 2991
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
2992 2993
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	register_switch_driver(&mv88e6123_switch_driver);
2994
#endif
2995 2996 2997
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
2998 2999
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
3000 3001 3002 3003 3004 3005 3006
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3007 3008 3009
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
3010 3011 3012
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
3013 3014
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	unregister_switch_driver(&mv88e6123_switch_driver);
3015 3016 3017 3018 3019 3020
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
3021 3022 3023 3024

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");