mv88e6xxx.c 60.8 KB
Newer Older
1 2 3 4
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
5 6 7
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
8 9 10 11 12 13
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

14
#include <linux/delay.h>
15
#include <linux/etherdevice.h>
16
#include <linux/ethtool.h>
17
#include <linux/if_bridge.h>
18
#include <linux/jiffies.h>
19
#include <linux/list.h>
20
#include <linux/module.h>
21 22
#include <linux/netdevice.h>
#include <linux/phy.h>
23
#include <net/dsa.h>
24
#include <net/switchdev.h>
25 26
#include "mv88e6xxx.h"

27
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
28 29 30 31 32 33 34 35 36 37 38 39 40
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
41
		ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
42 43 44
		if (ret < 0)
			return ret;

45
		if ((ret & SMI_CMD_BUSY) == 0)
46 47 48 49 50 51 52 53 54 55 56
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
57
		return mdiobus_read_nested(bus, addr, reg);
58

59
	/* Wait for the bus to become free. */
60 61 62 63
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

64
	/* Transmit the read command. */
65 66
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
67 68 69
	if (ret < 0)
		return ret;

70
	/* Wait for the read command to complete. */
71 72 73 74
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

75
	/* Read the data. */
76
	ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
77 78 79 80 81 82
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

83 84
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
85
{
86
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
87 88
	int ret;

89 90 91 92
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
93 94 95 96 97 98
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

99 100 101
	return ret;
}

102 103 104 105 106 107 108 109 110 111 112 113
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

114 115 116 117 118 119
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
120
		return mdiobus_write_nested(bus, addr, reg, val);
121

122
	/* Wait for the bus to become free. */
123 124 125 126
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

127
	/* Transmit the data to write. */
128
	ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
129 130 131
	if (ret < 0)
		return ret;

132
	/* Transmit the write command. */
133 134
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
135 136 137
	if (ret < 0)
		return ret;

138
	/* Wait for the write command to complete. */
139 140 141 142 143 144 145
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

146 147 148
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
149
{
150
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
151

152 153 154
	if (bus == NULL)
		return -EINVAL;

155 156 157
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

158 159 160 161 162 163 164 165
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

166
	mutex_lock(&ps->smi_mutex);
167
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
168 169 170 171 172
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

173 174
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
175 176 177
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
178 179 180 181

	return 0;
}

182 183 184 185 186 187 188 189
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

190
		/* Write the MAC address byte. */
191 192
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
193

194
		/* Wait for the write to complete. */
195
		for (j = 0; j < 16; j++) {
196 197
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
198 199 200 201 202 203 204 205 206
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

207
/* Must be called with SMI mutex held */
208
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
209 210
{
	if (addr >= 0)
211
		return _mv88e6xxx_reg_read(ds, addr, regnum);
212 213 214
	return 0xffff;
}

215
/* Must be called with SMI mutex held */
216 217
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
218 219
{
	if (addr >= 0)
220
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
221 222 223
	return 0;
}

224 225 226 227
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
228
	unsigned long timeout;
229

230 231 232
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
233

234 235
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
236
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
237
		usleep_range(1000, 2000);
238 239
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
240
			return 0;
241 242 243 244 245 246 247 248
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
249
	unsigned long timeout;
250

251 252
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
253

254 255
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
256
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
257
		usleep_range(1000, 2000);
258 259
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
260
			return 0;
261 262 263 264 265 266 267 268 269 270 271
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
272
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
273

274 275 276
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
277 278 279 280 281 282 283 284 285 286 287 288
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
289
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
290 291 292 293
	int ret;

	mutex_lock(&ps->ppu_mutex);

294
	/* If the PHY polling unit is enabled, disable it so that
295 296 297 298 299
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
300 301 302 303 304 305
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
306
	} else {
307 308
		del_timer(&ps->ppu_timer);
		ret = 0;
309 310 311 312 313 314 315
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
316
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
317

318
	/* Schedule a timer to re-enable the PHY polling unit. */
319 320 321 322 323 324
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
325
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
326 327 328 329 330 331 332 333 334 335 336 337 338 339

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
340 341
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
342 343 344 345 346 347 348 349 350 351 352 353
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
354 355
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
356 357 358 359 360 361
	}

	return ret;
}
#endif

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

433
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
434 435 436 437 438 439 440 441 442 443 444
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6320:
	case PORT_SWITCH_ID_6321:
		return true;
	}
	return false;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

459 460 461 462 463 464 465
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
466 467
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
468 469 470 471 472
		return true;
	}
	return false;
}

473 474 475 476 477 478 479 480
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
			   struct phy_device *phydev)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
481 482
	u32 reg;
	int ret;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
			reg |= PORT_PCS_CTRL_LINK_UP;

	if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

525 526 527 528 529 530 531 532 533 534
	if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
	    (port >= ps->num_ports - 2)) {
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
535 536 537 538 539 540
	_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);

out:
	mutex_unlock(&ps->smi_mutex);
}

541 542
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
543 544 545 546 547
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
548
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
549
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
550 551 552 553 554 555
			return 0;
	}

	return -ETIMEDOUT;
}

556 557
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
558 559 560
{
	int ret;

561
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
562 563
		port = (port + 1) << 5;

564
	/* Snapshot the hardware statistics counters for this port. */
565 566 567 568 569
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
570

571
	/* Wait for the snapshotting to complete. */
572
	ret = _mv88e6xxx_stats_wait(ds);
573 574 575 576 577 578
	if (ret < 0)
		return ret;

	return 0;
}

579 580
/* Must be called with SMI mutex held */
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
581 582 583 584 585 586
{
	u32 _val;
	int ret;

	*val = 0;

587 588 589
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
590 591 592
	if (ret < 0)
		return;

593
	ret = _mv88e6xxx_stats_wait(ds);
594 595 596
	if (ret < 0)
		return;

597
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
598 599 600 601 602
	if (ret < 0)
		return;

	_val = ret << 16;

603
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
604 605 606 607 608 609
	if (ret < 0)
		return;

	*val = _val | ret;
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
	{ "in_good_octets", 8, 0x00, },
	{ "in_bad_octets", 4, 0x02, },
	{ "in_unicast", 4, 0x04, },
	{ "in_broadcasts", 4, 0x06, },
	{ "in_multicasts", 4, 0x07, },
	{ "in_pause", 4, 0x16, },
	{ "in_undersize", 4, 0x18, },
	{ "in_fragments", 4, 0x19, },
	{ "in_oversize", 4, 0x1a, },
	{ "in_jabber", 4, 0x1b, },
	{ "in_rx_error", 4, 0x1c, },
	{ "in_fcs_error", 4, 0x1d, },
	{ "out_octets", 8, 0x0e, },
	{ "out_unicast", 4, 0x10, },
	{ "out_broadcasts", 4, 0x13, },
	{ "out_multicasts", 4, 0x12, },
	{ "out_pause", 4, 0x15, },
	{ "excessive", 4, 0x11, },
	{ "collisions", 4, 0x1e, },
	{ "deferred", 4, 0x05, },
	{ "single", 4, 0x14, },
	{ "multiple", 4, 0x17, },
	{ "out_fcs_error", 4, 0x03, },
	{ "late", 4, 0x1f, },
	{ "hist_64bytes", 4, 0x08, },
	{ "hist_65_127bytes", 4, 0x09, },
	{ "hist_128_255bytes", 4, 0x0a, },
	{ "hist_256_511bytes", 4, 0x0b, },
	{ "hist_512_1023bytes", 4, 0x0c, },
	{ "hist_1024_max_bytes", 4, 0x0d, },
	/* Not all devices have the following counters */
	{ "sw_in_discards", 4, 0x110, },
	{ "sw_in_filtered", 2, 0x112, },
	{ "sw_out_filtered", 2, 0x113, },

};

static bool have_sw_in_discards(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
653 654 655 656 657
	case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
	case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6352:
658 659 660 661 662 663 664 665 666 667
		return true;
	default:
		return false;
	}
}

static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
				   int nr_stats,
				   struct mv88e6xxx_hw_stat *stats,
				   int port, uint8_t *data)
668 669 670 671 672 673 674 675 676
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
					    int stat,
					    struct mv88e6xxx_hw_stat *stats,
					    int port)
{
	struct mv88e6xxx_hw_stat *s = stats + stat;
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

	if (s->reg >= 0x100) {
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
					  s->reg - 0x100);
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
						  s->reg - 0x100 + 1);
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
	} else {
		_mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
	}
	value = (((u64)high) << 16) | low;
	return value;
}

711 712 713 714
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
					 int nr_stats,
					 struct mv88e6xxx_hw_stat *stats,
					 int port, uint64_t *data)
715
{
716
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
717 718 719
	int ret;
	int i;

720
	mutex_lock(&ps->smi_mutex);
721

722
	ret = _mv88e6xxx_stats_snapshot(ds, port);
723
	if (ret < 0) {
724
		mutex_unlock(&ps->smi_mutex);
725 726 727
		return;
	}

728
	/* Read each of the counters. */
729 730
	for (i = 0; i < nr_stats; i++)
		data[i] = _mv88e6xxx_get_ethtool_stat(ds, i, stats, port);
731

732
	mutex_unlock(&ps->smi_mutex);
733
}
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
/* All the statistics in the table */
void
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
				       mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
				       mv88e6xxx_hw_stats, port, data);
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
	if (have_sw_in_discards(ds))
		return ARRAY_SIZE(mv88e6xxx_hw_stats);
	return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
			mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
			mv88e6xxx_hw_stats, port, data);
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

792 793 794
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
795 796 797 798 799 800
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

801 802 803
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
804 805 806 807 808 809 810 811
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

812 813 814 815 816 817 818 819 820 821 822 823 824
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
825
{
826 827
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
828 829 830 831
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
832 833
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
834 835 836 837
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
838 839
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
840 841
}

842 843 844
/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
845 846
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
847 848
}

849
/* Must be called with SMI mutex held */
850 851
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
852 853 854
{
	int ret;

855 856 857 858 859
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
860

861
	ret = _mv88e6xxx_phy_wait(ds);
862 863 864
	if (ret < 0)
		return ret;

865
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
866 867
}

868
/* Must be called with SMI mutex held */
869 870
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
871
{
872 873 874 875 876
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
877

878 879 880 881 882
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
883 884
}

885 886
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
887
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
888 889
	int reg;

890
	mutex_lock(&ps->smi_mutex);
891 892

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
893
	if (reg < 0)
894
		goto out;
895 896 897 898

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

899
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
900
	if (reg < 0)
901
		goto out;
902

903
	e->eee_active = !!(reg & PORT_STATUS_EEE);
904
	reg = 0;
905

906
out:
907
	mutex_unlock(&ps->smi_mutex);
908
	return reg;
909 910 911 912 913
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
914 915
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
916 917
	int ret;

918
	mutex_lock(&ps->smi_mutex);
919

920 921 922 923 924 925 926 927 928 929 930 931
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
932
	mutex_unlock(&ps->smi_mutex);
933 934

	return ret;
935 936
}

937
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd)
938 939 940
{
	int ret;

941
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
942 943 944 945 946 947
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}

971 972 973
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
974
{
975 976
	int op;
	int err;
977

978 979 980
	err = _mv88e6xxx_atu_wait(ds);
	if (err)
		return err;
981

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	err = _mv88e6xxx_atu_data_write(ds, entry);
	if (err)
		return err;

	if (entry->fid) {
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID,
					   entry->fid);
		if (err)
			return err;

		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

	return _mv88e6xxx_atu_cmd(ds, op);
}

static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1008

1009 1010 1011
	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
			       int to_port, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
				 bool static_too)
{
	/* Destination port 0xF means remove the entries */
	return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
}

1037 1038 1039
static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1040
	int reg, ret = 0;
1041 1042 1043 1044
	u8 oldstate;

	mutex_lock(&ps->smi_mutex);

1045
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1046 1047
	if (reg < 0) {
		ret = reg;
1048
		goto abort;
1049
	}
1050

1051
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1052 1053 1054 1055 1056
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1057 1058
		if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
		    state <= PORT_CONTROL_STATE_BLOCKING) {
1059
			ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1060 1061 1062
			if (ret)
				goto abort;
		}
1063 1064 1065
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1066 1067 1068 1069 1070 1071 1072
	}

abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

1073 1074
static int _mv88e6xxx_port_vlan_map_set(struct dsa_switch *ds, int port,
					u16 output_ports)
1075 1076
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1077 1078
	const u16 mask = (1 << ps->num_ports) - 1;
	int reg;
1079

1080 1081 1082
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (reg < 0)
		return reg;
1083

1084 1085
	reg &= ~mask;
	reg |= output_ports & mask;
1086

1087
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1088 1089 1090 1091 1092 1093 1094 1095 1096
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1097
		stp_state = PORT_CONTROL_STATE_DISABLED;
1098 1099 1100
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1101
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1102 1103
		break;
	case BR_STATE_LEARNING:
1104
		stp_state = PORT_CONTROL_STATE_LEARNING;
1105 1106 1107
		break;
	case BR_STATE_FORWARDING:
	default:
1108
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		break;
	}

	netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
	ps->port_state[port] = stp_state;
	set_bit(port, &ps->port_state_update_mask);
	schedule_work(&ps->bridge_work);

	return 0;
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	int ret;

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

	*pvid = ret & PORT_DEFAULT_VLAN_MASK;

	return 0;
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	int ret;

	ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

	*pvid = ret & PORT_DEFAULT_VLAN_MASK;

	return 0;
}

1150
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1151
{
1152
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
1153 1154 1155
				   pvid & PORT_DEFAULT_VLAN_MASK);
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
			       GLOBAL_VTU_OP_BUSY);
}

static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_wait(ds);
}

static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3] = { 0 };
	int i;
	int ret;

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1238 1239 1240 1241 1242 1243 1244
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
{
	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
				    vid & GLOBAL_VTU_VID_MASK);
}

static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
		if (ret < 0)
			return ret;

		if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
		    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;

			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
	if (ret < 0)
		return ret;

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
		if (ret < 0)
			return ret;

		reg = entry->fid & GLOBAL_VTU_FID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
		if (ret < 0)
			return ret;
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}

static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid,
				struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
1413
		.fid = vid, /* We use one FID per VLAN */
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	};
	int i;

	/* exclude all ports except the CPU */
	for (i = 0; i < ps->num_ports; ++i)
		vlan.data[i] = dsa_is_cpu_port(ds, i) ?
			GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED :
			GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		struct mv88e6xxx_vtu_stu_entry vstp;
		int err;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
		err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

			err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
			if (err)
				return err;
		}

1447 1448
		/* Clear all MAC addresses from the new database */
		err = _mv88e6xxx_atu_flush(ds, vlan.fid, true);
1449 1450 1451 1452 1453 1454 1455 1456
		if (err)
			return err;
	}

	*entry = vlan;
	return 0;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_vlan *vlan,
				struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
				    bool untagged)
1469 1470 1471 1472
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1473 1474
	err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
	if (err)
1475
		return err;
1476 1477

	err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1478
	if (err)
1479
		return err;
1480 1481 1482 1483

	if (vlan.vid != vid || !vlan.valid) {
		err = _mv88e6xxx_vlan_init(ds, vid, &vlan);
		if (err)
1484
			return err;
1485 1486 1487 1488 1489 1490
	}

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
}

int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
		if (err)
			goto unlock;
	}

	/* no PVID with ranges, otherwise it's a bug */
	if (pvid)
		err = _mv88e6xxx_port_pvid_set(ds, port, vid);
1515 1516 1517 1518 1519 1520
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1521
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1522 1523 1524 1525 1526
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1527 1528
	err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
	if (err)
1529
		return err;
1530 1531

	err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1532
	if (err)
1533
		return err;
1534 1535

	if (vlan.vid != vid || !vlan.valid ||
1536 1537
	    vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
		return -ENOENT;
1538 1539 1540 1541

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1542
	vlan.valid = false;
1543 1544 1545 1546 1547
	for (i = 0; i < ps->num_ports; ++i) {
		if (dsa_is_cpu_port(ds, i))
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1548
			vlan.valid = true;
1549 1550 1551 1552 1553
			break;
		}
	}

	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	if (err)
		return err;

	return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
}

int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 pvid, vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1570 1571 1572
	if (err)
		goto unlock;

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_del(ds, port, vid);
		if (err)
			goto unlock;

		if (vid == pvid) {
			err = _mv88e6xxx_port_pvid_set(ds, port, 0);
			if (err)
				goto unlock;
		}
	}

1585 1586 1587 1588 1589 1590
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid,
			   unsigned long *ports, unsigned long *untagged)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry next;
	int port;
	int err;

	if (*vid == 4095)
		return -ENOENT;

	mutex_lock(&ps->smi_mutex);
1603 1604 1605 1606 1607 1608
	err = _mv88e6xxx_vtu_vid_write(ds, *vid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_vtu_getnext(ds, &next);
unlock:
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	mutex_unlock(&ps->smi_mutex);

	if (err)
		return err;

	if (!next.valid)
		return -ENOENT;

	*vid = next.vid;

	for (port = 0; port < ps->num_ports; ++port) {
		clear_bit(port, ports);
		clear_bit(port, untagged);

		if (dsa_is_cpu_port(ds, port))
			continue;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED ||
		    next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			set_bit(port, ports);

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			set_bit(port, untagged);
	}

	return 0;
}

1637 1638
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
				    const unsigned char *addr)
1639 1640 1641 1642
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1643 1644 1645
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1646 1647 1648 1649 1650 1651 1652
		if (ret < 0)
			return ret;
	}

	return 0;
}

1653
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1654 1655 1656 1657
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1658 1659
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1660 1661 1662 1663 1664 1665 1666 1667 1668
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

1669 1670
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
			       struct mv88e6xxx_atu_entry *entry)
1671
{
1672 1673
	int ret;

1674 1675 1676 1677
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

1678
	ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1679 1680 1681
	if (ret < 0)
		return ret;

1682
	ret = _mv88e6xxx_atu_data_write(ds, entry);
1683
	if (ret < 0)
1684 1685
		return ret;

1686 1687 1688 1689 1690
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB);
1691
}
1692

1693 1694 1695 1696 1697 1698
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };

1699
	entry.fid = vid; /* We use one FID per VLAN */
1700 1701 1702 1703 1704 1705 1706 1707
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

	return _mv88e6xxx_atu_load(ds, &entry);
1708 1709
}

V
Vivien Didelot 已提交
1710 1711 1712 1713
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_fdb *fdb,
			       struct switchdev_trans *trans)
{
1714 1715 1716 1717
	/* We don't use per-port FDB */
	if (fdb->vid == 0)
		return -EOPNOTSUPP;

V
Vivien Didelot 已提交
1718 1719 1720 1721 1722 1723
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1724
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
1725 1726
			   const struct switchdev_obj_port_fdb *fdb,
			   struct switchdev_trans *trans)
1727
{
1728
	int state = is_multicast_ether_addr(fdb->addr) ?
1729 1730
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
1731
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1732 1733 1734
	int ret;

	mutex_lock(&ps->smi_mutex);
1735
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
1736 1737 1738 1739 1740
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1741
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
1742
			   const struct switchdev_obj_port_fdb *fdb)
1743 1744 1745 1746 1747
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
1748
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
1749
				       GLOBAL_ATU_DATA_STATE_UNUSED);
1750 1751 1752 1753 1754
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1755 1756
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
				  struct mv88e6xxx_atu_entry *entry)
1757
{
1758 1759 1760 1761
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
1762

1763 1764 1765
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;
1766

1767 1768 1769 1770 1771
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB);
1772 1773
	if (ret < 0)
		return ret;
1774

1775 1776 1777
	ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
	if (ret < 0)
		return ret;
1778

1779
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1780 1781
	if (ret < 0)
		return ret;
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
1799

1800
	*entry = next;
1801 1802 1803
	return 0;
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
			    struct switchdev_obj_port_fdb *fdb,
			    int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
	int err;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
	if (err)
		goto unlock;

	do {
		struct mv88e6xxx_atu_entry addr = {
			.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
		};

		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
		if (err)
			goto unlock;

		do {
			err = _mv88e6xxx_atu_getnext(ds, vlan.fid, &addr);
			if (err)
				goto unlock;

			if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
				break;

			if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
				bool is_static = addr.state ==
					(is_multicast_ether_addr(addr.mac) ?
					 GLOBAL_ATU_DATA_STATE_MC_STATIC :
					 GLOBAL_ATU_DATA_STATE_UC_STATIC);

				fdb->vid = vlan.vid;
				ether_addr_copy(fdb->addr, addr.mac);
				fdb->ndm_state = is_static ? NUD_NOARP :
					NUD_REACHABLE;

				err = cb(&fdb->obj);
				if (err)
					goto unlock;
			}
		} while (!is_broadcast_ether_addr(addr.mac));

	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

	while (ps->port_state_update_mask) {
		port = __ffs(ps->port_state_update_mask);
		clear_bit(port, &ps->port_state_update_mask);
		mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
	}
}

1885
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
1886 1887
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1888
	int ret;
1889
	u16 reg;
1890 1891 1892

	mutex_lock(&ps->smi_mutex);

1893 1894 1895
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
1896
	    mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
1897 1898 1899 1900 1901 1902 1903
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
1904
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1905
			reg &= ~PORT_PCS_CTRL_UNFORCED;
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
1942
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
1943 1944 1945 1946 1947 1948 1949
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
1950 1951
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
1952 1953 1954 1955
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
1956 1957
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
1958 1959 1960 1961 1962
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
1963
		    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
1964 1965 1966 1967
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
1968 1969 1970 1971 1972 1973
	if (dsa_is_dsa_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
1974
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
1975 1976
		}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

1988 1989 1990 1991 1992
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
	 * 10240 bytes, enable secure 802.1q tags, don't discard tagged or
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
1993 1994 1995 1996
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
1997
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
1998 1999 2000
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2001
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2014
	reg |= PORT_CONTROL_2_8021Q_SECURE;
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR,
				   1 << port);
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2040 2041
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2091 2092
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2093 2094 2095 2096 2097 2098 2099
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

2100 2101
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2102
	 */
2103
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2104 2105 2106
	if (ret)
		goto abort;

2107
	/* Port based VLAN map: do not give each port its own address
2108
	 * database, and allow every port to egress frames on all other ports.
2109
	 */
2110
	reg = BIT(ps->num_ports) - 1; /* all ports */
2111
	ret = _mv88e6xxx_port_vlan_map_set(ds, port, reg & ~port);
2112 2113 2114 2115 2116 2117
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2118 2119
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
2120 2121 2122 2123 2124
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

2139 2140 2141 2142 2143 2144
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);

2145
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2146

2147 2148
	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

2149 2150 2151
	return 0;
}

2152 2153 2154
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2155
	int ret;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2219 2220
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2239 2240
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2241 2242 2243 2244 2245 2246 2247 2248 2249
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

2250 2251 2252 2253
	/* Clear the statistics counters for all ports */
	REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);

	/* Wait for the flush to complete. */
2254 2255
	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_stats_wait(ds);
2256 2257 2258
	if (ret < 0)
		goto unlock;

2259 2260 2261 2262 2263
	/* Clear all ATU entries */
	ret = _mv88e6xxx_atu_flush(ds, 0, true);
	if (ret < 0)
		goto unlock;

2264 2265 2266
	/* Clear all the VTU and STU entries */
	ret = _mv88e6xxx_vtu_stu_flush(ds);
unlock:
2267
	mutex_unlock(&ps->smi_mutex);
2268

2269
	return ret;
2270 2271
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
2282 2283
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

2312 2313 2314 2315 2316
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2317
	mutex_lock(&ps->smi_mutex);
2318
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2319 2320
	if (ret < 0)
		goto error;
2321
	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
2322
error:
2323
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2324
	mutex_unlock(&ps->smi_mutex);
2325 2326 2327 2328 2329 2330 2331 2332 2333
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2334
	mutex_lock(&ps->smi_mutex);
2335
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2336 2337 2338
	if (ret < 0)
		goto error;

2339
	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
2340
error:
2341
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2342
	mutex_unlock(&ps->smi_mutex);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2365
	mutex_lock(&ps->smi_mutex);
2366
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2367
	mutex_unlock(&ps->smi_mutex);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2381
	mutex_lock(&ps->smi_mutex);
2382
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2383
	mutex_unlock(&ps->smi_mutex);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2397
	mutex_lock(&ps->smi_mutex);
2398
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2399
	mutex_unlock(&ps->smi_mutex);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2414
	mutex_lock(&ps->smi_mutex);
2415
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2416
	mutex_unlock(&ps->smi_mutex);
2417 2418 2419
	return ret;
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*alarm = false;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

2546 2547 2548 2549 2550 2551 2552
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
2553
#endif
2554 2555 2556
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
2557 2558
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
2559 2560 2561 2562 2563 2564 2565
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
2566 2567 2568
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
2569 2570 2571
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
2572 2573 2574 2575 2576 2577 2578 2579
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
2580 2581 2582 2583

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");