safexcel_cipher.c 50.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2017 Marvell
 *
 * Antoine Tenart <antoine.tenart@free-electrons.com>
 */

#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>

12
#include <crypto/aead.h>
13
#include <crypto/aes.h>
14
#include <crypto/authenc.h>
15
#include <crypto/ctr.h>
16
#include <crypto/internal/des.h>
17
#include <crypto/sha.h>
18
#include <crypto/skcipher.h>
19
#include <crypto/internal/aead.h>
20
#include <crypto/internal/skcipher.h>
21 22 23 24 25 26 27 28

#include "safexcel.h"

enum safexcel_cipher_direction {
	SAFEXCEL_ENCRYPT,
	SAFEXCEL_DECRYPT,
};

29 30
enum safexcel_cipher_alg {
	SAFEXCEL_DES,
31
	SAFEXCEL_3DES,
32 33 34
	SAFEXCEL_AES,
};

35 36 37 38 39
struct safexcel_cipher_ctx {
	struct safexcel_context base;
	struct safexcel_crypto_priv *priv;

	u32 mode;
40
	enum safexcel_cipher_alg alg;
41
	bool aead;
42 43

	__le32 key[8];
44
	u32 nonce;
45
	unsigned int key_len;
46 47

	/* All the below is AEAD specific */
48
	u32 hash_alg;
49
	u32 state_sz;
50 51
	u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
	u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
52 53
};

54
struct safexcel_cipher_req {
55
	enum safexcel_cipher_direction direction;
56 57
	/* Number of result descriptors associated to the request */
	unsigned int rdescs;
58
	bool needs_inv;
59
	int  nr_src, nr_dst;
60 61
};

62 63
static void safexcel_cipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
				  struct safexcel_command_desc *cdesc)
64
{
65
	u32 block_sz = 0;
66

67
	if (ctx->mode != CONTEXT_CONTROL_CRYPTO_MODE_ECB) {
68 69
		switch (ctx->alg) {
		case SAFEXCEL_DES:
70
			block_sz = DES_BLOCK_SIZE;
71 72
			cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
			break;
73
		case SAFEXCEL_3DES:
74
			block_sz = DES3_EDE_BLOCK_SIZE;
75 76
			cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
			break;
77
		case SAFEXCEL_AES:
78
			block_sz = AES_BLOCK_SIZE;
79 80 81
			cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
			break;
		}
82

83 84 85 86 87 88 89 90 91 92
		if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) {
			/* 32 bit nonce */
			cdesc->control_data.token[0] = ctx->nonce;
			/* 64 bit IV part */
			memcpy(&cdesc->control_data.token[1], iv, 8);
			/* 32 bit counter, start at 1 (big endian!) */
			cdesc->control_data.token[3] = cpu_to_be32(1);
		} else {
			memcpy(cdesc->control_data.token, iv, block_sz);
		}
93
	}
94 95 96 97 98 99 100 101 102
}

static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
				    struct safexcel_command_desc *cdesc,
				    u32 length)
{
	struct safexcel_token *token;

	safexcel_cipher_token(ctx, iv, cdesc);
103

104 105
	/* skip over worst case IV of 4 dwords, no need to be exact */
	token = (struct safexcel_token *)(cdesc->control_data.token + 4);
106 107 108

	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[0].packet_length = length;
109 110
	token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
			EIP197_TOKEN_STAT_LAST_HASH;
111
	token[0].instructions = EIP197_TOKEN_INS_LAST |
112
				EIP197_TOKEN_INS_TYPE_CRYPTO |
113 114 115
				EIP197_TOKEN_INS_TYPE_OUTPUT;
}

116 117 118 119 120 121 122
static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
				struct safexcel_command_desc *cdesc,
				enum safexcel_cipher_direction direction,
				u32 cryptlen, u32 assoclen, u32 digestsize)
{
	struct safexcel_token *token;

123
	safexcel_cipher_token(ctx, iv, cdesc);
124 125 126 127 128

	if (direction == SAFEXCEL_DECRYPT)
		cryptlen -= digestsize;

	if (direction == SAFEXCEL_ENCRYPT) {
129 130 131 132
		/* align end of instruction sequence to end of token */
		token = (struct safexcel_token *)(cdesc->control_data.token +
			 EIP197_MAX_TOKENS - 3);

133 134 135 136 137 138 139
		token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
		token[2].packet_length = digestsize;
		token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
					EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
	} else {
140 141 142 143
		/* align end of instruction sequence to end of token */
		token = (struct safexcel_token *)(cdesc->control_data.token +
			 EIP197_MAX_TOKENS - 4);

144 145 146 147 148 149 150 151 152 153 154 155 156
		token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
		token[2].packet_length = digestsize;
		token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;

		token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
		token[3].packet_length = digestsize |
					 EIP197_TOKEN_HASH_RESULT_VERIFY;
		token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
	}
157

158 159 160 161 162 163 164 165 166 167 168 169
	if (unlikely(!cryptlen)) {
		token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
		token[1].packet_length = assoclen;
		token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
		token[1].instructions = EIP197_TOKEN_INS_LAST |
					EIP197_TOKEN_INS_TYPE_HASH;
	} else {
		if (likely(assoclen)) {
			token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
			token[0].packet_length = assoclen;
			token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
		}
170

171 172 173 174 175 176 177 178
		token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
		token[1].packet_length = cryptlen;
		token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
		token[1].instructions = EIP197_TOKEN_INS_LAST |
					EIP197_TOKEN_INS_TYPE_CRYPTO |
					EIP197_TOKEN_INS_TYPE_HASH |
					EIP197_TOKEN_INS_TYPE_OUTPUT;
	}
179 180
}

181 182
static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
					const u8 *key, unsigned int len)
183 184 185
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
186
	struct safexcel_crypto_priv *priv = ctx->priv;
187 188 189
	struct crypto_aes_ctx aes;
	int ret, i;

190
	ret = aes_expandkey(&aes, key, len);
191 192 193 194 195
	if (ret) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return ret;
	}

196
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
197 198 199 200 201
		for (i = 0; i < len / sizeof(u32); i++) {
			if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
				ctx->base.needs_inv = true;
				break;
			}
202 203 204 205 206 207 208 209 210 211 212 213
		}
	}

	for (i = 0; i < len / sizeof(u32); i++)
		ctx->key[i] = cpu_to_le32(aes.key_enc[i]);

	ctx->key_len = len;

	memzero_explicit(&aes, sizeof(aes));
	return 0;
}

214 215
static int safexcel_aead_setkey(struct crypto_aead *ctfm, const u8 *key,
				unsigned int len)
216 217 218 219 220 221
{
	struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_ahash_export_state istate, ostate;
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct crypto_authenc_keys keys;
222 223
	struct crypto_aes_ctx aes;
	int err = -EINVAL;
224 225 226 227

	if (crypto_authenc_extractkeys(&keys, key, len) != 0)
		goto badkey;

228
	if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) {
229 230 231
		/* Minimum keysize is minimum AES key size + nonce size */
		if (keys.enckeylen < (AES_MIN_KEY_SIZE +
				      CTR_RFC3686_NONCE_SIZE))
232 233
			goto badkey;
		/* last 4 bytes of key are the nonce! */
234 235
		ctx->nonce = *(u32 *)(keys.enckey + keys.enckeylen -
				      CTR_RFC3686_NONCE_SIZE);
236
		/* exclude the nonce here */
237
		keys.enckeylen -= CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD;
238
	}
239 240

	/* Encryption key */
241 242
	switch (ctx->alg) {
	case SAFEXCEL_3DES:
243
		err = verify_aead_des3_key(ctfm, keys.enckey, keys.enckeylen);
244
		if (unlikely(err))
245 246 247 248 249 250 251 252 253 254
			goto badkey_expflags;
		break;
	case SAFEXCEL_AES:
		err = aes_expandkey(&aes, keys.enckey, keys.enckeylen);
		if (unlikely(err))
			goto badkey;
		break;
	default:
		dev_err(priv->dev, "aead: unsupported cipher algorithm\n");
		goto badkey;
255 256
	}

257
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
258 259 260 261
	    memcmp(ctx->key, keys.enckey, keys.enckeylen))
		ctx->base.needs_inv = true;

	/* Auth key */
262
	switch (ctx->hash_alg) {
263 264 265 266 267
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
		if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
268 269 270 271 272 273 274 275 276 277
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
		if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
		if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
278 279 280 281 282
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA384:
		if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
283 284 285 286 287
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA512:
		if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
288 289
	default:
		dev_err(priv->dev, "aead: unsupported hash algorithm\n");
290
		goto badkey;
291
	}
292 293 294 295

	crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
				    CRYPTO_TFM_RES_MASK);

296
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	    (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
	     memcmp(ctx->opad, ostate.state, ctx->state_sz)))
		ctx->base.needs_inv = true;

	/* Now copy the keys into the context */
	memcpy(ctx->key, keys.enckey, keys.enckeylen);
	ctx->key_len = keys.enckeylen;

	memcpy(ctx->ipad, &istate.state, ctx->state_sz);
	memcpy(ctx->opad, &ostate.state, ctx->state_sz);

	memzero_explicit(&keys, sizeof(keys));
	return 0;

badkey:
	crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
313
badkey_expflags:
314
	memzero_explicit(&keys, sizeof(keys));
315
	return err;
316 317
}

318
static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
319
				    struct crypto_async_request *async,
320
				    struct safexcel_cipher_req *sreq,
321 322 323 324 325
				    struct safexcel_command_desc *cdesc)
{
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ctrl_size;

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	if (ctx->aead) {
		if (sreq->direction == SAFEXCEL_ENCRYPT)
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
		else
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
	} else {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;

		/* The decryption control type is a combination of the
		 * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
		 * types.
		 */
		if (sreq->direction == SAFEXCEL_DECRYPT)
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
	}
341 342 343 344

	cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
	cdesc->control_data.control1 |= ctx->mode;

345 346
	if (ctx->aead)
		cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
347 348 349 350
						ctx->hash_alg;

	if (ctx->alg == SAFEXCEL_DES) {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES;
351 352
	} else if (ctx->alg == SAFEXCEL_3DES) {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_3DES;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	} else if (ctx->alg == SAFEXCEL_AES) {
		switch (ctx->key_len) {
		case AES_KEYSIZE_128:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
			break;
		case AES_KEYSIZE_192:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
			break;
		case AES_KEYSIZE_256:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
			break;
		default:
			dev_err(priv->dev, "aes keysize not supported: %u\n",
				ctx->key_len);
			return -EINVAL;
		}
369
	}
370 371

	ctrl_size = ctx->key_len / sizeof(u32);
372 373 374
	if (ctx->aead)
		/* Take in account the ipad+opad digests */
		ctrl_size += ctx->state_sz / sizeof(u32) * 2;
375 376 377 378 379
	cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);

	return 0;
}

380 381
static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
				      struct crypto_async_request *async,
382 383 384 385
				      struct scatterlist *src,
				      struct scatterlist *dst,
				      unsigned int cryptlen,
				      struct safexcel_cipher_req *sreq,
386
				      bool *should_complete, int *ret)
387
{
388 389 390
	struct skcipher_request *areq = skcipher_request_cast(async);
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq);
	struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(skcipher);
391 392 393 394 395
	struct safexcel_result_desc *rdesc;
	int ndesc = 0;

	*ret = 0;

396 397 398 399
	if (unlikely(!sreq->rdescs))
		return 0;

	while (sreq->rdescs--) {
400 401 402 403 404 405 406 407
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: result: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

408 409
		if (likely(!*ret))
			*ret = safexcel_rdesc_check_errors(priv, rdesc);
410 411

		ndesc++;
412
	}
413 414 415

	safexcel_complete(priv, ring);

416
	if (src == dst) {
417
		dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
418
	} else {
419 420
		dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
		dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
421 422
	}

423 424 425 426 427 428
	/*
	 * Update IV in req from last crypto output word for CBC modes
	 */
	if ((!ctx->aead) && (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) &&
	    (sreq->direction == SAFEXCEL_ENCRYPT)) {
		/* For encrypt take the last output word */
429
		sg_pcopy_to_buffer(dst, sreq->nr_dst, areq->iv,
430 431 432 433 434
				   crypto_skcipher_ivsize(skcipher),
				   (cryptlen -
				    crypto_skcipher_ivsize(skcipher)));
	}

435 436 437 438 439
	*should_complete = true;

	return ndesc;
}

440
static int safexcel_send_req(struct crypto_async_request *base, int ring,
441 442
			     struct safexcel_cipher_req *sreq,
			     struct scatterlist *src, struct scatterlist *dst,
443 444
			     unsigned int cryptlen, unsigned int assoclen,
			     unsigned int digestsize, u8 *iv, int *commands,
445
			     int *results)
446
{
447 448
	struct skcipher_request *areq = skcipher_request_cast(base);
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq);
449
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
450 451
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct safexcel_command_desc *cdesc;
452
	struct safexcel_command_desc *first_cdesc = NULL;
453
	struct safexcel_result_desc *rdesc, *first_rdesc = NULL;
454
	struct scatterlist *sg;
455 456 457 458 459 460
	unsigned int totlen;
	unsigned int totlen_src = cryptlen + assoclen;
	unsigned int totlen_dst = totlen_src;
	int n_cdesc = 0, n_rdesc = 0;
	int queued, i, ret = 0;
	bool first = true;
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	sreq->nr_src = sg_nents_for_len(src, totlen_src);

	if (ctx->aead) {
		/*
		 * AEAD has auth tag appended to output for encrypt and
		 * removed from the output for decrypt!
		 */
		if (sreq->direction == SAFEXCEL_DECRYPT)
			totlen_dst -= digestsize;
		else
			totlen_dst += digestsize;

		memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
		       ctx->ipad, ctx->state_sz);
		memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) /
		       sizeof(u32),
		       ctx->opad, ctx->state_sz);
	} else if ((ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) &&
		   (sreq->direction == SAFEXCEL_DECRYPT)) {
481 482 483 484 485
		/*
		 * Save IV from last crypto input word for CBC modes in decrypt
		 * direction. Need to do this first in case of inplace operation
		 * as it will be overwritten.
		 */
486
		sg_pcopy_to_buffer(src, sreq->nr_src, areq->iv,
487
				   crypto_skcipher_ivsize(skcipher),
488
				   (totlen_src -
489 490 491
				    crypto_skcipher_ivsize(skcipher)));
	}

492 493 494 495 496 497 498 499 500
	sreq->nr_dst = sg_nents_for_len(dst, totlen_dst);

	/*
	 * Remember actual input length, source buffer length may be
	 * updated in case of inline operation below.
	 */
	totlen = totlen_src;
	queued = totlen_src;

501
	if (src == dst) {
502 503 504 505 506 507
		sreq->nr_src = max(sreq->nr_src, sreq->nr_dst);
		sreq->nr_dst = sreq->nr_src;
		if (unlikely((totlen_src || totlen_dst) &&
		    (sreq->nr_src <= 0))) {
			dev_err(priv->dev, "In-place buffer not large enough (need %d bytes)!",
				max(totlen_src, totlen_dst));
508
			return -EINVAL;
509 510
		}
		dma_map_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
511
	} else {
512 513 514
		if (unlikely(totlen_src && (sreq->nr_src <= 0))) {
			dev_err(priv->dev, "Source buffer not large enough (need %d bytes)!",
				totlen_src);
515
			return -EINVAL;
516 517
		}
		dma_map_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
518

519 520 521 522 523
		if (unlikely(totlen_dst && (sreq->nr_dst <= 0))) {
			dev_err(priv->dev, "Dest buffer not large enough (need %d bytes)!",
				totlen_dst);
			dma_unmap_sg(priv->dev, src, sreq->nr_src,
				     DMA_TO_DEVICE);
524 525
			return -EINVAL;
		}
526
		dma_map_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
527 528 529 530
	}

	memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);

531 532 533
	/* The EIP cannot deal with zero length input packets! */
	if (totlen == 0)
		totlen = 1;
534

535
	/* command descriptors */
536
	for_each_sg(src, sg, sreq->nr_src, i) {
537 538 539 540 541 542
		int len = sg_dma_len(sg);

		/* Do not overflow the request */
		if (queued - len < 0)
			len = queued;

543 544
		cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
					   !(queued - len),
545
					   sg_dma_address(sg), len, totlen,
546 547 548 549 550 551 552 553 554
					   ctx->base.ctxr_dma);
		if (IS_ERR(cdesc)) {
			/* No space left in the command descriptor ring */
			ret = PTR_ERR(cdesc);
			goto cdesc_rollback;
		}
		n_cdesc++;

		if (n_cdesc == 1) {
555
			first_cdesc = cdesc;
556 557 558 559 560 561 562
		}

		queued -= len;
		if (!queued)
			break;
	}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	if (unlikely(!n_cdesc)) {
		/*
		 * Special case: zero length input buffer.
		 * The engine always needs the 1st command descriptor, however!
		 */
		first_cdesc = safexcel_add_cdesc(priv, ring, 1, 1, 0, 0, totlen,
						 ctx->base.ctxr_dma);
		n_cdesc = 1;
	}

	/* Add context control words and token to first command descriptor */
	safexcel_context_control(ctx, base, sreq, first_cdesc);
	if (ctx->aead)
		safexcel_aead_token(ctx, iv, first_cdesc,
				    sreq->direction, cryptlen,
				    assoclen, digestsize);
	else
		safexcel_skcipher_token(ctx, iv, first_cdesc,
					cryptlen);

583
	/* result descriptors */
584 585
	for_each_sg(dst, sg, sreq->nr_dst, i) {
		bool last = (i == sreq->nr_dst - 1);
586 587
		u32 len = sg_dma_len(sg);

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
		/* only allow the part of the buffer we know we need */
		if (len > totlen_dst)
			len = totlen_dst;
		if (unlikely(!len))
			break;
		totlen_dst -= len;

		/* skip over AAD space in buffer - not written */
		if (assoclen) {
			if (assoclen >= len) {
				assoclen -= len;
				continue;
			}
			rdesc = safexcel_add_rdesc(priv, ring, first, last,
						   sg_dma_address(sg) +
						   assoclen,
						   len - assoclen);
			assoclen = 0;
		} else {
			rdesc = safexcel_add_rdesc(priv, ring, first, last,
						   sg_dma_address(sg),
						   len);
		}
611 612 613 614 615
		if (IS_ERR(rdesc)) {
			/* No space left in the result descriptor ring */
			ret = PTR_ERR(rdesc);
			goto rdesc_rollback;
		}
616
		if (first) {
617
			first_rdesc = rdesc;
618 619
			first = false;
		}
620 621 622
		n_rdesc++;
	}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	if (unlikely(first)) {
		/*
		 * Special case: AEAD decrypt with only AAD data.
		 * In this case there is NO output data from the engine,
		 * but the engine still needs a result descriptor!
		 * Create a dummy one just for catching the result token.
		 */
		rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
		if (IS_ERR(rdesc)) {
			/* No space left in the result descriptor ring */
			ret = PTR_ERR(rdesc);
			goto rdesc_rollback;
		}
		first_rdesc = rdesc;
		n_rdesc = 1;
	}

640
	safexcel_rdr_req_set(priv, ring, first_rdesc, base);
641

642
	*commands = n_cdesc;
643
	*results = n_rdesc;
644 645 646 647 648 649 650 651 652
	return 0;

rdesc_rollback:
	for (i = 0; i < n_rdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
cdesc_rollback:
	for (i = 0; i < n_cdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);

653
	if (src == dst) {
654
		dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
655
	} else {
656 657
		dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
		dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
658 659 660 661 662 663 664
	}

	return ret;
}

static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
				      int ring,
665
				      struct crypto_async_request *base,
666
				      struct safexcel_cipher_req *sreq,
667 668
				      bool *should_complete, int *ret)
{
669
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
670 671 672 673 674
	struct safexcel_result_desc *rdesc;
	int ndesc = 0, enq_ret;

	*ret = 0;

675 676 677 678
	if (unlikely(!sreq->rdescs))
		return 0;

	while (sreq->rdescs--) {
679 680 681 682 683 684 685 686
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: invalidate: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

687 688
		if (likely(!*ret))
			*ret = safexcel_rdesc_check_errors(priv, rdesc);
689 690

		ndesc++;
691
	}
692 693 694 695 696 697 698 699 700 701 702 703

	safexcel_complete(priv, ring);

	if (ctx->base.exit_inv) {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);

		*should_complete = true;

		return ndesc;
	}

704 705
	ring = safexcel_select_ring(priv);
	ctx->base.ring = ring;
706

707
	spin_lock_bh(&priv->ring[ring].queue_lock);
708
	enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
709
	spin_unlock_bh(&priv->ring[ring].queue_lock);
710 711 712 713

	if (enq_ret != -EINPROGRESS)
		*ret = enq_ret;

714 715
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
716

717 718 719 720 721
	*should_complete = false;

	return ndesc;
}

722 723 724 725
static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
					   int ring,
					   struct crypto_async_request *async,
					   bool *should_complete, int *ret)
726 727 728 729 730 731 732
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	int err;

	if (sreq->needs_inv) {
		sreq->needs_inv = false;
733
		err = safexcel_handle_inv_result(priv, ring, async, sreq,
734 735
						 should_complete, ret);
	} else {
736 737
		err = safexcel_handle_req_result(priv, ring, async, req->src,
						 req->dst, req->cryptlen, sreq,
738 739 740 741 742 743
						 should_complete, ret);
	}

	return err;
}

744 745 746 747 748 749 750 751 752 753 754 755
static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
				       int ring,
				       struct crypto_async_request *async,
				       bool *should_complete, int *ret)
{
	struct aead_request *req = aead_request_cast(async);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	int err;

	if (sreq->needs_inv) {
		sreq->needs_inv = false;
756
		err = safexcel_handle_inv_result(priv, ring, async, sreq,
757 758 759 760 761 762 763 764 765 766 767
						 should_complete, ret);
	} else {
		err = safexcel_handle_req_result(priv, ring, async, req->src,
						 req->dst,
						 req->cryptlen + crypto_aead_authsize(tfm),
						 sreq, should_complete, ret);
	}

	return err;
}

768
static int safexcel_cipher_send_inv(struct crypto_async_request *base,
769
				    int ring, int *commands, int *results)
770
{
771
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
772 773 774
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

775
	ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring);
776 777 778 779 780 781 782 783 784
	if (unlikely(ret))
		return ret;

	*commands = 1;
	*results = 1;

	return 0;
}

785 786
static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
				  int *commands, int *results)
787 788
{
	struct skcipher_request *req = skcipher_request_cast(async);
789
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
790
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
791
	struct safexcel_crypto_priv *priv = ctx->priv;
792 793
	int ret;

794
	BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
795

796
	if (sreq->needs_inv) {
797
		ret = safexcel_cipher_send_inv(async, ring, commands, results);
798 799 800 801 802 803 804 805 806 807
	} else {
		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
		u8 input_iv[AES_BLOCK_SIZE];

		/*
		 * Save input IV in case of CBC decrypt mode
		 * Will be overwritten with output IV prior to use!
		 */
		memcpy(input_iv, req->iv, crypto_skcipher_ivsize(skcipher));

808
		ret = safexcel_send_req(async, ring, sreq, req->src,
809
					req->dst, req->cryptlen, 0, 0, input_iv,
810
					commands, results);
811
	}
812 813

	sreq->rdescs = *results;
814 815 816 817
	return ret;
}

static int safexcel_aead_send(struct crypto_async_request *async, int ring,
818
			      int *commands, int *results)
819 820 821 822 823 824 825 826
{
	struct aead_request *req = aead_request_cast(async);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

827
	BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
828 829

	if (sreq->needs_inv)
830
		ret = safexcel_cipher_send_inv(async, ring, commands, results);
831
	else
832 833
		ret = safexcel_send_req(async, ring, sreq, req->src, req->dst,
					req->cryptlen, req->assoclen,
834
					crypto_aead_authsize(tfm), req->iv,
835
					commands, results);
836
	sreq->rdescs = *results;
837 838 839
	return ret;
}

840 841 842 843
static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
				    struct crypto_async_request *base,
				    struct safexcel_cipher_req *sreq,
				    struct safexcel_inv_result *result)
844 845 846
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
847
	int ring = ctx->base.ring;
848

849
	init_completion(&result->completion);
850

851
	ctx = crypto_tfm_ctx(base->tfm);
852
	ctx->base.exit_inv = true;
853
	sreq->needs_inv = true;
854

855
	spin_lock_bh(&priv->ring[ring].queue_lock);
856
	crypto_enqueue_request(&priv->ring[ring].queue, base);
857
	spin_unlock_bh(&priv->ring[ring].queue_lock);
858

859 860
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
861

862
	wait_for_completion(&result->completion);
863

864
	if (result->error) {
865 866
		dev_warn(priv->dev,
			"cipher: sync: invalidate: completion error %d\n",
867 868
			 result->error);
		return result->error;
869 870 871 872 873
	}

	return 0;
}

874
static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
875
{
876
	EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
877
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
878 879 880 881 882 883 884 885 886 887 888
	struct safexcel_inv_result result = {};

	memset(req, 0, sizeof(struct skcipher_request));

	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				      safexcel_inv_complete, &result);
	skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));

	return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
{
	EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	struct safexcel_inv_result result = {};

	memset(req, 0, sizeof(struct aead_request));

	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				  safexcel_inv_complete, &result);
	aead_request_set_tfm(req, __crypto_aead_cast(tfm));

	return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}

904
static int safexcel_queue_req(struct crypto_async_request *base,
905
			struct safexcel_cipher_req *sreq,
906 907
			enum safexcel_cipher_direction dir, u32 mode,
			enum safexcel_cipher_alg alg)
908 909
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
910
	struct safexcel_crypto_priv *priv = ctx->priv;
911
	int ret, ring;
912

913
	sreq->needs_inv = false;
914
	sreq->direction = dir;
915
	ctx->alg = alg;
916 917 918
	ctx->mode = mode;

	if (ctx->base.ctxr) {
919
		if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) {
920 921 922
			sreq->needs_inv = true;
			ctx->base.needs_inv = false;
		}
923 924 925
	} else {
		ctx->base.ring = safexcel_select_ring(priv);
		ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
926
						 EIP197_GFP_FLAGS(*base),
927 928 929 930 931
						 &ctx->base.ctxr_dma);
		if (!ctx->base.ctxr)
			return -ENOMEM;
	}

932 933 934
	ring = ctx->base.ring;

	spin_lock_bh(&priv->ring[ring].queue_lock);
935
	ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
936
	spin_unlock_bh(&priv->ring[ring].queue_lock);
937

938 939
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
940 941 942 943 944 945

	return ret;
}

static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
{
946 947 948
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_AES);
949 950 951 952
}

static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
{
953 954 955
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_AES);
956 957 958 959 960 961 962 963 964
}

static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_alg_template *tmpl =
		container_of(tfm->__crt_alg, struct safexcel_alg_template,
			     alg.skcipher.base);

965 966
	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
				    sizeof(struct safexcel_cipher_req));
967

968 969 970 971
	ctx->priv = tmpl->priv;

	ctx->base.send = safexcel_skcipher_send;
	ctx->base.handle_result = safexcel_skcipher_handle_result;
972 973 974
	return 0;
}

975
static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
976 977 978
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

979
	memzero_explicit(ctx->key, sizeof(ctx->key));
980 981 982

	/* context not allocated, skip invalidation */
	if (!ctx->base.ctxr)
983
		return -ENOMEM;
984

985
	memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
986 987 988 989 990 991 992 993 994 995 996
	return 0;
}

static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	if (safexcel_cipher_cra_exit(tfm))
		return;
997

998
	if (priv->flags & EIP197_TRC_CACHE) {
999
		ret = safexcel_skcipher_exit_inv(tfm);
1000
		if (ret)
1001 1002
			dev_warn(priv->dev, "skcipher: invalidation error %d\n",
				 ret);
1003 1004 1005 1006
	} else {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);
	}
1007 1008
}

1009 1010 1011 1012 1013 1014 1015 1016 1017
static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	if (safexcel_cipher_cra_exit(tfm))
		return;

1018
	if (priv->flags & EIP197_TRC_CACHE) {
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		ret = safexcel_aead_exit_inv(tfm);
		if (ret)
			dev_warn(priv->dev, "aead: invalidation error %d\n",
				 ret);
	} else {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);
	}
}

1029 1030 1031
struct safexcel_alg_template safexcel_alg_ecb_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
1032
		.setkey = safexcel_skcipher_aes_setkey,
1033 1034 1035 1036 1037 1038 1039 1040
		.encrypt = safexcel_ecb_aes_encrypt,
		.decrypt = safexcel_ecb_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.base = {
			.cra_name = "ecb(aes)",
			.cra_driver_name = "safexcel-ecb-aes",
			.cra_priority = 300,
1041
			.cra_flags = CRYPTO_ALG_ASYNC |
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
{
1055 1056 1057
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_AES);
1058 1059 1060 1061
}

static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
{
1062 1063 1064
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_AES);
1065 1066 1067 1068 1069
}

struct safexcel_alg_template safexcel_alg_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
1070
		.setkey = safexcel_skcipher_aes_setkey,
1071 1072 1073 1074 1075 1076 1077 1078 1079
		.encrypt = safexcel_cbc_aes_encrypt,
		.decrypt = safexcel_cbc_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize = AES_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(aes)",
			.cra_driver_name = "safexcel-cbc-aes",
			.cra_priority = 300,
1080
			.cra_flags = CRYPTO_ALG_ASYNC |
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static int safexcel_ctr_aes_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD,
			SAFEXCEL_AES);
}

static int safexcel_ctr_aes_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD,
			SAFEXCEL_AES);
}

static int safexcel_skcipher_aesctr_setkey(struct crypto_skcipher *ctfm,
					   const u8 *key, unsigned int len)
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct crypto_aes_ctx aes;
	int ret, i;
	unsigned int keylen;

	/* last 4 bytes of key are the nonce! */
1117
	ctx->nonce = *(u32 *)(key + len - CTR_RFC3686_NONCE_SIZE);
1118
	/* exclude the nonce here */
1119
	keylen = len - CTR_RFC3686_NONCE_SIZE;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	ret = aes_expandkey(&aes, key, keylen);
	if (ret) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return ret;
	}

	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
		for (i = 0; i < keylen / sizeof(u32); i++) {
			if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
				ctx->base.needs_inv = true;
				break;
			}
		}
	}

	for (i = 0; i < keylen / sizeof(u32); i++)
		ctx->key[i] = cpu_to_le32(aes.key_enc[i]);

	ctx->key_len = keylen;

	memzero_explicit(&aes, sizeof(aes));
	return 0;
}

struct safexcel_alg_template safexcel_alg_ctr_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
		.setkey = safexcel_skcipher_aesctr_setkey,
		.encrypt = safexcel_ctr_aes_encrypt,
		.decrypt = safexcel_ctr_aes_decrypt,
1150 1151 1152 1153
		/* Add nonce size */
		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
		.ivsize = CTR_RFC3686_IV_SIZE,
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		.base = {
			.cra_name = "rfc3686(ctr(aes))",
			.cra_driver_name = "safexcel-ctr-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static int safexcel_cbc_des_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_DES);
}

static int safexcel_cbc_des_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_DES);
}

static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key,
			       unsigned int len)
{
1187
	struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm);
1188 1189
	int ret;

1190 1191 1192
	ret = verify_skcipher_des_key(ctfm, key);
	if (ret)
		return ret;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	/* if context exits and key changed, need to invalidate it */
	if (ctx->base.ctxr_dma)
		if (memcmp(ctx->key, key, len))
			ctx->base.needs_inv = true;

	memcpy(ctx->key, key, len);
	ctx->key_len = len;

	return 0;
}

struct safexcel_alg_template safexcel_alg_cbc_des = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
		.setkey = safexcel_des_setkey,
		.encrypt = safexcel_cbc_des_encrypt,
		.decrypt = safexcel_cbc_des_decrypt,
		.min_keysize = DES_KEY_SIZE,
		.max_keysize = DES_KEY_SIZE,
		.ivsize = DES_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(des)",
			.cra_driver_name = "safexcel-cbc-des",
			.cra_priority = 300,
1218
			.cra_flags = CRYPTO_ALG_ASYNC |
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_ecb_des_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_DES);
}

static int safexcel_ecb_des_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_DES);
}

struct safexcel_alg_template safexcel_alg_ecb_des = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
		.setkey = safexcel_des_setkey,
		.encrypt = safexcel_ecb_des_encrypt,
		.decrypt = safexcel_ecb_des_decrypt,
		.min_keysize = DES_KEY_SIZE,
		.max_keysize = DES_KEY_SIZE,
		.base = {
			.cra_name = "ecb(des)",
			.cra_driver_name = "safexcel-ecb-des",
			.cra_priority = 300,
1256
			.cra_flags = CRYPTO_ALG_ASYNC |
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

static int safexcel_cbc_des3_ede_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_3DES);
}

static int safexcel_cbc_des3_ede_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_3DES);
}

static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm,
				   const u8 *key, unsigned int len)
{
1285 1286
	struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm);
	int err;
1287

1288 1289
	err = verify_skcipher_des3_key(ctfm, key);
	if (err)
1290
		return err;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	/* if context exits and key changed, need to invalidate it */
	if (ctx->base.ctxr_dma) {
		if (memcmp(ctx->key, key, len))
			ctx->base.needs_inv = true;
	}

	memcpy(ctx->key, key, len);

	ctx->key_len = len;

	return 0;
}

struct safexcel_alg_template safexcel_alg_cbc_des3_ede = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
		.setkey = safexcel_des3_ede_setkey,
		.encrypt = safexcel_cbc_des3_ede_encrypt,
		.decrypt = safexcel_cbc_des3_ede_decrypt,
		.min_keysize = DES3_EDE_KEY_SIZE,
		.max_keysize = DES3_EDE_KEY_SIZE,
		.ivsize = DES3_EDE_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(des3_ede)",
			.cra_driver_name = "safexcel-cbc-des3_ede",
			.cra_priority = 300,
1318
			.cra_flags = CRYPTO_ALG_ASYNC |
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_ecb_des3_ede_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_3DES);
}

static int safexcel_ecb_des3_ede_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_3DES);
}

struct safexcel_alg_template safexcel_alg_ecb_des3_ede = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
		.setkey = safexcel_des3_ede_setkey,
		.encrypt = safexcel_ecb_des3_ede_encrypt,
		.decrypt = safexcel_ecb_des3_ede_decrypt,
		.min_keysize = DES3_EDE_KEY_SIZE,
		.max_keysize = DES3_EDE_KEY_SIZE,
		.base = {
			.cra_name = "ecb(des3_ede)",
			.cra_driver_name = "safexcel-ecb-des3_ede",
			.cra_priority = 300,
1356
			.cra_flags = CRYPTO_ALG_ASYNC |
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

1368
static int safexcel_aead_encrypt_aes(struct aead_request *req)
1369 1370 1371
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

1372 1373
	return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
1374 1375
}

1376
static int safexcel_aead_decrypt_aes(struct aead_request *req)
1377 1378 1379
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

1380 1381
	return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
}

static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_alg_template *tmpl =
		container_of(tfm->__crt_alg, struct safexcel_alg_template,
			     alg.aead.base);

	crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
				sizeof(struct safexcel_cipher_req));

	ctx->priv = tmpl->priv;

1396
	ctx->alg  = SAFEXCEL_AES; /* default */
1397 1398 1399 1400 1401 1402
	ctx->aead = true;
	ctx->base.send = safexcel_aead_send;
	ctx->base.handle_result = safexcel_aead_handle_result;
	return 0;
}

1403 1404 1405 1406 1407
static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1408
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
1409 1410 1411 1412 1413 1414 1415
	ctx->state_sz = SHA1_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
1416 1417 1418
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1419 1420 1421 1422 1423 1424
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA1_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha1),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
			.cra_priority = 300,
1425
			.cra_flags = CRYPTO_ALG_ASYNC |
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha1_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

1437 1438 1439 1440 1441
static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1442
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1443 1444 1445 1446 1447 1448 1449
	ctx->state_sz = SHA256_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
1450 1451 1452
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1453 1454 1455 1456 1457 1458
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA256_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha256),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
			.cra_priority = 300,
1459
			.cra_flags = CRYPTO_ALG_ASYNC |
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha256_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1470 1471 1472 1473 1474 1475

static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1476
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1477 1478 1479 1480 1481 1482 1483
	ctx->state_sz = SHA256_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
1484 1485 1486
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1487 1488 1489 1490 1491 1492
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA224_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha224),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
			.cra_priority = 300,
1493
			.cra_flags = CRYPTO_ALG_ASYNC |
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha224_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1504 1505 1506 1507 1508 1509

static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1510
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
1511 1512 1513 1514 1515 1516 1517
	ctx->state_sz = SHA512_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
1518 1519 1520
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1521 1522 1523 1524 1525 1526
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA512_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha512),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes",
			.cra_priority = 300,
1527
			.cra_flags = CRYPTO_ALG_ASYNC |
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha512_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1538 1539 1540 1541 1542 1543

static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1544
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
1545 1546 1547 1548 1549 1550 1551
	ctx->state_sz = SHA512_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
1552 1553 1554
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1555 1556 1557 1558 1559 1560
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA384_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha384),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes",
			.cra_priority = 300,
1561
			.cra_flags = CRYPTO_ALG_ASYNC |
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha384_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581
static int safexcel_aead_sha1_des3_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_sha1_cra_init(tfm);
	ctx->alg = SAFEXCEL_3DES; /* override default */
	return 0;
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static int safexcel_aead_encrypt_3des(struct aead_request *req)
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

	return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_3DES);
}

static int safexcel_aead_decrypt_3des(struct aead_request *req)
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

	return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_3DES);
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_des3_ede = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_3des,
		.decrypt = safexcel_aead_decrypt_3des,
		.ivsize = DES3_EDE_BLOCK_SIZE,
		.maxauthsize = SHA1_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
			.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-des3_ede",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
			.cra_init = safexcel_aead_sha1_des3_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_aead_sha1_ctr_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_sha1_cra_init(tfm);
	ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_ctr_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1637
		.ivsize = CTR_RFC3686_IV_SIZE,
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
		.maxauthsize = SHA1_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
			.cra_driver_name = "safexcel-authenc-hmac-sha1-ctr-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha1_ctr_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_aead_sha256_ctr_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_sha256_cra_init(tfm);
	ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_ctr_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1670
		.ivsize = CTR_RFC3686_IV_SIZE,
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		.maxauthsize = SHA256_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
			.cra_driver_name = "safexcel-authenc-hmac-sha256-ctr-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha256_ctr_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_aead_sha224_ctr_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_sha224_cra_init(tfm);
	ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_ctr_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1703
		.ivsize = CTR_RFC3686_IV_SIZE,
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		.maxauthsize = SHA224_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha224),rfc3686(ctr(aes)))",
			.cra_driver_name = "safexcel-authenc-hmac-sha224-ctr-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha224_ctr_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_aead_sha512_ctr_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_sha512_cra_init(tfm);
	ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_ctr_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1736
		.ivsize = CTR_RFC3686_IV_SIZE,
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		.maxauthsize = SHA512_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
			.cra_driver_name = "safexcel-authenc-hmac-sha512-ctr-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha512_ctr_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_aead_sha384_ctr_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_sha384_cra_init(tfm);
	ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_ctr_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
	.alg.aead = {
		.setkey = safexcel_aead_setkey,
		.encrypt = safexcel_aead_encrypt_aes,
		.decrypt = safexcel_aead_decrypt_aes,
1769
		.ivsize = CTR_RFC3686_IV_SIZE,
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		.maxauthsize = SHA384_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
			.cra_driver_name = "safexcel-authenc-hmac-sha384-ctr-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha384_ctr_cra_init,
1781 1782 1783 1784 1785
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};