arm_pmu.c 25.2 KB
Newer Older
1 2 3 4 5 6
#undef DEBUG

/*
 * ARM performance counter support.
 *
 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7
 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8
 *
9
 * This code is based on the sparc64 perf event code, which is in turn based
10
 * on the x86 code.
11 12 13
 */
#define pr_fmt(fmt) "hw perfevents: " fmt

14
#include <linux/bitmap.h>
15
#include <linux/cpumask.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/export.h>
18
#include <linux/kernel.h>
19
#include <linux/of_device.h>
20
#include <linux/perf/arm_pmu.h>
21
#include <linux/platform_device.h>
22
#include <linux/slab.h>
23
#include <linux/sched/clock.h>
24
#include <linux/spinlock.h>
25 26
#include <linux/irq.h>
#include <linux/irqdesc.h>
27

28
#include <asm/cputype.h>
29 30 31
#include <asm/irq_regs.h>

static int
M
Mark Rutland 已提交
32 33 34 35 36
armpmu_map_cache_event(const unsigned (*cache_map)
				      [PERF_COUNT_HW_CACHE_MAX]
				      [PERF_COUNT_HW_CACHE_OP_MAX]
				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
		       u64 config)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
{
	unsigned int cache_type, cache_op, cache_result, ret;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

M
Mark Rutland 已提交
52
	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53 54 55 56 57 58 59

	if (ret == CACHE_OP_UNSUPPORTED)
		return -ENOENT;

	return ret;
}

60
static int
61
armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62
{
63 64 65 66 67 68
	int mapping;

	if (config >= PERF_COUNT_HW_MAX)
		return -EINVAL;

	mapping = (*event_map)[config];
M
Mark Rutland 已提交
69
	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 71 72
}

static int
M
Mark Rutland 已提交
73
armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74
{
M
Mark Rutland 已提交
75 76 77
	return (int)(config & raw_event_mask);
}

78 79 80 81 82 83 84 85
int
armpmu_map_event(struct perf_event *event,
		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
		 const unsigned (*cache_map)
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX],
		 u32 raw_event_mask)
M
Mark Rutland 已提交
86 87
{
	u64 config = event->attr.config;
88
	int type = event->attr.type;
M
Mark Rutland 已提交
89

90 91 92 93
	if (type == event->pmu->type)
		return armpmu_map_raw_event(raw_event_mask, config);

	switch (type) {
M
Mark Rutland 已提交
94
	case PERF_TYPE_HARDWARE:
95
		return armpmu_map_hw_event(event_map, config);
M
Mark Rutland 已提交
96 97 98 99 100 101 102
	case PERF_TYPE_HW_CACHE:
		return armpmu_map_cache_event(cache_map, config);
	case PERF_TYPE_RAW:
		return armpmu_map_raw_event(raw_event_mask, config);
	}

	return -ENOENT;
103 104
}

105
int armpmu_event_set_period(struct perf_event *event)
106
{
107
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108
	struct hw_perf_event *hwc = &event->hw;
109
	s64 left = local64_read(&hwc->period_left);
110 111 112 113 114
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
115
		local64_set(&hwc->period_left, left);
116 117 118 119 120 121
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
122
		local64_set(&hwc->period_left, left);
123 124 125 126
		hwc->last_period = period;
		ret = 1;
	}

127 128 129 130 131 132 133 134
	/*
	 * Limit the maximum period to prevent the counter value
	 * from overtaking the one we are about to program. In
	 * effect we are reducing max_period to account for
	 * interrupt latency (and we are being very conservative).
	 */
	if (left > (armpmu->max_period >> 1))
		left = armpmu->max_period >> 1;
135

136
	local64_set(&hwc->prev_count, (u64)-left);
137

138
	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139 140 141 142 143 144

	perf_event_update_userpage(event);

	return ret;
}

145
u64 armpmu_event_update(struct perf_event *event)
146
{
147
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148
	struct hw_perf_event *hwc = &event->hw;
149
	u64 delta, prev_raw_count, new_raw_count;
150 151

again:
152
	prev_raw_count = local64_read(&hwc->prev_count);
153
	new_raw_count = armpmu->read_counter(event);
154

155
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156 157 158
			     new_raw_count) != prev_raw_count)
		goto again;

159
	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160

161 162
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
163 164 165 166 167

	return new_raw_count;
}

static void
P
Peter Zijlstra 已提交
168
armpmu_read(struct perf_event *event)
169
{
170
	armpmu_event_update(event);
171 172 173
}

static void
P
Peter Zijlstra 已提交
174
armpmu_stop(struct perf_event *event, int flags)
175
{
176
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177 178
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
179 180 181 182 183
	/*
	 * ARM pmu always has to update the counter, so ignore
	 * PERF_EF_UPDATE, see comments in armpmu_start().
	 */
	if (!(hwc->state & PERF_HES_STOPPED)) {
184 185
		armpmu->disable(event);
		armpmu_event_update(event);
P
Peter Zijlstra 已提交
186 187
		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	}
188 189
}

190
static void armpmu_start(struct perf_event *event, int flags)
191
{
192
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193 194
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
195 196 197 198 199 200 201 202
	/*
	 * ARM pmu always has to reprogram the period, so ignore
	 * PERF_EF_RELOAD, see the comment below.
	 */
	if (flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;
203 204
	/*
	 * Set the period again. Some counters can't be stopped, so when we
P
Peter Zijlstra 已提交
205
	 * were stopped we simply disabled the IRQ source and the counter
206 207 208 209
	 * may have been left counting. If we don't do this step then we may
	 * get an interrupt too soon or *way* too late if the overflow has
	 * happened since disabling.
	 */
210 211
	armpmu_event_set_period(event);
	armpmu->enable(event);
212 213
}

P
Peter Zijlstra 已提交
214 215 216
static void
armpmu_del(struct perf_event *event, int flags)
{
217
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
M
Mark Rutland 已提交
218
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
P
Peter Zijlstra 已提交
219 220 221 222
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	armpmu_stop(event, PERF_EF_UPDATE);
223 224
	hw_events->events[idx] = NULL;
	clear_bit(idx, hw_events->used_mask);
225 226
	if (armpmu->clear_event_idx)
		armpmu->clear_event_idx(hw_events, event);
P
Peter Zijlstra 已提交
227 228 229 230

	perf_event_update_userpage(event);
}

231
static int
P
Peter Zijlstra 已提交
232
armpmu_add(struct perf_event *event, int flags)
233
{
234
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
M
Mark Rutland 已提交
235
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236 237 238
	struct hw_perf_event *hwc = &event->hw;
	int idx;

239 240 241 242
	/* An event following a process won't be stopped earlier */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return -ENOENT;

243
	/* If we don't have a space for the counter then finish early. */
244
	idx = armpmu->get_event_idx(hw_events, event);
245 246
	if (idx < 0)
		return idx;
247 248 249 250 251 252

	/*
	 * If there is an event in the counter we are going to use then make
	 * sure it is disabled.
	 */
	event->hw.idx = idx;
253
	armpmu->disable(event);
254
	hw_events->events[idx] = event;
255

P
Peter Zijlstra 已提交
256 257 258
	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		armpmu_start(event, PERF_EF_RELOAD);
259 260 261 262

	/* Propagate our changes to the userspace mapping. */
	perf_event_update_userpage(event);

263
	return 0;
264 265 266
}

static int
267 268
validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
			       struct perf_event *event)
269
{
270
	struct arm_pmu *armpmu;
271

272 273 274
	if (is_software_event(event))
		return 1;

275 276 277 278 279 280 281 282
	/*
	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
	 * core perf code won't check that the pmu->ctx == leader->ctx
	 * until after pmu->event_init(event).
	 */
	if (event->pmu != pmu)
		return 0;

283
	if (event->state < PERF_EVENT_STATE_OFF)
284 285 286
		return 1;

	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
287
		return 1;
288

289
	armpmu = to_arm_pmu(event->pmu);
290
	return armpmu->get_event_idx(hw_events, event) >= 0;
291 292 293 294 295 296
}

static int
validate_group(struct perf_event *event)
{
	struct perf_event *sibling, *leader = event->group_leader;
297
	struct pmu_hw_events fake_pmu;
298

299 300 301 302
	/*
	 * Initialise the fake PMU. We only need to populate the
	 * used_mask for the purposes of validation.
	 */
303
	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
304

305
	if (!validate_event(event->pmu, &fake_pmu, leader))
306
		return -EINVAL;
307 308

	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
309
		if (!validate_event(event->pmu, &fake_pmu, sibling))
310
			return -EINVAL;
311 312
	}

313
	if (!validate_event(event->pmu, &fake_pmu, event))
314
		return -EINVAL;
315 316 317 318

	return 0;
}

319
static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
320
{
321 322 323
	struct arm_pmu *armpmu;
	struct platform_device *plat_device;
	struct arm_pmu_platdata *plat;
324 325
	int ret;
	u64 start_clock, finish_clock;
326

327 328 329 330 331 332 333
	/*
	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
	 * do any necessary shifting, we just need to perform the first
	 * dereference.
	 */
	armpmu = *(void **)dev;
334 335
	plat_device = armpmu->plat_device;
	plat = dev_get_platdata(&plat_device->dev);
336

337
	start_clock = sched_clock();
338
	if (plat && plat->handle_irq)
339
		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
340
	else
341
		ret = armpmu->handle_irq(irq, armpmu);
342 343 344 345
	finish_clock = sched_clock();

	perf_sample_event_took(finish_clock - start_clock);
	return ret;
346 347
}

348 349 350 351 352 353 354
static int
event_requires_mode_exclusion(struct perf_event_attr *attr)
{
	return attr->exclude_idle || attr->exclude_user ||
	       attr->exclude_kernel || attr->exclude_hv;
}

355 356 357
static int
__hw_perf_event_init(struct perf_event *event)
{
358
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
359
	struct hw_perf_event *hwc = &event->hw;
360
	int mapping;
361

M
Mark Rutland 已提交
362
	mapping = armpmu->map_event(event);
363 364 365 366 367 368 369

	if (mapping < 0) {
		pr_debug("event %x:%llx not supported\n", event->attr.type,
			 event->attr.config);
		return mapping;
	}

370 371 372 373 374 375 376 377 378 379 380
	/*
	 * We don't assign an index until we actually place the event onto
	 * hardware. Use -1 to signify that we haven't decided where to put it
	 * yet. For SMP systems, each core has it's own PMU so we can't do any
	 * clever allocation or constraints checking at this point.
	 */
	hwc->idx		= -1;
	hwc->config_base	= 0;
	hwc->config		= 0;
	hwc->event_base		= 0;

381 382 383
	/*
	 * Check whether we need to exclude the counter from certain modes.
	 */
384 385 386
	if ((!armpmu->set_event_filter ||
	     armpmu->set_event_filter(hwc, &event->attr)) &&
	     event_requires_mode_exclusion(&event->attr)) {
387 388
		pr_debug("ARM performance counters do not support "
			 "mode exclusion\n");
389
		return -EOPNOTSUPP;
390 391 392
	}

	/*
393
	 * Store the event encoding into the config_base field.
394
	 */
395
	hwc->config_base	    |= (unsigned long)mapping;
396

397
	if (!is_sampling_event(event)) {
398 399 400 401 402 403 404
		/*
		 * For non-sampling runs, limit the sample_period to half
		 * of the counter width. That way, the new counter value
		 * is far less likely to overtake the previous one unless
		 * you have some serious IRQ latency issues.
		 */
		hwc->sample_period  = armpmu->max_period >> 1;
405
		hwc->last_period    = hwc->sample_period;
406
		local64_set(&hwc->period_left, hwc->sample_period);
407 408 409
	}

	if (event->group_leader != event) {
410
		if (validate_group(event) != 0)
411 412 413
			return -EINVAL;
	}

414
	return 0;
415 416
}

417
static int armpmu_event_init(struct perf_event *event)
418
{
419
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
420

421 422 423 424 425 426 427 428 429 430 431
	/*
	 * Reject CPU-affine events for CPUs that are of a different class to
	 * that which this PMU handles. Process-following events (where
	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
	 * reject them later (in armpmu_add) if they're scheduled on a
	 * different class of CPU.
	 */
	if (event->cpu != -1 &&
		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
		return -ENOENT;

432 433 434 435
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

M
Mark Rutland 已提交
436
	if (armpmu->map_event(event) == -ENOENT)
437 438
		return -ENOENT;

439
	return __hw_perf_event_init(event);
440 441
}

P
Peter Zijlstra 已提交
442
static void armpmu_enable(struct pmu *pmu)
443
{
444
	struct arm_pmu *armpmu = to_arm_pmu(pmu);
M
Mark Rutland 已提交
445
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
446
	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
447

448 449 450 451
	/* For task-bound events we may be called on other CPUs */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return;

452
	if (enabled)
453
		armpmu->start(armpmu);
454 455
}

P
Peter Zijlstra 已提交
456
static void armpmu_disable(struct pmu *pmu)
457
{
458
	struct arm_pmu *armpmu = to_arm_pmu(pmu);
459 460 461 462 463

	/* For task-bound events we may be called on other CPUs */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return;

464
	armpmu->stop(armpmu);
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478
/*
 * In heterogeneous systems, events are specific to a particular
 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 * the same microarchitecture.
 */
static int armpmu_filter_match(struct perf_event *event)
{
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
	unsigned int cpu = smp_processor_id();
	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static ssize_t armpmu_cpumask_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
}

static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);

static struct attribute *armpmu_common_attrs[] = {
	&dev_attr_cpus.attr,
	NULL,
};

static struct attribute_group armpmu_common_attr_group = {
	.attrs = armpmu_common_attrs,
};

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/* Set at runtime when we know what CPU type we are. */
static struct arm_pmu *__oprofile_cpu_pmu;

/*
 * Despite the names, these two functions are CPU-specific and are used
 * by the OProfile/perf code.
 */
const char *perf_pmu_name(void)
{
	if (!__oprofile_cpu_pmu)
		return NULL;

	return __oprofile_cpu_pmu->name;
}
EXPORT_SYMBOL_GPL(perf_pmu_name);

int perf_num_counters(void)
{
	int max_events = 0;

	if (__oprofile_cpu_pmu != NULL)
		max_events = __oprofile_cpu_pmu->num_events;

	return max_events;
}
EXPORT_SYMBOL_GPL(perf_num_counters);

524
static void cpu_pmu_free_irqs(struct arm_pmu *cpu_pmu)
525
{
526
	int cpu;
527 528
	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;

529 530 531 532 533 534 535 536
	for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
		int irq = per_cpu(hw_events->irq, cpu);
		if (!irq)
			continue;

		if (irq_is_percpu(irq)) {
			free_percpu_irq(irq, &hw_events->percpu_pmu);
			break;
537
		}
538 539 540 541 542

		if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
			continue;

		free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
543 544 545
	}
}

546
static int cpu_pmu_request_irqs(struct arm_pmu *cpu_pmu, irq_handler_t handler)
547
{
548
	int cpu, err;
549 550
	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;

551 552 553 554
	for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
		int irq = per_cpu(hw_events->irq, cpu);
		if (!irq)
			continue;
555

556 557 558
		if (irq_is_percpu(irq)) {
			err = request_percpu_irq(irq, handler, "arm-pmu",
						 &hw_events->percpu_pmu);
559 560 561 562 563
			if (err) {
				pr_err("unable to request IRQ%d for ARM PMU counters\n",
					irq);
			}

564
			return err;
565 566 567 568 569 570 571 572 573 574 575 576
		}

		err = request_irq(irq, handler,
				  IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
				  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
		if (err) {
			pr_err("unable to request IRQ%d for ARM PMU counters\n",
				irq);
			return err;
		}

		cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
577 578 579 580 581
	}

	return 0;
}

582 583 584 585 586 587
static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
{
	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
	return per_cpu(hw_events->irq, cpu);
}

588 589 590 591 592 593
/*
 * PMU hardware loses all context when a CPU goes offline.
 * When a CPU is hotplugged back in, since some hardware registers are
 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 * junk values out of them.
 */
594
static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
595
{
596
	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
597
	int irq;
598

599 600 601 602
	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
		return 0;
	if (pmu->reset)
		pmu->reset(pmu);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	irq = armpmu_get_cpu_irq(pmu, cpu);
	if (irq) {
		if (irq_is_percpu(irq)) {
			enable_percpu_irq(irq, IRQ_TYPE_NONE);
			return 0;
		}

		if (irq_force_affinity(irq, cpumask_of(cpu)) &&
		    num_possible_cpus() > 1) {
			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
				irq, cpu);
		}
	}

	return 0;
}

static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
{
	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
	int irq;

	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
		return 0;

	irq = armpmu_get_cpu_irq(pmu, cpu);
	if (irq && irq_is_percpu(irq))
		disable_percpu_irq(irq);

633
	return 0;
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
#ifdef CONFIG_CPU_PM
static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
{
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
	struct perf_event *event;
	int idx;

	for (idx = 0; idx < armpmu->num_events; idx++) {
		/*
		 * If the counter is not used skip it, there is no
		 * need of stopping/restarting it.
		 */
		if (!test_bit(idx, hw_events->used_mask))
			continue;

		event = hw_events->events[idx];

		switch (cmd) {
		case CPU_PM_ENTER:
			/*
			 * Stop and update the counter
			 */
			armpmu_stop(event, PERF_EF_UPDATE);
			break;
		case CPU_PM_EXIT:
		case CPU_PM_ENTER_FAILED:
662 663 664 665 666 667 668 669 670 671 672 673 674
			 /*
			  * Restore and enable the counter.
			  * armpmu_start() indirectly calls
			  *
			  * perf_event_update_userpage()
			  *
			  * that requires RCU read locking to be functional,
			  * wrap the call within RCU_NONIDLE to make the
			  * RCU subsystem aware this cpu is not idle from
			  * an RCU perspective for the armpmu_start() call
			  * duration.
			  */
			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
			break;
		default:
			break;
		}
	}
}

static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
			     void *v)
{
	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);

	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return NOTIFY_DONE;

	/*
	 * Always reset the PMU registers on power-up even if
	 * there are no events running.
	 */
	if (cmd == CPU_PM_EXIT && armpmu->reset)
		armpmu->reset(armpmu);

	if (!enabled)
		return NOTIFY_OK;

	switch (cmd) {
	case CPU_PM_ENTER:
		armpmu->stop(armpmu);
		cpu_pm_pmu_setup(armpmu, cmd);
		break;
	case CPU_PM_EXIT:
		cpu_pm_pmu_setup(armpmu, cmd);
	case CPU_PM_ENTER_FAILED:
		armpmu->start(armpmu);
		break;
	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
}

static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
{
	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
}

static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
{
	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
}
#else
static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
#endif

734 735 736 737
static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
{
	int err;

738 739 740 741 742 743
	err = cpu_pmu_request_irqs(cpu_pmu, armpmu_dispatch_irq);
	if (err)
		goto out;

	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
				       &cpu_pmu->node);
744
	if (err)
745
		goto out;
746

747 748 749 750
	err = cpu_pm_pmu_register(cpu_pmu);
	if (err)
		goto out_unregister;

751 752
	return 0;

753
out_unregister:
754 755
	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
					    &cpu_pmu->node);
756
out:
757
	cpu_pmu_free_irqs(cpu_pmu);
758 759 760 761 762
	return err;
}

static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
{
763
	cpu_pm_pmu_unregister(cpu_pmu);
764 765
	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
					    &cpu_pmu->node);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
}

/*
 * CPU PMU identification and probing.
 */
static int probe_current_pmu(struct arm_pmu *pmu,
			     const struct pmu_probe_info *info)
{
	int cpu = get_cpu();
	unsigned int cpuid = read_cpuid_id();
	int ret = -ENODEV;

	pr_info("probing PMU on CPU %d\n", cpu);

	for (; info->init != NULL; info++) {
		if ((cpuid & info->mask) != info->cpuid)
			continue;
		ret = info->init(pmu);
		break;
	}

	put_cpu();
	return ret;
}

791
static int pmu_parse_percpu_irq(struct arm_pmu *pmu, int irq)
792
{
793 794
	int cpu, ret;
	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
795

796 797 798
	ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
	if (ret)
		return ret;
799

800 801
	for_each_cpu(cpu, &pmu->supported_cpus)
		per_cpu(hw_events->irq, cpu) = irq;
802

803 804
	return 0;
}
805

806 807 808 809
static bool pmu_has_irq_affinity(struct device_node *node)
{
	return !!of_find_property(node, "interrupt-affinity", NULL);
}
810

811 812 813 814
static int pmu_parse_irq_affinity(struct device_node *node, int i)
{
	struct device_node *dn;
	int cpu;
815

816 817 818 819 820 821 822
	/*
	 * If we don't have an interrupt-affinity property, we guess irq
	 * affinity matches our logical CPU order, as we used to assume.
	 * This is fragile, so we'll warn in pmu_parse_irqs().
	 */
	if (!pmu_has_irq_affinity(node))
		return i;
823

824 825 826 827 828 829
	dn = of_parse_phandle(node, "interrupt-affinity", i);
	if (!dn) {
		pr_warn("failed to parse interrupt-affinity[%d] for %s\n",
			i, node->name);
		return -EINVAL;
	}
830

831 832 833 834 835 836
	/* Now look up the logical CPU number */
	for_each_possible_cpu(cpu) {
		struct device_node *cpu_dn;

		cpu_dn = of_cpu_device_node_get(cpu);
		of_node_put(cpu_dn);
837

838
		if (dn == cpu_dn)
839
			break;
840
	}
841

842 843 844
	if (cpu >= nr_cpu_ids) {
		pr_warn("failed to find logical CPU for %s\n", dn->name);
	}
845

846
	of_node_put(dn);
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	return cpu;
}

static int pmu_parse_irqs(struct arm_pmu *pmu)
{
	int i = 0, irqs;
	struct platform_device *pdev = pmu->plat_device;
	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;

	irqs = platform_irq_count(pdev);
	if (irqs < 0) {
		pr_err("unable to count PMU IRQs\n");
		return irqs;
	}

	/*
	 * In this case we have no idea which CPUs are covered by the PMU.
	 * To match our prior behaviour, we assume all CPUs in this case.
	 */
	if (irqs == 0) {
		pr_warn("no irqs for PMU, sampling events not supported\n");
		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
		cpumask_setall(&pmu->supported_cpus);
		return 0;
	}
873

874
	if (irqs == 1) {
875
		int irq = platform_get_irq(pdev, 0);
876 877 878
		if (irq && irq_is_percpu(irq))
			return pmu_parse_percpu_irq(pmu, irq);
	}
879

880 881 882 883
	if (!pmu_has_irq_affinity(pdev->dev.of_node)) {
		pr_warn("no interrupt-affinity property for %s, guessing.\n",
			of_node_full_name(pdev->dev.of_node));
	}
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	/*
	 * Some platforms have all PMU IRQs OR'd into a single IRQ, with a
	 * special platdata function that attempts to demux them.
	 */
	if (dev_get_platdata(&pdev->dev))
		cpumask_setall(&pmu->supported_cpus);

	for (i = 0; i < irqs; i++) {
		int cpu, irq;

		irq = platform_get_irq(pdev, i);
		if (WARN_ON(irq <= 0))
			continue;

		if (irq_is_percpu(irq)) {
			pr_warn("multiple PPIs or mismatched SPI/PPI detected\n");
			return -EINVAL;
902
		}
903

904 905 906 907 908 909 910 911 912 913 914 915 916 917
		cpu = pmu_parse_irq_affinity(pdev->dev.of_node, i);
		if (cpu < 0)
			return cpu;
		if (cpu >= nr_cpu_ids)
			continue;

		if (per_cpu(hw_events->irq, cpu)) {
			pr_warn("multiple PMU IRQs for the same CPU detected\n");
			return -EINVAL;
		}

		per_cpu(hw_events->irq, cpu) = irq;
		cpumask_set_cpu(cpu, &pmu->supported_cpus);
	}
918 919 920 921

	return 0;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static struct arm_pmu *armpmu_alloc(void)
{
	struct arm_pmu *pmu;
	int cpu;

	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
	if (!pmu) {
		pr_info("failed to allocate PMU device!\n");
		goto out;
	}

	pmu->hw_events = alloc_percpu(struct pmu_hw_events);
	if (!pmu->hw_events) {
		pr_info("failed to allocate per-cpu PMU data.\n");
		goto out_free_pmu;
	}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	pmu->pmu = (struct pmu) {
		.pmu_enable	= armpmu_enable,
		.pmu_disable	= armpmu_disable,
		.event_init	= armpmu_event_init,
		.add		= armpmu_add,
		.del		= armpmu_del,
		.start		= armpmu_start,
		.stop		= armpmu_stop,
		.read		= armpmu_read,
		.filter_match	= armpmu_filter_match,
		.attr_groups	= pmu->attr_groups,
		/*
		 * This is a CPU PMU potentially in a heterogeneous
		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
		 * and we have taken ctx sharing into account (e.g. with our
		 * pmu::filter_match callback and pmu::event_init group
		 * validation).
		 */
		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
	};

	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
		&armpmu_common_attr_group;

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	for_each_possible_cpu(cpu) {
		struct pmu_hw_events *events;

		events = per_cpu_ptr(pmu->hw_events, cpu);
		raw_spin_lock_init(&events->pmu_lock);
		events->percpu_pmu = pmu;
	}

	return pmu;

out_free_pmu:
	kfree(pmu);
out:
	return NULL;
}

static void armpmu_free(struct arm_pmu *pmu)
{
	free_percpu(pmu->hw_events);
	kfree(pmu);
}

985 986 987 988 989
int arm_pmu_device_probe(struct platform_device *pdev,
			 const struct of_device_id *of_table,
			 const struct pmu_probe_info *probe_table)
{
	const struct of_device_id *of_id;
990
	armpmu_init_fn init_fn;
991 992 993 994
	struct device_node *node = pdev->dev.of_node;
	struct arm_pmu *pmu;
	int ret = -ENODEV;

995 996
	pmu = armpmu_alloc();
	if (!pmu)
997 998 999 1000
		return -ENOMEM;

	pmu->plat_device = pdev;

1001 1002 1003 1004
	ret = pmu_parse_irqs(pmu);
	if (ret)
		goto out_free;

1005 1006 1007
	if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
		init_fn = of_id->data;

1008 1009 1010 1011 1012 1013 1014 1015 1016
		pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
							   "secure-reg-access");

		/* arm64 systems boot only as non-secure */
		if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
			pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
			pmu->secure_access = false;
		}

1017
		ret = init_fn(pmu);
1018
	} else if (probe_table) {
1019
		cpumask_setall(&pmu->supported_cpus);
1020
		ret = probe_current_pmu(pmu, probe_table);
1021 1022 1023
	}

	if (ret) {
1024
		pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1025 1026 1027
		goto out_free;
	}

1028

1029 1030 1031 1032
	ret = cpu_pmu_init(pmu);
	if (ret)
		goto out_free;

M
Mark Rutland 已提交
1033
	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1034 1035 1036
	if (ret)
		goto out_destroy;

1037 1038 1039
	if (!__oprofile_cpu_pmu)
		__oprofile_cpu_pmu = pmu;

M
Mark Rutland 已提交
1040 1041 1042
	pr_info("enabled with %s PMU driver, %d counters available\n",
			pmu->name, pmu->num_events);

1043 1044 1045 1046 1047
	return 0;

out_destroy:
	cpu_pmu_destroy(pmu);
out_free:
1048 1049
	pr_info("%s: failed to register PMU devices!\n",
		of_node_full_name(node));
1050
	armpmu_free(pmu);
1051 1052
	return ret;
}
1053 1054 1055 1056 1057

static int arm_pmu_hp_init(void)
{
	int ret;

1058
	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
T
Thomas Gleixner 已提交
1059
				      "perf/arm/pmu:starting",
1060 1061
				      arm_perf_starting_cpu,
				      arm_perf_teardown_cpu);
1062 1063 1064 1065 1066 1067
	if (ret)
		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
		       ret);
	return ret;
}
subsys_initcall(arm_pmu_hp_init);