arm_pmu.c 26.4 KB
Newer Older
1 2 3 4 5 6
#undef DEBUG

/*
 * ARM performance counter support.
 *
 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7
 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8
 *
9
 * This code is based on the sparc64 perf event code, which is in turn based
10
 * on the x86 code.
11 12 13
 */
#define pr_fmt(fmt) "hw perfevents: " fmt

14
#include <linux/bitmap.h>
15
#include <linux/cpumask.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/export.h>
18
#include <linux/kernel.h>
19
#include <linux/of_device.h>
20
#include <linux/perf/arm_pmu.h>
21
#include <linux/platform_device.h>
22
#include <linux/slab.h>
23
#include <linux/sched/clock.h>
24
#include <linux/spinlock.h>
25 26
#include <linux/irq.h>
#include <linux/irqdesc.h>
27

28
#include <asm/cputype.h>
29 30 31
#include <asm/irq_regs.h>

static int
M
Mark Rutland 已提交
32 33 34 35 36
armpmu_map_cache_event(const unsigned (*cache_map)
				      [PERF_COUNT_HW_CACHE_MAX]
				      [PERF_COUNT_HW_CACHE_OP_MAX]
				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
		       u64 config)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
{
	unsigned int cache_type, cache_op, cache_result, ret;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

M
Mark Rutland 已提交
52
	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53 54 55 56 57 58 59

	if (ret == CACHE_OP_UNSUPPORTED)
		return -ENOENT;

	return ret;
}

60
static int
61
armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62
{
63 64 65 66 67 68
	int mapping;

	if (config >= PERF_COUNT_HW_MAX)
		return -EINVAL;

	mapping = (*event_map)[config];
M
Mark Rutland 已提交
69
	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 71 72
}

static int
M
Mark Rutland 已提交
73
armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74
{
M
Mark Rutland 已提交
75 76 77
	return (int)(config & raw_event_mask);
}

78 79 80 81 82 83 84 85
int
armpmu_map_event(struct perf_event *event,
		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
		 const unsigned (*cache_map)
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX],
		 u32 raw_event_mask)
M
Mark Rutland 已提交
86 87
{
	u64 config = event->attr.config;
88
	int type = event->attr.type;
M
Mark Rutland 已提交
89

90 91 92 93
	if (type == event->pmu->type)
		return armpmu_map_raw_event(raw_event_mask, config);

	switch (type) {
M
Mark Rutland 已提交
94
	case PERF_TYPE_HARDWARE:
95
		return armpmu_map_hw_event(event_map, config);
M
Mark Rutland 已提交
96 97 98 99 100 101 102
	case PERF_TYPE_HW_CACHE:
		return armpmu_map_cache_event(cache_map, config);
	case PERF_TYPE_RAW:
		return armpmu_map_raw_event(raw_event_mask, config);
	}

	return -ENOENT;
103 104
}

105
int armpmu_event_set_period(struct perf_event *event)
106
{
107
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108
	struct hw_perf_event *hwc = &event->hw;
109
	s64 left = local64_read(&hwc->period_left);
110 111 112 113 114
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
115
		local64_set(&hwc->period_left, left);
116 117 118 119 120 121
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
122
		local64_set(&hwc->period_left, left);
123 124 125 126
		hwc->last_period = period;
		ret = 1;
	}

127 128 129 130 131 132 133 134
	/*
	 * Limit the maximum period to prevent the counter value
	 * from overtaking the one we are about to program. In
	 * effect we are reducing max_period to account for
	 * interrupt latency (and we are being very conservative).
	 */
	if (left > (armpmu->max_period >> 1))
		left = armpmu->max_period >> 1;
135

136
	local64_set(&hwc->prev_count, (u64)-left);
137

138
	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139 140 141 142 143 144

	perf_event_update_userpage(event);

	return ret;
}

145
u64 armpmu_event_update(struct perf_event *event)
146
{
147
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148
	struct hw_perf_event *hwc = &event->hw;
149
	u64 delta, prev_raw_count, new_raw_count;
150 151

again:
152
	prev_raw_count = local64_read(&hwc->prev_count);
153
	new_raw_count = armpmu->read_counter(event);
154

155
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156 157 158
			     new_raw_count) != prev_raw_count)
		goto again;

159
	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160

161 162
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
163 164 165 166 167

	return new_raw_count;
}

static void
P
Peter Zijlstra 已提交
168
armpmu_read(struct perf_event *event)
169
{
170
	armpmu_event_update(event);
171 172 173
}

static void
P
Peter Zijlstra 已提交
174
armpmu_stop(struct perf_event *event, int flags)
175
{
176
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177 178
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
179 180 181 182 183
	/*
	 * ARM pmu always has to update the counter, so ignore
	 * PERF_EF_UPDATE, see comments in armpmu_start().
	 */
	if (!(hwc->state & PERF_HES_STOPPED)) {
184 185
		armpmu->disable(event);
		armpmu_event_update(event);
P
Peter Zijlstra 已提交
186 187
		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	}
188 189
}

190
static void armpmu_start(struct perf_event *event, int flags)
191
{
192
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193 194
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
195 196 197 198 199 200 201 202
	/*
	 * ARM pmu always has to reprogram the period, so ignore
	 * PERF_EF_RELOAD, see the comment below.
	 */
	if (flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;
203 204
	/*
	 * Set the period again. Some counters can't be stopped, so when we
P
Peter Zijlstra 已提交
205
	 * were stopped we simply disabled the IRQ source and the counter
206 207 208 209
	 * may have been left counting. If we don't do this step then we may
	 * get an interrupt too soon or *way* too late if the overflow has
	 * happened since disabling.
	 */
210 211
	armpmu_event_set_period(event);
	armpmu->enable(event);
212 213
}

P
Peter Zijlstra 已提交
214 215 216
static void
armpmu_del(struct perf_event *event, int flags)
{
217
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
M
Mark Rutland 已提交
218
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
P
Peter Zijlstra 已提交
219 220 221 222
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	armpmu_stop(event, PERF_EF_UPDATE);
223 224
	hw_events->events[idx] = NULL;
	clear_bit(idx, hw_events->used_mask);
225 226
	if (armpmu->clear_event_idx)
		armpmu->clear_event_idx(hw_events, event);
P
Peter Zijlstra 已提交
227 228 229 230

	perf_event_update_userpage(event);
}

231
static int
P
Peter Zijlstra 已提交
232
armpmu_add(struct perf_event *event, int flags)
233
{
234
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
M
Mark Rutland 已提交
235
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236 237 238 239
	struct hw_perf_event *hwc = &event->hw;
	int idx;
	int err = 0;

240 241 242 243
	/* An event following a process won't be stopped earlier */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return -ENOENT;

P
Peter Zijlstra 已提交
244
	perf_pmu_disable(event->pmu);
245

246
	/* If we don't have a space for the counter then finish early. */
247
	idx = armpmu->get_event_idx(hw_events, event);
248 249 250 251 252 253 254 255 256 257
	if (idx < 0) {
		err = idx;
		goto out;
	}

	/*
	 * If there is an event in the counter we are going to use then make
	 * sure it is disabled.
	 */
	event->hw.idx = idx;
258
	armpmu->disable(event);
259
	hw_events->events[idx] = event;
260

P
Peter Zijlstra 已提交
261 262 263
	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		armpmu_start(event, PERF_EF_RELOAD);
264 265 266 267 268

	/* Propagate our changes to the userspace mapping. */
	perf_event_update_userpage(event);

out:
P
Peter Zijlstra 已提交
269
	perf_pmu_enable(event->pmu);
270 271 272 273
	return err;
}

static int
274 275
validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
			       struct perf_event *event)
276
{
277
	struct arm_pmu *armpmu;
278

279 280 281
	if (is_software_event(event))
		return 1;

282 283 284 285 286 287 288 289
	/*
	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
	 * core perf code won't check that the pmu->ctx == leader->ctx
	 * until after pmu->event_init(event).
	 */
	if (event->pmu != pmu)
		return 0;

290
	if (event->state < PERF_EVENT_STATE_OFF)
291 292 293
		return 1;

	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
294
		return 1;
295

296
	armpmu = to_arm_pmu(event->pmu);
297
	return armpmu->get_event_idx(hw_events, event) >= 0;
298 299 300 301 302 303
}

static int
validate_group(struct perf_event *event)
{
	struct perf_event *sibling, *leader = event->group_leader;
304
	struct pmu_hw_events fake_pmu;
305

306 307 308 309
	/*
	 * Initialise the fake PMU. We only need to populate the
	 * used_mask for the purposes of validation.
	 */
310
	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311

312
	if (!validate_event(event->pmu, &fake_pmu, leader))
313
		return -EINVAL;
314 315

	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
316
		if (!validate_event(event->pmu, &fake_pmu, sibling))
317
			return -EINVAL;
318 319
	}

320
	if (!validate_event(event->pmu, &fake_pmu, event))
321
		return -EINVAL;
322 323 324 325

	return 0;
}

326
static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327
{
328 329 330
	struct arm_pmu *armpmu;
	struct platform_device *plat_device;
	struct arm_pmu_platdata *plat;
331 332
	int ret;
	u64 start_clock, finish_clock;
333

334 335 336 337 338 339 340
	/*
	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
	 * do any necessary shifting, we just need to perform the first
	 * dereference.
	 */
	armpmu = *(void **)dev;
341 342
	plat_device = armpmu->plat_device;
	plat = dev_get_platdata(&plat_device->dev);
343

344
	start_clock = sched_clock();
345
	if (plat && plat->handle_irq)
346
		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
347
	else
348
		ret = armpmu->handle_irq(irq, armpmu);
349 350 351 352
	finish_clock = sched_clock();

	perf_sample_event_took(finish_clock - start_clock);
	return ret;
353 354
}

355
static void
356
armpmu_release_hardware(struct arm_pmu *armpmu)
357
{
358
	armpmu->free_irq(armpmu);
359 360
}

361
static int
362
armpmu_reserve_hardware(struct arm_pmu *armpmu)
363
{
364
	int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
365 366 367
	if (err) {
		armpmu_release_hardware(armpmu);
		return err;
368
	}
369

370
	return 0;
371 372 373 374 375
}

static void
hw_perf_event_destroy(struct perf_event *event)
{
376
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
377 378 379 380
	atomic_t *active_events	 = &armpmu->active_events;
	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;

	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
381
		armpmu_release_hardware(armpmu);
382
		mutex_unlock(pmu_reserve_mutex);
383 384 385
	}
}

386 387 388 389 390 391 392
static int
event_requires_mode_exclusion(struct perf_event_attr *attr)
{
	return attr->exclude_idle || attr->exclude_user ||
	       attr->exclude_kernel || attr->exclude_hv;
}

393 394 395
static int
__hw_perf_event_init(struct perf_event *event)
{
396
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
397
	struct hw_perf_event *hwc = &event->hw;
398
	int mapping;
399

M
Mark Rutland 已提交
400
	mapping = armpmu->map_event(event);
401 402 403 404 405 406 407

	if (mapping < 0) {
		pr_debug("event %x:%llx not supported\n", event->attr.type,
			 event->attr.config);
		return mapping;
	}

408 409 410 411 412 413 414 415 416 417 418
	/*
	 * We don't assign an index until we actually place the event onto
	 * hardware. Use -1 to signify that we haven't decided where to put it
	 * yet. For SMP systems, each core has it's own PMU so we can't do any
	 * clever allocation or constraints checking at this point.
	 */
	hwc->idx		= -1;
	hwc->config_base	= 0;
	hwc->config		= 0;
	hwc->event_base		= 0;

419 420 421
	/*
	 * Check whether we need to exclude the counter from certain modes.
	 */
422 423 424
	if ((!armpmu->set_event_filter ||
	     armpmu->set_event_filter(hwc, &event->attr)) &&
	     event_requires_mode_exclusion(&event->attr)) {
425 426
		pr_debug("ARM performance counters do not support "
			 "mode exclusion\n");
427
		return -EOPNOTSUPP;
428 429 430
	}

	/*
431
	 * Store the event encoding into the config_base field.
432
	 */
433
	hwc->config_base	    |= (unsigned long)mapping;
434

435
	if (!is_sampling_event(event)) {
436 437 438 439 440 441 442
		/*
		 * For non-sampling runs, limit the sample_period to half
		 * of the counter width. That way, the new counter value
		 * is far less likely to overtake the previous one unless
		 * you have some serious IRQ latency issues.
		 */
		hwc->sample_period  = armpmu->max_period >> 1;
443
		hwc->last_period    = hwc->sample_period;
444
		local64_set(&hwc->period_left, hwc->sample_period);
445 446 447
	}

	if (event->group_leader != event) {
448
		if (validate_group(event) != 0)
449 450 451
			return -EINVAL;
	}

452
	return 0;
453 454
}

455
static int armpmu_event_init(struct perf_event *event)
456
{
457
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
458
	int err = 0;
459
	atomic_t *active_events = &armpmu->active_events;
460

461 462 463 464 465 466 467 468 469 470 471
	/*
	 * Reject CPU-affine events for CPUs that are of a different class to
	 * that which this PMU handles. Process-following events (where
	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
	 * reject them later (in armpmu_add) if they're scheduled on a
	 * different class of CPU.
	 */
	if (event->cpu != -1 &&
		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
		return -ENOENT;

472 473 474 475
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

M
Mark Rutland 已提交
476
	if (armpmu->map_event(event) == -ENOENT)
477 478
		return -ENOENT;

479 480
	event->destroy = hw_perf_event_destroy;

481 482 483
	if (!atomic_inc_not_zero(active_events)) {
		mutex_lock(&armpmu->reserve_mutex);
		if (atomic_read(active_events) == 0)
484
			err = armpmu_reserve_hardware(armpmu);
485 486

		if (!err)
487 488
			atomic_inc(active_events);
		mutex_unlock(&armpmu->reserve_mutex);
489 490 491
	}

	if (err)
492
		return err;
493 494 495 496 497

	err = __hw_perf_event_init(event);
	if (err)
		hw_perf_event_destroy(event);

498
	return err;
499 500
}

P
Peter Zijlstra 已提交
501
static void armpmu_enable(struct pmu *pmu)
502
{
503
	struct arm_pmu *armpmu = to_arm_pmu(pmu);
M
Mark Rutland 已提交
504
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
505
	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
506

507 508 509 510
	/* For task-bound events we may be called on other CPUs */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return;

511
	if (enabled)
512
		armpmu->start(armpmu);
513 514
}

P
Peter Zijlstra 已提交
515
static void armpmu_disable(struct pmu *pmu)
516
{
517
	struct arm_pmu *armpmu = to_arm_pmu(pmu);
518 519 520 521 522

	/* For task-bound events we may be called on other CPUs */
	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return;

523
	armpmu->stop(armpmu);
524 525
}

526 527 528 529 530 531 532 533 534 535 536 537
/*
 * In heterogeneous systems, events are specific to a particular
 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 * the same microarchitecture.
 */
static int armpmu_filter_match(struct perf_event *event)
{
	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
	unsigned int cpu = smp_processor_id();
	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static ssize_t armpmu_cpumask_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
}

static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);

static struct attribute *armpmu_common_attrs[] = {
	&dev_attr_cpus.attr,
	NULL,
};

static struct attribute_group armpmu_common_attr_group = {
	.attrs = armpmu_common_attrs,
};

556
static void armpmu_init(struct arm_pmu *armpmu)
557 558 559
{
	atomic_set(&armpmu->active_events, 0);
	mutex_init(&armpmu->reserve_mutex);
560 561 562 563 564 565 566 567 568 569

	armpmu->pmu = (struct pmu) {
		.pmu_enable	= armpmu_enable,
		.pmu_disable	= armpmu_disable,
		.event_init	= armpmu_event_init,
		.add		= armpmu_add,
		.del		= armpmu_del,
		.start		= armpmu_start,
		.stop		= armpmu_stop,
		.read		= armpmu_read,
570
		.filter_match	= armpmu_filter_match,
571
		.attr_groups	= armpmu->attr_groups,
572
	};
573 574
	armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
		&armpmu_common_attr_group;
575 576
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/* Set at runtime when we know what CPU type we are. */
static struct arm_pmu *__oprofile_cpu_pmu;

/*
 * Despite the names, these two functions are CPU-specific and are used
 * by the OProfile/perf code.
 */
const char *perf_pmu_name(void)
{
	if (!__oprofile_cpu_pmu)
		return NULL;

	return __oprofile_cpu_pmu->name;
}
EXPORT_SYMBOL_GPL(perf_pmu_name);

int perf_num_counters(void)
{
	int max_events = 0;

	if (__oprofile_cpu_pmu != NULL)
		max_events = __oprofile_cpu_pmu->num_events;

	return max_events;
}
EXPORT_SYMBOL_GPL(perf_num_counters);

static void cpu_pmu_enable_percpu_irq(void *data)
{
	int irq = *(int *)data;

	enable_percpu_irq(irq, IRQ_TYPE_NONE);
}

static void cpu_pmu_disable_percpu_irq(void *data)
{
	int irq = *(int *)data;

	disable_percpu_irq(irq);
}

static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
{
	int i, irq, irqs;
	struct platform_device *pmu_device = cpu_pmu->plat_device;
	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;

	irqs = min(pmu_device->num_resources, num_possible_cpus());

	irq = platform_get_irq(pmu_device, 0);
627
	if (irq > 0 && irq_is_percpu(irq)) {
628 629
		on_each_cpu_mask(&cpu_pmu->supported_cpus,
				 cpu_pmu_disable_percpu_irq, &irq, 1);
630 631 632 633 634 635 636 637 638 639 640
		free_percpu_irq(irq, &hw_events->percpu_pmu);
	} else {
		for (i = 0; i < irqs; ++i) {
			int cpu = i;

			if (cpu_pmu->irq_affinity)
				cpu = cpu_pmu->irq_affinity[i];

			if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
				continue;
			irq = platform_get_irq(pmu_device, i);
641
			if (irq > 0)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
				free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
		}
	}
}

static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
{
	int i, err, irq, irqs;
	struct platform_device *pmu_device = cpu_pmu->plat_device;
	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;

	if (!pmu_device)
		return -ENODEV;

	irqs = min(pmu_device->num_resources, num_possible_cpus());
	if (irqs < 1) {
		pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
		return 0;
	}

	irq = platform_get_irq(pmu_device, 0);
663
	if (irq > 0 && irq_is_percpu(irq)) {
664 665 666 667 668 669 670
		err = request_percpu_irq(irq, handler, "arm-pmu",
					 &hw_events->percpu_pmu);
		if (err) {
			pr_err("unable to request IRQ%d for ARM PMU counters\n",
				irq);
			return err;
		}
671 672 673

		on_each_cpu_mask(&cpu_pmu->supported_cpus,
				 cpu_pmu_enable_percpu_irq, &irq, 1);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	} else {
		for (i = 0; i < irqs; ++i) {
			int cpu = i;

			err = 0;
			irq = platform_get_irq(pmu_device, i);
			if (irq < 0)
				continue;

			if (cpu_pmu->irq_affinity)
				cpu = cpu_pmu->irq_affinity[i];

			/*
			 * If we have a single PMU interrupt that we can't shift,
			 * assume that we're running on a uniprocessor machine and
			 * continue. Otherwise, continue without this interrupt.
			 */
			if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
				pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
					irq, cpu);
				continue;
			}

			err = request_irq(irq, handler,
					  IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
					  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
			if (err) {
				pr_err("unable to request IRQ%d for ARM PMU counters\n",
					irq);
				return err;
			}

			cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
		}
	}

	return 0;
}

/*
 * PMU hardware loses all context when a CPU goes offline.
 * When a CPU is hotplugged back in, since some hardware registers are
 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 * junk values out of them.
 */
719
static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
720
{
721
	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
722

723 724 725 726
	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
		return 0;
	if (pmu->reset)
		pmu->reset(pmu);
727
	return 0;
728 729
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
#ifdef CONFIG_CPU_PM
static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
{
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
	struct perf_event *event;
	int idx;

	for (idx = 0; idx < armpmu->num_events; idx++) {
		/*
		 * If the counter is not used skip it, there is no
		 * need of stopping/restarting it.
		 */
		if (!test_bit(idx, hw_events->used_mask))
			continue;

		event = hw_events->events[idx];

		switch (cmd) {
		case CPU_PM_ENTER:
			/*
			 * Stop and update the counter
			 */
			armpmu_stop(event, PERF_EF_UPDATE);
			break;
		case CPU_PM_EXIT:
		case CPU_PM_ENTER_FAILED:
756 757 758 759 760 761 762 763 764 765 766 767 768
			 /*
			  * Restore and enable the counter.
			  * armpmu_start() indirectly calls
			  *
			  * perf_event_update_userpage()
			  *
			  * that requires RCU read locking to be functional,
			  * wrap the call within RCU_NONIDLE to make the
			  * RCU subsystem aware this cpu is not idle from
			  * an RCU perspective for the armpmu_start() call
			  * duration.
			  */
			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
			break;
		default:
			break;
		}
	}
}

static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
			     void *v)
{
	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);

	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
		return NOTIFY_DONE;

	/*
	 * Always reset the PMU registers on power-up even if
	 * there are no events running.
	 */
	if (cmd == CPU_PM_EXIT && armpmu->reset)
		armpmu->reset(armpmu);

	if (!enabled)
		return NOTIFY_OK;

	switch (cmd) {
	case CPU_PM_ENTER:
		armpmu->stop(armpmu);
		cpu_pm_pmu_setup(armpmu, cmd);
		break;
	case CPU_PM_EXIT:
		cpu_pm_pmu_setup(armpmu, cmd);
	case CPU_PM_ENTER_FAILED:
		armpmu->start(armpmu);
		break;
	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
}

static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
{
	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
}

static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
{
	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
}
#else
static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
#endif

828 829 830 831 832 833 834 835 836 837
static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
{
	int err;
	int cpu;
	struct pmu_hw_events __percpu *cpu_hw_events;

	cpu_hw_events = alloc_percpu(struct pmu_hw_events);
	if (!cpu_hw_events)
		return -ENOMEM;

838 839 840 841
	err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
					       &cpu_pmu->node);
	if (err)
		goto out_free;
842

843 844 845 846
	err = cpu_pm_pmu_register(cpu_pmu);
	if (err)
		goto out_unregister;

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	for_each_possible_cpu(cpu) {
		struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
		raw_spin_lock_init(&events->pmu_lock);
		events->percpu_pmu = cpu_pmu;
	}

	cpu_pmu->hw_events	= cpu_hw_events;
	cpu_pmu->request_irq	= cpu_pmu_request_irq;
	cpu_pmu->free_irq	= cpu_pmu_free_irq;

	/* Ensure the PMU has sane values out of reset. */
	if (cpu_pmu->reset)
		on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
			 cpu_pmu, 1);

	/* If no interrupts available, set the corresponding capability flag */
	if (!platform_get_irq(cpu_pmu->plat_device, 0))
		cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;

866 867 868 869 870 871 872 873
	/*
	 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
	 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
	 * sharing into account (e.g. with our pmu::filter_match callback and
	 * pmu::event_init group validation).
	 */
	cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;

874 875
	return 0;

876
out_unregister:
877 878 879
	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
					    &cpu_pmu->node);
out_free:
880 881 882 883 884 885
	free_percpu(cpu_hw_events);
	return err;
}

static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
{
886
	cpu_pm_pmu_unregister(cpu_pmu);
887 888
	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
					    &cpu_pmu->node);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	free_percpu(cpu_pmu->hw_events);
}

/*
 * CPU PMU identification and probing.
 */
static int probe_current_pmu(struct arm_pmu *pmu,
			     const struct pmu_probe_info *info)
{
	int cpu = get_cpu();
	unsigned int cpuid = read_cpuid_id();
	int ret = -ENODEV;

	pr_info("probing PMU on CPU %d\n", cpu);

	for (; info->init != NULL; info++) {
		if ((cpuid & info->mask) != info->cpuid)
			continue;
		ret = info->init(pmu);
		break;
	}

	put_cpu();
	return ret;
}

static int of_pmu_irq_cfg(struct arm_pmu *pmu)
{
917 918
	int *irqs, i = 0;
	bool using_spi = false;
919 920 921 922 923 924
	struct platform_device *pdev = pmu->plat_device;

	irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
	if (!irqs)
		return -ENOMEM;

925
	do {
926
		struct device_node *dn;
927
		int cpu, irq;
928

929 930 931
		/* See if we have an affinity entry */
		dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
		if (!dn)
932
			break;
933 934 935

		/* Check the IRQ type and prohibit a mix of PPIs and SPIs */
		irq = platform_get_irq(pdev, i);
936
		if (irq > 0) {
937 938 939 940 941
			bool spi = !irq_is_percpu(irq);

			if (i > 0 && spi != using_spi) {
				pr_err("PPI/SPI IRQ type mismatch for %s!\n",
					dn->name);
942
				of_node_put(dn);
943 944 945 946 947
				kfree(irqs);
				return -EINVAL;
			}

			using_spi = spi;
948 949
		}

950
		/* Now look up the logical CPU number */
951 952 953 954 955 956 957
		for_each_possible_cpu(cpu) {
			struct device_node *cpu_dn;

			cpu_dn = of_cpu_device_node_get(cpu);
			of_node_put(cpu_dn);

			if (dn == cpu_dn)
958
				break;
959
		}
960 961 962 963

		if (cpu >= nr_cpu_ids) {
			pr_warn("Failed to find logical CPU for %s\n",
				dn->name);
964
			of_node_put(dn);
965
			cpumask_setall(&pmu->supported_cpus);
966 967
			break;
		}
968
		of_node_put(dn);
969

970 971
		/* For SPIs, we need to track the affinity per IRQ */
		if (using_spi) {
972
			if (i >= pdev->num_resources)
973 974 975 976 977 978
				break;

			irqs[i] = cpu;
		}

		/* Keep track of the CPUs containing this PMU type */
979
		cpumask_set_cpu(cpu, &pmu->supported_cpus);
980 981
		i++;
	} while (1);
982

983 984
	/* If we didn't manage to parse anything, try the interrupt affinity */
	if (cpumask_weight(&pmu->supported_cpus) == 0) {
985 986
		int irq = platform_get_irq(pdev, 0);

987
		if (irq > 0 && irq_is_percpu(irq)) {
988
			/* If using PPIs, check the affinity of the partition */
989
			int ret;
990 991 992 993 994 995 996 997 998 999 1000

			ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
			if (ret) {
				kfree(irqs);
				return ret;
			}
		} else {
			/* Otherwise default to all CPUs */
			cpumask_setall(&pmu->supported_cpus);
		}
	}
1001 1002 1003

	/* If we matched up the IRQ affinities, use them to route the SPIs */
	if (using_spi && i == pdev->num_resources)
1004
		pmu->irq_affinity = irqs;
1005
	else
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		kfree(irqs);

	return 0;
}

int arm_pmu_device_probe(struct platform_device *pdev,
			 const struct of_device_id *of_table,
			 const struct pmu_probe_info *probe_table)
{
	const struct of_device_id *of_id;
	const int (*init_fn)(struct arm_pmu *);
	struct device_node *node = pdev->dev.of_node;
	struct arm_pmu *pmu;
	int ret = -ENODEV;

	pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
	if (!pmu) {
		pr_info("failed to allocate PMU device!\n");
		return -ENOMEM;
	}

M
Mark Rutland 已提交
1027 1028
	armpmu_init(pmu);

1029 1030 1031 1032 1033
	pmu->plat_device = pdev;

	if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
		init_fn = of_id->data;

1034 1035 1036 1037 1038 1039 1040 1041 1042
		pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
							   "secure-reg-access");

		/* arm64 systems boot only as non-secure */
		if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
			pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
			pmu->secure_access = false;
		}

1043 1044 1045
		ret = of_pmu_irq_cfg(pmu);
		if (!ret)
			ret = init_fn(pmu);
1046
	} else if (probe_table) {
1047
		cpumask_setall(&pmu->supported_cpus);
1048
		ret = probe_current_pmu(pmu, probe_table);
1049 1050 1051
	}

	if (ret) {
1052
		pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1053 1054 1055
		goto out_free;
	}

1056

1057 1058 1059 1060
	ret = cpu_pmu_init(pmu);
	if (ret)
		goto out_free;

M
Mark Rutland 已提交
1061
	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1062 1063 1064
	if (ret)
		goto out_destroy;

1065 1066 1067
	if (!__oprofile_cpu_pmu)
		__oprofile_cpu_pmu = pmu;

M
Mark Rutland 已提交
1068 1069 1070
	pr_info("enabled with %s PMU driver, %d counters available\n",
			pmu->name, pmu->num_events);

1071 1072 1073 1074 1075
	return 0;

out_destroy:
	cpu_pmu_destroy(pmu);
out_free:
1076 1077
	pr_info("%s: failed to register PMU devices!\n",
		of_node_full_name(node));
1078
	kfree(pmu->irq_affinity);
1079 1080 1081
	kfree(pmu);
	return ret;
}
1082 1083 1084 1085 1086

static int arm_pmu_hp_init(void)
{
	int ret;

1087
	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
T
Thomas Gleixner 已提交
1088
				      "perf/arm/pmu:starting",
1089
				      arm_perf_starting_cpu, NULL);
1090 1091 1092 1093 1094 1095
	if (ret)
		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
		       ret);
	return ret;
}
subsys_initcall(arm_pmu_hp_init);