vgic.c 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

19
#include <linux/cpu.h>
20 21 22 23
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
24 25 26
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
27
#include <linux/uaccess.h>
28 29 30

#include <linux/irqchip/arm-gic.h>

31
#include <asm/kvm_emulate.h>
32 33
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
34

35 36 37 38
/*
 * How the whole thing works (courtesy of Christoffer Dall):
 *
 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 40 41 42 43
 *   something is pending on the CPU interface.
 * - Interrupts that are pending on the distributor are stored on the
 *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
 *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
 *   arch. timers).
44 45 46 47
 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
 *   recalculated
 * - To calculate the oracle, we need info for each cpu from
 *   compute_pending_for_cpu, which considers:
48 49
 *   - PPI: dist->irq_pending & dist->irq_enable
 *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50
 *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 52 53
 *     registers, stored on each vcpu. We only keep one bit of
 *     information per interrupt, making sure that only one vcpu can
 *     accept the interrupt.
54
 * - If any of the above state changes, we must recalculate the oracle.
55 56 57 58 59 60 61 62 63
 * - The same is true when injecting an interrupt, except that we only
 *   consider a single interrupt at a time. The irq_spi_cpu array
 *   contains the target CPU for each SPI.
 *
 * The handling of level interrupts adds some extra complexity. We
 * need to track when the interrupt has been EOIed, so we can sample
 * the 'line' again. This is achieved as such:
 *
 * - When a level interrupt is moved onto a vcpu, the corresponding
64
 *   bit in irq_queued is set. As long as this bit is set, the line
65 66 67 68
 *   will be ignored for further interrupts. The interrupt is injected
 *   into the vcpu with the GICH_LR_EOI bit set (generate a
 *   maintenance interrupt on EOI).
 * - When the interrupt is EOIed, the maintenance interrupt fires,
69
 *   and clears the corresponding bit in irq_queued. This allows the
70
 *   interrupt line to be sampled again.
71 72 73 74 75
 * - Note that level-triggered interrupts can also be set to pending from
 *   writes to GICD_ISPENDRn and lowering the external input line does not
 *   cause the interrupt to become inactive in such a situation.
 *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
 *   inactive as long as the external input line is held high.
76 77
 */

78
#include "vgic.h"
79

80
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
81 82 83
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
84

85 86
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
	vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
}

static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
}

int kvm_vgic_map_resources(struct kvm *kvm)
{
	return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
}

103
/*
104 105
 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
 * extracts u32s out of them.
106 107 108 109 110 111 112 113 114 115 116 117 118 119
 *
 * This does not work on 64-bit BE systems, because the bitmap access
 * will store two consecutive 32-bit words with the higher-addressed
 * register's bits at the lower index and the lower-addressed register's
 * bits at the higher index.
 *
 * Therefore, swizzle the register index when accessing the 32-bit word
 * registers to access the right register's value.
 */
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
#define REG_OFFSET_SWIZZLE	1
#else
#define REG_OFFSET_SWIZZLE	0
#endif
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
	int nr_longs;

	nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);

	b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
	if (!b->private)
		return -ENOMEM;

	b->shared = b->private + nr_cpus;

	return 0;
}

static void vgic_free_bitmap(struct vgic_bitmap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
 * Call this function to convert a u64 value to an unsigned long * bitmask
 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
 *
 * Warning: Calling this function may modify *val.
 */
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
	*val = (*val >> 32) | (*val << 32);
#endif
	return (unsigned long *)val;
}

157
u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
158 159 160
{
	offset >>= 2;
	if (!offset)
161
		return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
162
	else
163
		return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
164 165 166 167 168 169
}

static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
				   int cpuid, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
170
		return test_bit(irq, x->private + cpuid);
171

172
	return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
173 174
}

175 176
void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
			     int irq, int val)
177 178 179 180
{
	unsigned long *reg;

	if (irq < VGIC_NR_PRIVATE_IRQS) {
181
		reg = x->private + cpuid;
182
	} else {
183
		reg = x->shared;
184 185 186 187 188 189 190 191 192 193 194
		irq -= VGIC_NR_PRIVATE_IRQS;
	}

	if (val)
		set_bit(irq, reg);
	else
		clear_bit(irq, reg);
}

static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
195
	return x->private + cpuid;
196 197
}

198
unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
199
{
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
	return x->shared;
}

static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
	int size;

	size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
	size += nr_irqs - VGIC_NR_PRIVATE_IRQS;

	x->private = kzalloc(size, GFP_KERNEL);
	if (!x->private)
		return -ENOMEM;

	x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
	return 0;
}

static void vgic_free_bytemap(struct vgic_bytemap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
223 224
}

225
u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
226
{
227 228 229 230 231 232 233 234 235 236 237
	u32 *reg;

	if (offset < VGIC_NR_PRIVATE_IRQS) {
		reg = x->private;
		offset += cpuid * VGIC_NR_PRIVATE_IRQS;
	} else {
		reg = x->shared;
		offset -= VGIC_NR_PRIVATE_IRQS;
	}

	return reg + (offset / sizeof(u32));
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
}

#define VGIC_CFG_LEVEL	0
#define VGIC_CFG_EDGE	1

static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int irq_val;

	irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
	return irq_val == VGIC_CFG_EDGE;
}

static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}

259
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
260 261 262
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

263
	return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
264 265
}

266
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
267 268 269
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

270
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
271 272
}

273
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
274 275 276
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

277
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}

static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
}

static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
}

315 316 317 318
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

319
	return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
320 321
}

322
void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
323 324 325
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

326
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
327 328
}

329
void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
330 331 332
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

333
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
334 335 336 337 338 339 340 341 342 343 344
}

static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		set_bit(irq - VGIC_NR_PRIVATE_IRQS,
			vcpu->arch.vgic_cpu.pending_shared);
}

345
void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
346 347 348 349 350 351 352 353
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
			  vcpu->arch.vgic_cpu.pending_shared);
}

354 355 356 357 358
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
	return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
}

359 360 361 362 363 364 365 366 367 368 369
/**
 * vgic_reg_access - access vgic register
 * @mmio:   pointer to the data describing the mmio access
 * @reg:    pointer to the virtual backing of vgic distributor data
 * @offset: least significant 2 bits used for word offset
 * @mode:   ACCESS_ mode (see defines above)
 *
 * Helper to make vgic register access easier using one of the access
 * modes defined for vgic register access
 * (read,raz,write-ignored,setbit,clearbit,write)
 */
370 371
void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
		     phys_addr_t offset, int mode)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
{
	int word_offset = (offset & 3) * 8;
	u32 mask = (1UL << (mmio->len * 8)) - 1;
	u32 regval;

	/*
	 * Any alignment fault should have been delivered to the guest
	 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
	 */

	if (reg) {
		regval = *reg;
	} else {
		BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
		regval = 0;
	}

	if (mmio->is_write) {
		u32 data = mmio_data_read(mmio, mask) << word_offset;
		switch (ACCESS_WRITE_MASK(mode)) {
		case ACCESS_WRITE_IGNORED:
			return;

		case ACCESS_WRITE_SETBIT:
			regval |= data;
			break;

		case ACCESS_WRITE_CLEARBIT:
			regval &= ~data;
			break;

		case ACCESS_WRITE_VALUE:
			regval = (regval & ~(mask << word_offset)) | data;
			break;
		}
		*reg = regval;
	} else {
		switch (ACCESS_READ_MASK(mode)) {
		case ACCESS_READ_RAZ:
			regval = 0;
			/* fall through */

		case ACCESS_READ_VALUE:
			mmio_data_write(mmio, mask, regval >> word_offset);
		}
	}
}

420 421
bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
			phys_addr_t offset)
422 423 424 425 426 427
{
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

428 429
bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
			    phys_addr_t offset, int vcpu_id, int access)
430
{
431 432 433 434 435 436
	u32 *reg;
	int mode = ACCESS_READ_VALUE | access;
	struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);

	reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset, mode);
437
	if (mmio->is_write) {
438 439 440 441 442 443
		if (access & ACCESS_WRITE_CLEARBIT) {
			if (offset < 4) /* Force SGI enabled */
				*reg |= 0xffff;
			vgic_retire_disabled_irqs(target_vcpu);
		}
		vgic_update_state(kvm);
444 445 446 447 448 449
		return true;
	}

	return false;
}

450 451 452
bool vgic_handle_set_pending_reg(struct kvm *kvm,
				 struct kvm_exit_mmio *mmio,
				 phys_addr_t offset, int vcpu_id)
453
{
454
	u32 *reg, orig;
455
	u32 level_mask;
456 457
	int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
	struct vgic_dist *dist = &kvm->arch.vgic;
458

459
	reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
460 461 462
	level_mask = (~(*reg));

	/* Mark both level and edge triggered irqs as pending */
463
	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
464
	orig = *reg;
465
	vgic_reg_access(mmio, reg, offset, mode);
466

467
	if (mmio->is_write) {
468 469
		/* Set the soft-pending flag only for level-triggered irqs */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
470 471
					  vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset, mode);
472 473
		*reg &= level_mask;

474 475 476 477 478 479
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

480
		vgic_update_state(kvm);
481 482 483 484 485 486
		return true;
	}

	return false;
}

487 488 489
bool vgic_handle_clear_pending_reg(struct kvm *kvm,
				   struct kvm_exit_mmio *mmio,
				   phys_addr_t offset, int vcpu_id)
490
{
491
	u32 *level_active;
492
	u32 *reg, orig;
493 494
	int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
	struct vgic_dist *dist = &kvm->arch.vgic;
495

496
	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
497
	orig = *reg;
498
	vgic_reg_access(mmio, reg, offset, mode);
499
	if (mmio->is_write) {
500 501
		/* Re-set level triggered level-active interrupts */
		level_active = vgic_bitmap_get_reg(&dist->irq_level,
502 503
					  vcpu_id, offset);
		reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
504 505
		*reg |= *level_active;

506 507 508 509 510 511
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

512 513
		/* Clear soft-pending flags */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
514 515
					  vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset, mode);
516

517
		vgic_update_state(kvm);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		return true;
	}
	return false;
}

static u32 vgic_cfg_expand(u16 val)
{
	u32 res = 0;
	int i;

	/*
	 * Turn a 16bit value like abcd...mnop into a 32bit word
	 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);

	return res;
}

static u16 vgic_cfg_compress(u32 val)
{
	u16 res = 0;
	int i;

	/*
	 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
	 * abcd...mnop which is what we really care about.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;

	return res;
}

/*
 * The distributor uses 2 bits per IRQ for the CFG register, but the
 * LSB is always 0. As such, we only keep the upper bit, and use the
 * two above functions to compress/expand the bits
 */
558 559
bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
			 phys_addr_t offset)
560 561
{
	u32 val;
562

563
	if (offset & 4)
564 565 566 567 568 569 570 571
		val = *reg >> 16;
	else
		val = *reg & 0xffff;

	val = vgic_cfg_expand(val);
	vgic_reg_access(mmio, &val, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
572
		if (offset < 8) {
573 574 575 576 577
			*reg = ~0U; /* Force PPIs/SGIs to 1 */
			return false;
		}

		val = vgic_cfg_compress(val);
578
		if (offset & 4) {
579 580 581 582 583 584 585 586 587 588 589
			*reg &= 0xffff;
			*reg |= val << 16;
		} else {
			*reg &= 0xffff << 16;
			*reg |= val;
		}
	}

	return false;
}

590 591 592 593 594 595 596 597 598 599 600 601
/**
 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 *
 * Move any pending IRQs that have already been assigned to LRs back to the
 * emulated distributor state so that the complete emulated state can be read
 * from the main emulation structures without investigating the LRs.
 *
 * Note that IRQs in the active state in the LRs get their pending state moved
 * to the distributor but the active state stays in the LRs, because we don't
 * track the active state on the distributor side.
 */
602
void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
603 604
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
605
	int i;
606 607

	for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
608
		struct vgic_lr lr = vgic_get_lr(vcpu, i);
609 610 611 612 613 614 615 616 617 618 619

		/*
		 * There are three options for the state bits:
		 *
		 * 01: pending
		 * 10: active
		 * 11: pending and active
		 *
		 * If the LR holds only an active interrupt (not pending) then
		 * just leave it alone.
		 */
620
		if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
621 622 623 624 625 626 627 628
			continue;

		/*
		 * Reestablish the pending state on the distributor and the
		 * CPU interface.  It may have already been pending, but that
		 * is fine, then we are only setting a few bits that were
		 * already set.
		 */
629
		vgic_dist_irq_set_pending(vcpu, lr.irq);
630
		if (lr.irq < VGIC_NR_SGIS)
631
			add_sgi_source(vcpu, lr.irq, lr.source);
632 633
		lr.state &= ~LR_STATE_PENDING;
		vgic_set_lr(vcpu, i, lr);
634 635 636 637 638 639

		/*
		 * If there's no state left on the LR (it could still be
		 * active), then the LR does not hold any useful info and can
		 * be marked as free for other use.
		 */
640
		if (!(lr.state & LR_STATE_MASK)) {
641
			vgic_retire_lr(i, lr.irq, vcpu);
642 643
			vgic_irq_clear_queued(vcpu, lr.irq);
		}
644 645 646 647 648 649

		/* Finally update the VGIC state. */
		vgic_update_state(vcpu->kvm);
	}
}

650 651
const
struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
652
				       struct kvm_exit_mmio *mmio,
653
				       phys_addr_t offset)
654
{
655
	const struct kvm_mmio_range *r = ranges;
656 657

	while (r->len) {
658 659
		if (offset >= r->base &&
		    (offset + mmio->len) <= (r->base + r->len))
660 661 662 663 664 665 666
			return r;
		r++;
	}

	return NULL;
}

667
static bool vgic_validate_access(const struct vgic_dist *dist,
668
				 const struct kvm_mmio_range *range,
669 670 671 672 673 674 675 676 677 678 679 680 681 682
				 unsigned long offset)
{
	int irq;

	if (!range->bits_per_irq)
		return true;	/* Not an irq-based access */

	irq = offset * 8 / range->bits_per_irq;
	if (irq >= dist->nr_irqs)
		return false;

	return true;
}

683 684 685 686 687 688 689 690 691 692 693 694 695
/*
 * Call the respective handler function for the given range.
 * We split up any 64 bit accesses into two consecutive 32 bit
 * handler calls and merge the result afterwards.
 * We do this in a little endian fashion regardless of the host's
 * or guest's endianness, because the GIC is always LE and the rest of
 * the code (vgic_reg_access) also puts it in a LE fashion already.
 * At this point we have already identified the handle function, so
 * range points to that one entry and offset is relative to this.
 */
static bool call_range_handler(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio,
			       unsigned long offset,
696
			       const struct kvm_mmio_range *range)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
{
	u32 *data32 = (void *)mmio->data;
	struct kvm_exit_mmio mmio32;
	bool ret;

	if (likely(mmio->len <= 4))
		return range->handle_mmio(vcpu, mmio, offset);

	/*
	 * Any access bigger than 4 bytes (that we currently handle in KVM)
	 * is actually 8 bytes long, caused by a 64-bit access
	 */

	mmio32.len = 4;
	mmio32.is_write = mmio->is_write;
712
	mmio32.private = mmio->private;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	mmio32.phys_addr = mmio->phys_addr + 4;
	if (mmio->is_write)
		*(u32 *)mmio32.data = data32[1];
	ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
	if (!mmio->is_write)
		data32[1] = *(u32 *)mmio32.data;

	mmio32.phys_addr = mmio->phys_addr;
	if (mmio->is_write)
		*(u32 *)mmio32.data = data32[0];
	ret |= range->handle_mmio(vcpu, &mmio32, offset);
	if (!mmio->is_write)
		data32[0] = *(u32 *)mmio32.data;

	return ret;
}

731
/**
732
 * vgic_handle_mmio_range - handle an in-kernel MMIO access
733 734 735
 * @vcpu:	pointer to the vcpu performing the access
 * @run:	pointer to the kvm_run structure
 * @mmio:	pointer to the data describing the access
736 737
 * @ranges:	array of MMIO ranges in a given region
 * @mmio_base:	base address of that region
738
 *
739
 * returns true if the MMIO access could be performed
740
 */
741
bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
742
			    struct kvm_exit_mmio *mmio,
743
			    const struct kvm_mmio_range *ranges,
744
			    unsigned long mmio_base)
745
{
746
	const struct kvm_mmio_range *range;
747 748 749 750
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	bool updated_state;
	unsigned long offset;

751
	offset = mmio->phys_addr - mmio_base;
752
	range = vgic_find_range(ranges, mmio, offset);
753 754 755 756 757 758 759
	if (unlikely(!range || !range->handle_mmio)) {
		pr_warn("Unhandled access %d %08llx %d\n",
			mmio->is_write, mmio->phys_addr, mmio->len);
		return false;
	}

	spin_lock(&vcpu->kvm->arch.vgic.lock);
760
	offset -= range->base;
761
	if (vgic_validate_access(dist, range, offset)) {
762
		updated_state = call_range_handler(vcpu, mmio, offset, range);
763
	} else {
764 765
		if (!mmio->is_write)
			memset(mmio->data, 0, mmio->len);
766 767
		updated_state = false;
	}
768 769 770 771
	spin_unlock(&vcpu->kvm->arch.vgic.lock);
	kvm_prepare_mmio(run, mmio);
	kvm_handle_mmio_return(vcpu, run);

772 773 774
	if (updated_state)
		vgic_kick_vcpus(vcpu->kvm);

775 776 777
	return true;
}

778 779 780 781 782 783 784 785
/**
 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
 * @vcpu:      pointer to the vcpu performing the access
 * @run:       pointer to the kvm_run structure
 * @mmio:      pointer to the data describing the access
 *
 * returns true if the MMIO access has been performed in kernel space,
 * and false if it needs to be emulated in user space.
786
 * Calls the actual handling routine for the selected VGIC model.
787 788 789 790 791 792 793
 */
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
		      struct kvm_exit_mmio *mmio)
{
	if (!irqchip_in_kernel(vcpu->kvm))
		return false;

794 795 796 797 798 799
	/*
	 * This will currently call either vgic_v2_handle_mmio() or
	 * vgic_v3_handle_mmio(), which in turn will call
	 * vgic_handle_mmio_range() defined above.
	 */
	return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
800 801
}

802 803 804 805 806
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
	return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}

807 808
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
809 810 811
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
	unsigned long pending_private, pending_shared;
812
	int nr_shared = vgic_nr_shared_irqs(dist);
813 814 815 816 817 818
	int vcpu_id;

	vcpu_id = vcpu->vcpu_id;
	pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
	pend_shared = vcpu->arch.vgic_cpu.pending_shared;

819
	pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
820 821 822
	enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
	bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);

823
	pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
824
	enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
825
	bitmap_and(pend_shared, pending, enabled, nr_shared);
826 827
	bitmap_and(pend_shared, pend_shared,
		   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
828
		   nr_shared);
829 830

	pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
831
	pending_shared = find_first_bit(pend_shared, nr_shared);
832
	return (pending_private < VGIC_NR_PRIVATE_IRQS ||
833
		pending_shared < vgic_nr_shared_irqs(dist));
834 835 836 837 838 839
}

/*
 * Update the interrupt state and determine which CPUs have pending
 * interrupts. Must be called with distributor lock held.
 */
840
void vgic_update_state(struct kvm *kvm)
841 842 843 844 845 846
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int c;

	if (!dist->enabled) {
847
		set_bit(0, dist->irq_pending_on_cpu);
848 849 850 851 852 853
		return;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (compute_pending_for_cpu(vcpu)) {
			pr_debug("CPU%d has pending interrupts\n", c);
854
			set_bit(c, dist->irq_pending_on_cpu);
855 856
		}
	}
857
}
858

859 860
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
861
	return vgic_ops->get_lr(vcpu, lr);
862 863 864 865 866
}

static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
867
	vgic_ops->set_lr(vcpu, lr, vlr);
868 869
}

870 871 872
static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
873
	vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
874 875 876 877
}

static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
878
	return vgic_ops->get_elrsr(vcpu);
879 880
}

881 882
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
883
	return vgic_ops->get_eisr(vcpu);
884 885
}

886 887
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
888
	return vgic_ops->get_interrupt_status(vcpu);
889 890
}

891 892
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
893
	vgic_ops->enable_underflow(vcpu);
894 895 896 897
}

static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
898
	vgic_ops->disable_underflow(vcpu);
899 900
}

901
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
902
{
903
	vgic_ops->get_vmcr(vcpu, vmcr);
904 905
}

906
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
907
{
908
	vgic_ops->set_vmcr(vcpu, vmcr);
909 910
}

911 912
static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
913
	vgic_ops->enable(vcpu);
914 915
}

916 917 918 919 920 921 922 923 924 925
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);

	vlr.state = 0;
	vgic_set_lr(vcpu, lr_nr, vlr);
	clear_bit(lr_nr, vgic_cpu->lr_used);
	vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
}
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

/*
 * An interrupt may have been disabled after being made pending on the
 * CPU interface (the classic case is a timer running while we're
 * rebooting the guest - the interrupt would kick as soon as the CPU
 * interface gets enabled, with deadly consequences).
 *
 * The solution is to examine already active LRs, and check the
 * interrupt is still enabled. If not, just retire it.
 */
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int lr;

941
	for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
942
		struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
943

944 945
		if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
			vgic_retire_lr(lr, vlr.irq, vcpu);
946 947
			if (vgic_irq_is_queued(vcpu, vlr.irq))
				vgic_irq_clear_queued(vcpu, vlr.irq);
948 949 950 951
		}
	}
}

952 953 954
/*
 * Queue an interrupt to a CPU virtual interface. Return true on success,
 * or false if it wasn't possible to queue it.
955
 * sgi_source must be zero for any non-SGI interrupts.
956
 */
957
bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
958 959
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
960
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
961
	struct vgic_lr vlr;
962 963 964 965 966
	int lr;

	/* Sanitize the input... */
	BUG_ON(sgi_source_id & ~7);
	BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
967
	BUG_ON(irq >= dist->nr_irqs);
968 969 970 971 972 973

	kvm_debug("Queue IRQ%d\n", irq);

	lr = vgic_cpu->vgic_irq_lr_map[irq];

	/* Do we have an active interrupt for the same CPUID? */
974 975 976 977 978 979 980 981 982
	if (lr != LR_EMPTY) {
		vlr = vgic_get_lr(vcpu, lr);
		if (vlr.source == sgi_source_id) {
			kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
			BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
			vlr.state |= LR_STATE_PENDING;
			vgic_set_lr(vcpu, lr, vlr);
			return true;
		}
983 984 985 986
	}

	/* Try to use another LR for this interrupt */
	lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
987 988
			       vgic->nr_lr);
	if (lr >= vgic->nr_lr)
989 990 991 992 993 994
		return false;

	kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
	vgic_cpu->vgic_irq_lr_map[irq] = lr;
	set_bit(lr, vgic_cpu->lr_used);

995 996 997
	vlr.irq = irq;
	vlr.source = sgi_source_id;
	vlr.state = LR_STATE_PENDING;
998
	if (!vgic_irq_is_edge(vcpu, irq))
999 1000 1001
		vlr.state |= LR_EOI_INT;

	vgic_set_lr(vcpu, lr, vlr);
1002 1003 1004 1005 1006 1007

	return true;
}

static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
1008
	if (!vgic_can_sample_irq(vcpu, irq))
1009 1010 1011 1012
		return true; /* level interrupt, already queued */

	if (vgic_queue_irq(vcpu, 0, irq)) {
		if (vgic_irq_is_edge(vcpu, irq)) {
1013
			vgic_dist_irq_clear_pending(vcpu, irq);
1014 1015
			vgic_cpu_irq_clear(vcpu, irq);
		} else {
1016
			vgic_irq_set_queued(vcpu, irq);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		}

		return true;
	}

	return false;
}

/*
 * Fill the list registers with pending interrupts before running the
 * guest.
 */
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int i, vcpu_id;
	int overflow = 0;

	vcpu_id = vcpu->vcpu_id;

	/*
	 * We may not have any pending interrupt, or the interrupts
	 * may have been serviced from another vcpu. In all cases,
	 * move along.
	 */
	if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
		pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
		goto epilog;
	}

	/* SGIs */
	for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1050
		if (!queue_sgi(vcpu, i))
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			overflow = 1;
	}

	/* PPIs */
	for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
		if (!vgic_queue_hwirq(vcpu, i))
			overflow = 1;
	}

	/* SPIs */
1061
	for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1062 1063 1064 1065 1066 1067
		if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
			overflow = 1;
	}

epilog:
	if (overflow) {
1068
		vgic_enable_underflow(vcpu);
1069
	} else {
1070
		vgic_disable_underflow(vcpu);
1071 1072 1073 1074 1075 1076
		/*
		 * We're about to run this VCPU, and we've consumed
		 * everything the distributor had in store for
		 * us. Claim we don't have anything pending. We'll
		 * adjust that if needed while exiting.
		 */
1077
		clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1078 1079 1080 1081 1082
	}
}

static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
1083
	u32 status = vgic_get_interrupt_status(vcpu);
1084 1085
	bool level_pending = false;

1086
	kvm_debug("STATUS = %08x\n", status);
1087

1088
	if (status & INT_STATUS_EOI) {
1089 1090 1091 1092
		/*
		 * Some level interrupts have been EOIed. Clear their
		 * active bit.
		 */
1093
		u64 eisr = vgic_get_eisr(vcpu);
1094
		unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1095
		int lr;
1096

1097
		for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1098
			struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1099
			WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1100

1101
			vgic_irq_clear_queued(vcpu, vlr.irq);
1102 1103 1104
			WARN_ON(vlr.state & LR_STATE_MASK);
			vlr.state = 0;
			vgic_set_lr(vcpu, lr, vlr);
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
			/*
			 * If the IRQ was EOIed it was also ACKed and we we
			 * therefore assume we can clear the soft pending
			 * state (should it had been set) for this interrupt.
			 *
			 * Note: if the IRQ soft pending state was set after
			 * the IRQ was acked, it actually shouldn't be
			 * cleared, but we have no way of knowing that unless
			 * we start trapping ACKs when the soft-pending state
			 * is set.
			 */
			vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);

1119
			/* Any additional pending interrupt? */
1120
			if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1121
				vgic_cpu_irq_set(vcpu, vlr.irq);
1122 1123
				level_pending = true;
			} else {
1124
				vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1125
				vgic_cpu_irq_clear(vcpu, vlr.irq);
1126
			}
1127 1128 1129 1130 1131

			/*
			 * Despite being EOIed, the LR may not have
			 * been marked as empty.
			 */
1132
			vgic_sync_lr_elrsr(vcpu, lr, vlr);
1133 1134 1135
		}
	}

1136
	if (status & INT_STATUS_UNDERFLOW)
1137
		vgic_disable_underflow(vcpu);
1138 1139 1140 1141 1142

	return level_pending;
}

/*
1143 1144
 * Sync back the VGIC state after a guest run. The distributor lock is
 * needed so we don't get preempted in the middle of the state processing.
1145 1146 1147 1148 1149
 */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1150 1151
	u64 elrsr;
	unsigned long *elrsr_ptr;
1152 1153 1154 1155
	int lr, pending;
	bool level_pending;

	level_pending = vgic_process_maintenance(vcpu);
1156
	elrsr = vgic_get_elrsr(vcpu);
1157
	elrsr_ptr = u64_to_bitmask(&elrsr);
1158 1159

	/* Clear mappings for empty LRs */
1160
	for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1161
		struct vgic_lr vlr;
1162 1163 1164 1165

		if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
			continue;

1166
		vlr = vgic_get_lr(vcpu, lr);
1167

1168
		BUG_ON(vlr.irq >= dist->nr_irqs);
1169
		vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1170 1171 1172
	}

	/* Check if we still have something up our sleeve... */
1173 1174
	pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
	if (level_pending || pending < vgic->nr_lr)
1175
		set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
}

void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return;

	spin_lock(&dist->lock);
	__kvm_vgic_flush_hwstate(vcpu);
	spin_unlock(&dist->lock);
}

void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
1192 1193
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

1194 1195 1196
	if (!irqchip_in_kernel(vcpu->kvm))
		return;

1197
	spin_lock(&dist->lock);
1198
	__kvm_vgic_sync_hwstate(vcpu);
1199
	spin_unlock(&dist->lock);
1200 1201 1202 1203 1204 1205 1206 1207 1208
}

int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return 0;

1209
	return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1210 1211
}

1212
void vgic_kick_vcpus(struct kvm *kvm)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
{
	struct kvm_vcpu *vcpu;
	int c;

	/*
	 * We've injected an interrupt, time to find out who deserves
	 * a good kick...
	 */
	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (kvm_vgic_vcpu_pending_irq(vcpu))
			kvm_vcpu_kick(vcpu);
	}
}

static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
1229
	int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1230 1231 1232 1233 1234 1235

	/*
	 * Only inject an interrupt if:
	 * - edge triggered and we have a rising edge
	 * - level triggered and we change level
	 */
1236 1237
	if (edge_triggered) {
		int state = vgic_dist_irq_is_pending(vcpu, irq);
1238
		return level > state;
1239 1240
	} else {
		int state = vgic_dist_irq_get_level(vcpu, irq);
1241
		return level != state;
1242
	}
1243 1244
}

1245
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1246 1247 1248 1249
				  unsigned int irq_num, bool level)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
1250
	int edge_triggered, level_triggered;
1251
	int enabled;
1252
	bool ret = true, can_inject = true;
1253 1254 1255 1256

	spin_lock(&dist->lock);

	vcpu = kvm_get_vcpu(kvm, cpuid);
1257 1258
	edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
	level_triggered = !edge_triggered;
1259 1260 1261 1262 1263 1264 1265 1266

	if (!vgic_validate_injection(vcpu, irq_num, level)) {
		ret = false;
		goto out;
	}

	if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
		cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1267 1268 1269 1270 1271
		if (cpuid == VCPU_NOT_ALLOCATED) {
			/* Pretend we use CPU0, and prevent injection */
			cpuid = 0;
			can_inject = false;
		}
1272 1273 1274 1275 1276
		vcpu = kvm_get_vcpu(kvm, cpuid);
	}

	kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);

1277 1278 1279
	if (level) {
		if (level_triggered)
			vgic_dist_irq_set_level(vcpu, irq_num);
1280
		vgic_dist_irq_set_pending(vcpu, irq_num);
1281 1282 1283 1284 1285 1286
	} else {
		if (level_triggered) {
			vgic_dist_irq_clear_level(vcpu, irq_num);
			if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
				vgic_dist_irq_clear_pending(vcpu, irq_num);
		}
1287 1288 1289

		ret = false;
		goto out;
1290
	}
1291 1292 1293

	enabled = vgic_irq_is_enabled(vcpu, irq_num);

1294
	if (!enabled || !can_inject) {
1295 1296 1297 1298
		ret = false;
		goto out;
	}

1299
	if (!vgic_can_sample_irq(vcpu, irq_num)) {
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		/*
		 * Level interrupt in progress, will be picked up
		 * when EOId.
		 */
		ret = false;
		goto out;
	}

	if (level) {
		vgic_cpu_irq_set(vcpu, irq_num);
1310
		set_bit(cpuid, dist->irq_pending_on_cpu);
1311 1312 1313 1314 1315
	}

out:
	spin_unlock(&dist->lock);

1316
	return ret ? cpuid : -EINVAL;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
}

/**
 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @irq_num: The IRQ number that is assigned to the device
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  activates an interrupt
 *			      false: deactivates an interrupt
 *
 * The GIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
			bool level)
{
1336
	int ret = 0;
1337
	int vcpu_id;
1338

1339
	if (unlikely(!vgic_initialized(kvm))) {
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		/*
		 * We only provide the automatic initialization of the VGIC
		 * for the legacy case of a GICv2. Any other type must
		 * be explicitly initialized once setup with the respective
		 * KVM device call.
		 */
		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
			ret = -EBUSY;
			goto out;
		}
1350 1351 1352 1353 1354 1355
		mutex_lock(&kvm->lock);
		ret = vgic_init(kvm);
		mutex_unlock(&kvm->lock);

		if (ret)
			goto out;
1356
	}
1357

1358 1359 1360 1361 1362 1363 1364 1365
	vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
	if (vcpu_id >= 0) {
		/* kick the specified vcpu */
		kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
	}

out:
	return ret;
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
	/*
	 * We cannot rely on the vgic maintenance interrupt to be
	 * delivered synchronously. This means we can only use it to
	 * exit the VM, and we perform the handling of EOIed
	 * interrupts on the exit path (see vgic_process_maintenance).
	 */
	return IRQ_HANDLED;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	kfree(vgic_cpu->pending_shared);
	kfree(vgic_cpu->vgic_irq_lr_map);
	vgic_cpu->pending_shared = NULL;
	vgic_cpu->vgic_irq_lr_map = NULL;
}

static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
	vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1395
	vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1396 1397 1398 1399 1400 1401

	if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
		kvm_vgic_vcpu_destroy(vcpu);
		return -ENOMEM;
	}

1402
	memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1403 1404

	/*
1405 1406 1407
	 * Store the number of LRs per vcpu, so we don't have to go
	 * all the way to the distributor structure to find out. Only
	 * assembly code should use this one.
1408
	 */
1409
	vgic_cpu->nr_lr = vgic->nr_lr;
1410

1411
	return 0;
1412 1413
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/**
 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
 *
 * The host's GIC naturally limits the maximum amount of VCPUs a guest
 * can use.
 */
int kvm_vgic_get_max_vcpus(void)
{
	return vgic->max_gic_vcpus;
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
void kvm_vgic_destroy(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vgic_vcpu_destroy(vcpu);

	vgic_free_bitmap(&dist->irq_enabled);
	vgic_free_bitmap(&dist->irq_level);
	vgic_free_bitmap(&dist->irq_pending);
	vgic_free_bitmap(&dist->irq_soft_pend);
	vgic_free_bitmap(&dist->irq_queued);
	vgic_free_bitmap(&dist->irq_cfg);
	vgic_free_bytemap(&dist->irq_priority);
	if (dist->irq_spi_target) {
		for (i = 0; i < dist->nr_cpus; i++)
			vgic_free_bitmap(&dist->irq_spi_target[i]);
	}
	kfree(dist->irq_sgi_sources);
	kfree(dist->irq_spi_cpu);
1447
	kfree(dist->irq_spi_mpidr);
1448 1449 1450 1451 1452 1453
	kfree(dist->irq_spi_target);
	kfree(dist->irq_pending_on_cpu);
	dist->irq_sgi_sources = NULL;
	dist->irq_spi_cpu = NULL;
	dist->irq_spi_target = NULL;
	dist->irq_pending_on_cpu = NULL;
1454
	dist->nr_cpus = 0;
1455 1456 1457 1458 1459 1460
}

/*
 * Allocate and initialize the various data structures. Must be called
 * with kvm->lock held!
 */
1461
int vgic_init(struct kvm *kvm)
1462 1463 1464 1465
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int nr_cpus, nr_irqs;
1466
	int ret, i, vcpu_id;
1467

1468
	if (vgic_initialized(kvm))
1469 1470 1471 1472
		return 0;

	nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
	if (!nr_cpus)		/* No vcpus? Can't be good... */
1473
		return -ENODEV;
1474

1475 1476 1477 1478
	/*
	 * If nobody configured the number of interrupts, use the
	 * legacy one.
	 */
1479 1480 1481 1482
	if (!dist->nr_irqs)
		dist->nr_irqs = VGIC_NR_IRQS_LEGACY;

	nr_irqs = dist->nr_irqs;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
	ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);

	if (ret)
		goto out;

	dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
	dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
	dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
				       GFP_KERNEL);
	dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
					   GFP_KERNEL);
	if (!dist->irq_sgi_sources ||
	    !dist->irq_spi_cpu ||
	    !dist->irq_spi_target ||
	    !dist->irq_pending_on_cpu) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < nr_cpus; i++)
		ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
					nr_cpus, nr_irqs);

	if (ret)
		goto out;

1516 1517 1518
	ret = kvm->arch.vgic.vm_ops.init_model(kvm);
	if (ret)
		goto out;
1519 1520

	kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1521 1522 1523 1524 1525 1526
		ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
		if (ret) {
			kvm_err("VGIC: Failed to allocate vcpu memory\n");
			break;
		}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		for (i = 0; i < dist->nr_irqs; i++) {
			if (i < VGIC_NR_PPIS)
				vgic_bitmap_set_irq_val(&dist->irq_enabled,
							vcpu->vcpu_id, i, 1);
			if (i < VGIC_NR_PRIVATE_IRQS)
				vgic_bitmap_set_irq_val(&dist->irq_cfg,
							vcpu->vcpu_id, i,
							VGIC_CFG_EDGE);
		}

		vgic_enable(vcpu);
	}
1539

1540 1541 1542 1543 1544 1545 1546
out:
	if (ret)
		kvm_vgic_destroy(kvm);

	return ret;
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static int init_vgic_model(struct kvm *kvm, int type)
{
	switch (type) {
	case KVM_DEV_TYPE_ARM_VGIC_V2:
		vgic_v2_init_emulation(kvm);
		break;
	default:
		return -ENODEV;
	}

1557 1558 1559
	if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
		return -E2BIG;

1560 1561 1562
	return 0;
}

1563
int kvm_vgic_create(struct kvm *kvm, u32 type)
1564
{
1565
	int i, vcpu_lock_idx = -1, ret;
1566
	struct kvm_vcpu *vcpu;
1567 1568 1569

	mutex_lock(&kvm->lock);

1570
	if (irqchip_in_kernel(kvm)) {
1571 1572 1573 1574
		ret = -EEXIST;
		goto out;
	}

1575 1576 1577 1578 1579
	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run while we create the vgic.
	 */
1580
	ret = -EBUSY;
1581 1582 1583 1584 1585 1586 1587
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!mutex_trylock(&vcpu->mutex))
			goto out_unlock;
		vcpu_lock_idx = i;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
1588
		if (vcpu->arch.has_run_once)
1589 1590
			goto out_unlock;
	}
1591
	ret = 0;
1592

1593 1594 1595 1596
	ret = init_vgic_model(kvm, type);
	if (ret)
		goto out_unlock;

1597
	spin_lock_init(&kvm->arch.vgic.lock);
1598
	kvm->arch.vgic.in_kernel = true;
1599
	kvm->arch.vgic.vgic_model = type;
1600
	kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1601 1602
	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1603
	kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1604

1605 1606 1607 1608 1609 1610
out_unlock:
	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&vcpu->mutex);
	}

1611 1612 1613 1614 1615
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

1616
static int vgic_ioaddr_overlap(struct kvm *kvm)
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
{
	phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
	phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
		return 0;
	if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
	    (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
		return -EBUSY;
	return 0;
}

static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
			      phys_addr_t addr, phys_addr_t size)
{
	int ret;

1634 1635 1636 1637 1638 1639
	if (addr & ~KVM_PHYS_MASK)
		return -E2BIG;

	if (addr & (SZ_4K - 1))
		return -EINVAL;

1640 1641 1642 1643 1644
	if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
		return -EEXIST;
	if (addr + size < addr)
		return -EINVAL;

1645
	*ioaddr = addr;
1646 1647
	ret = vgic_ioaddr_overlap(kvm);
	if (ret)
1648 1649
		*ioaddr = VGIC_ADDR_UNDEF;

1650 1651 1652
	return ret;
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * kvm_vgic_addr - set or get vgic VM base addresses
 * @kvm:   pointer to the vm struct
 * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
 * @addr:  pointer to address value
 * @write: if true set the address in the VM address space, if false read the
 *          address
 *
 * Set or get the vgic base addresses for the distributor and the virtual CPU
 * interface in the VM physical address space.  These addresses are properties
 * of the emulated core/SoC and therefore user space initially knows this
 * information.
 */
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1667 1668 1669 1670 1671 1672 1673
{
	int r = 0;
	struct vgic_dist *vgic = &kvm->arch.vgic;

	mutex_lock(&kvm->lock);
	switch (type) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
1674 1675 1676 1677 1678 1679
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
					       *addr, KVM_VGIC_V2_DIST_SIZE);
		} else {
			*addr = vgic->vgic_dist_base;
		}
1680 1681
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
1682 1683 1684 1685 1686 1687
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
					       *addr, KVM_VGIC_V2_CPU_SIZE);
		} else {
			*addr = vgic->vgic_cpu_base;
		}
1688 1689 1690 1691 1692 1693 1694 1695
		break;
	default:
		r = -ENODEV;
	}

	mutex_unlock(&kvm->lock);
	return r;
}
1696

1697
int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1698
{
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	int r;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		r = kvm_vgic_addr(dev->kvm, type, &addr, true);
		return (r == -ENODEV) ? -ENXIO : r;
	}
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 val;
		int ret = 0;

		if (get_user(val, uaddr))
			return -EFAULT;

		/*
		 * We require:
		 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
		 * - at most 1024 interrupts
		 * - a multiple of 32 interrupts
		 */
		if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
		    val > VGIC_MAX_IRQS ||
		    (val & 31))
			return -EINVAL;

		mutex_lock(&dev->kvm->lock);

1734
		if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
1735 1736 1737 1738 1739 1740 1741 1742
			ret = -EBUSY;
		else
			dev->kvm->arch.vgic.nr_irqs = val;

		mutex_unlock(&dev->kvm->lock);

		return ret;
	}
1743 1744 1745 1746 1747 1748 1749 1750
	case KVM_DEV_ARM_VGIC_GRP_CTRL: {
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			r = vgic_init(dev->kvm);
			return r;
		}
		break;
	}
1751 1752
	}

1753 1754 1755
	return -ENXIO;
}

1756
int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1757
{
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	int r = -ENXIO;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		r = kvm_vgic_addr(dev->kvm, type, &addr, false);
		if (r)
			return (r == -ENODEV) ? -ENXIO : r;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
1772 1773
		break;
	}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;

		r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
		break;
	}

	}

	return r;
}

1786
int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset)
1787 1788 1789 1790
{
	struct kvm_exit_mmio dev_attr_mmio;

	dev_attr_mmio.len = 4;
1791
	if (vgic_find_range(ranges, &dev_attr_mmio, offset))
1792 1793 1794 1795 1796
		return 0;
	else
		return -ENXIO;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
static void vgic_init_maintenance_interrupt(void *info)
{
	enable_percpu_irq(vgic->maint_irq, 0);
}

static int vgic_cpu_notify(struct notifier_block *self,
			   unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		vgic_init_maintenance_interrupt(NULL);
		break;
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		disable_percpu_irq(vgic->maint_irq);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block vgic_cpu_nb = {
	.notifier_call = vgic_cpu_notify,
};

static const struct of_device_id vgic_ids[] = {
	{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
	{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
	{},
};

int kvm_vgic_hyp_init(void)
{
	const struct of_device_id *matched_id;
1832 1833
	const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
				const struct vgic_params **);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	struct device_node *vgic_node;
	int ret;

	vgic_node = of_find_matching_node_and_match(NULL,
						    vgic_ids, &matched_id);
	if (!vgic_node) {
		kvm_err("error: no compatible GIC node found\n");
		return -ENODEV;
	}

	vgic_probe = matched_id->data;
	ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
	if (ret)
		return ret;

	ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
				 "vgic", kvm_get_running_vcpus());
	if (ret) {
		kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
		return ret;
	}

	ret = __register_cpu_notifier(&vgic_cpu_nb);
	if (ret) {
		kvm_err("Cannot register vgic CPU notifier\n");
		goto out_free_irq;
	}

	/* Callback into for arch code for setup */
	vgic_arch_setup(vgic);

	on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);

1867
	return 0;
1868 1869 1870 1871 1872

out_free_irq:
	free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
	return ret;
}