vgic.c 64.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

19
#include <linux/cpu.h>
20 21 22 23
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
24 25 26
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
27
#include <linux/uaccess.h>
28 29 30

#include <linux/irqchip/arm-gic.h>

31
#include <asm/kvm_emulate.h>
32 33
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
34

35 36 37 38
/*
 * How the whole thing works (courtesy of Christoffer Dall):
 *
 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 40 41 42 43
 *   something is pending on the CPU interface.
 * - Interrupts that are pending on the distributor are stored on the
 *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
 *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
 *   arch. timers).
44 45 46 47
 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
 *   recalculated
 * - To calculate the oracle, we need info for each cpu from
 *   compute_pending_for_cpu, which considers:
48 49
 *   - PPI: dist->irq_pending & dist->irq_enable
 *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50
 *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 52 53
 *     registers, stored on each vcpu. We only keep one bit of
 *     information per interrupt, making sure that only one vcpu can
 *     accept the interrupt.
54
 * - If any of the above state changes, we must recalculate the oracle.
55 56 57 58 59 60 61 62 63
 * - The same is true when injecting an interrupt, except that we only
 *   consider a single interrupt at a time. The irq_spi_cpu array
 *   contains the target CPU for each SPI.
 *
 * The handling of level interrupts adds some extra complexity. We
 * need to track when the interrupt has been EOIed, so we can sample
 * the 'line' again. This is achieved as such:
 *
 * - When a level interrupt is moved onto a vcpu, the corresponding
64
 *   bit in irq_queued is set. As long as this bit is set, the line
65 66 67 68
 *   will be ignored for further interrupts. The interrupt is injected
 *   into the vcpu with the GICH_LR_EOI bit set (generate a
 *   maintenance interrupt on EOI).
 * - When the interrupt is EOIed, the maintenance interrupt fires,
69
 *   and clears the corresponding bit in irq_queued. This allows the
70
 *   interrupt line to be sampled again.
71 72 73 74 75
 * - Note that level-triggered interrupts can also be set to pending from
 *   writes to GICD_ISPENDRn and lowering the external input line does not
 *   cause the interrupt to become inactive in such a situation.
 *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
 *   inactive as long as the external input line is held high.
76 77
 */

78 79 80
#define VGIC_ADDR_UNDEF		(-1)
#define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)

81 82 83 84
#define PRODUCT_ID_KVM		0x4b	/* ASCII code K */
#define IMPLEMENTER_ARM		0x43b
#define GICC_ARCH_VERSION_V2	0x2

85 86 87 88 89 90 91 92 93
#define ACCESS_READ_VALUE	(1 << 0)
#define ACCESS_READ_RAZ		(0 << 0)
#define ACCESS_READ_MASK(x)	((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED	(0 << 1)
#define ACCESS_WRITE_SETBIT	(1 << 1)
#define ACCESS_WRITE_CLEARBIT	(2 << 1)
#define ACCESS_WRITE_VALUE	(3 << 1)
#define ACCESS_WRITE_MASK(x)	((x) & (3 << 1))

94
static int vgic_init(struct kvm *kvm);
95
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
96
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
97
static void vgic_update_state(struct kvm *kvm);
98
static void vgic_kick_vcpus(struct kvm *kvm);
99
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
100
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
101 102
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
103 104
static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
105

106 107
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
108

109
/*
110 111
 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
 * extracts u32s out of them.
112 113 114 115 116 117 118 119 120 121 122 123 124 125
 *
 * This does not work on 64-bit BE systems, because the bitmap access
 * will store two consecutive 32-bit words with the higher-addressed
 * register's bits at the lower index and the lower-addressed register's
 * bits at the higher index.
 *
 * Therefore, swizzle the register index when accessing the 32-bit word
 * registers to access the right register's value.
 */
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
#define REG_OFFSET_SWIZZLE	1
#else
#define REG_OFFSET_SWIZZLE	0
#endif
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
	int nr_longs;

	nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);

	b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
	if (!b->private)
		return -ENOMEM;

	b->shared = b->private + nr_cpus;

	return 0;
}

static void vgic_free_bitmap(struct vgic_bitmap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Call this function to convert a u64 value to an unsigned long * bitmask
 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
 *
 * Warning: Calling this function may modify *val.
 */
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
	*val = (*val >> 32) | (*val << 32);
#endif
	return (unsigned long *)val;
}

163 164 165 166 167
static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
				int cpuid, u32 offset)
{
	offset >>= 2;
	if (!offset)
168
		return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
169
	else
170
		return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
171 172 173 174 175 176
}

static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
				   int cpuid, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
177
		return test_bit(irq, x->private + cpuid);
178

179
	return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
180 181 182 183 184 185 186 187
}

static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
				    int irq, int val)
{
	unsigned long *reg;

	if (irq < VGIC_NR_PRIVATE_IRQS) {
188
		reg = x->private + cpuid;
189
	} else {
190
		reg = x->shared;
191 192 193 194 195 196 197 198 199 200 201
		irq -= VGIC_NR_PRIVATE_IRQS;
	}

	if (val)
		set_bit(irq, reg);
	else
		clear_bit(irq, reg);
}

static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
202
	return x->private + cpuid;
203 204 205 206
}

static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	return x->shared;
}

static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
	int size;

	size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
	size += nr_irqs - VGIC_NR_PRIVATE_IRQS;

	x->private = kzalloc(size, GFP_KERNEL);
	if (!x->private)
		return -ENOMEM;

	x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
	return 0;
}

static void vgic_free_bytemap(struct vgic_bytemap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
230 231 232 233
}

static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
234 235 236 237 238 239 240 241 242 243 244
	u32 *reg;

	if (offset < VGIC_NR_PRIVATE_IRQS) {
		reg = x->private;
		offset += cpuid * VGIC_NR_PRIVATE_IRQS;
	} else {
		reg = x->shared;
		offset -= VGIC_NR_PRIVATE_IRQS;
	}

	return reg + (offset / sizeof(u32));
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
}

#define VGIC_CFG_LEVEL	0
#define VGIC_CFG_EDGE	1

static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int irq_val;

	irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
	return irq_val == VGIC_CFG_EDGE;
}

static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}

266
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
267 268 269
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

270
	return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
271 272
}

273
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
274 275 276
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

277
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
278 279
}

280
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
281 282 283
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

284
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}

static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
}

static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
}

322 323 324 325
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

326
	return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
327 328
}

329
static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
330 331 332
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

333
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
334 335
}

336
static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
337 338 339
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

340
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
}

static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		set_bit(irq - VGIC_NR_PRIVATE_IRQS,
			vcpu->arch.vgic_cpu.pending_shared);
}

static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
			  vcpu->arch.vgic_cpu.pending_shared);
}

361 362 363 364 365
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
	return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
}

366 367
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{
368
	return le32_to_cpu(*((u32 *)mmio->data)) & mask;
369 370 371 372
}

static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
{
373
	*((u32 *)mmio->data) = cpu_to_le32(value) & mask;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
}

/**
 * vgic_reg_access - access vgic register
 * @mmio:   pointer to the data describing the mmio access
 * @reg:    pointer to the virtual backing of vgic distributor data
 * @offset: least significant 2 bits used for word offset
 * @mode:   ACCESS_ mode (see defines above)
 *
 * Helper to make vgic register access easier using one of the access
 * modes defined for vgic register access
 * (read,raz,write-ignored,setbit,clearbit,write)
 */
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
			    phys_addr_t offset, int mode)
{
	int word_offset = (offset & 3) * 8;
	u32 mask = (1UL << (mmio->len * 8)) - 1;
	u32 regval;

	/*
	 * Any alignment fault should have been delivered to the guest
	 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
	 */

	if (reg) {
		regval = *reg;
	} else {
		BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
		regval = 0;
	}

	if (mmio->is_write) {
		u32 data = mmio_data_read(mmio, mask) << word_offset;
		switch (ACCESS_WRITE_MASK(mode)) {
		case ACCESS_WRITE_IGNORED:
			return;

		case ACCESS_WRITE_SETBIT:
			regval |= data;
			break;

		case ACCESS_WRITE_CLEARBIT:
			regval &= ~data;
			break;

		case ACCESS_WRITE_VALUE:
			regval = (regval & ~(mask << word_offset)) | data;
			break;
		}
		*reg = regval;
	} else {
		switch (ACCESS_READ_MASK(mode)) {
		case ACCESS_READ_RAZ:
			regval = 0;
			/* fall through */

		case ACCESS_READ_VALUE:
			mmio_data_write(mmio, mask, regval >> word_offset);
		}
	}
}

437 438 439 440 441 442 443
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	u32 word_offset = offset & 3;

	switch (offset & ~3) {
444
	case 0:			/* GICD_CTLR */
445 446 447 448 449 450 451 452 453 454
		reg = vcpu->kvm->arch.vgic.enabled;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
		if (mmio->is_write) {
			vcpu->kvm->arch.vgic.enabled = reg & 1;
			vgic_update_state(vcpu->kvm);
			return true;
		}
		break;

455
	case 4:			/* GICD_TYPER */
456
		reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
457
		reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
458 459 460 461
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;

462 463
	case 8:			/* GICD_IIDR */
		reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;
	}

	return false;
}

static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
		if (offset < 4) /* Force SGI enabled */
			*reg |= 0xffff;
507
		vgic_retire_disabled_irqs(vcpu);
508 509 510 511 512 513 514 515 516 517 518
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
{
519
	u32 *reg, orig;
520 521 522 523 524 525 526 527
	u32 level_mask;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
	level_mask = (~(*reg));

	/* Mark both level and edge triggered irqs as pending */
	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
528
	orig = *reg;
529 530
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
531

532
	if (mmio->is_write) {
533 534 535 536 537 538 539
		/* Set the soft-pending flag only for level-triggered irqs */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu->vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
		*reg &= level_mask;

540 541 542 543 544 545
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

546 547 548 549 550 551 552 553 554 555 556
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
					  struct kvm_exit_mmio *mmio,
					  phys_addr_t offset)
{
557
	u32 *level_active;
558
	u32 *reg, orig;
559 560 561
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
562
	orig = *reg;
563 564 565
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
566 567 568 569 570 571 572
		/* Re-set level triggered level-active interrupts */
		level_active = vgic_bitmap_get_reg(&dist->irq_level,
					  vcpu->vcpu_id, offset);
		reg = vgic_bitmap_get_reg(&dist->irq_pending,
					  vcpu->vcpu_id, offset);
		*reg |= *level_active;

573 574 575 576 577 578
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

579 580 581 582 583 584
		/* Clear soft-pending flags */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu->vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
					vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

#define GICD_ITARGETSR_SIZE	32
#define GICD_CPUTARGETS_BITS	8
#define GICD_IRQS_PER_ITARGETSR	(GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
609
	int i;
610 611 612 613
	u32 val = 0;

	irq -= VGIC_NR_PRIVATE_IRQS;

614 615
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
		val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

	return val;
}

static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i, c;
	unsigned long *bmap;
	u32 target;

	irq -= VGIC_NR_PRIVATE_IRQS;

	/*
	 * Pick the LSB in each byte. This ensures we target exactly
	 * one vcpu per IRQ. If the byte is null, assume we target
	 * CPU0.
	 */
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
		int shift = i * GICD_CPUTARGETS_BITS;
		target = ffs((val >> shift) & 0xffU);
		target = target ? (target - 1) : 0;
		dist->irq_spi_cpu[irq + i] = target;
		kvm_for_each_vcpu(c, vcpu, kvm) {
			bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
			if (c == target)
				set_bit(irq + i, bmap);
			else
				clear_bit(irq + i, bmap);
		}
	}
}

static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
				   struct kvm_exit_mmio *mmio,
				   phys_addr_t offset)
{
	u32 reg;

	/* We treat the banked interrupts targets as read-only */
	if (offset < 32) {
		u32 roreg = 1 << vcpu->vcpu_id;
		roreg |= roreg << 8;
		roreg |= roreg << 16;

		vgic_reg_access(mmio, &roreg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static u32 vgic_cfg_expand(u16 val)
{
	u32 res = 0;
	int i;

	/*
	 * Turn a 16bit value like abcd...mnop into a 32bit word
	 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);

	return res;
}

static u16 vgic_cfg_compress(u32 val)
{
	u16 res = 0;
	int i;

	/*
	 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
	 * abcd...mnop which is what we really care about.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;

	return res;
}

/*
 * The distributor uses 2 bits per IRQ for the CFG register, but the
 * LSB is always 0. As such, we only keep the upper bit, and use the
 * two above functions to compress/expand the bits
 */
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 val;
718 719 720
	u32 *reg;

	reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
721
				  vcpu->vcpu_id, offset >> 1);
722

723
	if (offset & 4)
724 725 726 727 728 729 730 731
		val = *reg >> 16;
	else
		val = *reg & 0xffff;

	val = vgic_cfg_expand(val);
	vgic_reg_access(mmio, &val, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
732
		if (offset < 8) {
733 734 735 736 737
			*reg = ~0U; /* Force PPIs/SGIs to 1 */
			return false;
		}

		val = vgic_cfg_compress(val);
738
		if (offset & 4) {
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
			*reg &= 0xffff;
			*reg |= val << 16;
		} else {
			*reg &= 0xffff << 16;
			*reg |= val;
		}
	}

	return false;
}

static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_dispatch_sgi(vcpu, reg);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
/**
 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 *
 * Move any pending IRQs that have already been assigned to LRs back to the
 * emulated distributor state so that the complete emulated state can be read
 * from the main emulation structures without investigating the LRs.
 *
 * Note that IRQs in the active state in the LRs get their pending state moved
 * to the distributor but the active state stays in the LRs, because we don't
 * track the active state on the distributor side.
 */
static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int vcpu_id = vcpu->vcpu_id;
782
	int i;
783 784

	for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
785
		struct vgic_lr lr = vgic_get_lr(vcpu, i);
786 787 788 789 790 791 792 793 794 795 796

		/*
		 * There are three options for the state bits:
		 *
		 * 01: pending
		 * 10: active
		 * 11: pending and active
		 *
		 * If the LR holds only an active interrupt (not pending) then
		 * just leave it alone.
		 */
797
		if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
798 799 800 801 802 803 804 805
			continue;

		/*
		 * Reestablish the pending state on the distributor and the
		 * CPU interface.  It may have already been pending, but that
		 * is fine, then we are only setting a few bits that were
		 * already set.
		 */
806
		vgic_dist_irq_set_pending(vcpu, lr.irq);
807
		if (lr.irq < VGIC_NR_SGIS)
808
			*vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
809 810
		lr.state &= ~LR_STATE_PENDING;
		vgic_set_lr(vcpu, i, lr);
811 812 813 814 815 816

		/*
		 * If there's no state left on the LR (it could still be
		 * active), then the LR does not hold any useful info and can
		 * be marked as free for other use.
		 */
817
		if (!(lr.state & LR_STATE_MASK)) {
818
			vgic_retire_lr(i, lr.irq, vcpu);
819 820
			vgic_irq_clear_queued(vcpu, lr.irq);
		}
821 822 823 824 825 826

		/* Finally update the VGIC state. */
		vgic_update_state(vcpu->kvm);
	}
}

827 828 829 830
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
831
{
832 833
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
834
	int min_sgi = (offset & ~0x3);
835 836 837 838 839 840 841
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg = 0;

	/* Copy source SGIs from distributor side */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		int shift = 8 * (sgi - min_sgi);
842
		reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
843 844 845
	}

	mmio_data_write(mmio, ~0, reg);
846 847 848
	return false;
}

849 850 851 852 853 854
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset, bool set)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
855
	int min_sgi = (offset & ~0x3);
856 857 858 859 860 861 862 863 864 865
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg;
	bool updated = false;

	reg = mmio_data_read(mmio, ~0);

	/* Clear pending SGIs on the distributor */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		u8 mask = reg >> (8 * (sgi - min_sgi));
866
		u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
867
		if (set) {
868
			if ((*src & mask) != mask)
869
				updated = true;
870
			*src |= mask;
871
		} else {
872
			if (*src & mask)
873
				updated = true;
874
			*src &= ~mask;
875 876 877 878 879 880 881 882 883
		}
	}

	if (updated)
		vgic_update_state(vcpu->kvm);

	return updated;
}

884 885 886 887
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio,
				phys_addr_t offset)
{
888 889 890 891 892 893 894 895 896 897 898 899 900 901
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
}

static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
902 903
}

904 905 906 907 908 909 910 911 912
/*
 * I would have liked to use the kvm_bus_io_*() API instead, but it
 * cannot cope with banked registers (only the VM pointer is passed
 * around, and we need the vcpu). One of these days, someone please
 * fix it!
 */
struct mmio_range {
	phys_addr_t base;
	unsigned long len;
913
	int bits_per_irq;
914 915 916 917
	bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
			    phys_addr_t offset);
};

918
static const struct mmio_range vgic_dist_ranges[] = {
919 920 921
	{
		.base		= GIC_DIST_CTRL,
		.len		= 12,
922
		.bits_per_irq	= 0,
923 924 925 926
		.handle_mmio	= handle_mmio_misc,
	},
	{
		.base		= GIC_DIST_IGROUP,
927 928
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
929 930 931 932
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ENABLE_SET,
933 934
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
935 936 937 938
		.handle_mmio	= handle_mmio_set_enable_reg,
	},
	{
		.base		= GIC_DIST_ENABLE_CLEAR,
939 940
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
941 942 943 944
		.handle_mmio	= handle_mmio_clear_enable_reg,
	},
	{
		.base		= GIC_DIST_PENDING_SET,
945 946
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
947 948 949 950
		.handle_mmio	= handle_mmio_set_pending_reg,
	},
	{
		.base		= GIC_DIST_PENDING_CLEAR,
951 952
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
953 954 955 956
		.handle_mmio	= handle_mmio_clear_pending_reg,
	},
	{
		.base		= GIC_DIST_ACTIVE_SET,
957 958
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
959 960 961 962
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ACTIVE_CLEAR,
963 964
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
965 966 967 968
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_PRI,
969 970
		.len		= VGIC_MAX_IRQS,
		.bits_per_irq	= 8,
971 972 973 974
		.handle_mmio	= handle_mmio_priority_reg,
	},
	{
		.base		= GIC_DIST_TARGET,
975 976
		.len		= VGIC_MAX_IRQS,
		.bits_per_irq	= 8,
977 978 979 980
		.handle_mmio	= handle_mmio_target_reg,
	},
	{
		.base		= GIC_DIST_CONFIG,
981 982
		.len		= VGIC_MAX_IRQS / 4,
		.bits_per_irq	= 2,
983 984 985 986 987 988 989
		.handle_mmio	= handle_mmio_cfg_reg,
	},
	{
		.base		= GIC_DIST_SOFTINT,
		.len		= 4,
		.handle_mmio	= handle_mmio_sgi_reg,
	},
990 991 992 993 994 995 996 997 998 999
	{
		.base		= GIC_DIST_SGI_PENDING_CLEAR,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_clear,
	},
	{
		.base		= GIC_DIST_SGI_PENDING_SET,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_set,
	},
1000 1001 1002 1003 1004 1005
	{}
};

static const
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
				       struct kvm_exit_mmio *mmio,
1006
				       phys_addr_t offset)
1007 1008 1009 1010
{
	const struct mmio_range *r = ranges;

	while (r->len) {
1011 1012
		if (offset >= r->base &&
		    (offset + mmio->len) <= (r->base + r->len))
1013 1014 1015 1016 1017 1018 1019
			return r;
		r++;
	}

	return NULL;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static bool vgic_validate_access(const struct vgic_dist *dist,
				 const struct mmio_range *range,
				 unsigned long offset)
{
	int irq;

	if (!range->bits_per_irq)
		return true;	/* Not an irq-based access */

	irq = offset * 8 / range->bits_per_irq;
	if (irq >= dist->nr_irqs)
		return false;

	return true;
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Call the respective handler function for the given range.
 * We split up any 64 bit accesses into two consecutive 32 bit
 * handler calls and merge the result afterwards.
 * We do this in a little endian fashion regardless of the host's
 * or guest's endianness, because the GIC is always LE and the rest of
 * the code (vgic_reg_access) also puts it in a LE fashion already.
 * At this point we have already identified the handle function, so
 * range points to that one entry and offset is relative to this.
 */
static bool call_range_handler(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio,
			       unsigned long offset,
			       const struct mmio_range *range)
{
	u32 *data32 = (void *)mmio->data;
	struct kvm_exit_mmio mmio32;
	bool ret;

	if (likely(mmio->len <= 4))
		return range->handle_mmio(vcpu, mmio, offset);

	/*
	 * Any access bigger than 4 bytes (that we currently handle in KVM)
	 * is actually 8 bytes long, caused by a 64-bit access
	 */

	mmio32.len = 4;
	mmio32.is_write = mmio->is_write;

	mmio32.phys_addr = mmio->phys_addr + 4;
	if (mmio->is_write)
		*(u32 *)mmio32.data = data32[1];
	ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
	if (!mmio->is_write)
		data32[1] = *(u32 *)mmio32.data;

	mmio32.phys_addr = mmio->phys_addr;
	if (mmio->is_write)
		*(u32 *)mmio32.data = data32[0];
	ret |= range->handle_mmio(vcpu, &mmio32, offset);
	if (!mmio->is_write)
		data32[0] = *(u32 *)mmio32.data;

	return ret;
}

1083
/**
1084
 * vgic_handle_mmio_range - handle an in-kernel MMIO access
1085 1086 1087
 * @vcpu:	pointer to the vcpu performing the access
 * @run:	pointer to the kvm_run structure
 * @mmio:	pointer to the data describing the access
1088 1089
 * @ranges:	array of MMIO ranges in a given region
 * @mmio_base:	base address of that region
1090
 *
1091
 * returns true if the MMIO access could be performed
1092
 */
1093 1094 1095 1096
static bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
			    struct kvm_exit_mmio *mmio,
			    const struct mmio_range *ranges,
			    unsigned long mmio_base)
1097
{
1098 1099 1100 1101 1102
	const struct mmio_range *range;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	bool updated_state;
	unsigned long offset;

1103 1104
	offset = mmio->phys_addr - mmio_base;
	range = find_matching_range(ranges, mmio, offset);
1105 1106 1107 1108 1109 1110 1111
	if (unlikely(!range || !range->handle_mmio)) {
		pr_warn("Unhandled access %d %08llx %d\n",
			mmio->is_write, mmio->phys_addr, mmio->len);
		return false;
	}

	spin_lock(&vcpu->kvm->arch.vgic.lock);
1112
	offset -= range->base;
1113
	if (vgic_validate_access(dist, range, offset)) {
1114
		updated_state = call_range_handler(vcpu, mmio, offset, range);
1115
	} else {
1116 1117
		if (!mmio->is_write)
			memset(mmio->data, 0, mmio->len);
1118 1119
		updated_state = false;
	}
1120 1121 1122 1123
	spin_unlock(&vcpu->kvm->arch.vgic.lock);
	kvm_prepare_mmio(run, mmio);
	kvm_handle_mmio_return(vcpu, run);

1124 1125 1126
	if (updated_state)
		vgic_kick_vcpus(vcpu->kvm);

1127 1128 1129
	return true;
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static inline bool is_in_range(phys_addr_t addr, unsigned long len,
			       phys_addr_t baseaddr, unsigned long size)
{
	return (addr >= baseaddr) && (addr + len <= baseaddr + size);
}

static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
				struct kvm_exit_mmio *mmio)
{
	unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;

	if (!is_in_range(mmio->phys_addr, mmio->len, base,
			 KVM_VGIC_V2_DIST_SIZE))
		return false;

	/* GICv2 does not support accesses wider than 32 bits */
	if (mmio->len > 4) {
		kvm_inject_dabt(vcpu, mmio->phys_addr);
		return true;
	}

	return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
}

/**
 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
 * @vcpu:      pointer to the vcpu performing the access
 * @run:       pointer to the kvm_run structure
 * @mmio:      pointer to the data describing the access
 *
 * returns true if the MMIO access has been performed in kernel space,
 * and false if it needs to be emulated in user space.
 */
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
		      struct kvm_exit_mmio *mmio)
{
	if (!irqchip_in_kernel(vcpu->kvm))
		return false;

	return vgic_v2_handle_mmio(vcpu, run, mmio);
}

1172 1173 1174 1175 1176
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
{
	return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	u8 target_cpus;
	int sgi, mode, c, vcpu_id;

	vcpu_id = vcpu->vcpu_id;

	sgi = reg & 0xf;
	target_cpus = (reg >> 16) & 0xff;
	mode = (reg >> 24) & 3;

	switch (mode) {
	case 0:
		if (!target_cpus)
			return;
1195
		break;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	case 1:
		target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
		break;

	case 2:
		target_cpus = 1 << vcpu_id;
		break;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (target_cpus & 1) {
			/* Flag the SGI as pending */
1209
			vgic_dist_irq_set_pending(vcpu, sgi);
1210
			*vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
1211 1212 1213 1214 1215 1216 1217
			kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
		}

		target_cpus >>= 1;
	}
}

1218 1219 1220 1221 1222
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
	return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}

1223 1224
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
1225 1226 1227
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
	unsigned long pending_private, pending_shared;
1228
	int nr_shared = vgic_nr_shared_irqs(dist);
1229 1230 1231 1232 1233 1234
	int vcpu_id;

	vcpu_id = vcpu->vcpu_id;
	pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
	pend_shared = vcpu->arch.vgic_cpu.pending_shared;

1235
	pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1236 1237 1238
	enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
	bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);

1239
	pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1240
	enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1241
	bitmap_and(pend_shared, pending, enabled, nr_shared);
1242 1243
	bitmap_and(pend_shared, pend_shared,
		   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1244
		   nr_shared);
1245 1246

	pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1247
	pending_shared = find_first_bit(pend_shared, nr_shared);
1248
	return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1249
		pending_shared < vgic_nr_shared_irqs(dist));
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
}

/*
 * Update the interrupt state and determine which CPUs have pending
 * interrupts. Must be called with distributor lock held.
 */
static void vgic_update_state(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int c;

	if (!dist->enabled) {
1263
		set_bit(0, dist->irq_pending_on_cpu);
1264 1265 1266 1267 1268 1269
		return;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (compute_pending_for_cpu(vcpu)) {
			pr_debug("CPU%d has pending interrupts\n", c);
1270
			set_bit(c, dist->irq_pending_on_cpu);
1271 1272
		}
	}
1273
}
1274

1275 1276
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
1277
	return vgic_ops->get_lr(vcpu, lr);
1278 1279 1280 1281 1282
}

static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
1283
	vgic_ops->set_lr(vcpu, lr, vlr);
1284 1285
}

1286 1287 1288
static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
1289
	vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1290 1291 1292 1293
}

static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
1294
	return vgic_ops->get_elrsr(vcpu);
1295 1296
}

1297 1298
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
1299
	return vgic_ops->get_eisr(vcpu);
1300 1301
}

1302 1303
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
1304
	return vgic_ops->get_interrupt_status(vcpu);
1305 1306
}

1307 1308
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
1309
	vgic_ops->enable_underflow(vcpu);
1310 1311 1312 1313
}

static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
1314
	vgic_ops->disable_underflow(vcpu);
1315 1316
}

1317 1318
static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1319
	vgic_ops->get_vmcr(vcpu, vmcr);
1320 1321 1322 1323
}

static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1324
	vgic_ops->set_vmcr(vcpu, vmcr);
1325 1326
}

1327 1328
static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
1329
	vgic_ops->enable(vcpu);
1330 1331
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);

	vlr.state = 0;
	vgic_set_lr(vcpu, lr_nr, vlr);
	clear_bit(lr_nr, vgic_cpu->lr_used);
	vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
}
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

/*
 * An interrupt may have been disabled after being made pending on the
 * CPU interface (the classic case is a timer running while we're
 * rebooting the guest - the interrupt would kick as soon as the CPU
 * interface gets enabled, with deadly consequences).
 *
 * The solution is to examine already active LRs, and check the
 * interrupt is still enabled. If not, just retire it.
 */
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int lr;

1357
	for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1358
		struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1359

1360 1361
		if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
			vgic_retire_lr(lr, vlr.irq, vcpu);
1362 1363
			if (vgic_irq_is_queued(vcpu, vlr.irq))
				vgic_irq_clear_queued(vcpu, vlr.irq);
1364 1365 1366 1367
		}
	}
}

1368 1369 1370 1371 1372 1373 1374
/*
 * Queue an interrupt to a CPU virtual interface. Return true on success,
 * or false if it wasn't possible to queue it.
 */
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1375
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1376
	struct vgic_lr vlr;
1377 1378 1379 1380 1381
	int lr;

	/* Sanitize the input... */
	BUG_ON(sgi_source_id & ~7);
	BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1382
	BUG_ON(irq >= dist->nr_irqs);
1383 1384 1385 1386 1387 1388

	kvm_debug("Queue IRQ%d\n", irq);

	lr = vgic_cpu->vgic_irq_lr_map[irq];

	/* Do we have an active interrupt for the same CPUID? */
1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (lr != LR_EMPTY) {
		vlr = vgic_get_lr(vcpu, lr);
		if (vlr.source == sgi_source_id) {
			kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
			BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
			vlr.state |= LR_STATE_PENDING;
			vgic_set_lr(vcpu, lr, vlr);
			return true;
		}
1398 1399 1400 1401
	}

	/* Try to use another LR for this interrupt */
	lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1402 1403
			       vgic->nr_lr);
	if (lr >= vgic->nr_lr)
1404 1405 1406 1407 1408 1409
		return false;

	kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
	vgic_cpu->vgic_irq_lr_map[irq] = lr;
	set_bit(lr, vgic_cpu->lr_used);

1410 1411 1412
	vlr.irq = irq;
	vlr.source = sgi_source_id;
	vlr.state = LR_STATE_PENDING;
1413
	if (!vgic_irq_is_edge(vcpu, irq))
1414 1415 1416
		vlr.state |= LR_EOI_INT;

	vgic_set_lr(vcpu, lr, vlr);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	return true;
}

static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long sources;
	int vcpu_id = vcpu->vcpu_id;
	int c;

1428
	sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
1429

1430
	for_each_set_bit(c, &sources, dist->nr_cpus) {
1431 1432 1433 1434
		if (vgic_queue_irq(vcpu, c, irq))
			clear_bit(c, &sources);
	}

1435
	*vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
1436 1437 1438 1439 1440 1441 1442 1443

	/*
	 * If the sources bitmap has been cleared it means that we
	 * could queue all the SGIs onto link registers (see the
	 * clear_bit above), and therefore we are done with them in
	 * our emulated gic and can get rid of them.
	 */
	if (!sources) {
1444
		vgic_dist_irq_clear_pending(vcpu, irq);
1445 1446 1447 1448 1449 1450 1451 1452 1453
		vgic_cpu_irq_clear(vcpu, irq);
		return true;
	}

	return false;
}

static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
1454
	if (!vgic_can_sample_irq(vcpu, irq))
1455 1456 1457 1458
		return true; /* level interrupt, already queued */

	if (vgic_queue_irq(vcpu, 0, irq)) {
		if (vgic_irq_is_edge(vcpu, irq)) {
1459
			vgic_dist_irq_clear_pending(vcpu, irq);
1460 1461
			vgic_cpu_irq_clear(vcpu, irq);
		} else {
1462
			vgic_irq_set_queued(vcpu, irq);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		}

		return true;
	}

	return false;
}

/*
 * Fill the list registers with pending interrupts before running the
 * guest.
 */
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int i, vcpu_id;
	int overflow = 0;

	vcpu_id = vcpu->vcpu_id;

	/*
	 * We may not have any pending interrupt, or the interrupts
	 * may have been serviced from another vcpu. In all cases,
	 * move along.
	 */
	if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
		pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
		goto epilog;
	}

	/* SGIs */
	for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
		if (!vgic_queue_sgi(vcpu, i))
			overflow = 1;
	}

	/* PPIs */
	for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
		if (!vgic_queue_hwirq(vcpu, i))
			overflow = 1;
	}

	/* SPIs */
1507
	for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1508 1509 1510 1511 1512 1513
		if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
			overflow = 1;
	}

epilog:
	if (overflow) {
1514
		vgic_enable_underflow(vcpu);
1515
	} else {
1516
		vgic_disable_underflow(vcpu);
1517 1518 1519 1520 1521 1522
		/*
		 * We're about to run this VCPU, and we've consumed
		 * everything the distributor had in store for
		 * us. Claim we don't have anything pending. We'll
		 * adjust that if needed while exiting.
		 */
1523
		clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1524 1525 1526 1527 1528
	}
}

static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
1529
	u32 status = vgic_get_interrupt_status(vcpu);
1530 1531
	bool level_pending = false;

1532
	kvm_debug("STATUS = %08x\n", status);
1533

1534
	if (status & INT_STATUS_EOI) {
1535 1536 1537 1538
		/*
		 * Some level interrupts have been EOIed. Clear their
		 * active bit.
		 */
1539
		u64 eisr = vgic_get_eisr(vcpu);
1540
		unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1541
		int lr;
1542

1543
		for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1544
			struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1545
			WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1546

1547
			vgic_irq_clear_queued(vcpu, vlr.irq);
1548 1549 1550
			WARN_ON(vlr.state & LR_STATE_MASK);
			vlr.state = 0;
			vgic_set_lr(vcpu, lr, vlr);
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			/*
			 * If the IRQ was EOIed it was also ACKed and we we
			 * therefore assume we can clear the soft pending
			 * state (should it had been set) for this interrupt.
			 *
			 * Note: if the IRQ soft pending state was set after
			 * the IRQ was acked, it actually shouldn't be
			 * cleared, but we have no way of knowing that unless
			 * we start trapping ACKs when the soft-pending state
			 * is set.
			 */
			vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);

1565
			/* Any additional pending interrupt? */
1566
			if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1567
				vgic_cpu_irq_set(vcpu, vlr.irq);
1568 1569
				level_pending = true;
			} else {
1570
				vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1571
				vgic_cpu_irq_clear(vcpu, vlr.irq);
1572
			}
1573 1574 1575 1576 1577

			/*
			 * Despite being EOIed, the LR may not have
			 * been marked as empty.
			 */
1578
			vgic_sync_lr_elrsr(vcpu, lr, vlr);
1579 1580 1581
		}
	}

1582
	if (status & INT_STATUS_UNDERFLOW)
1583
		vgic_disable_underflow(vcpu);
1584 1585 1586 1587 1588

	return level_pending;
}

/*
1589 1590
 * Sync back the VGIC state after a guest run. The distributor lock is
 * needed so we don't get preempted in the middle of the state processing.
1591 1592 1593 1594 1595
 */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1596 1597
	u64 elrsr;
	unsigned long *elrsr_ptr;
1598 1599 1600 1601
	int lr, pending;
	bool level_pending;

	level_pending = vgic_process_maintenance(vcpu);
1602
	elrsr = vgic_get_elrsr(vcpu);
1603
	elrsr_ptr = u64_to_bitmask(&elrsr);
1604 1605

	/* Clear mappings for empty LRs */
1606
	for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1607
		struct vgic_lr vlr;
1608 1609 1610 1611

		if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
			continue;

1612
		vlr = vgic_get_lr(vcpu, lr);
1613

1614
		BUG_ON(vlr.irq >= dist->nr_irqs);
1615
		vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1616 1617 1618
	}

	/* Check if we still have something up our sleeve... */
1619 1620
	pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
	if (level_pending || pending < vgic->nr_lr)
1621
		set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
}

void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return;

	spin_lock(&dist->lock);
	__kvm_vgic_flush_hwstate(vcpu);
	spin_unlock(&dist->lock);
}

void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
1638 1639
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

1640 1641 1642
	if (!irqchip_in_kernel(vcpu->kvm))
		return;

1643
	spin_lock(&dist->lock);
1644
	__kvm_vgic_sync_hwstate(vcpu);
1645
	spin_unlock(&dist->lock);
1646 1647 1648 1649 1650 1651 1652 1653 1654
}

int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return 0;

1655
	return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1656 1657
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
static void vgic_kick_vcpus(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	int c;

	/*
	 * We've injected an interrupt, time to find out who deserves
	 * a good kick...
	 */
	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (kvm_vgic_vcpu_pending_irq(vcpu))
			kvm_vcpu_kick(vcpu);
	}
}

static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
1675
	int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1676 1677 1678 1679 1680 1681

	/*
	 * Only inject an interrupt if:
	 * - edge triggered and we have a rising edge
	 * - level triggered and we change level
	 */
1682 1683
	if (edge_triggered) {
		int state = vgic_dist_irq_is_pending(vcpu, irq);
1684
		return level > state;
1685 1686
	} else {
		int state = vgic_dist_irq_get_level(vcpu, irq);
1687
		return level != state;
1688
	}
1689 1690
}

1691
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1692 1693 1694 1695
				  unsigned int irq_num, bool level)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
1696
	int edge_triggered, level_triggered;
1697 1698 1699 1700 1701 1702
	int enabled;
	bool ret = true;

	spin_lock(&dist->lock);

	vcpu = kvm_get_vcpu(kvm, cpuid);
1703 1704
	edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
	level_triggered = !edge_triggered;
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

	if (!vgic_validate_injection(vcpu, irq_num, level)) {
		ret = false;
		goto out;
	}

	if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
		cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
		vcpu = kvm_get_vcpu(kvm, cpuid);
	}

	kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);

1718 1719 1720
	if (level) {
		if (level_triggered)
			vgic_dist_irq_set_level(vcpu, irq_num);
1721
		vgic_dist_irq_set_pending(vcpu, irq_num);
1722 1723 1724 1725 1726 1727
	} else {
		if (level_triggered) {
			vgic_dist_irq_clear_level(vcpu, irq_num);
			if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
				vgic_dist_irq_clear_pending(vcpu, irq_num);
		}
1728 1729 1730

		ret = false;
		goto out;
1731
	}
1732 1733 1734 1735 1736 1737 1738 1739

	enabled = vgic_irq_is_enabled(vcpu, irq_num);

	if (!enabled) {
		ret = false;
		goto out;
	}

1740
	if (!vgic_can_sample_irq(vcpu, irq_num)) {
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		/*
		 * Level interrupt in progress, will be picked up
		 * when EOId.
		 */
		ret = false;
		goto out;
	}

	if (level) {
		vgic_cpu_irq_set(vcpu, irq_num);
1751
		set_bit(cpuid, dist->irq_pending_on_cpu);
1752 1753 1754 1755 1756
	}

out:
	spin_unlock(&dist->lock);

1757
	return ret ? cpuid : -EINVAL;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
}

/**
 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @irq_num: The IRQ number that is assigned to the device
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  activates an interrupt
 *			      false: deactivates an interrupt
 *
 * The GIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
			bool level)
{
1777
	int ret = 0;
1778
	int vcpu_id;
1779

1780
	if (unlikely(!vgic_initialized(kvm))) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		/*
		 * We only provide the automatic initialization of the VGIC
		 * for the legacy case of a GICv2. Any other type must
		 * be explicitly initialized once setup with the respective
		 * KVM device call.
		 */
		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
			ret = -EBUSY;
			goto out;
		}
1791 1792 1793 1794 1795 1796
		mutex_lock(&kvm->lock);
		ret = vgic_init(kvm);
		mutex_unlock(&kvm->lock);

		if (ret)
			goto out;
1797
	}
1798

1799 1800 1801 1802 1803 1804 1805 1806
	vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
	if (vcpu_id >= 0) {
		/* kick the specified vcpu */
		kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
	}

out:
	return ret;
1807 1808
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
	/*
	 * We cannot rely on the vgic maintenance interrupt to be
	 * delivered synchronously. This means we can only use it to
	 * exit the VM, and we perform the handling of EOIed
	 * interrupts on the exit path (see vgic_process_maintenance).
	 */
	return IRQ_HANDLED;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	kfree(vgic_cpu->pending_shared);
	kfree(vgic_cpu->vgic_irq_lr_map);
	vgic_cpu->pending_shared = NULL;
	vgic_cpu->vgic_irq_lr_map = NULL;
}

static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
	vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1836
	vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1837 1838 1839 1840 1841 1842

	if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
		kvm_vgic_vcpu_destroy(vcpu);
		return -ENOMEM;
	}

1843
	memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1844 1845

	/*
1846 1847 1848
	 * Store the number of LRs per vcpu, so we don't have to go
	 * all the way to the distributor structure to find out. Only
	 * assembly code should use this one.
1849
	 */
1850
	vgic_cpu->nr_lr = vgic->nr_lr;
1851

1852
	return 0;
1853 1854
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
void kvm_vgic_destroy(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vgic_vcpu_destroy(vcpu);

	vgic_free_bitmap(&dist->irq_enabled);
	vgic_free_bitmap(&dist->irq_level);
	vgic_free_bitmap(&dist->irq_pending);
	vgic_free_bitmap(&dist->irq_soft_pend);
	vgic_free_bitmap(&dist->irq_queued);
	vgic_free_bitmap(&dist->irq_cfg);
	vgic_free_bytemap(&dist->irq_priority);
	if (dist->irq_spi_target) {
		for (i = 0; i < dist->nr_cpus; i++)
			vgic_free_bitmap(&dist->irq_spi_target[i]);
	}
	kfree(dist->irq_sgi_sources);
	kfree(dist->irq_spi_cpu);
	kfree(dist->irq_spi_target);
	kfree(dist->irq_pending_on_cpu);
	dist->irq_sgi_sources = NULL;
	dist->irq_spi_cpu = NULL;
	dist->irq_spi_target = NULL;
	dist->irq_pending_on_cpu = NULL;
1883
	dist->nr_cpus = 0;
1884 1885 1886 1887 1888 1889
}

/*
 * Allocate and initialize the various data structures. Must be called
 * with kvm->lock held!
 */
1890
static int vgic_init(struct kvm *kvm)
1891 1892 1893 1894
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int nr_cpus, nr_irqs;
1895
	int ret, i, vcpu_id;
1896

1897
	if (vgic_initialized(kvm))
1898 1899 1900 1901
		return 0;

	nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
	if (!nr_cpus)		/* No vcpus? Can't be good... */
1902
		return -ENODEV;
1903

1904 1905 1906 1907
	/*
	 * If nobody configured the number of interrupts, use the
	 * legacy one.
	 */
1908 1909 1910 1911
	if (!dist->nr_irqs)
		dist->nr_irqs = VGIC_NR_IRQS_LEGACY;

	nr_irqs = dist->nr_irqs;
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

	ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
	ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);

	if (ret)
		goto out;

	dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
	dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
	dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
				       GFP_KERNEL);
	dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
					   GFP_KERNEL);
	if (!dist->irq_sgi_sources ||
	    !dist->irq_spi_cpu ||
	    !dist->irq_spi_target ||
	    !dist->irq_pending_on_cpu) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < nr_cpus; i++)
		ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
					nr_cpus, nr_irqs);

	if (ret)
		goto out;

1945 1946 1947 1948
	for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4)
		vgic_set_target_reg(kvm, 0, i);

	kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1949 1950 1951 1952 1953 1954
		ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
		if (ret) {
			kvm_err("VGIC: Failed to allocate vcpu memory\n");
			break;
		}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		for (i = 0; i < dist->nr_irqs; i++) {
			if (i < VGIC_NR_PPIS)
				vgic_bitmap_set_irq_val(&dist->irq_enabled,
							vcpu->vcpu_id, i, 1);
			if (i < VGIC_NR_PRIVATE_IRQS)
				vgic_bitmap_set_irq_val(&dist->irq_cfg,
							vcpu->vcpu_id, i,
							VGIC_CFG_EDGE);
		}

		vgic_enable(vcpu);
	}
1967

1968 1969 1970 1971 1972 1973 1974
out:
	if (ret)
		kvm_vgic_destroy(kvm);

	return ret;
}

1975
/**
1976
 * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
1977 1978 1979 1980
 * @kvm: pointer to the kvm struct
 *
 * Map the virtual CPU interface into the VM before running any VCPUs.  We
 * can't do this at creation time, because user space must first set the
1981
 * virtual CPU interface address in the guest physical address space.
1982
 */
1983
int kvm_vgic_map_resources(struct kvm *kvm)
1984
{
1985
	int ret = 0;
1986

1987 1988 1989
	if (!irqchip_in_kernel(kvm))
		return 0;

1990 1991
	mutex_lock(&kvm->lock);

1992
	if (vgic_ready(kvm))
1993 1994 1995 1996 1997 1998 1999 2000 2001
		goto out;

	if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
		kvm_err("Need to set vgic cpu and dist addresses first\n");
		ret = -ENXIO;
		goto out;
	}

2002 2003 2004 2005 2006
	/*
	 * Initialize the vgic if this hasn't already been done on demand by
	 * accessing the vgic state from userspace.
	 */
	ret = vgic_init(kvm);
2007 2008 2009 2010 2011
	if (ret) {
		kvm_err("Unable to allocate maps\n");
		goto out;
	}

2012
	ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
2013 2014
				    vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
				    true);
2015 2016 2017 2018 2019 2020 2021
	if (ret) {
		kvm_err("Unable to remap VGIC CPU to VCPU\n");
		goto out;
	}

	kvm->arch.vgic.ready = true;
out:
2022 2023
	if (ret)
		kvm_vgic_destroy(kvm);
2024 2025 2026 2027
	mutex_unlock(&kvm->lock);
	return ret;
}

2028
int kvm_vgic_create(struct kvm *kvm, u32 type)
2029
{
2030
	int i, vcpu_lock_idx = -1, ret;
2031
	struct kvm_vcpu *vcpu;
2032 2033 2034

	mutex_lock(&kvm->lock);

2035
	if (kvm->arch.vgic.vctrl_base) {
2036 2037 2038 2039
		ret = -EEXIST;
		goto out;
	}

2040 2041 2042 2043 2044
	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run while we create the vgic.
	 */
2045
	ret = -EBUSY;
2046 2047 2048 2049 2050 2051 2052
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!mutex_trylock(&vcpu->mutex))
			goto out_unlock;
		vcpu_lock_idx = i;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
2053
		if (vcpu->arch.has_run_once)
2054 2055
			goto out_unlock;
	}
2056
	ret = 0;
2057

2058
	spin_lock_init(&kvm->arch.vgic.lock);
2059
	kvm->arch.vgic.in_kernel = true;
2060
	kvm->arch.vgic.vgic_model = type;
2061
	kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2062 2063 2064
	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;

2065 2066 2067 2068 2069 2070
out_unlock:
	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&vcpu->mutex);
	}

2071 2072 2073 2074 2075
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

2076
static int vgic_ioaddr_overlap(struct kvm *kvm)
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
{
	phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
	phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
		return 0;
	if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
	    (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
		return -EBUSY;
	return 0;
}

static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
			      phys_addr_t addr, phys_addr_t size)
{
	int ret;

2094 2095 2096 2097 2098 2099
	if (addr & ~KVM_PHYS_MASK)
		return -E2BIG;

	if (addr & (SZ_4K - 1))
		return -EINVAL;

2100 2101 2102 2103 2104
	if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
		return -EEXIST;
	if (addr + size < addr)
		return -EINVAL;

2105
	*ioaddr = addr;
2106 2107
	ret = vgic_ioaddr_overlap(kvm);
	if (ret)
2108 2109
		*ioaddr = VGIC_ADDR_UNDEF;

2110 2111 2112
	return ret;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/**
 * kvm_vgic_addr - set or get vgic VM base addresses
 * @kvm:   pointer to the vm struct
 * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
 * @addr:  pointer to address value
 * @write: if true set the address in the VM address space, if false read the
 *          address
 *
 * Set or get the vgic base addresses for the distributor and the virtual CPU
 * interface in the VM physical address space.  These addresses are properties
 * of the emulated core/SoC and therefore user space initially knows this
 * information.
 */
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2127 2128 2129 2130 2131 2132 2133
{
	int r = 0;
	struct vgic_dist *vgic = &kvm->arch.vgic;

	mutex_lock(&kvm->lock);
	switch (type) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
2134 2135 2136 2137 2138 2139
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
					       *addr, KVM_VGIC_V2_DIST_SIZE);
		} else {
			*addr = vgic->vgic_dist_base;
		}
2140 2141
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
2142 2143 2144 2145 2146 2147
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
					       *addr, KVM_VGIC_V2_CPU_SIZE);
		} else {
			*addr = vgic->vgic_cpu_base;
		}
2148 2149 2150 2151 2152 2153 2154 2155
		break;
	default:
		r = -ENODEV;
	}

	mutex_unlock(&kvm->lock);
	return r;
}
2156

2157 2158 2159
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
				 struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
2160
	bool updated = false;
2161 2162 2163 2164 2165
	struct vgic_vmcr vmcr;
	u32 *vmcr_field;
	u32 reg;

	vgic_get_vmcr(vcpu, &vmcr);
2166 2167 2168

	switch (offset & ~0x3) {
	case GIC_CPU_CTRL:
2169
		vmcr_field = &vmcr.ctlr;
2170 2171
		break;
	case GIC_CPU_PRIMASK:
2172
		vmcr_field = &vmcr.pmr;
2173 2174
		break;
	case GIC_CPU_BINPOINT:
2175
		vmcr_field = &vmcr.bpr;
2176 2177
		break;
	case GIC_CPU_ALIAS_BINPOINT:
2178
		vmcr_field = &vmcr.abpr;
2179
		break;
2180 2181
	default:
		BUG();
2182 2183 2184
	}

	if (!mmio->is_write) {
2185
		reg = *vmcr_field;
2186 2187 2188
		mmio_data_write(mmio, ~0, reg);
	} else {
		reg = mmio_data_read(mmio, ~0);
2189 2190 2191
		if (reg != *vmcr_field) {
			*vmcr_field = reg;
			vgic_set_vmcr(vcpu, &vmcr);
2192
			updated = true;
2193
		}
2194 2195 2196 2197 2198 2199 2200 2201
	}
	return updated;
}

static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	u32 reg;

	if (mmio->is_write)
		return false;

	/* GICC_IIDR */
	reg = (PRODUCT_ID_KVM << 20) |
	      (GICC_ARCH_VERSION_V2 << 16) |
	      (IMPLEMENTER_ARM << 0);
	mmio_data_write(mmio, ~0, reg);
	return false;
}

/*
 * CPU Interface Register accesses - these are not accessed by the VM, but by
 * user space for saving and restoring VGIC state.
 */
2225 2226 2227 2228 2229 2230 2231 2232 2233
static const struct mmio_range vgic_cpu_ranges[] = {
	{
		.base		= GIC_CPU_CTRL,
		.len		= 12,
		.handle_mmio	= handle_cpu_mmio_misc,
	},
	{
		.base		= GIC_CPU_ALIAS_BINPOINT,
		.len		= 4,
2234
		.handle_mmio	= handle_mmio_abpr,
2235 2236 2237 2238
	},
	{
		.base		= GIC_CPU_ACTIVEPRIO,
		.len		= 16,
2239
		.handle_mmio	= handle_mmio_raz_wi,
2240 2241 2242 2243
	},
	{
		.base		= GIC_CPU_IDENT,
		.len		= 4,
2244
		.handle_mmio	= handle_cpu_mmio_ident,
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	},
};

static int vgic_attr_regs_access(struct kvm_device *dev,
				 struct kvm_device_attr *attr,
				 u32 *reg, bool is_write)
{
	const struct mmio_range *r = NULL, *ranges;
	phys_addr_t offset;
	int ret, cpuid, c;
	struct kvm_vcpu *vcpu, *tmp_vcpu;
	struct vgic_dist *vgic;
	struct kvm_exit_mmio mmio;

	offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
	cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
		KVM_DEV_ARM_VGIC_CPUID_SHIFT;

	mutex_lock(&dev->kvm->lock);

2265
	ret = vgic_init(dev->kvm);
2266 2267 2268
	if (ret)
		goto out;

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
		ret = -EINVAL;
		goto out;
	}

	vcpu = kvm_get_vcpu(dev->kvm, cpuid);
	vgic = &dev->kvm->arch.vgic;

	mmio.len = 4;
	mmio.is_write = is_write;
	if (is_write)
		mmio_data_write(&mmio, ~0, *reg);
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		mmio.phys_addr = vgic->vgic_dist_base + offset;
		ranges = vgic_dist_ranges;
		break;
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		mmio.phys_addr = vgic->vgic_cpu_base + offset;
		ranges = vgic_cpu_ranges;
		break;
	default:
		BUG();
	}
	r = find_matching_range(ranges, &mmio, offset);

	if (unlikely(!r || !r->handle_mmio)) {
		ret = -ENXIO;
		goto out;
	}


	spin_lock(&vgic->lock);

	/*
	 * Ensure that no other VCPU is running by checking the vcpu->cpu
	 * field.  If no other VPCUs are running we can safely access the VGIC
	 * state, because even if another VPU is run after this point, that
	 * VCPU will not touch the vgic state, because it will block on
	 * getting the vgic->lock in kvm_vgic_sync_hwstate().
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
		if (unlikely(tmp_vcpu->cpu != -1)) {
			ret = -EBUSY;
			goto out_vgic_unlock;
		}
	}

2317 2318 2319 2320 2321 2322 2323 2324
	/*
	 * Move all pending IRQs from the LRs on all VCPUs so the pending
	 * state can be properly represented in the register state accessible
	 * through this API.
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
		vgic_unqueue_irqs(tmp_vcpu);

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	offset -= r->base;
	r->handle_mmio(vcpu, &mmio, offset);

	if (!is_write)
		*reg = mmio_data_read(&mmio, ~0);

	ret = 0;
out_vgic_unlock:
	spin_unlock(&vgic->lock);
out:
	mutex_unlock(&dev->kvm->lock);
	return ret;
}

2339 2340
static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	int r;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		r = kvm_vgic_addr(dev->kvm, type, &addr, true);
		return (r == -ENODEV) ? -ENXIO : r;
	}
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg;

		if (get_user(reg, uaddr))
			return -EFAULT;

		return vgic_attr_regs_access(dev, attr, &reg, true);
	}
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 val;
		int ret = 0;

		if (get_user(val, uaddr))
			return -EFAULT;

		/*
		 * We require:
		 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
		 * - at most 1024 interrupts
		 * - a multiple of 32 interrupts
		 */
		if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
		    val > VGIC_MAX_IRQS ||
		    (val & 31))
			return -EINVAL;

		mutex_lock(&dev->kvm->lock);

2387
		if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2388 2389 2390 2391 2392 2393 2394 2395
			ret = -EBUSY;
		else
			dev->kvm->arch.vgic.nr_irqs = val;

		mutex_unlock(&dev->kvm->lock);

		return ret;
	}
2396 2397 2398 2399 2400 2401 2402 2403
	case KVM_DEV_ARM_VGIC_GRP_CTRL: {
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			r = vgic_init(dev->kvm);
			return r;
		}
		break;
	}
2404 2405
	}

2406 2407 2408 2409 2410
	return -ENXIO;
}

static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	int r = -ENXIO;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		r = kvm_vgic_addr(dev->kvm, type, &addr, false);
		if (r)
			return (r == -ENODEV) ? -ENXIO : r;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		break;
	}

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg = 0;

		r = vgic_attr_regs_access(dev, attr, &reg, false);
		if (r)
			return r;
		r = put_user(reg, uaddr);
		break;
2438
	}
2439 2440 2441 2442 2443
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
		break;
	}
2444

2445 2446 2447
	}

	return r;
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
static int vgic_has_attr_regs(const struct mmio_range *ranges,
			      phys_addr_t offset)
{
	struct kvm_exit_mmio dev_attr_mmio;

	dev_attr_mmio.len = 4;
	if (find_matching_range(ranges, &dev_attr_mmio, offset))
		return 0;
	else
		return -ENXIO;
}

2462 2463
static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2464 2465
	phys_addr_t offset;

2466 2467 2468 2469 2470 2471 2472 2473
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V2_ADDR_TYPE_DIST:
		case KVM_VGIC_V2_ADDR_TYPE_CPU:
			return 0;
		}
		break;
2474 2475 2476 2477 2478 2479
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_dist_ranges, offset);
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2480 2481
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
		return 0;
2482 2483 2484 2485 2486
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
		}
2487
	}
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	return -ENXIO;
}

static void vgic_destroy(struct kvm_device *dev)
{
	kfree(dev);
}

static int vgic_create(struct kvm_device *dev, u32 type)
{
2498
	return kvm_vgic_create(dev->kvm, type);
2499 2500
}

2501
static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2502 2503 2504 2505 2506 2507 2508
	.name = "kvm-arm-vgic",
	.create = vgic_create,
	.destroy = vgic_destroy,
	.set_attr = vgic_set_attr,
	.get_attr = vgic_get_attr,
	.has_attr = vgic_has_attr,
};
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

static void vgic_init_maintenance_interrupt(void *info)
{
	enable_percpu_irq(vgic->maint_irq, 0);
}

static int vgic_cpu_notify(struct notifier_block *self,
			   unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		vgic_init_maintenance_interrupt(NULL);
		break;
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		disable_percpu_irq(vgic->maint_irq);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block vgic_cpu_nb = {
	.notifier_call = vgic_cpu_notify,
};

static const struct of_device_id vgic_ids[] = {
	{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
	{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
	{},
};

int kvm_vgic_hyp_init(void)
{
	const struct of_device_id *matched_id;
2545 2546
	const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
				const struct vgic_params **);
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	struct device_node *vgic_node;
	int ret;

	vgic_node = of_find_matching_node_and_match(NULL,
						    vgic_ids, &matched_id);
	if (!vgic_node) {
		kvm_err("error: no compatible GIC node found\n");
		return -ENODEV;
	}

	vgic_probe = matched_id->data;
	ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
	if (ret)
		return ret;

	ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
				 "vgic", kvm_get_running_vcpus());
	if (ret) {
		kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
		return ret;
	}

	ret = __register_cpu_notifier(&vgic_cpu_nb);
	if (ret) {
		kvm_err("Cannot register vgic CPU notifier\n");
		goto out_free_irq;
	}

	/* Callback into for arch code for setup */
	vgic_arch_setup(vgic);

	on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);

	return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
				       KVM_DEV_TYPE_ARM_VGIC_V2);

out_free_irq:
	free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
	return ret;
}