xilinx_axienet_main.c 61.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Xilinx Axi Ethernet device driver
 *
 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 9
 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
 * Copyright (c) 2010 - 2011 PetaLogix
10
 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11
 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
 * and Spartan6.
 *
 * TODO:
 *  - Add Axi Fifo support.
 *  - Factor out Axi DMA code into separate driver.
 *  - Test and fix basic multicast filtering.
 *  - Add support for extended multicast filtering.
 *  - Test basic VLAN support.
 *  - Add support for extended VLAN support.
 */

25
#include <linux/clk.h>
26 27 28 29 30
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
31
#include <linux/of_net.h>
32
#include <linux/of_platform.h>
33
#include <linux/of_irq.h>
34 35 36 37 38 39 40 41 42
#include <linux/of_address.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/phy.h>
#include <linux/mii.h>
#include <linux/ethtool.h>

#include "xilinx_axienet.h"

43 44 45 46 47
/* Descriptors defines for Tx and Rx DMA */
#define TX_BD_NUM_DEFAULT		64
#define RX_BD_NUM_DEFAULT		1024
#define TX_BD_NUM_MAX			4096
#define RX_BD_NUM_MAX			4096
48 49 50 51 52 53

/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
#define DRIVER_NAME		"xaxienet"
#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
#define DRIVER_VERSION		"1.00a"

54
#define AXIENET_REGS_N		40
55 56

/* Match table for of_platform binding */
57
static const struct of_device_id axienet_of_match[] = {
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
	{},
};

MODULE_DEVICE_TABLE(of, axienet_of_match);

/* Option table for setting up Axi Ethernet hardware options */
static struct axienet_option axienet_options[] = {
	/* Turn on jumbo packet support for both Rx and Tx */
	{
		.opt = XAE_OPTION_JUMBO,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_JUM_MASK,
	}, {
		.opt = XAE_OPTION_JUMBO,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_JUM_MASK,
	}, { /* Turn on VLAN packet support for both Rx and Tx */
		.opt = XAE_OPTION_VLAN,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_VLAN_MASK,
	}, {
		.opt = XAE_OPTION_VLAN,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_VLAN_MASK,
	}, { /* Turn on FCS stripping on receive packets */
		.opt = XAE_OPTION_FCS_STRIP,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_FCS_MASK,
	}, { /* Turn on FCS insertion on transmit packets */
		.opt = XAE_OPTION_FCS_INSERT,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_FCS_MASK,
	}, { /* Turn off length/type field checking on receive packets */
		.opt = XAE_OPTION_LENTYPE_ERR,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_LT_DIS_MASK,
	}, { /* Turn on Rx flow control */
		.opt = XAE_OPTION_FLOW_CONTROL,
		.reg = XAE_FCC_OFFSET,
		.m_or = XAE_FCC_FCRX_MASK,
	}, { /* Turn on Tx flow control */
		.opt = XAE_OPTION_FLOW_CONTROL,
		.reg = XAE_FCC_OFFSET,
		.m_or = XAE_FCC_FCTX_MASK,
	}, { /* Turn on promiscuous frame filtering */
		.opt = XAE_OPTION_PROMISC,
		.reg = XAE_FMI_OFFSET,
		.m_or = XAE_FMI_PM_MASK,
	}, { /* Enable transmitter */
		.opt = XAE_OPTION_TXEN,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_TX_MASK,
	}, { /* Enable receiver */
		.opt = XAE_OPTION_RXEN,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_RX_MASK,
	},
	{}
};

/**
 * axienet_dma_in32 - Memory mapped Axi DMA register read
 * @lp:		Pointer to axienet local structure
 * @reg:	Address offset from the base address of the Axi DMA core
 *
126
 * Return: The contents of the Axi DMA register
127 128 129 130 131
 *
 * This function returns the contents of the corresponding Axi DMA register.
 */
static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
{
132
	return ioread32(lp->dma_regs + reg);
133 134 135 136 137 138 139 140 141 142 143 144 145 146
}

/**
 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 * @lp:		Pointer to axienet local structure
 * @reg:	Address offset from the base address of the Axi DMA core
 * @value:	Value to be written into the Axi DMA register
 *
 * This function writes the desired value into the corresponding Axi DMA
 * register.
 */
static inline void axienet_dma_out32(struct axienet_local *lp,
				     off_t reg, u32 value)
{
147
	iowrite32(value, lp->dma_regs + reg);
148 149
}

150 151 152 153
static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
				 dma_addr_t addr)
{
	axienet_dma_out32(lp, reg, lower_32_bits(addr));
154 155 156

	if (lp->features & XAE_FEATURE_DMA_64BIT)
		axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
157 158
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
			       struct axidma_bd *desc)
{
	desc->phys = lower_32_bits(addr);
	if (lp->features & XAE_FEATURE_DMA_64BIT)
		desc->phys_msb = upper_32_bits(addr);
}

static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
				     struct axidma_bd *desc)
{
	dma_addr_t ret = desc->phys;

	if (lp->features & XAE_FEATURE_DMA_64BIT)
		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;

	return ret;
}

178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * axienet_dma_bd_release - Release buffer descriptor rings
 * @ndev:	Pointer to the net_device structure
 *
 * This function is used to release the descriptors allocated in
 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 * driver stop api is called.
 */
static void axienet_dma_bd_release(struct net_device *ndev)
{
	int i;
	struct axienet_local *lp = netdev_priv(ndev);

191 192 193 194 195 196 197 198 199
	/* If we end up here, tx_bd_v must have been DMA allocated. */
	dma_free_coherent(ndev->dev.parent,
			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
			  lp->tx_bd_v,
			  lp->tx_bd_p);

	if (!lp->rx_bd_v)
		return;

200
	for (i = 0; i < lp->rx_bd_num; i++) {
201 202
		dma_addr_t phys;

203 204 205 206 207 208
		/* A NULL skb means this descriptor has not been initialised
		 * at all.
		 */
		if (!lp->rx_bd_v[i].skb)
			break;

209
		dev_kfree_skb(lp->rx_bd_v[i].skb);
210

211 212 213 214
		/* For each descriptor, we programmed cntrl with the (non-zero)
		 * descriptor size, after it had been successfully allocated.
		 * So a non-zero value in there means we need to unmap it.
		 */
215 216 217
		if (lp->rx_bd_v[i].cntrl) {
			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
			dma_unmap_single(ndev->dev.parent, phys,
218
					 lp->max_frm_size, DMA_FROM_DEVICE);
219
		}
220
	}
221 222 223 224 225

	dma_free_coherent(ndev->dev.parent,
			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
			  lp->rx_bd_v,
			  lp->rx_bd_p);
226 227 228 229 230 231
}

/**
 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 * @ndev:	Pointer to the net_device structure
 *
232
 * Return: 0, on success -ENOMEM, on failure
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
 *
 * This function is called to initialize the Rx and Tx DMA descriptor
 * rings. This initializes the descriptors with required default values
 * and is called when Axi Ethernet driver reset is called.
 */
static int axienet_dma_bd_init(struct net_device *ndev)
{
	u32 cr;
	int i;
	struct sk_buff *skb;
	struct axienet_local *lp = netdev_priv(ndev);

	/* Reset the indexes which are used for accessing the BDs */
	lp->tx_bd_ci = 0;
	lp->tx_bd_tail = 0;
	lp->rx_bd_ci = 0;

M
Michal Simek 已提交
250
	/* Allocate the Tx and Rx buffer descriptors. */
251
	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
252
					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
253
					 &lp->tx_bd_p, GFP_KERNEL);
254
	if (!lp->tx_bd_v)
255
		return -ENOMEM;
256

257
	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
258
					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
259
					 &lp->rx_bd_p, GFP_KERNEL);
260
	if (!lp->rx_bd_v)
261 262
		goto out;

263
	for (i = 0; i < lp->tx_bd_num; i++) {
264 265 266 267 268 269 270
		dma_addr_t addr = lp->tx_bd_p +
				  sizeof(*lp->tx_bd_v) *
				  ((i + 1) % lp->tx_bd_num);

		lp->tx_bd_v[i].next = lower_32_bits(addr);
		if (lp->features & XAE_FEATURE_DMA_64BIT)
			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
271 272
	}

273
	for (i = 0; i < lp->rx_bd_num; i++) {
274 275 276 277 278 279 280
		dma_addr_t addr;

		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
			((i + 1) % lp->rx_bd_num);
		lp->rx_bd_v[i].next = lower_32_bits(addr);
		if (lp->features & XAE_FEATURE_DMA_64BIT)
			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
281 282

		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
283
		if (!skb)
284 285
			goto out;

286
		lp->rx_bd_v[i].skb = skb;
287 288 289
		addr = dma_map_single(ndev->dev.parent, skb->data,
				      lp->max_frm_size, DMA_FROM_DEVICE);
		if (dma_mapping_error(ndev->dev.parent, addr)) {
290 291 292
			netdev_err(ndev, "DMA mapping error\n");
			goto out;
		}
293
		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
	}

	/* Start updating the Rx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Write to the Rx channel control register */
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

	/* Start updating the Tx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Write to the Tx channel control register */
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
M
Michal Simek 已提交
325 326
	 * halted state. This will make the Rx side ready for reception.
	 */
327
	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
328 329 330
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);
331 332
	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
333 334 335

	/* Write to the RS (Run-stop) bit in the Tx channel control register.
	 * Tx channel is now ready to run. But only after we write to the
M
Michal Simek 已提交
336 337
	 * tail pointer register that the Tx channel will start transmitting.
	 */
338
	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);

	return 0;
out:
	axienet_dma_bd_release(ndev);
	return -ENOMEM;
}

/**
 * axienet_set_mac_address - Write the MAC address
 * @ndev:	Pointer to the net_device structure
 * @address:	6 byte Address to be written as MAC address
 *
 * This function is called to initialize the MAC address of the Axi Ethernet
 * core. It writes to the UAW0 and UAW1 registers of the core.
 */
357 358
static void axienet_set_mac_address(struct net_device *ndev,
				    const void *address)
359 360 361 362 363 364
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (address)
		memcpy(ndev->dev_addr, address, ETH_ALEN);
	if (!is_valid_ether_addr(ndev->dev_addr))
365
		eth_hw_addr_random(ndev);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

	/* Set up unicast MAC address filter set its mac address */
	axienet_iow(lp, XAE_UAW0_OFFSET,
		    (ndev->dev_addr[0]) |
		    (ndev->dev_addr[1] << 8) |
		    (ndev->dev_addr[2] << 16) |
		    (ndev->dev_addr[3] << 24));
	axienet_iow(lp, XAE_UAW1_OFFSET,
		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
		      ~XAE_UAW1_UNICASTADDR_MASK) |
		     (ndev->dev_addr[4] |
		     (ndev->dev_addr[5] << 8))));
}

/**
 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 * @ndev:	Pointer to the net_device structure
 * @p:		6 byte Address to be written as MAC address
 *
385
 * Return: 0 for all conditions. Presently, there is no failure case.
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
 *
 * This function is called to initialize the MAC address of the Axi Ethernet
 * core. It calls the core specific axienet_set_mac_address. This is the
 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 */
static int netdev_set_mac_address(struct net_device *ndev, void *p)
{
	struct sockaddr *addr = p;
	axienet_set_mac_address(ndev, addr->sa_data);
	return 0;
}

/**
 * axienet_set_multicast_list - Prepare the multicast table
 * @ndev:	Pointer to the net_device structure
 *
 * This function is called to initialize the multicast table during
 * initialization. The Axi Ethernet basic multicast support has a four-entry
 * multicast table which is initialized here. Additionally this function
 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 * means whenever the multicast table entries need to be updated this
 * function gets called.
 */
static void axienet_set_multicast_list(struct net_device *ndev)
{
	int i;
	u32 reg, af0reg, af1reg;
	struct axienet_local *lp = netdev_priv(ndev);

	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
		/* We must make the kernel realize we had to move into
		 * promiscuous mode. If it was a promiscuous mode request
M
Michal Simek 已提交
419 420
		 * the flag is already set. If not we set it.
		 */
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		ndev->flags |= IFF_PROMISC;
		reg = axienet_ior(lp, XAE_FMI_OFFSET);
		reg |= XAE_FMI_PM_MASK;
		axienet_iow(lp, XAE_FMI_OFFSET, reg);
		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
	} else if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		i = 0;
		netdev_for_each_mc_addr(ha, ndev) {
			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
				break;

			af0reg = (ha->addr[0]);
			af0reg |= (ha->addr[1] << 8);
			af0reg |= (ha->addr[2] << 16);
			af0reg |= (ha->addr[3] << 24);

			af1reg = (ha->addr[4]);
			af1reg |= (ha->addr[5] << 8);

			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
			reg |= i;

			axienet_iow(lp, XAE_FMI_OFFSET, reg);
			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
			i++;
		}
	} else {
		reg = axienet_ior(lp, XAE_FMI_OFFSET);
		reg &= ~XAE_FMI_PM_MASK;

		axienet_iow(lp, XAE_FMI_OFFSET, reg);

		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
			reg |= i;

			axienet_iow(lp, XAE_FMI_OFFSET, reg);
			axienet_iow(lp, XAE_AF0_OFFSET, 0);
			axienet_iow(lp, XAE_AF1_OFFSET, 0);
		}

		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
	}
}

/**
 * axienet_setoptions - Set an Axi Ethernet option
 * @ndev:	Pointer to the net_device structure
 * @options:	Option to be enabled/disabled
 *
 * The Axi Ethernet core has multiple features which can be selectively turned
 * on or off. The typical options could be jumbo frame option, basic VLAN
 * option, promiscuous mode option etc. This function is used to set or clear
 * these options in the Axi Ethernet hardware. This is done through
 * axienet_option structure .
 */
static void axienet_setoptions(struct net_device *ndev, u32 options)
{
	int reg;
	struct axienet_local *lp = netdev_priv(ndev);
	struct axienet_option *tp = &axienet_options[0];

	while (tp->opt) {
		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
		if (options & tp->opt)
			reg |= tp->m_or;
		axienet_iow(lp, tp->reg, reg);
		tp++;
	}

	lp->options |= options;
}

497
static int __axienet_device_reset(struct axienet_local *lp)
498 499
{
	u32 timeout;
500

501 502 503
	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
	 * process of Axi DMA takes a while to complete as all pending
	 * commands/transfers will be flushed or completed during this
M
Michal Simek 已提交
504
	 * reset process.
505 506
	 * Note that even though both TX and RX have their own reset register,
	 * they both reset the entire DMA core, so only one needs to be used.
M
Michal Simek 已提交
507
	 */
508
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
509
	timeout = DELAY_OF_ONE_MILLISEC;
510 511
	while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
				XAXIDMA_CR_RESET_MASK) {
512 513
		udelay(1);
		if (--timeout == 0) {
514 515
			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
				   __func__);
516
			return -ETIMEDOUT;
517 518
		}
	}
519 520

	return 0;
521 522 523 524 525 526 527 528 529 530 531 532
}

/**
 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 * @ndev:	Pointer to the net_device structure
 *
 * This function is called to reset and initialize the Axi Ethernet core. This
 * is typically called during initialization. It does a reset of the Axi DMA
 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 * core.
533
 * Returns 0 on success or a negative error number otherwise.
534
 */
535
static int axienet_device_reset(struct net_device *ndev)
536 537 538
{
	u32 axienet_status;
	struct axienet_local *lp = netdev_priv(ndev);
539
	int ret;
540

541 542 543
	ret = __axienet_device_reset(lp);
	if (ret)
		return ret;
544 545

	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
546
	lp->options |= XAE_OPTION_VLAN;
547 548 549
	lp->options &= (~XAE_OPTION_JUMBO);

	if ((ndev->mtu > XAE_MTU) &&
550 551 552 553 554 555
		(ndev->mtu <= XAE_JUMBO_MTU)) {
		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
					XAE_TRL_SIZE;

		if (lp->max_frm_size <= lp->rxmem)
			lp->options |= XAE_OPTION_JUMBO;
556 557
	}

558 559
	ret = axienet_dma_bd_init(ndev);
	if (ret) {
560 561
		netdev_err(ndev, "%s: descriptor allocation failed\n",
			   __func__);
562
		return ret;
563 564 565 566 567 568 569 570 571
	}

	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
	axienet_status &= ~XAE_RCW1_RX_MASK;
	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);

	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
	if (axienet_status & XAE_INT_RXRJECT_MASK)
		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
572 573
	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
		    XAE_INT_RECV_ERROR_MASK : 0);
574 575 576 577

	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);

	/* Sync default options with HW but leave receiver and
M
Michal Simek 已提交
578 579
	 * transmitter disabled.
	 */
580 581 582 583 584 585
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	axienet_set_mac_address(ndev, NULL);
	axienet_set_multicast_list(ndev);
	axienet_setoptions(ndev, lp->options);

586
	netif_trans_update(ndev);
587 588

	return 0;
589 590 591
}

/**
592
 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
593
 * @ndev:	Pointer to the net_device structure
594 595 596 597
 * @first_bd:	Index of first descriptor to clean up
 * @nr_bds:	Number of descriptors to clean up, can be -1 if unknown.
 * @sizep:	Pointer to a u32 filled with the total sum of all bytes
 * 		in all cleaned-up descriptors. Ignored if NULL.
598
 *
599 600 601
 * Would either be called after a successful transmit operation, or after
 * there was an error when setting up the chain.
 * Returns the number of descriptors handled.
602
 */
603 604
static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
				 int nr_bds, u32 *sizep)
605 606 607
{
	struct axienet_local *lp = netdev_priv(ndev);
	struct axidma_bd *cur_p;
608 609
	int max_bds = nr_bds;
	unsigned int status;
610
	dma_addr_t phys;
611 612 613 614 615 616 617 618 619 620 621 622 623 624
	int i;

	if (max_bds == -1)
		max_bds = lp->tx_bd_num;

	for (i = 0; i < max_bds; i++) {
		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
		status = cur_p->status;

		/* If no number is given, clean up *all* descriptors that have
		 * been completed by the MAC.
		 */
		if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
			break;
625

626 627 628 629
		phys = desc_get_phys_addr(lp, cur_p);
		dma_unmap_single(ndev->dev.parent, phys,
				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
				 DMA_TO_DEVICE);
630 631

		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
632
			dev_consume_skb_irq(cur_p->skb);
633

634
		cur_p->cntrl = 0;
635 636 637 638 639
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app4 = 0;
		cur_p->status = 0;
640
		cur_p->skb = NULL;
641

642 643
		if (sizep)
			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
644 645
	}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	return i;
}

/**
 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 * Axi DMA Tx channel.
 * @ndev:	Pointer to the net_device structure
 *
 * This function is invoked from the Axi DMA Tx isr to notify the completion
 * of transmit operation. It clears fields in the corresponding Tx BDs and
 * unmaps the corresponding buffer so that CPU can regain ownership of the
 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 * required.
 */
static void axienet_start_xmit_done(struct net_device *ndev)
{
	struct axienet_local *lp = netdev_priv(ndev);
	u32 packets = 0;
	u32 size = 0;

	packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);

	lp->tx_bd_ci += packets;
	if (lp->tx_bd_ci >= lp->tx_bd_num)
		lp->tx_bd_ci -= lp->tx_bd_num;

672 673
	ndev->stats.tx_packets += packets;
	ndev->stats.tx_bytes += size;
674 675 676 677

	/* Matches barrier in axienet_start_xmit */
	smp_mb();

678 679 680 681 682 683 684 685
	netif_wake_queue(ndev);
}

/**
 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 * @lp:		Pointer to the axienet_local structure
 * @num_frag:	The number of BDs to check for
 *
686
 * Return: 0, on success
687 688 689 690 691 692 693 694 695 696 697
 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 *
 * This function is invoked before BDs are allocated and transmission starts.
 * This function returns 0 if a BD or group of BDs can be allocated for
 * transmission. If the BD or any of the BDs are not free the function
 * returns a busy status. This is invoked from axienet_start_xmit.
 */
static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
					    int num_frag)
{
	struct axidma_bd *cur_p;
698
	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
699 700 701 702 703 704 705 706 707 708
	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
		return NETDEV_TX_BUSY;
	return 0;
}

/**
 * axienet_start_xmit - Starts the transmission.
 * @skb:	sk_buff pointer that contains data to be Txed.
 * @ndev:	Pointer to net_device structure.
 *
709
 * Return: NETDEV_TX_OK, on success
710 711 712 713 714 715 716
 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 *
 * This function is invoked from upper layers to initiate transmission. The
 * function uses the next available free BDs and populates their fields to
 * start the transmission. Additionally if checksum offloading is supported,
 * it populates AXI Stream Control fields with appropriate values.
 */
717 718
static netdev_tx_t
axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
719 720 721 722 723 724
{
	u32 ii;
	u32 num_frag;
	u32 csum_start_off;
	u32 csum_index_off;
	skb_frag_t *frag;
725
	dma_addr_t tail_p, phys;
726 727
	struct axienet_local *lp = netdev_priv(ndev);
	struct axidma_bd *cur_p;
728
	u32 orig_tail_ptr = lp->tx_bd_tail;
729 730 731 732 733

	num_frag = skb_shinfo(skb)->nr_frags;
	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];

	if (axienet_check_tx_bd_space(lp, num_frag)) {
734 735 736 737 738 739 740 741 742 743 744 745 746
		if (netif_queue_stopped(ndev))
			return NETDEV_TX_BUSY;

		netif_stop_queue(ndev);

		/* Matches barrier in axienet_start_xmit_done */
		smp_mb();

		/* Space might have just been freed - check again */
		if (axienet_check_tx_bd_space(lp, num_frag))
			return NETDEV_TX_BUSY;

		netif_wake_queue(ndev);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
			/* Tx Full Checksum Offload Enabled */
			cur_p->app0 |= 2;
		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
			csum_start_off = skb_transport_offset(skb);
			csum_index_off = csum_start_off + skb->csum_offset;
			/* Tx Partial Checksum Offload Enabled */
			cur_p->app0 |= 1;
			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
		}
	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
	}

764 765 766
	phys = dma_map_single(ndev->dev.parent, skb->data,
			      skb_headlen(skb), DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
767 768 769 770 771
		if (net_ratelimit())
			netdev_err(ndev, "TX DMA mapping error\n");
		ndev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}
772
	desc_set_phys_addr(lp, phys, cur_p);
773
	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
774 775

	for (ii = 0; ii < num_frag; ii++) {
776 777
		if (++lp->tx_bd_tail >= lp->tx_bd_num)
			lp->tx_bd_tail = 0;
778 779
		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
		frag = &skb_shinfo(skb)->frags[ii];
780 781 782 783 784
		phys = dma_map_single(ndev->dev.parent,
				      skb_frag_address(frag),
				      skb_frag_size(frag),
				      DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
785 786 787 788 789 790 791 792 793
			if (net_ratelimit())
				netdev_err(ndev, "TX DMA mapping error\n");
			ndev->stats.tx_dropped++;
			axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
					      NULL);
			lp->tx_bd_tail = orig_tail_ptr;

			return NETDEV_TX_OK;
		}
794
		desc_set_phys_addr(lp, phys, cur_p);
795 796 797 798
		cur_p->cntrl = skb_frag_size(frag);
	}

	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
799
	cur_p->skb = skb;
800 801 802

	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
	/* Start the transfer */
803
	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
804 805
	if (++lp->tx_bd_tail >= lp->tx_bd_num)
		lp->tx_bd_tail = 0;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

	return NETDEV_TX_OK;
}

/**
 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 *		  BD processing.
 * @ndev:	Pointer to net_device structure.
 *
 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 * does minimal processing and invokes "netif_rx" to complete further
 * processing.
 */
static void axienet_recv(struct net_device *ndev)
{
	u32 length;
	u32 csumstatus;
	u32 size = 0;
	u32 packets = 0;
825
	dma_addr_t tail_p = 0;
826 827 828 829 830 831 832
	struct axienet_local *lp = netdev_priv(ndev);
	struct sk_buff *skb, *new_skb;
	struct axidma_bd *cur_p;

	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];

	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
833 834
		dma_addr_t phys;

835
		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
836

837 838
		phys = desc_get_phys_addr(lp, cur_p);
		dma_unmap_single(ndev->dev.parent, phys, lp->max_frm_size,
839 840
				 DMA_FROM_DEVICE);

841 842 843 844
		skb = cur_p->skb;
		cur_p->skb = NULL;
		length = cur_p->app4 & 0x0000FFFF;

845 846 847 848 849 850 851 852 853 854 855 856 857 858
		skb_put(skb, length);
		skb->protocol = eth_type_trans(skb, ndev);
		/*skb_checksum_none_assert(skb);*/
		skb->ip_summed = CHECKSUM_NONE;

		/* if we're doing Rx csum offload, set it up */
		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
			csumstatus = (cur_p->app2 &
				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
			}
		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
859
			   skb->protocol == htons(ETH_P_IP) &&
860 861 862 863 864 865 866 867 868 869 870
			   skb->len > 64) {
			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
			skb->ip_summed = CHECKSUM_COMPLETE;
		}

		netif_rx(skb);

		size += length;
		packets++;

		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
871
		if (!new_skb)
872
			return;
873

874 875 876 877
		phys = dma_map_single(ndev->dev.parent, new_skb->data,
				      lp->max_frm_size,
				      DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
878 879 880 881 882
			if (net_ratelimit())
				netdev_err(ndev, "RX DMA mapping error\n");
			dev_kfree_skb(new_skb);
			return;
		}
883
		desc_set_phys_addr(lp, phys, cur_p);
884

885 886
		cur_p->cntrl = lp->max_frm_size;
		cur_p->status = 0;
887
		cur_p->skb = new_skb;
888

889 890
		if (++lp->rx_bd_ci >= lp->rx_bd_num)
			lp->rx_bd_ci = 0;
891 892 893 894 895 896
		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
	}

	ndev->stats.rx_packets += packets;
	ndev->stats.rx_bytes += size;

897
	if (tail_p)
898
		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
899 900 901 902 903 904 905
}

/**
 * axienet_tx_irq - Tx Done Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
906
 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
907 908 909 910 911 912 913 914 915 916 917 918 919
 *
 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 * to complete the BD processing.
 */
static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
{
	u32 cr;
	unsigned int status;
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);

	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
920
		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
921 922 923 924
		axienet_start_xmit_done(lp->ndev);
		goto out;
	}
	if (!(status & XAXIDMA_IRQ_ALL_MASK))
925
		return IRQ_NONE;
926 927
	if (status & XAXIDMA_IRQ_ERROR_MASK) {
		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
928 929
		dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
			(lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
930 931 932 933 934 935 936 937 938 939 940 941 942 943
			(lp->tx_bd_v[lp->tx_bd_ci]).phys);

		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* Write to the Tx channel control register */
		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* Write to the Rx channel control register */
		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

944
		schedule_work(&lp->dma_err_task);
945
		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
946 947 948 949 950 951 952 953 954 955
	}
out:
	return IRQ_HANDLED;
}

/**
 * axienet_rx_irq - Rx Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
956
 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
957 958 959 960 961 962 963 964 965 966 967 968 969
 *
 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 * processing.
 */
static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
{
	u32 cr;
	unsigned int status;
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);

	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
970
		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
971 972 973 974
		axienet_recv(lp->ndev);
		goto out;
	}
	if (!(status & XAXIDMA_IRQ_ALL_MASK))
975
		return IRQ_NONE;
976 977
	if (status & XAXIDMA_IRQ_ERROR_MASK) {
		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
978 979
		dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
			(lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
980 981 982 983 984 985 986 987 988 989 990 991 992 993
			(lp->rx_bd_v[lp->rx_bd_ci]).phys);

		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* Finally write to the Tx channel control register */
		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* write to the Rx channel control register */
		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

994
		schedule_work(&lp->dma_err_task);
995
		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
996 997 998 999 1000
	}
out:
	return IRQ_HANDLED;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/**
 * axienet_eth_irq - Ethernet core Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
 *
 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
 */
static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
{
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);
	unsigned int pending;

	pending = axienet_ior(lp, XAE_IP_OFFSET);
	if (!pending)
		return IRQ_NONE;

	if (pending & XAE_INT_RXFIFOOVR_MASK)
		ndev->stats.rx_missed_errors++;

	if (pending & XAE_INT_RXRJECT_MASK)
		ndev->stats.rx_frame_errors++;

	axienet_iow(lp, XAE_IS_OFFSET, pending);
	return IRQ_HANDLED;
}

1030
static void axienet_dma_err_handler(struct work_struct *work);
J
Jeff Mahoney 已提交
1031

1032 1033 1034 1035
/**
 * axienet_open - Driver open routine.
 * @ndev:	Pointer to net_device structure
 *
1036
 * Return: 0, on success.
1037 1038
 *	    non-zero error value on failure
 *
1039 1040
 * This is the driver open routine. It calls phylink_start to start the
 * PHY device.
1041 1042 1043 1044 1045 1046
 * It also allocates interrupt service routines, enables the interrupt lines
 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 * descriptors are initialized.
 */
static int axienet_open(struct net_device *ndev)
{
1047
	int ret;
1048 1049 1050 1051 1052 1053
	struct axienet_local *lp = netdev_priv(ndev);

	dev_dbg(&ndev->dev, "axienet_open()\n");

	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
	 * When we do an Axi Ethernet reset, it resets the complete core
1054 1055 1056
	 * including the MDIO. MDIO must be disabled before resetting
	 * and re-enabled afterwards.
	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
M
Michal Simek 已提交
1057
	 */
1058 1059
	mutex_lock(&lp->mii_bus->mdio_lock);
	axienet_mdio_disable(lp);
1060 1061 1062
	ret = axienet_device_reset(ndev);
	if (ret == 0)
		ret = axienet_mdio_enable(lp);
1063
	mutex_unlock(&lp->mii_bus->mdio_lock);
1064 1065 1066
	if (ret < 0)
		return ret;

1067 1068 1069 1070
	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
	if (ret) {
		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
		return ret;
1071 1072
	}

1073 1074
	phylink_start(lp->phylink);

1075 1076
	/* Enable worker thread for Axi DMA error handling */
	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1077

1078
	/* Enable interrupts for Axi DMA Tx */
1079 1080
	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
			  ndev->name, ndev);
1081 1082 1083
	if (ret)
		goto err_tx_irq;
	/* Enable interrupts for Axi DMA Rx */
1084 1085
	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
			  ndev->name, ndev);
1086 1087
	if (ret)
		goto err_rx_irq;
1088 1089 1090 1091 1092 1093 1094
	/* Enable interrupts for Axi Ethernet core (if defined) */
	if (lp->eth_irq > 0) {
		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
				  ndev->name, ndev);
		if (ret)
			goto err_eth_irq;
	}
1095

1096 1097
	return 0;

1098 1099
err_eth_irq:
	free_irq(lp->rx_irq, ndev);
1100 1101 1102
err_rx_irq:
	free_irq(lp->tx_irq, ndev);
err_tx_irq:
1103 1104
	phylink_stop(lp->phylink);
	phylink_disconnect_phy(lp->phylink);
1105
	cancel_work_sync(&lp->dma_err_task);
1106 1107 1108 1109 1110 1111 1112 1113
	dev_err(lp->dev, "request_irq() failed\n");
	return ret;
}

/**
 * axienet_stop - Driver stop routine.
 * @ndev:	Pointer to net_device structure
 *
1114
 * Return: 0, on success.
1115
 *
1116
 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1117 1118 1119 1120 1121
 * device. It also removes the interrupt handlers and disables the interrupts.
 * The Axi DMA Tx/Rx BDs are released.
 */
static int axienet_stop(struct net_device *ndev)
{
1122 1123
	u32 cr, sr;
	int count;
1124 1125 1126 1127
	struct axienet_local *lp = netdev_priv(ndev);

	dev_dbg(&ndev->dev, "axienet_close()\n");

1128 1129 1130
	phylink_stop(lp->phylink);
	phylink_disconnect_phy(lp->phylink);

1131 1132 1133
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

	axienet_iow(lp, XAE_IE_OFFSET, 0);

	/* Give DMAs a chance to halt gracefully */
	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
		msleep(20);
		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	}

	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
		msleep(20);
		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	}

	/* Do a reset to ensure DMA is really stopped */
	mutex_lock(&lp->mii_bus->mdio_lock);
	axienet_mdio_disable(lp);
	__axienet_device_reset(lp);
	axienet_mdio_enable(lp);
	mutex_unlock(&lp->mii_bus->mdio_lock);

1164
	cancel_work_sync(&lp->dma_err_task);
1165

1166 1167
	if (lp->eth_irq > 0)
		free_irq(lp->eth_irq, ndev);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	free_irq(lp->tx_irq, ndev);
	free_irq(lp->rx_irq, ndev);

	axienet_dma_bd_release(ndev);
	return 0;
}

/**
 * axienet_change_mtu - Driver change mtu routine.
 * @ndev:	Pointer to net_device structure
 * @new_mtu:	New mtu value to be applied
 *
1180
 * Return: Always returns 0 (success).
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
 *
 * This is the change mtu driver routine. It checks if the Axi Ethernet
 * hardware supports jumbo frames before changing the mtu. This can be
 * called only when the device is not up.
 */
static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (netif_running(ndev))
		return -EBUSY;
1192 1193 1194 1195 1196 1197

	if ((new_mtu + VLAN_ETH_HLEN +
		XAE_TRL_SIZE) > lp->rxmem)
		return -EINVAL;

	ndev->mtu = new_mtu;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/**
 * axienet_poll_controller - Axi Ethernet poll mechanism.
 * @ndev:	Pointer to net_device structure
 *
 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
 * to polling the ISRs and are enabled back after the polling is done.
 */
static void axienet_poll_controller(struct net_device *ndev)
{
	struct axienet_local *lp = netdev_priv(ndev);
	disable_irq(lp->tx_irq);
	disable_irq(lp->rx_irq);
	axienet_rx_irq(lp->tx_irq, ndev);
	axienet_tx_irq(lp->rx_irq, ndev);
	enable_irq(lp->tx_irq);
	enable_irq(lp->rx_irq);
}
#endif

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct axienet_local *lp = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return phylink_mii_ioctl(lp->phylink, rq, cmd);
}

1232 1233 1234 1235 1236 1237 1238
static const struct net_device_ops axienet_netdev_ops = {
	.ndo_open = axienet_open,
	.ndo_stop = axienet_stop,
	.ndo_start_xmit = axienet_start_xmit,
	.ndo_change_mtu	= axienet_change_mtu,
	.ndo_set_mac_address = netdev_set_mac_address,
	.ndo_validate_addr = eth_validate_addr,
1239
	.ndo_do_ioctl = axienet_ioctl,
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	.ndo_set_rx_mode = axienet_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = axienet_poll_controller,
#endif
};

/**
 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
 * @ndev:	Pointer to net_device structure
 * @ed:		Pointer to ethtool_drvinfo structure
 *
 * This implements ethtool command for getting the driver information.
 * Issue "ethtool -i ethX" under linux prompt to execute this function.
 */
static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
					 struct ethtool_drvinfo *ed)
{
1257 1258
	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1259 1260 1261 1262 1263 1264 1265 1266 1267
}

/**
 * axienet_ethtools_get_regs_len - Get the total regs length present in the
 *				   AxiEthernet core.
 * @ndev:	Pointer to net_device structure
 *
 * This implements ethtool command for getting the total register length
 * information.
1268 1269
 *
 * Return: the total regs length
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
 */
static int axienet_ethtools_get_regs_len(struct net_device *ndev)
{
	return sizeof(u32) * AXIENET_REGS_N;
}

/**
 * axienet_ethtools_get_regs - Dump the contents of all registers present
 *			       in AxiEthernet core.
 * @ndev:	Pointer to net_device structure
 * @regs:	Pointer to ethtool_regs structure
 * @ret:	Void pointer used to return the contents of the registers.
 *
 * This implements ethtool command for getting the Axi Ethernet register dump.
 * Issue "ethtool -d ethX" to execute this function.
 */
static void axienet_ethtools_get_regs(struct net_device *ndev,
				      struct ethtool_regs *regs, void *ret)
{
	u32 *data = (u32 *) ret;
	size_t len = sizeof(u32) * AXIENET_REGS_N;
	struct axienet_local *lp = netdev_priv(ndev);

	regs->version = 0;
	regs->len = len;

	memset(data, 0, len);
	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1325 1326 1327 1328 1329 1330 1331 1332
	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static void axienet_ethtools_get_ringparam(struct net_device *ndev,
					   struct ethtool_ringparam *ering)
{
	struct axienet_local *lp = netdev_priv(ndev);

	ering->rx_max_pending = RX_BD_NUM_MAX;
	ering->rx_mini_max_pending = 0;
	ering->rx_jumbo_max_pending = 0;
	ering->tx_max_pending = TX_BD_NUM_MAX;
	ering->rx_pending = lp->rx_bd_num;
	ering->rx_mini_pending = 0;
	ering->rx_jumbo_pending = 0;
	ering->tx_pending = lp->tx_bd_num;
}

static int axienet_ethtools_set_ringparam(struct net_device *ndev,
					  struct ethtool_ringparam *ering)
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (ering->rx_pending > RX_BD_NUM_MAX ||
	    ering->rx_mini_pending ||
	    ering->rx_jumbo_pending ||
	    ering->rx_pending > TX_BD_NUM_MAX)
		return -EINVAL;

	if (netif_running(ndev))
		return -EBUSY;

	lp->rx_bd_num = ering->rx_pending;
	lp->tx_bd_num = ering->tx_pending;
	return 0;
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/**
 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
 *				     Tx and Rx paths.
 * @ndev:	Pointer to net_device structure
 * @epauseparm:	Pointer to ethtool_pauseparam structure.
 *
 * This implements ethtool command for getting axi ethernet pause frame
 * setting. Issue "ethtool -a ethX" to execute this function.
 */
static void
axienet_ethtools_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *epauseparm)
{
	struct axienet_local *lp = netdev_priv(ndev);
1383 1384

	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1385 1386 1387 1388 1389 1390
}

/**
 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
 *				     settings.
 * @ndev:	Pointer to net_device structure
1391
 * @epauseparm:Pointer to ethtool_pauseparam structure
1392 1393 1394 1395
 *
 * This implements ethtool command for enabling flow control on Rx and Tx
 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
 * function.
1396 1397
 *
 * Return: 0 on success, -EFAULT if device is running
1398 1399 1400 1401 1402 1403 1404
 */
static int
axienet_ethtools_set_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *epauseparm)
{
	struct axienet_local *lp = netdev_priv(ndev);

1405
	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
}

/**
 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
 * @ndev:	Pointer to net_device structure
 * @ecoalesce:	Pointer to ethtool_coalesce structure
 *
 * This implements ethtool command for getting the DMA interrupt coalescing
 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
 * execute this function.
1416 1417
 *
 * Return: 0 always
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
 */
static int axienet_ethtools_get_coalesce(struct net_device *ndev,
					 struct ethtool_coalesce *ecoalesce)
{
	u32 regval = 0;
	struct axienet_local *lp = netdev_priv(ndev);
	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
					     >> XAXIDMA_COALESCE_SHIFT;
	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
					     >> XAXIDMA_COALESCE_SHIFT;
	return 0;
}

/**
 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
 * @ndev:	Pointer to net_device structure
 * @ecoalesce:	Pointer to ethtool_coalesce structure
 *
 * This implements ethtool command for setting the DMA interrupt coalescing
 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
 * prompt to execute this function.
1441 1442
 *
 * Return: 0, on success, Non-zero error value on failure.
1443 1444 1445 1446 1447 1448 1449
 */
static int axienet_ethtools_set_coalesce(struct net_device *ndev,
					 struct ethtool_coalesce *ecoalesce)
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (netif_running(ndev)) {
1450 1451
		netdev_err(ndev,
			   "Please stop netif before applying configuration\n");
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
		return -EFAULT;
	}

	if (ecoalesce->rx_max_coalesced_frames)
		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
	if (ecoalesce->tx_max_coalesced_frames)
		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;

	return 0;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static int
axienet_ethtools_get_link_ksettings(struct net_device *ndev,
				    struct ethtool_link_ksettings *cmd)
{
	struct axienet_local *lp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
}

static int
axienet_ethtools_set_link_ksettings(struct net_device *ndev,
				    const struct ethtool_link_ksettings *cmd)
{
	struct axienet_local *lp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
}

1481
static const struct ethtool_ops axienet_ethtool_ops = {
1482
	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
1483 1484 1485 1486
	.get_drvinfo    = axienet_ethtools_get_drvinfo,
	.get_regs_len   = axienet_ethtools_get_regs_len,
	.get_regs       = axienet_ethtools_get_regs,
	.get_link       = ethtool_op_get_link,
1487 1488
	.get_ringparam	= axienet_ethtools_get_ringparam,
	.set_ringparam	= axienet_ethtools_set_ringparam,
1489 1490 1491 1492
	.get_pauseparam = axienet_ethtools_get_pauseparam,
	.set_pauseparam = axienet_ethtools_set_pauseparam,
	.get_coalesce   = axienet_ethtools_get_coalesce,
	.set_coalesce   = axienet_ethtools_set_coalesce,
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
};

static void axienet_validate(struct phylink_config *config,
			     unsigned long *supported,
			     struct phylink_link_state *state)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };

	/* Only support the mode we are configured for */
	if (state->interface != PHY_INTERFACE_MODE_NA &&
	    state->interface != lp->phy_mode) {
		netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
			    phy_modes(state->interface),
			    phy_modes(lp->phy_mode));
		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
		return;
	}

	phylink_set(mask, Autoneg);
	phylink_set_port_modes(mask);

	phylink_set(mask, Asym_Pause);
	phylink_set(mask, Pause);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

	switch (state->interface) {
	case PHY_INTERFACE_MODE_NA:
	case PHY_INTERFACE_MODE_1000BASEX:
	case PHY_INTERFACE_MODE_SGMII:
	case PHY_INTERFACE_MODE_GMII:
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
	case PHY_INTERFACE_MODE_RGMII_RXID:
	case PHY_INTERFACE_MODE_RGMII_TXID:
		phylink_set(mask, 1000baseX_Full);
		phylink_set(mask, 1000baseT_Full);
		if (state->interface == PHY_INTERFACE_MODE_1000BASEX)
			break;
		fallthrough;
	case PHY_INTERFACE_MODE_MII:
		phylink_set(mask, 100baseT_Full);
		phylink_set(mask, 10baseT_Full);
	default:
		break;
	}
1541 1542 1543 1544 1545 1546 1547

	bitmap_and(supported, supported, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
	bitmap_and(state->advertising, state->advertising, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
}

1548 1549
static void axienet_mac_pcs_get_state(struct phylink_config *config,
				      struct phylink_link_state *state)
1550 1551 1552 1553
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);

1554 1555 1556 1557 1558 1559 1560 1561
	switch (state->interface) {
	case PHY_INTERFACE_MODE_SGMII:
	case PHY_INTERFACE_MODE_1000BASEX:
		phylink_mii_c22_pcs_get_state(lp->pcs_phy, state);
		break;
	default:
		break;
	}
1562 1563 1564 1565
}

static void axienet_mac_an_restart(struct phylink_config *config)
{
1566 1567 1568 1569
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);

	phylink_mii_c22_pcs_an_restart(lp->pcs_phy);
1570 1571 1572 1573
}

static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
			       const struct phylink_link_state *state)
1574
{
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);
	int ret;

	switch (state->interface) {
	case PHY_INTERFACE_MODE_SGMII:
	case PHY_INTERFACE_MODE_1000BASEX:
		ret = phylink_mii_c22_pcs_config(lp->pcs_phy, mode,
						 state->interface,
						 state->advertising);
		if (ret < 0)
			netdev_warn(ndev, "Failed to configure PCS: %d\n",
				    ret);
		break;

	default:
		break;
	}
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

static void axienet_mac_link_down(struct phylink_config *config,
				  unsigned int mode,
				  phy_interface_t interface)
{
	/* nothing meaningful to do */
}

static void axienet_mac_link_up(struct phylink_config *config,
				struct phy_device *phy,
				unsigned int mode, phy_interface_t interface,
				int speed, int duplex,
				bool tx_pause, bool rx_pause)
1607 1608 1609 1610 1611 1612 1613 1614
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);
	u32 emmc_reg, fcc_reg;

	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;

1615
	switch (speed) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	case SPEED_1000:
		emmc_reg |= XAE_EMMC_LINKSPD_1000;
		break;
	case SPEED_100:
		emmc_reg |= XAE_EMMC_LINKSPD_100;
		break;
	case SPEED_10:
		emmc_reg |= XAE_EMMC_LINKSPD_10;
		break;
	default:
		dev_err(&ndev->dev,
			"Speed other than 10, 100 or 1Gbps is not supported\n");
		break;
	}

	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);

	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1634
	if (tx_pause)
1635 1636 1637
		fcc_reg |= XAE_FCC_FCTX_MASK;
	else
		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1638
	if (rx_pause)
1639 1640 1641 1642 1643 1644 1645 1646
		fcc_reg |= XAE_FCC_FCRX_MASK;
	else
		fcc_reg &= ~XAE_FCC_FCRX_MASK;
	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
}

static const struct phylink_mac_ops axienet_phylink_ops = {
	.validate = axienet_validate,
1647
	.mac_pcs_get_state = axienet_mac_pcs_get_state,
1648 1649 1650 1651
	.mac_an_restart = axienet_mac_an_restart,
	.mac_config = axienet_mac_config,
	.mac_link_down = axienet_mac_link_down,
	.mac_link_up = axienet_mac_link_up,
1652 1653 1654
};

/**
1655 1656
 * axienet_dma_err_handler - Work queue task for Axi DMA Error
 * @work:	pointer to work_struct
1657 1658 1659 1660
 *
 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
 * Tx/Rx BDs.
 */
1661
static void axienet_dma_err_handler(struct work_struct *work)
1662 1663 1664
{
	u32 axienet_status;
	u32 cr, i;
1665 1666
	struct axienet_local *lp = container_of(work, struct axienet_local,
						dma_err_task);
1667 1668 1669 1670 1671 1672 1673
	struct net_device *ndev = lp->ndev;
	struct axidma_bd *cur_p;

	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
	 * When we do an Axi Ethernet reset, it resets the complete core
1674 1675 1676
	 * including the MDIO. MDIO must be disabled before resetting
	 * and re-enabled afterwards.
	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
M
Michal Simek 已提交
1677
	 */
1678 1679
	mutex_lock(&lp->mii_bus->mdio_lock);
	axienet_mdio_disable(lp);
1680
	__axienet_device_reset(lp);
1681 1682
	axienet_mdio_enable(lp);
	mutex_unlock(&lp->mii_bus->mdio_lock);
1683

1684
	for (i = 0; i < lp->tx_bd_num; i++) {
1685
		cur_p = &lp->tx_bd_v[i];
1686 1687 1688 1689
		if (cur_p->cntrl) {
			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);

			dma_unmap_single(ndev->dev.parent, addr,
1690 1691 1692
					 (cur_p->cntrl &
					  XAXIDMA_BD_CTRL_LENGTH_MASK),
					 DMA_TO_DEVICE);
1693
		}
1694 1695
		if (cur_p->skb)
			dev_kfree_skb_irq(cur_p->skb);
1696
		cur_p->phys = 0;
1697
		cur_p->phys_msb = 0;
1698 1699 1700 1701 1702 1703 1704
		cur_p->cntrl = 0;
		cur_p->status = 0;
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app3 = 0;
		cur_p->app4 = 0;
1705
		cur_p->skb = NULL;
1706 1707
	}

1708
	for (i = 0; i < lp->rx_bd_num; i++) {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
		cur_p = &lp->rx_bd_v[i];
		cur_p->status = 0;
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app3 = 0;
		cur_p->app4 = 0;
	}

	lp->tx_bd_ci = 0;
	lp->tx_bd_tail = 0;
	lp->rx_bd_ci = 0;

	/* Start updating the Rx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Finally write to the Rx channel control register */
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

	/* Start updating the Tx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Finally write to the Tx channel control register */
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
M
Michal Simek 已提交
1749 1750
	 * halted state. This will make the Rx side ready for reception.
	 */
1751
	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1752 1753 1754
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1755 1756
	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1757 1758 1759

	/* Write to the RS (Run-stop) bit in the Tx channel control register.
	 * Tx channel is now ready to run. But only after we write to the
M
Michal Simek 已提交
1760 1761
	 * tail pointer register that the Tx channel will start transmitting
	 */
1762
	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);

	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
	axienet_status &= ~XAE_RCW1_RX_MASK;
	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);

	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
	if (axienet_status & XAE_INT_RXRJECT_MASK)
		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1774 1775
	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
		    XAE_INT_RECV_ERROR_MASK : 0);
1776 1777 1778
	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);

	/* Sync default options with HW but leave receiver and
M
Michal Simek 已提交
1779 1780
	 * transmitter disabled.
	 */
1781 1782 1783 1784 1785 1786 1787 1788
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	axienet_set_mac_address(ndev, NULL);
	axienet_set_multicast_list(ndev);
	axienet_setoptions(ndev, lp->options);
}

/**
1789
 * axienet_probe - Axi Ethernet probe function.
1790
 * @pdev:	Pointer to platform device structure.
1791
 *
1792
 * Return: 0, on success
1793 1794 1795 1796 1797 1798 1799
 *	    Non-zero error value on failure.
 *
 * This is the probe routine for Axi Ethernet driver. This is called before
 * any other driver routines are invoked. It allocates and sets up the Ethernet
 * device. Parses through device tree and populates fields of
 * axienet_local. It registers the Ethernet device.
 */
1800
static int axienet_probe(struct platform_device *pdev)
1801
{
1802
	int ret;
1803 1804 1805
	struct device_node *np;
	struct axienet_local *lp;
	struct net_device *ndev;
1806
	const void *mac_addr;
1807
	struct resource *ethres;
1808
	int addr_width = 32;
1809
	u32 value;
1810 1811

	ndev = alloc_etherdev(sizeof(*lp));
1812
	if (!ndev)
1813 1814
		return -ENOMEM;

1815
	platform_set_drvdata(pdev, ndev);
1816

1817
	SET_NETDEV_DEV(ndev, &pdev->dev);
1818
	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1819
	ndev->features = NETIF_F_SG;
1820 1821 1822
	ndev->netdev_ops = &axienet_netdev_ops;
	ndev->ethtool_ops = &axienet_ethtool_ops;

1823 1824 1825 1826
	/* MTU range: 64 - 9000 */
	ndev->min_mtu = 64;
	ndev->max_mtu = XAE_JUMBO_MTU;

1827 1828
	lp = netdev_priv(ndev);
	lp->ndev = ndev;
1829
	lp->dev = &pdev->dev;
1830
	lp->options = XAE_OPTION_DEFAULTS;
1831 1832
	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1833
	/* Map device registers */
1834 1835
	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1836
	if (IS_ERR(lp->regs)) {
1837
		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1838
		ret = PTR_ERR(lp->regs);
1839
		goto free_netdev;
1840
	}
1841
	lp->regs_start = ethres->start;
1842

1843 1844 1845
	/* Setup checksum offload, but default to off if not specified */
	lp->features = 0;

1846 1847 1848
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
	if (!ret) {
		switch (value) {
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		case 1:
			lp->csum_offload_on_tx_path =
				XAE_FEATURE_PARTIAL_TX_CSUM;
			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
			/* Can checksum TCP/UDP over IPv4. */
			ndev->features |= NETIF_F_IP_CSUM;
			break;
		case 2:
			lp->csum_offload_on_tx_path =
				XAE_FEATURE_FULL_TX_CSUM;
			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
			/* Can checksum TCP/UDP over IPv4. */
			ndev->features |= NETIF_F_IP_CSUM;
			break;
		default:
			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
		}
	}
1867 1868 1869
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
	if (!ret) {
		switch (value) {
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		case 1:
			lp->csum_offload_on_rx_path =
				XAE_FEATURE_PARTIAL_RX_CSUM;
			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
			break;
		case 2:
			lp->csum_offload_on_rx_path =
				XAE_FEATURE_FULL_RX_CSUM;
			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
			break;
		default:
			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
		}
	}
	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1885 1886 1887 1888 1889
	 * a larger Rx/Tx Memory. Typically, the size must be large so that
	 * we can enable jumbo option and start supporting jumbo frames.
	 * Here we check for memory allocated for Rx/Tx in the hardware from
	 * the device-tree and accordingly set flags.
	 */
1890
	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

	/* Start with the proprietary, and broken phy_type */
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
	if (!ret) {
		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
		switch (value) {
		case XAE_PHY_TYPE_MII:
			lp->phy_mode = PHY_INTERFACE_MODE_MII;
			break;
		case XAE_PHY_TYPE_GMII:
			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
			break;
		case XAE_PHY_TYPE_RGMII_2_0:
			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
			break;
		case XAE_PHY_TYPE_SGMII:
			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
			break;
		case XAE_PHY_TYPE_1000BASE_X:
			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
			break;
		default:
			ret = -EINVAL;
			goto free_netdev;
		}
	} else {
1917 1918
		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
		if (ret)
1919 1920
			goto free_netdev;
	}
1921 1922

	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1923
	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	if (np) {
		struct resource dmares;

		ret = of_address_to_resource(np, 0, &dmares);
		if (ret) {
			dev_err(&pdev->dev,
				"unable to get DMA resource\n");
			of_node_put(np);
			goto free_netdev;
		}
		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
						     &dmares);
		lp->rx_irq = irq_of_parse_and_map(np, 1);
		lp->tx_irq = irq_of_parse_and_map(np, 0);
1938
		of_node_put(np);
1939
		lp->eth_irq = platform_get_irq_optional(pdev, 0);
1940 1941 1942 1943 1944 1945 1946
	} else {
		/* Check for these resources directly on the Ethernet node. */
		struct resource *res = platform_get_resource(pdev,
							     IORESOURCE_MEM, 1);
		lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
		lp->rx_irq = platform_get_irq(pdev, 1);
		lp->tx_irq = platform_get_irq(pdev, 0);
1947
		lp->eth_irq = platform_get_irq_optional(pdev, 2);
1948
	}
1949
	if (IS_ERR(lp->dma_regs)) {
1950
		dev_err(&pdev->dev, "could not map DMA regs\n");
1951
		ret = PTR_ERR(lp->dma_regs);
1952
		goto free_netdev;
1953
	}
1954
	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1955
		dev_err(&pdev->dev, "could not determine irqs\n");
1956
		ret = -ENOMEM;
1957
		goto free_netdev;
1958 1959
	}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/* Autodetect the need for 64-bit DMA pointers.
	 * When the IP is configured for a bus width bigger than 32 bits,
	 * writing the MSB registers is mandatory, even if they are all 0.
	 * We can detect this case by writing all 1's to one such register
	 * and see if that sticks: when the IP is configured for 32 bits
	 * only, those registers are RES0.
	 * Those MSB registers were introduced in IP v7.1, which we check first.
	 */
	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;

		iowrite32(0x0, desc);
		if (ioread32(desc) == 0) {	/* sanity check */
			iowrite32(0xffffffff, desc);
			if (ioread32(desc) > 0) {
				lp->features |= XAE_FEATURE_DMA_64BIT;
1976
				addr_width = 64;
1977 1978 1979 1980 1981 1982 1983
				dev_info(&pdev->dev,
					 "autodetected 64-bit DMA range\n");
			}
			iowrite32(0x0, desc);
		}
	}

1984 1985 1986 1987 1988 1989
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
	if (ret) {
		dev_err(&pdev->dev, "No suitable DMA available\n");
		goto free_netdev;
	}

1990 1991 1992 1993
	/* Check for Ethernet core IRQ (optional) */
	if (lp->eth_irq <= 0)
		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");

1994
	/* Retrieve the MAC address */
1995
	mac_addr = of_get_mac_address(pdev->dev.of_node);
1996
	if (IS_ERR(mac_addr)) {
1997 1998 1999
		dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
			 PTR_ERR(mac_addr));
		mac_addr = NULL;
2000
	}
2001
	axienet_set_mac_address(ndev, mac_addr);
2002 2003 2004 2005

	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;

2006
	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2007
	if (lp->phy_node) {
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		lp->clk = devm_clk_get(&pdev->dev, NULL);
		if (IS_ERR(lp->clk)) {
			dev_warn(&pdev->dev, "Failed to get clock: %ld\n",
				 PTR_ERR(lp->clk));
			lp->clk = NULL;
		} else {
			ret = clk_prepare_enable(lp->clk);
			if (ret) {
				dev_err(&pdev->dev, "Unable to enable clock: %d\n",
					ret);
				goto free_netdev;
			}
		}

		ret = axienet_mdio_setup(lp);
2023
		if (ret)
2024 2025
			dev_warn(&pdev->dev,
				 "error registering MDIO bus: %d\n", ret);
2026
	}
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
		if (!lp->phy_node) {
			dev_err(&pdev->dev, "phy-handle required for 1000BaseX/SGMII\n");
			ret = -EINVAL;
			goto free_netdev;
		}
		lp->pcs_phy = of_mdio_find_device(lp->phy_node);
		if (!lp->pcs_phy) {
			ret = -EPROBE_DEFER;
			goto free_netdev;
		}
		lp->phylink_config.pcs_poll = true;
	}
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	lp->phylink_config.dev = &ndev->dev;
	lp->phylink_config.type = PHYLINK_NETDEV;

	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
				     lp->phy_mode,
				     &axienet_phylink_ops);
	if (IS_ERR(lp->phylink)) {
		ret = PTR_ERR(lp->phylink);
		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
		goto free_netdev;
	}

2054 2055 2056
	ret = register_netdev(lp->ndev);
	if (ret) {
		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2057
		goto free_netdev;
2058 2059 2060 2061
	}

	return 0;

2062
free_netdev:
2063
	free_netdev(ndev);
2064

2065 2066 2067
	return ret;
}

2068
static int axienet_remove(struct platform_device *pdev)
2069
{
2070
	struct net_device *ndev = platform_get_drvdata(pdev);
2071 2072 2073
	struct axienet_local *lp = netdev_priv(ndev);

	unregister_netdev(ndev);
2074 2075 2076 2077

	if (lp->phylink)
		phylink_destroy(lp->phylink);

2078 2079 2080
	if (lp->pcs_phy)
		put_device(&lp->pcs_phy->dev);

2081
	axienet_mdio_teardown(lp);
2082

2083
	clk_disable_unprepare(lp->clk);
2084

2085
	of_node_put(lp->phy_node);
2086 2087 2088 2089 2090 2091 2092
	lp->phy_node = NULL;

	free_netdev(ndev);

	return 0;
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
static void axienet_shutdown(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);

	rtnl_lock();
	netif_device_detach(ndev);

	if (netif_running(ndev))
		dev_close(ndev);

	rtnl_unlock();
}

2106 2107 2108
static struct platform_driver axienet_driver = {
	.probe = axienet_probe,
	.remove = axienet_remove,
2109
	.shutdown = axienet_shutdown,
2110 2111 2112 2113 2114 2115
	.driver = {
		 .name = "xilinx_axienet",
		 .of_match_table = axienet_of_match,
	},
};

2116
module_platform_driver(axienet_driver);
2117 2118 2119 2120

MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
MODULE_AUTHOR("Xilinx");
MODULE_LICENSE("GPL");