xilinx_axienet_main.c 58.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Xilinx Axi Ethernet device driver
 *
 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 9
 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
 * Copyright (c) 2010 - 2011 PetaLogix
10
 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11
 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
 * and Spartan6.
 *
 * TODO:
 *  - Add Axi Fifo support.
 *  - Factor out Axi DMA code into separate driver.
 *  - Test and fix basic multicast filtering.
 *  - Add support for extended multicast filtering.
 *  - Test basic VLAN support.
 *  - Add support for extended VLAN support.
 */

25
#include <linux/clk.h>
26 27 28 29 30
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
31
#include <linux/of_net.h>
32
#include <linux/of_platform.h>
33
#include <linux/of_irq.h>
34 35 36 37 38 39 40 41 42
#include <linux/of_address.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/phy.h>
#include <linux/mii.h>
#include <linux/ethtool.h>

#include "xilinx_axienet.h"

43 44 45 46 47
/* Descriptors defines for Tx and Rx DMA */
#define TX_BD_NUM_DEFAULT		64
#define RX_BD_NUM_DEFAULT		1024
#define TX_BD_NUM_MAX			4096
#define RX_BD_NUM_MAX			4096
48 49 50 51 52 53

/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
#define DRIVER_NAME		"xaxienet"
#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
#define DRIVER_VERSION		"1.00a"

54
#define AXIENET_REGS_N		40
55 56

/* Match table for of_platform binding */
57
static const struct of_device_id axienet_of_match[] = {
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
	{},
};

MODULE_DEVICE_TABLE(of, axienet_of_match);

/* Option table for setting up Axi Ethernet hardware options */
static struct axienet_option axienet_options[] = {
	/* Turn on jumbo packet support for both Rx and Tx */
	{
		.opt = XAE_OPTION_JUMBO,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_JUM_MASK,
	}, {
		.opt = XAE_OPTION_JUMBO,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_JUM_MASK,
	}, { /* Turn on VLAN packet support for both Rx and Tx */
		.opt = XAE_OPTION_VLAN,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_VLAN_MASK,
	}, {
		.opt = XAE_OPTION_VLAN,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_VLAN_MASK,
	}, { /* Turn on FCS stripping on receive packets */
		.opt = XAE_OPTION_FCS_STRIP,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_FCS_MASK,
	}, { /* Turn on FCS insertion on transmit packets */
		.opt = XAE_OPTION_FCS_INSERT,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_FCS_MASK,
	}, { /* Turn off length/type field checking on receive packets */
		.opt = XAE_OPTION_LENTYPE_ERR,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_LT_DIS_MASK,
	}, { /* Turn on Rx flow control */
		.opt = XAE_OPTION_FLOW_CONTROL,
		.reg = XAE_FCC_OFFSET,
		.m_or = XAE_FCC_FCRX_MASK,
	}, { /* Turn on Tx flow control */
		.opt = XAE_OPTION_FLOW_CONTROL,
		.reg = XAE_FCC_OFFSET,
		.m_or = XAE_FCC_FCTX_MASK,
	}, { /* Turn on promiscuous frame filtering */
		.opt = XAE_OPTION_PROMISC,
		.reg = XAE_FMI_OFFSET,
		.m_or = XAE_FMI_PM_MASK,
	}, { /* Enable transmitter */
		.opt = XAE_OPTION_TXEN,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_TX_MASK,
	}, { /* Enable receiver */
		.opt = XAE_OPTION_RXEN,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_RX_MASK,
	},
	{}
};

/**
 * axienet_dma_in32 - Memory mapped Axi DMA register read
 * @lp:		Pointer to axienet local structure
 * @reg:	Address offset from the base address of the Axi DMA core
 *
126
 * Return: The contents of the Axi DMA register
127 128 129 130 131
 *
 * This function returns the contents of the corresponding Axi DMA register.
 */
static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
{
132
	return ioread32(lp->dma_regs + reg);
133 134 135 136 137 138 139 140 141 142 143 144 145 146
}

/**
 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 * @lp:		Pointer to axienet local structure
 * @reg:	Address offset from the base address of the Axi DMA core
 * @value:	Value to be written into the Axi DMA register
 *
 * This function writes the desired value into the corresponding Axi DMA
 * register.
 */
static inline void axienet_dma_out32(struct axienet_local *lp,
				     off_t reg, u32 value)
{
147
	iowrite32(value, lp->dma_regs + reg);
148 149
}

150 151 152 153 154 155
static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
				 dma_addr_t addr)
{
	axienet_dma_out32(lp, reg, lower_32_bits(addr));
}

156 157 158 159 160 161 162 163 164 165 166 167 168
/**
 * axienet_dma_bd_release - Release buffer descriptor rings
 * @ndev:	Pointer to the net_device structure
 *
 * This function is used to release the descriptors allocated in
 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 * driver stop api is called.
 */
static void axienet_dma_bd_release(struct net_device *ndev)
{
	int i;
	struct axienet_local *lp = netdev_priv(ndev);

169 170 171 172 173 174 175 176 177
	/* If we end up here, tx_bd_v must have been DMA allocated. */
	dma_free_coherent(ndev->dev.parent,
			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
			  lp->tx_bd_v,
			  lp->tx_bd_p);

	if (!lp->rx_bd_v)
		return;

178
	for (i = 0; i < lp->rx_bd_num; i++) {
179 180 181 182 183 184
		/* A NULL skb means this descriptor has not been initialised
		 * at all.
		 */
		if (!lp->rx_bd_v[i].skb)
			break;

185
		dev_kfree_skb(lp->rx_bd_v[i].skb);
186

187 188 189 190 191 192 193
		/* For each descriptor, we programmed cntrl with the (non-zero)
		 * descriptor size, after it had been successfully allocated.
		 * So a non-zero value in there means we need to unmap it.
		 */
		if (lp->rx_bd_v[i].cntrl)
			dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
					 lp->max_frm_size, DMA_FROM_DEVICE);
194
	}
195 196 197 198 199

	dma_free_coherent(ndev->dev.parent,
			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
			  lp->rx_bd_v,
			  lp->rx_bd_p);
200 201 202 203 204 205
}

/**
 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 * @ndev:	Pointer to the net_device structure
 *
206
 * Return: 0, on success -ENOMEM, on failure
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 *
 * This function is called to initialize the Rx and Tx DMA descriptor
 * rings. This initializes the descriptors with required default values
 * and is called when Axi Ethernet driver reset is called.
 */
static int axienet_dma_bd_init(struct net_device *ndev)
{
	u32 cr;
	int i;
	struct sk_buff *skb;
	struct axienet_local *lp = netdev_priv(ndev);

	/* Reset the indexes which are used for accessing the BDs */
	lp->tx_bd_ci = 0;
	lp->tx_bd_tail = 0;
	lp->rx_bd_ci = 0;

M
Michal Simek 已提交
224
	/* Allocate the Tx and Rx buffer descriptors. */
225
	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
226
					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
227
					 &lp->tx_bd_p, GFP_KERNEL);
228
	if (!lp->tx_bd_v)
229
		return -ENOMEM;
230

231
	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
232
					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
233
					 &lp->rx_bd_p, GFP_KERNEL);
234
	if (!lp->rx_bd_v)
235 236
		goto out;

237
	for (i = 0; i < lp->tx_bd_num; i++) {
238 239
		lp->tx_bd_v[i].next = lp->tx_bd_p +
				      sizeof(*lp->tx_bd_v) *
240
				      ((i + 1) % lp->tx_bd_num);
241 242
	}

243
	for (i = 0; i < lp->rx_bd_num; i++) {
244 245
		lp->rx_bd_v[i].next = lp->rx_bd_p +
				      sizeof(*lp->rx_bd_v) *
246
				      ((i + 1) % lp->rx_bd_num);
247 248

		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
249
		if (!skb)
250 251
			goto out;

252
		lp->rx_bd_v[i].skb = skb;
253 254 255 256
		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
						     skb->data,
						     lp->max_frm_size,
						     DMA_FROM_DEVICE);
257 258 259 260 261
		if (dma_mapping_error(ndev->dev.parent, lp->rx_bd_v[i].phys)) {
			netdev_err(ndev, "DMA mapping error\n");
			goto out;
		}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
	}

	/* Start updating the Rx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Write to the Rx channel control register */
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

	/* Start updating the Tx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Write to the Tx channel control register */
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
M
Michal Simek 已提交
292 293
	 * halted state. This will make the Rx side ready for reception.
	 */
294
	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
295 296 297
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);
298 299
	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
300 301 302

	/* Write to the RS (Run-stop) bit in the Tx channel control register.
	 * Tx channel is now ready to run. But only after we write to the
M
Michal Simek 已提交
303 304
	 * tail pointer register that the Tx channel will start transmitting.
	 */
305
	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);

	return 0;
out:
	axienet_dma_bd_release(ndev);
	return -ENOMEM;
}

/**
 * axienet_set_mac_address - Write the MAC address
 * @ndev:	Pointer to the net_device structure
 * @address:	6 byte Address to be written as MAC address
 *
 * This function is called to initialize the MAC address of the Axi Ethernet
 * core. It writes to the UAW0 and UAW1 registers of the core.
 */
324 325
static void axienet_set_mac_address(struct net_device *ndev,
				    const void *address)
326 327 328 329 330 331
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (address)
		memcpy(ndev->dev_addr, address, ETH_ALEN);
	if (!is_valid_ether_addr(ndev->dev_addr))
332
		eth_hw_addr_random(ndev);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	/* Set up unicast MAC address filter set its mac address */
	axienet_iow(lp, XAE_UAW0_OFFSET,
		    (ndev->dev_addr[0]) |
		    (ndev->dev_addr[1] << 8) |
		    (ndev->dev_addr[2] << 16) |
		    (ndev->dev_addr[3] << 24));
	axienet_iow(lp, XAE_UAW1_OFFSET,
		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
		      ~XAE_UAW1_UNICASTADDR_MASK) |
		     (ndev->dev_addr[4] |
		     (ndev->dev_addr[5] << 8))));
}

/**
 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 * @ndev:	Pointer to the net_device structure
 * @p:		6 byte Address to be written as MAC address
 *
352
 * Return: 0 for all conditions. Presently, there is no failure case.
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
 *
 * This function is called to initialize the MAC address of the Axi Ethernet
 * core. It calls the core specific axienet_set_mac_address. This is the
 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 */
static int netdev_set_mac_address(struct net_device *ndev, void *p)
{
	struct sockaddr *addr = p;
	axienet_set_mac_address(ndev, addr->sa_data);
	return 0;
}

/**
 * axienet_set_multicast_list - Prepare the multicast table
 * @ndev:	Pointer to the net_device structure
 *
 * This function is called to initialize the multicast table during
 * initialization. The Axi Ethernet basic multicast support has a four-entry
 * multicast table which is initialized here. Additionally this function
 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 * means whenever the multicast table entries need to be updated this
 * function gets called.
 */
static void axienet_set_multicast_list(struct net_device *ndev)
{
	int i;
	u32 reg, af0reg, af1reg;
	struct axienet_local *lp = netdev_priv(ndev);

	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
		/* We must make the kernel realize we had to move into
		 * promiscuous mode. If it was a promiscuous mode request
M
Michal Simek 已提交
386 387
		 * the flag is already set. If not we set it.
		 */
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		ndev->flags |= IFF_PROMISC;
		reg = axienet_ior(lp, XAE_FMI_OFFSET);
		reg |= XAE_FMI_PM_MASK;
		axienet_iow(lp, XAE_FMI_OFFSET, reg);
		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
	} else if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		i = 0;
		netdev_for_each_mc_addr(ha, ndev) {
			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
				break;

			af0reg = (ha->addr[0]);
			af0reg |= (ha->addr[1] << 8);
			af0reg |= (ha->addr[2] << 16);
			af0reg |= (ha->addr[3] << 24);

			af1reg = (ha->addr[4]);
			af1reg |= (ha->addr[5] << 8);

			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
			reg |= i;

			axienet_iow(lp, XAE_FMI_OFFSET, reg);
			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
			i++;
		}
	} else {
		reg = axienet_ior(lp, XAE_FMI_OFFSET);
		reg &= ~XAE_FMI_PM_MASK;

		axienet_iow(lp, XAE_FMI_OFFSET, reg);

		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
			reg |= i;

			axienet_iow(lp, XAE_FMI_OFFSET, reg);
			axienet_iow(lp, XAE_AF0_OFFSET, 0);
			axienet_iow(lp, XAE_AF1_OFFSET, 0);
		}

		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
	}
}

/**
 * axienet_setoptions - Set an Axi Ethernet option
 * @ndev:	Pointer to the net_device structure
 * @options:	Option to be enabled/disabled
 *
 * The Axi Ethernet core has multiple features which can be selectively turned
 * on or off. The typical options could be jumbo frame option, basic VLAN
 * option, promiscuous mode option etc. This function is used to set or clear
 * these options in the Axi Ethernet hardware. This is done through
 * axienet_option structure .
 */
static void axienet_setoptions(struct net_device *ndev, u32 options)
{
	int reg;
	struct axienet_local *lp = netdev_priv(ndev);
	struct axienet_option *tp = &axienet_options[0];

	while (tp->opt) {
		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
		if (options & tp->opt)
			reg |= tp->m_or;
		axienet_iow(lp, tp->reg, reg);
		tp++;
	}

	lp->options |= options;
}

464
static int __axienet_device_reset(struct axienet_local *lp)
465 466
{
	u32 timeout;
467

468 469 470
	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
	 * process of Axi DMA takes a while to complete as all pending
	 * commands/transfers will be flushed or completed during this
M
Michal Simek 已提交
471
	 * reset process.
472 473
	 * Note that even though both TX and RX have their own reset register,
	 * they both reset the entire DMA core, so only one needs to be used.
M
Michal Simek 已提交
474
	 */
475
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
476
	timeout = DELAY_OF_ONE_MILLISEC;
477 478
	while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
				XAXIDMA_CR_RESET_MASK) {
479 480
		udelay(1);
		if (--timeout == 0) {
481 482
			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
				   __func__);
483
			return -ETIMEDOUT;
484 485
		}
	}
486 487

	return 0;
488 489 490 491 492 493 494 495 496 497 498 499
}

/**
 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 * @ndev:	Pointer to the net_device structure
 *
 * This function is called to reset and initialize the Axi Ethernet core. This
 * is typically called during initialization. It does a reset of the Axi DMA
 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 * core.
500
 * Returns 0 on success or a negative error number otherwise.
501
 */
502
static int axienet_device_reset(struct net_device *ndev)
503 504 505
{
	u32 axienet_status;
	struct axienet_local *lp = netdev_priv(ndev);
506
	int ret;
507

508 509 510
	ret = __axienet_device_reset(lp);
	if (ret)
		return ret;
511 512

	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
513
	lp->options |= XAE_OPTION_VLAN;
514 515 516
	lp->options &= (~XAE_OPTION_JUMBO);

	if ((ndev->mtu > XAE_MTU) &&
517 518 519 520 521 522
		(ndev->mtu <= XAE_JUMBO_MTU)) {
		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
					XAE_TRL_SIZE;

		if (lp->max_frm_size <= lp->rxmem)
			lp->options |= XAE_OPTION_JUMBO;
523 524
	}

525 526
	ret = axienet_dma_bd_init(ndev);
	if (ret) {
527 528
		netdev_err(ndev, "%s: descriptor allocation failed\n",
			   __func__);
529
		return ret;
530 531 532 533 534 535 536 537 538
	}

	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
	axienet_status &= ~XAE_RCW1_RX_MASK;
	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);

	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
	if (axienet_status & XAE_INT_RXRJECT_MASK)
		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
539 540
	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
		    XAE_INT_RECV_ERROR_MASK : 0);
541 542 543 544

	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);

	/* Sync default options with HW but leave receiver and
M
Michal Simek 已提交
545 546
	 * transmitter disabled.
	 */
547 548 549 550 551 552
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	axienet_set_mac_address(ndev, NULL);
	axienet_set_multicast_list(ndev);
	axienet_setoptions(ndev, lp->options);

553
	netif_trans_update(ndev);
554 555

	return 0;
556 557 558
}

/**
559
 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
560
 * @ndev:	Pointer to the net_device structure
561 562 563 564
 * @first_bd:	Index of first descriptor to clean up
 * @nr_bds:	Number of descriptors to clean up, can be -1 if unknown.
 * @sizep:	Pointer to a u32 filled with the total sum of all bytes
 * 		in all cleaned-up descriptors. Ignored if NULL.
565
 *
566 567 568
 * Would either be called after a successful transmit operation, or after
 * there was an error when setting up the chain.
 * Returns the number of descriptors handled.
569
 */
570 571
static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
				 int nr_bds, u32 *sizep)
572 573 574
{
	struct axienet_local *lp = netdev_priv(ndev);
	struct axidma_bd *cur_p;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	int max_bds = nr_bds;
	unsigned int status;
	int i;

	if (max_bds == -1)
		max_bds = lp->tx_bd_num;

	for (i = 0; i < max_bds; i++) {
		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
		status = cur_p->status;

		/* If no number is given, clean up *all* descriptors that have
		 * been completed by the MAC.
		 */
		if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
			break;
591 592 593 594

		dma_unmap_single(ndev->dev.parent, cur_p->phys,
				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
				DMA_TO_DEVICE);
595 596

		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
597
			dev_consume_skb_irq(cur_p->skb);
598

599
		cur_p->cntrl = 0;
600 601 602 603 604
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app4 = 0;
		cur_p->status = 0;
605
		cur_p->skb = NULL;
606

607 608
		if (sizep)
			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
609 610
	}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	return i;
}

/**
 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 * Axi DMA Tx channel.
 * @ndev:	Pointer to the net_device structure
 *
 * This function is invoked from the Axi DMA Tx isr to notify the completion
 * of transmit operation. It clears fields in the corresponding Tx BDs and
 * unmaps the corresponding buffer so that CPU can regain ownership of the
 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 * required.
 */
static void axienet_start_xmit_done(struct net_device *ndev)
{
	struct axienet_local *lp = netdev_priv(ndev);
	u32 packets = 0;
	u32 size = 0;

	packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);

	lp->tx_bd_ci += packets;
	if (lp->tx_bd_ci >= lp->tx_bd_num)
		lp->tx_bd_ci -= lp->tx_bd_num;

637 638
	ndev->stats.tx_packets += packets;
	ndev->stats.tx_bytes += size;
639 640 641 642

	/* Matches barrier in axienet_start_xmit */
	smp_mb();

643 644 645 646 647 648 649 650
	netif_wake_queue(ndev);
}

/**
 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 * @lp:		Pointer to the axienet_local structure
 * @num_frag:	The number of BDs to check for
 *
651
 * Return: 0, on success
652 653 654 655 656 657 658 659 660 661 662
 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 *
 * This function is invoked before BDs are allocated and transmission starts.
 * This function returns 0 if a BD or group of BDs can be allocated for
 * transmission. If the BD or any of the BDs are not free the function
 * returns a busy status. This is invoked from axienet_start_xmit.
 */
static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
					    int num_frag)
{
	struct axidma_bd *cur_p;
663
	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
664 665 666 667 668 669 670 671 672 673
	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
		return NETDEV_TX_BUSY;
	return 0;
}

/**
 * axienet_start_xmit - Starts the transmission.
 * @skb:	sk_buff pointer that contains data to be Txed.
 * @ndev:	Pointer to net_device structure.
 *
674
 * Return: NETDEV_TX_OK, on success
675 676 677 678 679 680 681
 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 *
 * This function is invoked from upper layers to initiate transmission. The
 * function uses the next available free BDs and populates their fields to
 * start the transmission. Additionally if checksum offloading is supported,
 * it populates AXI Stream Control fields with appropriate values.
 */
682 683
static netdev_tx_t
axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
684 685 686 687 688 689 690 691 692
{
	u32 ii;
	u32 num_frag;
	u32 csum_start_off;
	u32 csum_index_off;
	skb_frag_t *frag;
	dma_addr_t tail_p;
	struct axienet_local *lp = netdev_priv(ndev);
	struct axidma_bd *cur_p;
693
	u32 orig_tail_ptr = lp->tx_bd_tail;
694 695 696 697 698

	num_frag = skb_shinfo(skb)->nr_frags;
	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];

	if (axienet_check_tx_bd_space(lp, num_frag)) {
699 700 701 702 703 704 705 706 707 708 709 710 711
		if (netif_queue_stopped(ndev))
			return NETDEV_TX_BUSY;

		netif_stop_queue(ndev);

		/* Matches barrier in axienet_start_xmit_done */
		smp_mb();

		/* Space might have just been freed - check again */
		if (axienet_check_tx_bd_space(lp, num_frag))
			return NETDEV_TX_BUSY;

		netif_wake_queue(ndev);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
			/* Tx Full Checksum Offload Enabled */
			cur_p->app0 |= 2;
		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
			csum_start_off = skb_transport_offset(skb);
			csum_index_off = csum_start_off + skb->csum_offset;
			/* Tx Partial Checksum Offload Enabled */
			cur_p->app0 |= 1;
			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
		}
	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
	}

	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
				     skb_headlen(skb), DMA_TO_DEVICE);
731 732 733 734 735 736 737
	if (unlikely(dma_mapping_error(ndev->dev.parent, cur_p->phys))) {
		if (net_ratelimit())
			netdev_err(ndev, "TX DMA mapping error\n");
		ndev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}
	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
738 739

	for (ii = 0; ii < num_frag; ii++) {
740 741
		if (++lp->tx_bd_tail >= lp->tx_bd_num)
			lp->tx_bd_tail = 0;
742 743 744 745 746 747
		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
		frag = &skb_shinfo(skb)->frags[ii];
		cur_p->phys = dma_map_single(ndev->dev.parent,
					     skb_frag_address(frag),
					     skb_frag_size(frag),
					     DMA_TO_DEVICE);
748 749 750 751 752 753 754 755 756 757
		if (unlikely(dma_mapping_error(ndev->dev.parent, cur_p->phys))) {
			if (net_ratelimit())
				netdev_err(ndev, "TX DMA mapping error\n");
			ndev->stats.tx_dropped++;
			axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
					      NULL);
			lp->tx_bd_tail = orig_tail_ptr;

			return NETDEV_TX_OK;
		}
758 759 760 761
		cur_p->cntrl = skb_frag_size(frag);
	}

	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
762
	cur_p->skb = skb;
763 764 765

	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
	/* Start the transfer */
766
	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
767 768
	if (++lp->tx_bd_tail >= lp->tx_bd_num)
		lp->tx_bd_tail = 0;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

	return NETDEV_TX_OK;
}

/**
 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 *		  BD processing.
 * @ndev:	Pointer to net_device structure.
 *
 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 * does minimal processing and invokes "netif_rx" to complete further
 * processing.
 */
static void axienet_recv(struct net_device *ndev)
{
	u32 length;
	u32 csumstatus;
	u32 size = 0;
	u32 packets = 0;
788
	dma_addr_t tail_p = 0;
789 790 791 792 793 794 795
	struct axienet_local *lp = netdev_priv(ndev);
	struct sk_buff *skb, *new_skb;
	struct axidma_bd *cur_p;

	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];

	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
796
		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
797 798 799 800 801

		dma_unmap_single(ndev->dev.parent, cur_p->phys,
				 lp->max_frm_size,
				 DMA_FROM_DEVICE);

802 803 804 805
		skb = cur_p->skb;
		cur_p->skb = NULL;
		length = cur_p->app4 & 0x0000FFFF;

806 807 808 809 810 811 812 813 814 815 816 817 818 819
		skb_put(skb, length);
		skb->protocol = eth_type_trans(skb, ndev);
		/*skb_checksum_none_assert(skb);*/
		skb->ip_summed = CHECKSUM_NONE;

		/* if we're doing Rx csum offload, set it up */
		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
			csumstatus = (cur_p->app2 &
				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
			}
		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
820
			   skb->protocol == htons(ETH_P_IP) &&
821 822 823 824 825 826 827 828 829 830 831
			   skb->len > 64) {
			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
			skb->ip_summed = CHECKSUM_COMPLETE;
		}

		netif_rx(skb);

		size += length;
		packets++;

		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
832
		if (!new_skb)
833
			return;
834

835 836 837
		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
					     lp->max_frm_size,
					     DMA_FROM_DEVICE);
838 839 840 841 842 843 844
		if (unlikely(dma_mapping_error(ndev->dev.parent, cur_p->phys))) {
			if (net_ratelimit())
				netdev_err(ndev, "RX DMA mapping error\n");
			dev_kfree_skb(new_skb);
			return;
		}

845 846
		cur_p->cntrl = lp->max_frm_size;
		cur_p->status = 0;
847
		cur_p->skb = new_skb;
848

849 850
		if (++lp->rx_bd_ci >= lp->rx_bd_num)
			lp->rx_bd_ci = 0;
851 852 853 854 855 856
		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
	}

	ndev->stats.rx_packets += packets;
	ndev->stats.rx_bytes += size;

857
	if (tail_p)
858
		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
859 860 861 862 863 864 865
}

/**
 * axienet_tx_irq - Tx Done Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
866
 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
867 868 869 870 871 872 873 874 875 876 877 878 879
 *
 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 * to complete the BD processing.
 */
static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
{
	u32 cr;
	unsigned int status;
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);

	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
880
		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
881 882 883 884
		axienet_start_xmit_done(lp->ndev);
		goto out;
	}
	if (!(status & XAXIDMA_IRQ_ALL_MASK))
885
		return IRQ_NONE;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	if (status & XAXIDMA_IRQ_ERROR_MASK) {
		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
			(lp->tx_bd_v[lp->tx_bd_ci]).phys);

		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* Write to the Tx channel control register */
		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* Write to the Rx channel control register */
		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

903
		schedule_work(&lp->dma_err_task);
904
		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
905 906 907 908 909 910 911 912 913 914
	}
out:
	return IRQ_HANDLED;
}

/**
 * axienet_rx_irq - Rx Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
915
 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
916 917 918 919 920 921 922 923 924 925 926 927 928
 *
 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 * processing.
 */
static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
{
	u32 cr;
	unsigned int status;
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);

	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
929
		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
930 931 932 933
		axienet_recv(lp->ndev);
		goto out;
	}
	if (!(status & XAXIDMA_IRQ_ALL_MASK))
934
		return IRQ_NONE;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	if (status & XAXIDMA_IRQ_ERROR_MASK) {
		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
			(lp->rx_bd_v[lp->rx_bd_ci]).phys);

		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* Finally write to the Tx channel control register */
		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
		/* Disable coalesce, delay timer and error interrupts */
		cr &= (~XAXIDMA_IRQ_ALL_MASK);
		/* write to the Rx channel control register */
		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

952
		schedule_work(&lp->dma_err_task);
953
		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
954 955 956 957 958
	}
out:
	return IRQ_HANDLED;
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/**
 * axienet_eth_irq - Ethernet core Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
 *
 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
 */
static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
{
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);
	unsigned int pending;

	pending = axienet_ior(lp, XAE_IP_OFFSET);
	if (!pending)
		return IRQ_NONE;

	if (pending & XAE_INT_RXFIFOOVR_MASK)
		ndev->stats.rx_missed_errors++;

	if (pending & XAE_INT_RXRJECT_MASK)
		ndev->stats.rx_frame_errors++;

	axienet_iow(lp, XAE_IS_OFFSET, pending);
	return IRQ_HANDLED;
}

988
static void axienet_dma_err_handler(struct work_struct *work);
J
Jeff Mahoney 已提交
989

990 991 992 993
/**
 * axienet_open - Driver open routine.
 * @ndev:	Pointer to net_device structure
 *
994
 * Return: 0, on success.
995 996
 *	    non-zero error value on failure
 *
997 998
 * This is the driver open routine. It calls phylink_start to start the
 * PHY device.
999 1000 1001 1002 1003 1004
 * It also allocates interrupt service routines, enables the interrupt lines
 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 * descriptors are initialized.
 */
static int axienet_open(struct net_device *ndev)
{
1005
	int ret;
1006 1007 1008 1009 1010 1011
	struct axienet_local *lp = netdev_priv(ndev);

	dev_dbg(&ndev->dev, "axienet_open()\n");

	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
	 * When we do an Axi Ethernet reset, it resets the complete core
1012 1013 1014
	 * including the MDIO. MDIO must be disabled before resetting
	 * and re-enabled afterwards.
	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
M
Michal Simek 已提交
1015
	 */
1016 1017
	mutex_lock(&lp->mii_bus->mdio_lock);
	axienet_mdio_disable(lp);
1018 1019 1020
	ret = axienet_device_reset(ndev);
	if (ret == 0)
		ret = axienet_mdio_enable(lp);
1021
	mutex_unlock(&lp->mii_bus->mdio_lock);
1022 1023 1024
	if (ret < 0)
		return ret;

1025 1026 1027 1028
	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
	if (ret) {
		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
		return ret;
1029 1030
	}

1031 1032
	phylink_start(lp->phylink);

1033 1034
	/* Enable worker thread for Axi DMA error handling */
	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1035

1036
	/* Enable interrupts for Axi DMA Tx */
1037 1038
	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
			  ndev->name, ndev);
1039 1040 1041
	if (ret)
		goto err_tx_irq;
	/* Enable interrupts for Axi DMA Rx */
1042 1043
	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
			  ndev->name, ndev);
1044 1045
	if (ret)
		goto err_rx_irq;
1046 1047 1048 1049 1050 1051 1052
	/* Enable interrupts for Axi Ethernet core (if defined) */
	if (lp->eth_irq > 0) {
		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
				  ndev->name, ndev);
		if (ret)
			goto err_eth_irq;
	}
1053

1054 1055
	return 0;

1056 1057
err_eth_irq:
	free_irq(lp->rx_irq, ndev);
1058 1059 1060
err_rx_irq:
	free_irq(lp->tx_irq, ndev);
err_tx_irq:
1061 1062
	phylink_stop(lp->phylink);
	phylink_disconnect_phy(lp->phylink);
1063
	cancel_work_sync(&lp->dma_err_task);
1064 1065 1066 1067 1068 1069 1070 1071
	dev_err(lp->dev, "request_irq() failed\n");
	return ret;
}

/**
 * axienet_stop - Driver stop routine.
 * @ndev:	Pointer to net_device structure
 *
1072
 * Return: 0, on success.
1073
 *
1074
 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1075 1076 1077 1078 1079
 * device. It also removes the interrupt handlers and disables the interrupts.
 * The Axi DMA Tx/Rx BDs are released.
 */
static int axienet_stop(struct net_device *ndev)
{
1080 1081
	u32 cr, sr;
	int count;
1082 1083 1084 1085
	struct axienet_local *lp = netdev_priv(ndev);

	dev_dbg(&ndev->dev, "axienet_close()\n");

1086 1087 1088
	phylink_stop(lp->phylink);
	phylink_disconnect_phy(lp->phylink);

1089 1090 1091
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

	axienet_iow(lp, XAE_IE_OFFSET, 0);

	/* Give DMAs a chance to halt gracefully */
	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
		msleep(20);
		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	}

	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
		msleep(20);
		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	}

	/* Do a reset to ensure DMA is really stopped */
	mutex_lock(&lp->mii_bus->mdio_lock);
	axienet_mdio_disable(lp);
	__axienet_device_reset(lp);
	axienet_mdio_enable(lp);
	mutex_unlock(&lp->mii_bus->mdio_lock);

1122
	cancel_work_sync(&lp->dma_err_task);
1123

1124 1125
	if (lp->eth_irq > 0)
		free_irq(lp->eth_irq, ndev);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	free_irq(lp->tx_irq, ndev);
	free_irq(lp->rx_irq, ndev);

	axienet_dma_bd_release(ndev);
	return 0;
}

/**
 * axienet_change_mtu - Driver change mtu routine.
 * @ndev:	Pointer to net_device structure
 * @new_mtu:	New mtu value to be applied
 *
1138
 * Return: Always returns 0 (success).
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
 *
 * This is the change mtu driver routine. It checks if the Axi Ethernet
 * hardware supports jumbo frames before changing the mtu. This can be
 * called only when the device is not up.
 */
static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (netif_running(ndev))
		return -EBUSY;
1150 1151 1152 1153 1154 1155

	if ((new_mtu + VLAN_ETH_HLEN +
		XAE_TRL_SIZE) > lp->rxmem)
		return -EINVAL;

	ndev->mtu = new_mtu;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/**
 * axienet_poll_controller - Axi Ethernet poll mechanism.
 * @ndev:	Pointer to net_device structure
 *
 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
 * to polling the ISRs and are enabled back after the polling is done.
 */
static void axienet_poll_controller(struct net_device *ndev)
{
	struct axienet_local *lp = netdev_priv(ndev);
	disable_irq(lp->tx_irq);
	disable_irq(lp->rx_irq);
	axienet_rx_irq(lp->tx_irq, ndev);
	axienet_tx_irq(lp->rx_irq, ndev);
	enable_irq(lp->tx_irq);
	enable_irq(lp->rx_irq);
}
#endif

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct axienet_local *lp = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return phylink_mii_ioctl(lp->phylink, rq, cmd);
}

1190 1191 1192 1193 1194 1195 1196
static const struct net_device_ops axienet_netdev_ops = {
	.ndo_open = axienet_open,
	.ndo_stop = axienet_stop,
	.ndo_start_xmit = axienet_start_xmit,
	.ndo_change_mtu	= axienet_change_mtu,
	.ndo_set_mac_address = netdev_set_mac_address,
	.ndo_validate_addr = eth_validate_addr,
1197
	.ndo_do_ioctl = axienet_ioctl,
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	.ndo_set_rx_mode = axienet_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = axienet_poll_controller,
#endif
};

/**
 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
 * @ndev:	Pointer to net_device structure
 * @ed:		Pointer to ethtool_drvinfo structure
 *
 * This implements ethtool command for getting the driver information.
 * Issue "ethtool -i ethX" under linux prompt to execute this function.
 */
static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
					 struct ethtool_drvinfo *ed)
{
1215 1216
	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1217 1218 1219 1220 1221 1222 1223 1224 1225
}

/**
 * axienet_ethtools_get_regs_len - Get the total regs length present in the
 *				   AxiEthernet core.
 * @ndev:	Pointer to net_device structure
 *
 * This implements ethtool command for getting the total register length
 * information.
1226 1227
 *
 * Return: the total regs length
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
 */
static int axienet_ethtools_get_regs_len(struct net_device *ndev)
{
	return sizeof(u32) * AXIENET_REGS_N;
}

/**
 * axienet_ethtools_get_regs - Dump the contents of all registers present
 *			       in AxiEthernet core.
 * @ndev:	Pointer to net_device structure
 * @regs:	Pointer to ethtool_regs structure
 * @ret:	Void pointer used to return the contents of the registers.
 *
 * This implements ethtool command for getting the Axi Ethernet register dump.
 * Issue "ethtool -d ethX" to execute this function.
 */
static void axienet_ethtools_get_regs(struct net_device *ndev,
				      struct ethtool_regs *regs, void *ret)
{
	u32 *data = (u32 *) ret;
	size_t len = sizeof(u32) * AXIENET_REGS_N;
	struct axienet_local *lp = netdev_priv(ndev);

	regs->version = 0;
	regs->len = len;

	memset(data, 0, len);
	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1283 1284 1285 1286 1287 1288 1289 1290
	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static void axienet_ethtools_get_ringparam(struct net_device *ndev,
					   struct ethtool_ringparam *ering)
{
	struct axienet_local *lp = netdev_priv(ndev);

	ering->rx_max_pending = RX_BD_NUM_MAX;
	ering->rx_mini_max_pending = 0;
	ering->rx_jumbo_max_pending = 0;
	ering->tx_max_pending = TX_BD_NUM_MAX;
	ering->rx_pending = lp->rx_bd_num;
	ering->rx_mini_pending = 0;
	ering->rx_jumbo_pending = 0;
	ering->tx_pending = lp->tx_bd_num;
}

static int axienet_ethtools_set_ringparam(struct net_device *ndev,
					  struct ethtool_ringparam *ering)
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (ering->rx_pending > RX_BD_NUM_MAX ||
	    ering->rx_mini_pending ||
	    ering->rx_jumbo_pending ||
	    ering->rx_pending > TX_BD_NUM_MAX)
		return -EINVAL;

	if (netif_running(ndev))
		return -EBUSY;

	lp->rx_bd_num = ering->rx_pending;
	lp->tx_bd_num = ering->tx_pending;
	return 0;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/**
 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
 *				     Tx and Rx paths.
 * @ndev:	Pointer to net_device structure
 * @epauseparm:	Pointer to ethtool_pauseparam structure.
 *
 * This implements ethtool command for getting axi ethernet pause frame
 * setting. Issue "ethtool -a ethX" to execute this function.
 */
static void
axienet_ethtools_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *epauseparm)
{
	struct axienet_local *lp = netdev_priv(ndev);
1341 1342

	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1343 1344 1345 1346 1347 1348
}

/**
 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
 *				     settings.
 * @ndev:	Pointer to net_device structure
1349
 * @epauseparm:Pointer to ethtool_pauseparam structure
1350 1351 1352 1353
 *
 * This implements ethtool command for enabling flow control on Rx and Tx
 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
 * function.
1354 1355
 *
 * Return: 0 on success, -EFAULT if device is running
1356 1357 1358 1359 1360 1361 1362
 */
static int
axienet_ethtools_set_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *epauseparm)
{
	struct axienet_local *lp = netdev_priv(ndev);

1363
	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
}

/**
 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
 * @ndev:	Pointer to net_device structure
 * @ecoalesce:	Pointer to ethtool_coalesce structure
 *
 * This implements ethtool command for getting the DMA interrupt coalescing
 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
 * execute this function.
1374 1375
 *
 * Return: 0 always
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
 */
static int axienet_ethtools_get_coalesce(struct net_device *ndev,
					 struct ethtool_coalesce *ecoalesce)
{
	u32 regval = 0;
	struct axienet_local *lp = netdev_priv(ndev);
	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
					     >> XAXIDMA_COALESCE_SHIFT;
	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
					     >> XAXIDMA_COALESCE_SHIFT;
	return 0;
}

/**
 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
 * @ndev:	Pointer to net_device structure
 * @ecoalesce:	Pointer to ethtool_coalesce structure
 *
 * This implements ethtool command for setting the DMA interrupt coalescing
 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
 * prompt to execute this function.
1399 1400
 *
 * Return: 0, on success, Non-zero error value on failure.
1401 1402 1403 1404 1405 1406 1407
 */
static int axienet_ethtools_set_coalesce(struct net_device *ndev,
					 struct ethtool_coalesce *ecoalesce)
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (netif_running(ndev)) {
1408 1409
		netdev_err(ndev,
			   "Please stop netif before applying configuration\n");
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		return -EFAULT;
	}

	if (ecoalesce->rx_max_coalesced_frames)
		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
	if (ecoalesce->tx_max_coalesced_frames)
		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;

	return 0;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static int
axienet_ethtools_get_link_ksettings(struct net_device *ndev,
				    struct ethtool_link_ksettings *cmd)
{
	struct axienet_local *lp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
}

static int
axienet_ethtools_set_link_ksettings(struct net_device *ndev,
				    const struct ethtool_link_ksettings *cmd)
{
	struct axienet_local *lp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
}

1439
static const struct ethtool_ops axienet_ethtool_ops = {
1440
	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
1441 1442 1443 1444
	.get_drvinfo    = axienet_ethtools_get_drvinfo,
	.get_regs_len   = axienet_ethtools_get_regs_len,
	.get_regs       = axienet_ethtools_get_regs,
	.get_link       = ethtool_op_get_link,
1445 1446
	.get_ringparam	= axienet_ethtools_get_ringparam,
	.set_ringparam	= axienet_ethtools_set_ringparam,
1447 1448 1449 1450
	.get_pauseparam = axienet_ethtools_get_pauseparam,
	.set_pauseparam = axienet_ethtools_set_pauseparam,
	.get_coalesce   = axienet_ethtools_get_coalesce,
	.set_coalesce   = axienet_ethtools_set_coalesce,
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
};

static void axienet_validate(struct phylink_config *config,
			     unsigned long *supported,
			     struct phylink_link_state *state)
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };

	/* Only support the mode we are configured for */
	if (state->interface != PHY_INTERFACE_MODE_NA &&
	    state->interface != lp->phy_mode) {
		netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
			    phy_modes(state->interface),
			    phy_modes(lp->phy_mode));
		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
		return;
	}

	phylink_set(mask, Autoneg);
	phylink_set_port_modes(mask);

	phylink_set(mask, Asym_Pause);
	phylink_set(mask, Pause);
	phylink_set(mask, 1000baseX_Full);
	phylink_set(mask, 10baseT_Full);
	phylink_set(mask, 100baseT_Full);
	phylink_set(mask, 1000baseT_Full);

	bitmap_and(supported, supported, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
	bitmap_and(state->advertising, state->advertising, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
}

1489 1490
static void axienet_mac_pcs_get_state(struct phylink_config *config,
				      struct phylink_link_state *state)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);
	u32 emmc_reg, fcc_reg;

	state->interface = lp->phy_mode;

	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
	if (emmc_reg & XAE_EMMC_LINKSPD_1000)
		state->speed = SPEED_1000;
	else if (emmc_reg & XAE_EMMC_LINKSPD_100)
		state->speed = SPEED_100;
	else
		state->speed = SPEED_10;

	state->pause = 0;
	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
	if (fcc_reg & XAE_FCC_FCTX_MASK)
		state->pause |= MLO_PAUSE_TX;
	if (fcc_reg & XAE_FCC_FCRX_MASK)
		state->pause |= MLO_PAUSE_RX;

	state->an_complete = 0;
	state->duplex = 1;
}

static void axienet_mac_an_restart(struct phylink_config *config)
{
	/* Unsupported, do nothing */
}

static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
			       const struct phylink_link_state *state)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	/* nothing meaningful to do */
}

static void axienet_mac_link_down(struct phylink_config *config,
				  unsigned int mode,
				  phy_interface_t interface)
{
	/* nothing meaningful to do */
}

static void axienet_mac_link_up(struct phylink_config *config,
				struct phy_device *phy,
				unsigned int mode, phy_interface_t interface,
				int speed, int duplex,
				bool tx_pause, bool rx_pause)
1540 1541 1542 1543 1544 1545 1546 1547
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);
	u32 emmc_reg, fcc_reg;

	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;

1548
	switch (speed) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	case SPEED_1000:
		emmc_reg |= XAE_EMMC_LINKSPD_1000;
		break;
	case SPEED_100:
		emmc_reg |= XAE_EMMC_LINKSPD_100;
		break;
	case SPEED_10:
		emmc_reg |= XAE_EMMC_LINKSPD_10;
		break;
	default:
		dev_err(&ndev->dev,
			"Speed other than 10, 100 or 1Gbps is not supported\n");
		break;
	}

	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);

	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1567
	if (tx_pause)
1568 1569 1570
		fcc_reg |= XAE_FCC_FCTX_MASK;
	else
		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1571
	if (rx_pause)
1572 1573 1574 1575 1576 1577 1578 1579
		fcc_reg |= XAE_FCC_FCRX_MASK;
	else
		fcc_reg &= ~XAE_FCC_FCRX_MASK;
	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
}

static const struct phylink_mac_ops axienet_phylink_ops = {
	.validate = axienet_validate,
1580
	.mac_pcs_get_state = axienet_mac_pcs_get_state,
1581 1582 1583 1584
	.mac_an_restart = axienet_mac_an_restart,
	.mac_config = axienet_mac_config,
	.mac_link_down = axienet_mac_link_down,
	.mac_link_up = axienet_mac_link_up,
1585 1586 1587
};

/**
1588 1589
 * axienet_dma_err_handler - Work queue task for Axi DMA Error
 * @work:	pointer to work_struct
1590 1591 1592 1593
 *
 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
 * Tx/Rx BDs.
 */
1594
static void axienet_dma_err_handler(struct work_struct *work)
1595 1596 1597
{
	u32 axienet_status;
	u32 cr, i;
1598 1599
	struct axienet_local *lp = container_of(work, struct axienet_local,
						dma_err_task);
1600 1601 1602 1603 1604 1605 1606
	struct net_device *ndev = lp->ndev;
	struct axidma_bd *cur_p;

	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
	 * When we do an Axi Ethernet reset, it resets the complete core
1607 1608 1609
	 * including the MDIO. MDIO must be disabled before resetting
	 * and re-enabled afterwards.
	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
M
Michal Simek 已提交
1610
	 */
1611 1612
	mutex_lock(&lp->mii_bus->mdio_lock);
	axienet_mdio_disable(lp);
1613
	__axienet_device_reset(lp);
1614 1615
	axienet_mdio_enable(lp);
	mutex_unlock(&lp->mii_bus->mdio_lock);
1616

1617
	for (i = 0; i < lp->tx_bd_num; i++) {
1618
		cur_p = &lp->tx_bd_v[i];
1619
		if (cur_p->cntrl)
1620 1621 1622 1623
			dma_unmap_single(ndev->dev.parent, cur_p->phys,
					 (cur_p->cntrl &
					  XAXIDMA_BD_CTRL_LENGTH_MASK),
					 DMA_TO_DEVICE);
1624 1625
		if (cur_p->skb)
			dev_kfree_skb_irq(cur_p->skb);
1626 1627 1628 1629 1630 1631 1632 1633
		cur_p->phys = 0;
		cur_p->cntrl = 0;
		cur_p->status = 0;
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app3 = 0;
		cur_p->app4 = 0;
1634
		cur_p->skb = NULL;
1635 1636
	}

1637
	for (i = 0; i < lp->rx_bd_num; i++) {
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
		cur_p = &lp->rx_bd_v[i];
		cur_p->status = 0;
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app3 = 0;
		cur_p->app4 = 0;
	}

	lp->tx_bd_ci = 0;
	lp->tx_bd_tail = 0;
	lp->rx_bd_ci = 0;

	/* Start updating the Rx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Finally write to the Rx channel control register */
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

	/* Start updating the Tx channel control register */
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	/* Update the interrupt coalesce count */
	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
	/* Update the delay timer count */
	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
	/* Enable coalesce, delay timer and error interrupts */
	cr |= XAXIDMA_IRQ_ALL_MASK;
	/* Finally write to the Tx channel control register */
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
M
Michal Simek 已提交
1678 1679
	 * halted state. This will make the Rx side ready for reception.
	 */
1680
	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1681 1682 1683
	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1684 1685
	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1686 1687 1688

	/* Write to the RS (Run-stop) bit in the Tx channel control register.
	 * Tx channel is now ready to run. But only after we write to the
M
Michal Simek 已提交
1689 1690
	 * tail pointer register that the Tx channel will start transmitting
	 */
1691
	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
			  cr | XAXIDMA_CR_RUNSTOP_MASK);

	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
	axienet_status &= ~XAE_RCW1_RX_MASK;
	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);

	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
	if (axienet_status & XAE_INT_RXRJECT_MASK)
		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1703 1704
	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
		    XAE_INT_RECV_ERROR_MASK : 0);
1705 1706 1707
	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);

	/* Sync default options with HW but leave receiver and
M
Michal Simek 已提交
1708 1709
	 * transmitter disabled.
	 */
1710 1711 1712 1713 1714 1715 1716 1717
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	axienet_set_mac_address(ndev, NULL);
	axienet_set_multicast_list(ndev);
	axienet_setoptions(ndev, lp->options);
}

/**
1718
 * axienet_probe - Axi Ethernet probe function.
1719
 * @pdev:	Pointer to platform device structure.
1720
 *
1721
 * Return: 0, on success
1722 1723 1724 1725 1726 1727 1728
 *	    Non-zero error value on failure.
 *
 * This is the probe routine for Axi Ethernet driver. This is called before
 * any other driver routines are invoked. It allocates and sets up the Ethernet
 * device. Parses through device tree and populates fields of
 * axienet_local. It registers the Ethernet device.
 */
1729
static int axienet_probe(struct platform_device *pdev)
1730
{
1731
	int ret;
1732 1733 1734
	struct device_node *np;
	struct axienet_local *lp;
	struct net_device *ndev;
1735
	const void *mac_addr;
1736
	struct resource *ethres;
1737
	u32 value;
1738 1739

	ndev = alloc_etherdev(sizeof(*lp));
1740
	if (!ndev)
1741 1742
		return -ENOMEM;

1743
	platform_set_drvdata(pdev, ndev);
1744

1745
	SET_NETDEV_DEV(ndev, &pdev->dev);
1746
	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1747
	ndev->features = NETIF_F_SG;
1748 1749 1750
	ndev->netdev_ops = &axienet_netdev_ops;
	ndev->ethtool_ops = &axienet_ethtool_ops;

1751 1752 1753 1754
	/* MTU range: 64 - 9000 */
	ndev->min_mtu = 64;
	ndev->max_mtu = XAE_JUMBO_MTU;

1755 1756
	lp = netdev_priv(ndev);
	lp->ndev = ndev;
1757
	lp->dev = &pdev->dev;
1758
	lp->options = XAE_OPTION_DEFAULTS;
1759 1760
	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1761
	/* Map device registers */
1762 1763
	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1764
	if (IS_ERR(lp->regs)) {
1765
		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1766
		ret = PTR_ERR(lp->regs);
1767
		goto free_netdev;
1768
	}
1769
	lp->regs_start = ethres->start;
1770

1771 1772 1773
	/* Setup checksum offload, but default to off if not specified */
	lp->features = 0;

1774 1775 1776
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
	if (!ret) {
		switch (value) {
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		case 1:
			lp->csum_offload_on_tx_path =
				XAE_FEATURE_PARTIAL_TX_CSUM;
			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
			/* Can checksum TCP/UDP over IPv4. */
			ndev->features |= NETIF_F_IP_CSUM;
			break;
		case 2:
			lp->csum_offload_on_tx_path =
				XAE_FEATURE_FULL_TX_CSUM;
			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
			/* Can checksum TCP/UDP over IPv4. */
			ndev->features |= NETIF_F_IP_CSUM;
			break;
		default:
			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
		}
	}
1795 1796 1797
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
	if (!ret) {
		switch (value) {
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
		case 1:
			lp->csum_offload_on_rx_path =
				XAE_FEATURE_PARTIAL_RX_CSUM;
			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
			break;
		case 2:
			lp->csum_offload_on_rx_path =
				XAE_FEATURE_FULL_RX_CSUM;
			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
			break;
		default:
			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
		}
	}
	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1813 1814 1815 1816 1817
	 * a larger Rx/Tx Memory. Typically, the size must be large so that
	 * we can enable jumbo option and start supporting jumbo frames.
	 * Here we check for memory allocated for Rx/Tx in the hardware from
	 * the device-tree and accordingly set flags.
	 */
1818
	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

	/* Start with the proprietary, and broken phy_type */
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
	if (!ret) {
		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
		switch (value) {
		case XAE_PHY_TYPE_MII:
			lp->phy_mode = PHY_INTERFACE_MODE_MII;
			break;
		case XAE_PHY_TYPE_GMII:
			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
			break;
		case XAE_PHY_TYPE_RGMII_2_0:
			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
			break;
		case XAE_PHY_TYPE_SGMII:
			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
			break;
		case XAE_PHY_TYPE_1000BASE_X:
			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
			break;
		default:
			ret = -EINVAL;
			goto free_netdev;
		}
	} else {
1845 1846
		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
		if (ret)
1847 1848
			goto free_netdev;
	}
1849 1850

	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1851
	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	if (np) {
		struct resource dmares;

		ret = of_address_to_resource(np, 0, &dmares);
		if (ret) {
			dev_err(&pdev->dev,
				"unable to get DMA resource\n");
			of_node_put(np);
			goto free_netdev;
		}
		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
						     &dmares);
		lp->rx_irq = irq_of_parse_and_map(np, 1);
		lp->tx_irq = irq_of_parse_and_map(np, 0);
1866
		of_node_put(np);
1867
		lp->eth_irq = platform_get_irq_optional(pdev, 0);
1868 1869 1870 1871 1872 1873 1874
	} else {
		/* Check for these resources directly on the Ethernet node. */
		struct resource *res = platform_get_resource(pdev,
							     IORESOURCE_MEM, 1);
		lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
		lp->rx_irq = platform_get_irq(pdev, 1);
		lp->tx_irq = platform_get_irq(pdev, 0);
1875
		lp->eth_irq = platform_get_irq_optional(pdev, 2);
1876
	}
1877
	if (IS_ERR(lp->dma_regs)) {
1878
		dev_err(&pdev->dev, "could not map DMA regs\n");
1879
		ret = PTR_ERR(lp->dma_regs);
1880
		goto free_netdev;
1881
	}
1882
	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1883
		dev_err(&pdev->dev, "could not determine irqs\n");
1884
		ret = -ENOMEM;
1885
		goto free_netdev;
1886 1887
	}

1888 1889 1890 1891
	/* Check for Ethernet core IRQ (optional) */
	if (lp->eth_irq <= 0)
		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");

1892
	/* Retrieve the MAC address */
1893
	mac_addr = of_get_mac_address(pdev->dev.of_node);
1894
	if (IS_ERR(mac_addr)) {
1895 1896 1897
		dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
			 PTR_ERR(mac_addr));
		mac_addr = NULL;
1898
	}
1899
	axienet_set_mac_address(ndev, mac_addr);
1900 1901 1902 1903

	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;

1904
	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1905
	if (lp->phy_node) {
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		lp->clk = devm_clk_get(&pdev->dev, NULL);
		if (IS_ERR(lp->clk)) {
			dev_warn(&pdev->dev, "Failed to get clock: %ld\n",
				 PTR_ERR(lp->clk));
			lp->clk = NULL;
		} else {
			ret = clk_prepare_enable(lp->clk);
			if (ret) {
				dev_err(&pdev->dev, "Unable to enable clock: %d\n",
					ret);
				goto free_netdev;
			}
		}

		ret = axienet_mdio_setup(lp);
1921
		if (ret)
1922 1923
			dev_warn(&pdev->dev,
				 "error registering MDIO bus: %d\n", ret);
1924
	}
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	lp->phylink_config.dev = &ndev->dev;
	lp->phylink_config.type = PHYLINK_NETDEV;

	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
				     lp->phy_mode,
				     &axienet_phylink_ops);
	if (IS_ERR(lp->phylink)) {
		ret = PTR_ERR(lp->phylink);
		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
		goto free_netdev;
	}

1938 1939 1940
	ret = register_netdev(lp->ndev);
	if (ret) {
		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1941
		goto free_netdev;
1942 1943 1944 1945
	}

	return 0;

1946
free_netdev:
1947
	free_netdev(ndev);
1948

1949 1950 1951
	return ret;
}

1952
static int axienet_remove(struct platform_device *pdev)
1953
{
1954
	struct net_device *ndev = platform_get_drvdata(pdev);
1955 1956 1957
	struct axienet_local *lp = netdev_priv(ndev);

	unregister_netdev(ndev);
1958 1959 1960 1961

	if (lp->phylink)
		phylink_destroy(lp->phylink);

1962
	axienet_mdio_teardown(lp);
1963

1964 1965 1966
	if (lp->clk)
		clk_disable_unprepare(lp->clk);

1967
	of_node_put(lp->phy_node);
1968 1969 1970 1971 1972 1973 1974
	lp->phy_node = NULL;

	free_netdev(ndev);

	return 0;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
static void axienet_shutdown(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);

	rtnl_lock();
	netif_device_detach(ndev);

	if (netif_running(ndev))
		dev_close(ndev);

	rtnl_unlock();
}

1988 1989 1990
static struct platform_driver axienet_driver = {
	.probe = axienet_probe,
	.remove = axienet_remove,
1991
	.shutdown = axienet_shutdown,
1992 1993 1994 1995 1996 1997
	.driver = {
		 .name = "xilinx_axienet",
		 .of_match_table = axienet_of_match,
	},
};

1998
module_platform_driver(axienet_driver);
1999 2000 2001 2002

MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
MODULE_AUTHOR("Xilinx");
MODULE_LICENSE("GPL");