dmar.c 59.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4
/*
 * Copyright (c) 2006, Intel Corporation.
 *
5 6 7 8
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9
 *
10
 * This file implements early detection/parsing of Remapping Devices
11 12
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
13 14
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
15 16
 */

J
Joerg Roedel 已提交
17
#define pr_fmt(fmt)     "DMAR: " fmt
18

19 20
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
21 22
#include <linux/iova.h>
#include <linux/intel-iommu.h>
23
#include <linux/timer.h>
24 25
#include <linux/irq.h>
#include <linux/interrupt.h>
26
#include <linux/tboot.h>
27
#include <linux/dmi.h>
28
#include <linux/slab.h>
29
#include <linux/iommu.h>
30
#include <linux/numa.h>
31
#include <linux/limits.h>
32
#include <asm/irq_remapping.h>
33
#include <asm/iommu_table.h>
34

35
#include "../irq_remapping.h"
36

37 38 39 40 41 42 43 44
typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
struct dmar_res_callback {
	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
	void			*arg[ACPI_DMAR_TYPE_RESERVED];
	bool			ignore_unhandled;
	bool			print_entry;
};

45 46 47 48 49 50 51 52 53 54 55
/*
 * Assumptions:
 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
 *    before IO devices managed by that unit.
 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
 *    after IO devices managed by that unit.
 * 3) Hotplug events are rare.
 *
 * Locking rules for DMA and interrupt remapping related global data structures:
 * 1) Use dmar_global_lock in process context
 * 2) Use RCU in interrupt context
56
 */
57
DECLARE_RWSEM(dmar_global_lock);
58 59
LIST_HEAD(dmar_drhd_units);

60
struct acpi_table_header * __initdata dmar_tbl;
61
static int dmar_dev_scope_status = 1;
62
static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63

64
static int alloc_iommu(struct dmar_drhd_unit *drhd);
65
static void free_iommu(struct intel_iommu *iommu);
66

67 68
extern const struct iommu_ops intel_iommu_ops;

69
static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 71 72 73 74 75
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
76
		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77
	else
78
		list_add_rcu(&drhd->list, &dmar_drhd_units);
79 80
}

81
void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 83 84 85 86 87
{
	struct acpi_dmar_device_scope *scope;

	*cnt = 0;
	while (start < end) {
		scope = start;
88
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 91
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
92 93
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94
			pr_warn("Unsupported device scope\n");
95
		}
96 97 98
		start += scope->length;
	}
	if (*cnt == 0)
99 100
		return NULL;

101
	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 103
}

104
void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105
{
106
	int i;
107
	struct device *tmp_dev;
108

109
	if (*devices && *cnt) {
110
		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111
			put_device(tmp_dev);
112 113
		kfree(*devices);
	}
114 115 116

	*devices = NULL;
	*cnt = 0;
117 118
}

119 120 121 122 123 124 125 126 127 128 129 130 131
/* Optimize out kzalloc()/kfree() for normal cases */
static char dmar_pci_notify_info_buf[64];

static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
{
	int level = 0;
	size_t size;
	struct pci_dev *tmp;
	struct dmar_pci_notify_info *info;

	BUG_ON(dev->is_virtfn);

132 133 134 135 136 137 138
	/*
	 * Ignore devices that have a domain number higher than what can
	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
	 */
	if (pci_domain_nr(dev->bus) > U16_MAX)
		return NULL;

139 140 141 142 143
	/* Only generate path[] for device addition event */
	if (event == BUS_NOTIFY_ADD_DEVICE)
		for (tmp = dev; tmp; tmp = tmp->bus->self)
			level++;

144
	size = struct_size(info, path, level);
145 146 147 148 149 150 151
	if (size <= sizeof(dmar_pci_notify_info_buf)) {
		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
	} else {
		info = kzalloc(size, GFP_KERNEL);
		if (!info) {
			pr_warn("Out of memory when allocating notify_info "
				"for %s.\n", pci_name(dev));
152 153
			if (dmar_dev_scope_status == 0)
				dmar_dev_scope_status = -ENOMEM;
154 155 156 157 158 159 160 161 162
			return NULL;
		}
	}

	info->event = event;
	info->dev = dev;
	info->seg = pci_domain_nr(dev->bus);
	info->level = level;
	if (event == BUS_NOTIFY_ADD_DEVICE) {
163 164
		for (tmp = dev; tmp; tmp = tmp->bus->self) {
			level--;
165
			info->path[level].bus = tmp->bus->number;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
			info->path[level].device = PCI_SLOT(tmp->devfn);
			info->path[level].function = PCI_FUNC(tmp->devfn);
			if (pci_is_root_bus(tmp->bus))
				info->bus = tmp->bus->number;
		}
	}

	return info;
}

static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
{
	if ((void *)info != dmar_pci_notify_info_buf)
		kfree(info);
}

static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
				struct acpi_dmar_pci_path *path, int count)
{
	int i;

	if (info->bus != bus)
188
		goto fallback;
189
	if (info->level != count)
190
		goto fallback;
191 192 193 194

	for (i = 0; i < count; i++) {
		if (path[i].device != info->path[i].device ||
		    path[i].function != info->path[i].function)
195
			goto fallback;
196 197 198
	}

	return true;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

fallback:

	if (count != 1)
		return false;

	i = info->level - 1;
	if (bus              == info->path[i].bus &&
	    path[0].device   == info->path[i].device &&
	    path[0].function == info->path[i].function) {
		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
			bus, path[0].device, path[0].function);
		return true;
	}

	return false;
215 216 217 218 219
}

/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
			  void *start, void*end, u16 segment,
220 221
			  struct dmar_dev_scope *devices,
			  int devices_cnt)
222 223
{
	int i, level;
224
	struct device *tmp, *dev = &info->dev->dev;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	struct acpi_dmar_device_scope *scope;
	struct acpi_dmar_pci_path *path;

	if (segment != info->seg)
		return 0;

	for (; start < end; start += scope->length) {
		scope = start;
		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			continue;

		path = (struct acpi_dmar_pci_path *)(scope + 1);
		level = (scope->length - sizeof(*scope)) / sizeof(*path);
		if (!dmar_match_pci_path(info, scope->bus, path, level))
			continue;

242 243 244 245 246 247 248 249 250 251 252 253 254
		/*
		 * We expect devices with endpoint scope to have normal PCI
		 * headers, and devices with bridge scope to have bridge PCI
		 * headers.  However PCI NTB devices may be listed in the
		 * DMAR table with bridge scope, even though they have a
		 * normal PCI header.  NTB devices are identified by class
		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
		 * for this special case.
		 */
		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255
		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256
			pr_warn("Device scope type does not match for %s\n",
257
				pci_name(info->dev));
258 259 260 261 262
			return -EINVAL;
		}

		for_each_dev_scope(devices, devices_cnt, i, tmp)
			if (tmp == NULL) {
263 264 265 266
				devices[i].bus = info->dev->bus->number;
				devices[i].devfn = info->dev->devfn;
				rcu_assign_pointer(devices[i].dev,
						   get_device(dev));
267 268 269 270 271 272 273 274 275
				return 1;
			}
		BUG_ON(i >= devices_cnt);
	}

	return 0;
}

int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276
			  struct dmar_dev_scope *devices, int count)
277 278
{
	int index;
279
	struct device *tmp;
280 281 282 283 284

	if (info->seg != segment)
		return 0;

	for_each_active_dev_scope(devices, count, index, tmp)
285
		if (tmp == &info->dev->dev) {
286
			RCU_INIT_POINTER(devices[index].dev, NULL);
287
			synchronize_rcu();
288
			put_device(tmp);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			return 1;
		}

	return 0;
}

static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
{
	int ret = 0;
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;

	for_each_drhd_unit(dmaru) {
		if (dmaru->include_all)
			continue;

		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit, header);
		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
				((void *)drhd) + drhd->header.length,
				dmaru->segment,
				dmaru->devices, dmaru->devices_cnt);
311
		if (ret)
312 313 314 315
			break;
	}
	if (ret >= 0)
		ret = dmar_iommu_notify_scope_dev(info);
316 317
	if (ret < 0 && dmar_dev_scope_status == 0)
		dmar_dev_scope_status = ret;
318

319 320 321
	if (ret >= 0)
		intel_irq_remap_add_device(info);

322 323 324 325 326 327 328 329 330 331 332 333 334 335
	return ret;
}

static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
{
	struct dmar_drhd_unit *dmaru;

	for_each_drhd_unit(dmaru)
		if (dmar_remove_dev_scope(info, dmaru->segment,
			dmaru->devices, dmaru->devices_cnt))
			break;
	dmar_iommu_notify_scope_dev(info);
}

336 337
static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
{
338 339 340
	struct pci_dev *physfn = pci_physfn(pdev);

	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
341 342
}

343 344 345 346 347 348
static int dmar_pci_bus_notifier(struct notifier_block *nb,
				 unsigned long action, void *data)
{
	struct pci_dev *pdev = to_pci_dev(data);
	struct dmar_pci_notify_info *info;

349 350 351
	/* Only care about add/remove events for physical functions.
	 * For VFs we actually do the lookup based on the corresponding
	 * PF in device_to_iommu() anyway. */
352 353 354 355 356 357 358 359 360 361 362
	if (pdev->is_virtfn) {
		/*
		 * Ensure that the VF device inherits the irq domain of the
		 * PF device. Ideally the device would inherit the domain
		 * from the bus, but DMAR can have multiple units per bus
		 * which makes this impossible. The VF 'bus' could inherit
		 * from the PF device, but that's yet another x86'sism to
		 * inflict on everybody else.
		 */
		if (action == BUS_NOTIFY_ADD_DEVICE)
			vf_inherit_msi_domain(pdev);
363
		return NOTIFY_DONE;
364 365
	}

366 367
	if (action != BUS_NOTIFY_ADD_DEVICE &&
	    action != BUS_NOTIFY_REMOVED_DEVICE)
368 369 370 371 372 373 374 375 376
		return NOTIFY_DONE;

	info = dmar_alloc_pci_notify_info(pdev, action);
	if (!info)
		return NOTIFY_DONE;

	down_write(&dmar_global_lock);
	if (action == BUS_NOTIFY_ADD_DEVICE)
		dmar_pci_bus_add_dev(info);
377
	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
378 379 380 381 382 383 384 385 386 387 388 389 390
		dmar_pci_bus_del_dev(info);
	up_write(&dmar_global_lock);

	dmar_free_pci_notify_info(info);

	return NOTIFY_OK;
}

static struct notifier_block dmar_pci_bus_nb = {
	.notifier_call = dmar_pci_bus_notifier,
	.priority = INT_MIN,
};

391 392 393 394 395
static struct dmar_drhd_unit *
dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
{
	struct dmar_drhd_unit *dmaru;

396 397
	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
				dmar_rcu_check())
398 399 400 401 402 403 404
		if (dmaru->segment == drhd->segment &&
		    dmaru->reg_base_addr == drhd->address)
			return dmaru;

	return NULL;
}

405
/*
406 407 408 409
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
410
static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
411 412 413
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
414
	int ret;
415

416
	drhd = (struct acpi_dmar_hardware_unit *)header;
417 418 419 420 421
	dmaru = dmar_find_dmaru(drhd);
	if (dmaru)
		goto out;

	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
422 423 424
	if (!dmaru)
		return -ENOMEM;

425 426 427 428 429 430
	/*
	 * If header is allocated from slab by ACPI _DSM method, we need to
	 * copy the content because the memory buffer will be freed on return.
	 */
	dmaru->hdr = (void *)(dmaru + 1);
	memcpy(dmaru->hdr, header, header->length);
431
	dmaru->reg_base_addr = drhd->address;
432
	dmaru->segment = drhd->segment;
433
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 435 436 437 438 439
	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
					      ((void *)drhd) + drhd->header.length,
					      &dmaru->devices_cnt);
	if (dmaru->devices_cnt && dmaru->devices == NULL) {
		kfree(dmaru);
		return -ENOMEM;
440
	}
441

442 443
	ret = alloc_iommu(dmaru);
	if (ret) {
444 445
		dmar_free_dev_scope(&dmaru->devices,
				    &dmaru->devices_cnt);
446 447 448 449
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
450

451
out:
452 453 454
	if (arg)
		(*(int *)arg)++;

455 456 457
	return 0;
}

458 459 460 461 462 463 464 465 466
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
{
	if (dmaru->devices && dmaru->devices_cnt)
		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
	if (dmaru->iommu)
		free_iommu(dmaru->iommu);
	kfree(dmaru);
}

467 468
static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
				      void *arg)
D
David Woodhouse 已提交
469 470 471 472
{
	struct acpi_dmar_andd *andd = (void *)header;

	/* Check for NUL termination within the designated length */
473
	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474
		pr_warn(FW_BUG
D
David Woodhouse 已提交
475 476 477 478 479
			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
480
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
D
David Woodhouse 已提交
481 482 483
		return -EINVAL;
	}
	pr_info("ANDD device: %x name: %s\n", andd->device_number,
484
		andd->device_name);
D
David Woodhouse 已提交
485 486 487 488

	return 0;
}

489
#ifdef CONFIG_ACPI_NUMA
490
static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491 492 493 494 495
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
496
	for_each_drhd_unit(drhd) {
497
		if (drhd->reg_base_addr == rhsa->base_address) {
498
			int node = pxm_to_node(rhsa->proximity_domain);
499 500

			if (!node_online(node))
501
				node = NUMA_NO_NODE;
502
			drhd->iommu->node = node;
503 504
			return 0;
		}
505
	}
506
	pr_warn(FW_BUG
507 508
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509
		rhsa->base_address,
510 511 512
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
513
	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514

515
	return 0;
516
}
517 518
#else
#define	dmar_parse_one_rhsa		dmar_res_noop
519
#endif
520

521
static void
522 523 524 525
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
526
	struct acpi_dmar_atsr *atsr;
527
	struct acpi_dmar_rhsa *rhsa;
528 529 530

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
531 532
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
533
		pr_info("DRHD base: %#016Lx flags: %#x\n",
534
			(unsigned long long)drhd->address, drhd->flags);
535 536
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
537 538
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
539
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
540 541
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
542
		break;
543
	case ACPI_DMAR_TYPE_ROOT_ATS:
544
		atsr = container_of(header, struct acpi_dmar_atsr, header);
545
		pr_info("ATSR flags: %#x\n", atsr->flags);
546
		break;
547
	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
548
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
549
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
550 551 552
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
553
	case ACPI_DMAR_TYPE_NAMESPACE:
D
David Woodhouse 已提交
554 555 556
		/* We don't print this here because we need to sanity-check
		   it first. So print it in dmar_parse_one_andd() instead. */
		break;
557 558 559
	}
}

560 561 562 563 564 565 566 567
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
568
	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
569 570

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
571
		pr_warn("Unable to map DMAR\n");
572 573 574
		status = AE_NOT_FOUND;
	}

575
	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
576
}
577

578 579 580 581 582 583
static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
				       size_t len, struct dmar_res_callback *cb)
{
	struct acpi_dmar_header *iter, *next;
	struct acpi_dmar_header *end = ((void *)start) + len;

584
	for (iter = start; iter < end; iter = next) {
585 586 587 588 589 590 591
		next = (void *)iter + iter->length;
		if (iter->length == 0) {
			/* Avoid looping forever on bad ACPI tables */
			pr_debug(FW_BUG "Invalid 0-length structure\n");
			break;
		} else if (next > end) {
			/* Avoid passing table end */
J
Joerg Roedel 已提交
592
			pr_warn(FW_BUG "Record passes table end\n");
593
			return -EINVAL;
594 595 596 597 598 599 600 601 602 603
		}

		if (cb->print_entry)
			dmar_table_print_dmar_entry(iter);

		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
			/* continue for forward compatibility */
			pr_debug("Unknown DMAR structure type %d\n",
				 iter->type);
		} else if (cb->cb[iter->type]) {
604 605
			int ret;

606
			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
607 608
			if (ret)
				return ret;
609 610 611
		} else if (!cb->ignore_unhandled) {
			pr_warn("No handler for DMAR structure type %d\n",
				iter->type);
612
			return -EINVAL;
613 614 615
		}
	}

616
	return 0;
617 618 619 620 621 622 623 624 625
}

static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
				       struct dmar_res_callback *cb)
{
	return dmar_walk_remapping_entries((void *)(dmar + 1),
			dmar->header.length - sizeof(*dmar), cb);
}

626 627 628 629 630 631 632
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
633
	int drhd_count = 0;
634
	int ret;
635 636 637 638 639 640 641 642 643 644
	struct dmar_res_callback cb = {
		.print_entry = true,
		.ignore_unhandled = true,
		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
	};
645

646 647 648 649 650 651
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

652 653 654 655 656 657
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

658 659 660 661
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
662
	if (dmar->width < PAGE_SHIFT - 1) {
663
		pr_warn("Invalid DMAR haw\n");
664 665 666
		return -EINVAL;
	}

667
	pr_info("Host address width %d\n", dmar->width + 1);
668 669
	ret = dmar_walk_dmar_table(dmar, &cb);
	if (ret == 0 && drhd_count == 0)
670
		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
671

672 673 674
	return ret;
}

675 676
static int dmar_pci_device_match(struct dmar_dev_scope devices[],
				 int cnt, struct pci_dev *dev)
677 678
{
	int index;
679
	struct device *tmp;
680 681

	while (dev) {
682
		for_each_active_dev_scope(devices, cnt, index, tmp)
683
			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
684 685 686 687 688 689 690 691 692 693 694 695
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
696
	struct dmar_drhd_unit *dmaru;
697 698
	struct acpi_dmar_hardware_unit *drhd;

699 700
	dev = pci_physfn(dev);

701
	rcu_read_lock();
702
	for_each_drhd_unit(dmaru) {
703 704 705 706 707 708
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
709
			goto out;
710

711 712
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
713
			goto out;
714
	}
715 716 717
	dmaru = NULL;
out:
	rcu_read_unlock();
718

719
	return dmaru;
720 721
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static void __init dmar_acpi_insert_dev_scope(u8 device_number,
					      struct acpi_device *adev)
{
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	struct device *tmp;
	int i;
	struct acpi_dmar_pci_path *path;

	for_each_drhd_unit(dmaru) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		for (scope = (void *)(drhd + 1);
		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
		     scope = ((void *)scope) + scope->length) {
740
			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
				continue;
			if (scope->enumeration_id != device_number)
				continue;

			path = (void *)(scope + 1);
			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
				dev_name(&adev->dev), dmaru->reg_base_addr,
				scope->bus, path->device, path->function);
			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
				if (tmp == NULL) {
					dmaru->devices[i].bus = scope->bus;
					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
									    path->function);
					rcu_assign_pointer(dmaru->devices[i].dev,
							   get_device(&adev->dev));
					return;
				}
			BUG_ON(i >= dmaru->devices_cnt);
		}
	}
	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
		device_number, dev_name(&adev->dev));
}

static int __init dmar_acpi_dev_scope_init(void)
{
767 768 769 770 771
	struct acpi_dmar_andd *andd;

	if (dmar_tbl == NULL)
		return -ENODEV;

772 773 774
	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
	     andd = ((void *)andd) + andd->header.length) {
775
		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
776 777 778 779
			acpi_handle h;
			struct acpi_device *adev;

			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
780
							  andd->device_name,
781 782
							  &h))) {
				pr_err("Failed to find handle for ACPI object %s\n",
783
				       andd->device_name);
784 785
				continue;
			}
786
			if (acpi_bus_get_device(h, &adev)) {
787
				pr_err("Failed to get device for ACPI object %s\n",
788
				       andd->device_name);
789 790 791 792 793 794 795 796
				continue;
			}
			dmar_acpi_insert_dev_scope(andd->device_number, adev);
		}
	}
	return 0;
}

797 798
int __init dmar_dev_scope_init(void)
{
799 800
	struct pci_dev *dev = NULL;
	struct dmar_pci_notify_info *info;
801

802 803
	if (dmar_dev_scope_status != 1)
		return dmar_dev_scope_status;
804

805 806 807 808 809
	if (list_empty(&dmar_drhd_units)) {
		dmar_dev_scope_status = -ENODEV;
	} else {
		dmar_dev_scope_status = 0;

810 811
		dmar_acpi_dev_scope_init();

812 813 814 815 816 817 818 819 820 821 822 823 824
		for_each_pci_dev(dev) {
			if (dev->is_virtfn)
				continue;

			info = dmar_alloc_pci_notify_info(dev,
					BUS_NOTIFY_ADD_DEVICE);
			if (!info) {
				return dmar_dev_scope_status;
			} else {
				dmar_pci_bus_add_dev(info);
				dmar_free_pci_notify_info(info);
			}
		}
825 826
	}

827
	return dmar_dev_scope_status;
828 829
}

830
void __init dmar_register_bus_notifier(void)
831 832 833 834
{
	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
}

835 836 837

int __init dmar_table_init(void)
{
838
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
839 840
	int ret;

841 842 843 844
	if (dmar_table_initialized == 0) {
		ret = parse_dmar_table();
		if (ret < 0) {
			if (ret != -ENODEV)
J
Joerg Roedel 已提交
845
				pr_info("Parse DMAR table failure.\n");
846 847 848 849
		} else  if (list_empty(&dmar_drhd_units)) {
			pr_info("No DMAR devices found\n");
			ret = -ENODEV;
		}
F
Fenghua Yu 已提交
850

851 852 853 854
		if (ret < 0)
			dmar_table_initialized = ret;
		else
			dmar_table_initialized = 1;
855
	}
F
Fenghua Yu 已提交
856

857
	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
858 859
}

860 861
static void warn_invalid_dmar(u64 addr, const char *message)
{
862
	pr_warn_once(FW_BUG
863 864 865 866 867 868
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
869
	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
870
}
871

872 873
static int __ref
dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
874 875
{
	struct acpi_dmar_hardware_unit *drhd;
876 877
	void __iomem *addr;
	u64 cap, ecap;
878

879 880 881 882 883
	drhd = (void *)entry;
	if (!drhd->address) {
		warn_invalid_dmar(0, "");
		return -EINVAL;
	}
884

885 886 887 888
	if (arg)
		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
	else
		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
889
	if (!addr) {
J
Joerg Roedel 已提交
890
		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
891 892
		return -EINVAL;
	}
893

894 895
	cap = dmar_readq(addr + DMAR_CAP_REG);
	ecap = dmar_readq(addr + DMAR_ECAP_REG);
896 897 898 899 900

	if (arg)
		iounmap(addr);
	else
		early_iounmap(addr, VTD_PAGE_SIZE);
901

902 903 904
	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
		warn_invalid_dmar(drhd->address, " returns all ones");
		return -EINVAL;
905
	}
906 907

	return 0;
908 909
}

910
int __init detect_intel_iommu(void)
911 912
{
	int ret;
913 914 915 916
	struct dmar_res_callback validate_drhd_cb = {
		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
		.ignore_unhandled = true,
	};
917

918
	down_write(&dmar_global_lock);
919
	ret = dmar_table_detect();
920 921 922
	if (!ret)
		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
					   &validate_drhd_cb);
923 924
	if (!ret && !no_iommu && !iommu_detected &&
	    (!dmar_disabled || dmar_platform_optin())) {
925 926 927 928
		iommu_detected = 1;
		/* Make sure ACS will be enabled */
		pci_request_acs();
	}
929

930
#ifdef CONFIG_X86
931
	if (!ret) {
932
		x86_init.iommu.iommu_init = intel_iommu_init;
933 934 935
		x86_platform.iommu_shutdown = intel_iommu_shutdown;
	}

936
#endif
937

938 939 940 941
	if (dmar_tbl) {
		acpi_put_table(dmar_tbl);
		dmar_tbl = NULL;
	}
942
	up_write(&dmar_global_lock);
943

944
	return ret ? ret : 1;
945 946
}

947 948 949 950 951 952 953 954 955 956
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
957
 *
958
 * Memory map the iommu's registers.  Start w/ a single page, and
959
 * possibly expand if that turns out to be insufficent.
960 961 962 963 964 965 966 967 968
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
J
Joerg Roedel 已提交
969
		pr_err("Can't reserve memory\n");
970 971 972 973 974 975
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
J
Joerg Roedel 已提交
976
		pr_err("Can't map the region\n");
977 978 979 980 981 982 983 984 985 986 987 988
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}
989 990
	if (ecap_vcs(iommu->ecap))
		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
991 992 993 994 995 996 997 998 999 1000 1001

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
J
Joerg Roedel 已提交
1002
			pr_err("Can't reserve memory\n");
1003 1004 1005 1006 1007
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
J
Joerg Roedel 已提交
1008
			pr_err("Can't map the region\n");
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static int dmar_alloc_seq_id(struct intel_iommu *iommu)
{
	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
					    DMAR_UNITS_SUPPORTED);
	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
		iommu->seq_id = -1;
	} else {
		set_bit(iommu->seq_id, dmar_seq_ids);
		sprintf(iommu->name, "dmar%d", iommu->seq_id);
	}

	return iommu->seq_id;
}

static void dmar_free_seq_id(struct intel_iommu *iommu)
{
	if (iommu->seq_id >= 0) {
		clear_bit(iommu->seq_id, dmar_seq_ids);
		iommu->seq_id = -1;
	}
}

1046
static int alloc_iommu(struct dmar_drhd_unit *drhd)
1047
{
1048
	struct intel_iommu *iommu;
1049
	u32 ver, sts;
1050 1051
	int agaw = -1;
	int msagaw = -1;
1052
	int err;
1053

1054
	if (!drhd->reg_base_addr) {
1055
		warn_invalid_dmar(0, "");
1056 1057 1058
		return -EINVAL;
	}

1059 1060
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
1061
		return -ENOMEM;
1062

1063
	if (dmar_alloc_seq_id(iommu) < 0) {
J
Joerg Roedel 已提交
1064
		pr_err("Failed to allocate seq_id\n");
1065 1066 1067
		err = -ENOSPC;
		goto error;
	}
1068

1069 1070
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
J
Joerg Roedel 已提交
1071
		pr_err("Failed to map %s\n", iommu->name);
1072
		goto error_free_seq_id;
1073
	}
1074

1075
	err = -EINVAL;
1076 1077 1078 1079
	if (cap_sagaw(iommu->cap) == 0) {
		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
			iommu->name);
		drhd->ignored = 1;
F
Fenghua Yu 已提交
1080
	}
1081 1082 1083 1084 1085 1086 1087 1088

	if (!drhd->ignored) {
		agaw = iommu_calculate_agaw(iommu);
		if (agaw < 0) {
			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			       iommu->seq_id);
			drhd->ignored = 1;
		}
F
Fenghua Yu 已提交
1089
	}
1090 1091 1092 1093 1094 1095 1096 1097
	if (!drhd->ignored) {
		msagaw = iommu_calculate_max_sagaw(iommu);
		if (msagaw < 0) {
			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
			       iommu->seq_id);
			drhd->ignored = 1;
			agaw = -1;
		}
W
Weidong Han 已提交
1098 1099
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
1100
	iommu->msagaw = msagaw;
1101
	iommu->segment = drhd->segment;
W
Weidong Han 已提交
1102

1103
	iommu->node = NUMA_NO_NODE;
1104

1105
	ver = readl(iommu->reg + DMAR_VER_REG);
J
Joerg Roedel 已提交
1106 1107
	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->name,
F
Fenghua Yu 已提交
1108 1109 1110 1111
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121
	/* Reflect status in gcmd */
	sts = readl(iommu->reg + DMAR_GSTS_REG);
	if (sts & DMA_GSTS_IRES)
		iommu->gcmd |= DMA_GCMD_IRE;
	if (sts & DMA_GSTS_TES)
		iommu->gcmd |= DMA_GCMD_TE;
	if (sts & DMA_GSTS_QIES)
		iommu->gcmd |= DMA_GCMD_QIE;

1122
	raw_spin_lock_init(&iommu->register_lock);
1123

1124 1125 1126 1127 1128 1129
	/*
	 * This is only for hotplug; at boot time intel_iommu_enabled won't
	 * be set yet. When intel_iommu_init() runs, it registers the units
	 * present at boot time, then sets intel_iommu_enabled.
	 */
	if (intel_iommu_enabled && !drhd->ignored) {
1130 1131 1132 1133
		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
					     intel_iommu_groups,
					     "%s", iommu->name);
		if (err)
1134
			goto err_unmap;
1135

1136 1137 1138 1139
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);

		err = iommu_device_register(&iommu->iommu);
		if (err)
1140
			goto err_unmap;
1141 1142
	}

1143
	drhd->iommu = iommu;
1144
	iommu->drhd = drhd;
1145

1146
	return 0;
1147

1148
err_unmap:
1149
	unmap_iommu(iommu);
1150 1151 1152
error_free_seq_id:
	dmar_free_seq_id(iommu);
error:
1153
	kfree(iommu);
1154
	return err;
1155 1156
}

1157
static void free_iommu(struct intel_iommu *iommu)
1158
{
1159
	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1160 1161 1162
		iommu_device_unregister(&iommu->iommu);
		iommu_device_sysfs_remove(&iommu->iommu);
	}
1163

1164
	if (iommu->irq) {
1165 1166 1167 1168 1169
		if (iommu->pr_irq) {
			free_irq(iommu->pr_irq, iommu);
			dmar_free_hwirq(iommu->pr_irq);
			iommu->pr_irq = 0;
		}
1170
		free_irq(iommu->irq, iommu);
1171
		dmar_free_hwirq(iommu->irq);
1172
		iommu->irq = 0;
1173
	}
1174

1175 1176 1177 1178 1179 1180
	if (iommu->qi) {
		free_page((unsigned long)iommu->qi->desc);
		kfree(iommu->qi->desc_status);
		kfree(iommu->qi);
	}

1181
	if (iommu->reg)
1182 1183
		unmap_iommu(iommu);

1184
	dmar_free_seq_id(iommu);
1185 1186
	kfree(iommu);
}
1187 1188 1189 1190 1191 1192

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
1193 1194
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1195 1196 1197 1198 1199 1200
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

1201
static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1202 1203
{
	u32 fault;
1204
	int head, tail;
1205
	struct q_inval *qi = iommu->qi;
1206
	int shift = qi_shift(iommu);
1207

1208 1209 1210
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

1211 1212 1213 1214 1215 1216 1217 1218 1219
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		if ((head >> shift) == index) {
			struct qi_desc *desc = qi->desc + head;

			/*
			 * desc->qw2 and desc->qw3 are either reserved or
			 * used by software as private data. We won't print
			 * out these two qw's for security consideration.
			 */
			pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
			       (unsigned long long)desc->qw0,
			       (unsigned long long)desc->qw1);
			memcpy(desc, qi->desc + (wait_index << shift),
			       1 << shift);
1233 1234 1235 1236 1237
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

1238 1239 1240 1241 1242 1243
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
1244
		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1245 1246
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
1247
		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

1264 1265 1266
	return 0;
}

1267
/*
1268 1269 1270 1271 1272
 * Function to submit invalidation descriptors of all types to the queued
 * invalidation interface(QI). Multiple descriptors can be submitted at a
 * time, a wait descriptor will be appended to each submission to ensure
 * hardware has completed the invalidation before return. Wait descriptors
 * can be part of the submission but it will not be polled for completion.
1273
 */
1274 1275
int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
		   unsigned int count, unsigned long options)
1276 1277
{
	struct q_inval *qi = iommu->qi;
1278
	struct qi_desc wait_desc;
1279 1280
	int wait_index, index;
	unsigned long flags;
1281 1282
	int offset, shift;
	int rc, i;
1283 1284

	if (!qi)
1285
		return 0;
1286

1287 1288 1289
restart:
	rc = 0;

1290
	raw_spin_lock_irqsave(&qi->q_lock, flags);
1291 1292 1293 1294 1295 1296
	/*
	 * Check if we have enough empty slots in the queue to submit,
	 * the calculation is based on:
	 * # of desc + 1 wait desc + 1 space between head and tail
	 */
	while (qi->free_cnt < count + 2) {
1297
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1298
		cpu_relax();
1299
		raw_spin_lock_irqsave(&qi->q_lock, flags);
1300 1301 1302
	}

	index = qi->free_head;
1303
	wait_index = (index + count) % QI_LENGTH;
1304
	shift = qi_shift(iommu);
1305

1306 1307 1308 1309 1310 1311
	for (i = 0; i < count; i++) {
		offset = ((index + i) % QI_LENGTH) << shift;
		memcpy(qi->desc + offset, &desc[i], 1 << shift);
		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
	}
	qi->desc_status[wait_index] = QI_IN_USE;
1312

1313
	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1314
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1315 1316
	if (options & QI_OPT_WAIT_DRAIN)
		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1317 1318 1319
	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
	wait_desc.qw2 = 0;
	wait_desc.qw3 = 0;
1320

1321
	offset = wait_index << shift;
1322
	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1323

1324 1325
	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
	qi->free_cnt -= count + 1;
1326 1327 1328 1329 1330

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
1331
	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1332 1333

	while (qi->desc_status[wait_index] != QI_DONE) {
1334 1335 1336 1337 1338 1339 1340
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
1341
		rc = qi_check_fault(iommu, index, wait_index);
1342
		if (rc)
1343
			break;
1344

1345
		raw_spin_unlock(&qi->q_lock);
1346
		cpu_relax();
1347
		raw_spin_lock(&qi->q_lock);
1348
	}
1349

1350 1351
	for (i = 0; i < count; i++)
		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1352 1353

	reclaim_free_desc(qi);
1354
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1355

1356 1357 1358
	if (rc == -EAGAIN)
		goto restart;

1359
	return rc;
1360 1361 1362 1363 1364 1365 1366 1367 1368
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

1369 1370 1371 1372
	desc.qw0 = QI_IEC_TYPE;
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
1373

1374
	/* should never fail */
1375
	qi_submit_sync(iommu, &desc, 1, 0);
1376 1377
}

1378 1379
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1380 1381 1382
{
	struct qi_desc desc;

1383
	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1384
			| QI_CC_GRAN(type) | QI_CC_TYPE;
1385 1386 1387
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
1388

1389
	qi_submit_sync(iommu, &desc, 1, 0);
1390 1391
}

1392 1393
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

1406
	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1407
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1408
	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1409
		| QI_IOTLB_AM(size_order);
1410 1411
	desc.qw2 = 0;
	desc.qw3 = 0;
1412

1413
	qi_submit_sync(iommu, &desc, 1, 0);
1414 1415
}

J
Jacob Pan 已提交
1416 1417
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
			u16 qdep, u64 addr, unsigned mask)
1418 1419 1420 1421
{
	struct qi_desc desc;

	if (mask) {
1422
		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1423
		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1424
	} else
1425
		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1426 1427 1428 1429

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

1430
	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
J
Jacob Pan 已提交
1431
		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1432 1433
	desc.qw2 = 0;
	desc.qw3 = 0;
1434

1435
	qi_submit_sync(iommu, &desc, 1, 0);
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/* PASID-based IOTLB invalidation */
void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
		     unsigned long npages, bool ih)
{
	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};

	/*
	 * npages == -1 means a PASID-selective invalidation, otherwise,
	 * a positive value for Page-selective-within-PASID invalidation.
	 * 0 is not a valid input.
	 */
	if (WARN_ON(!npages)) {
		pr_err("Invalid input npages = %ld\n", npages);
		return;
	}

	if (npages == -1) {
		desc.qw0 = QI_EIOTLB_PASID(pasid) |
				QI_EIOTLB_DID(did) |
				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
				QI_EIOTLB_TYPE;
		desc.qw1 = 0;
	} else {
		int mask = ilog2(__roundup_pow_of_two(npages));
		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));

		if (WARN_ON_ONCE(!ALIGN(addr, align)))
			addr &= ~(align - 1);

		desc.qw0 = QI_EIOTLB_PASID(pasid) |
				QI_EIOTLB_DID(did) |
				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
				QI_EIOTLB_TYPE;
		desc.qw1 = QI_EIOTLB_ADDR(addr) |
				QI_EIOTLB_IH(ih) |
				QI_EIOTLB_AM(mask);
	}

1476
	qi_submit_sync(iommu, &desc, 1, 0);
1477 1478
}

1479 1480
/* PASID-based device IOTLB Invalidate */
void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1481
			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
{
	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};

	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
		QI_DEV_IOTLB_PFSID(pfsid);

	/*
	 * If S bit is 0, we only flush a single page. If S bit is set,
	 * The least significant zero bit indicates the invalidation address
	 * range. VT-d spec 6.5.2.6.
	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
	 * size order = 0 is PAGE_SIZE 4KB
	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
	 * ECAP.
	 */
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
				    addr, size_order);

	/* Take page address */
	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);

	if (size_order) {
		/*
		 * Existing 0s in address below size_order may be the least
		 * significant bit, we must set them to 1s to avoid having
		 * smaller size than desired.
		 */
		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
					VTD_PAGE_SHIFT);
		/* Clear size_order bit to indicate size */
		desc.qw1 &= ~mask;
		/* Set the S bit to indicate flushing more than 1 page */
1517
		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1518
	}
1519

1520
	qi_submit_sync(iommu, &desc, 1, 0);
1521 1522 1523
}

void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1524
			  u64 granu, u32 pasid)
1525 1526 1527 1528 1529
{
	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};

	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
			QI_PC_GRAN(granu) | QI_PC_TYPE;
1530
	qi_submit_sync(iommu, &desc, 1, 0);
1531 1532
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

1545
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1546

1547
	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1565
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1566 1567
}

1568 1569 1570 1571 1572
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1573
	u32 sts;
1574 1575
	unsigned long flags;
	struct q_inval *qi = iommu->qi;
1576
	u64 val = virt_to_phys(qi->desc);
1577 1578 1579 1580

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1581 1582 1583 1584 1585 1586 1587
	/*
	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
	 * is present.
	 */
	if (ecap_smts(iommu->ecap))
		val |= (1 << 11) | 1;

1588
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1589 1590 1591 1592

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

1593
	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1594 1595

	iommu->gcmd |= DMA_GCMD_QIE;
1596
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1597 1598 1599 1600

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1601
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1602 1603
}

1604 1605 1606 1607 1608 1609 1610 1611
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1612
	struct page *desc_page;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1623
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1624 1625 1626 1627 1628
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1629 1630 1631 1632 1633 1634
	/*
	 * Need two pages to accommodate 256 descriptors of 256 bits each
	 * if the remapping hardware supports scalable mode translation.
	 */
	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
				     !!ecap_smts(iommu->ecap));
1635
	if (!desc_page) {
1636
		kfree(qi);
1637
		iommu->qi = NULL;
1638 1639 1640
		return -ENOMEM;
	}

1641 1642
	qi->desc = page_address(desc_page);

K
Kees Cook 已提交
1643
	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1644 1645 1646
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
1647
		iommu->qi = NULL;
1648 1649 1650
		return -ENOMEM;
	}

1651
	raw_spin_lock_init(&qi->q_lock);
1652

1653
	__dmar_enable_qi(iommu);
1654 1655 1656

	return 0;
}
1657 1658 1659

/* iommu interrupt handling. Most stuff are MSI-like. */

1660 1661 1662 1663 1664 1665 1666
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1681
	"PCE for translation request specifies blocking",
1682
};
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static const char * const dma_remap_sm_fault_reasons[] = {
	"SM: Invalid Root Table Address",
	"SM: TTM 0 for request with PASID",
	"SM: TTM 0 for page group request",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
	"SM: Error attempting to access Root Entry",
	"SM: Present bit in Root Entry is clear",
	"SM: Non-zero reserved field set in Root Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
	"SM: Error attempting to access Context Entry",
	"SM: Present bit in Context Entry is clear",
	"SM: Non-zero reserved field set in the Context Entry",
	"SM: Invalid Context Entry",
	"SM: DTE field in Context Entry is clear",
	"SM: PASID Enable field in Context Entry is clear",
	"SM: PASID is larger than the max in Context Entry",
	"SM: PRE field in Context-Entry is clear",
	"SM: RID_PASID field error in Context-Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
	"SM: Error attempting to access the PASID Directory Entry",
	"SM: Present bit in Directory Entry is clear",
	"SM: Non-zero reserved field set in PASID Directory Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
	"SM: Error attempting to access PASID Table Entry",
	"SM: Present bit in PASID Table Entry is clear",
	"SM: Non-zero reserved field set in PASID Table Entry",
	"SM: Invalid Scalable-Mode PASID Table Entry",
	"SM: ERE field is clear in PASID Table Entry",
	"SM: SRE field is clear in PASID Table Entry",
	"Unknown", "Unknown",/* 0x5E-0x5F */
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
	"SM: Error attempting to access first-level paging entry",
	"SM: Present bit in first-level paging entry is clear",
	"SM: Non-zero reserved field set in first-level paging entry",
	"SM: Error attempting to access FL-PML4 entry",
	"SM: First-level entry address beyond MGAW in Nested translation",
	"SM: Read permission error in FL-PML4 entry in Nested translation",
	"SM: Read permission error in first-level paging entry in Nested translation",
	"SM: Write permission error in first-level paging entry in Nested translation",
	"SM: Error attempting to access second-level paging entry",
	"SM: Read/Write permission error in second-level paging entry",
	"SM: Non-zero reserved field set in second-level paging entry",
	"SM: Invalid second-level page table pointer",
	"SM: A/D bit update needed in second-level entry when set up in no snoop",
	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
	"SM: Address in first-level translation is not canonical",
	"SM: U/S set 0 for first-level translation with user privilege",
	"SM: No execute permission for request with PASID and ER=1",
	"SM: Address beyond the DMA hardware max",
	"SM: Second-level entry address beyond the max",
	"SM: No write permission for Write/AtomicOp request",
	"SM: No read permission for Read/AtomicOp request",
	"SM: Invalid address-interrupt address",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
	"SM: A/D bit update needed in first-level entry when set up in no snoop",
};

1742
static const char *irq_remap_fault_reasons[] =
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1753
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1754
{
1755 1756
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1757
		*fault_type = INTR_REMAP;
1758
		return irq_remap_fault_reasons[fault_reason - 0x20];
1759 1760 1761 1762
	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
		*fault_type = DMA_REMAP;
		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1763 1764 1765 1766 1767
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1768
		return "Unknown";
1769
	}
1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
{
	if (iommu->irq == irq)
		return DMAR_FECTL_REG;
	else if (iommu->pr_irq == irq)
		return DMAR_PECTL_REG;
	else
		BUG();
}

1783
void dmar_msi_unmask(struct irq_data *data)
1784
{
1785
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1786
	int reg = dmar_msi_reg(iommu, data->irq);
1787 1788 1789
	unsigned long flag;

	/* unmask it */
1790
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1791
	writel(0, iommu->reg + reg);
1792
	/* Read a reg to force flush the post write */
1793
	readl(iommu->reg + reg);
1794
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1795 1796
}

1797
void dmar_msi_mask(struct irq_data *data)
1798
{
1799
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1800 1801
	int reg = dmar_msi_reg(iommu, data->irq);
	unsigned long flag;
1802 1803

	/* mask it */
1804
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1805
	writel(DMA_FECTL_IM, iommu->reg + reg);
1806
	/* Read a reg to force flush the post write */
1807
	readl(iommu->reg + reg);
1808
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1809 1810 1811 1812
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1813
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1814
	int reg = dmar_msi_reg(iommu, irq);
1815 1816
	unsigned long flag;

1817
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1818 1819 1820
	writel(msg->data, iommu->reg + reg + 4);
	writel(msg->address_lo, iommu->reg + reg + 8);
	writel(msg->address_hi, iommu->reg + reg + 12);
1821
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1822 1823 1824 1825
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1826
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1827
	int reg = dmar_msi_reg(iommu, irq);
1828 1829
	unsigned long flag;

1830
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1831 1832 1833
	msg->data = readl(iommu->reg + reg + 4);
	msg->address_lo = readl(iommu->reg + reg + 8);
	msg->address_hi = readl(iommu->reg + reg + 12);
1834
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1835 1836 1837
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1838
		u8 fault_reason, u32 pasid, u16 source_id,
1839
		unsigned long long addr)
1840 1841
{
	const char *reason;
1842
	int fault_type;
1843

1844
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1845

1846
	if (fault_type == INTR_REMAP)
1847 1848
		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
			source_id >> 8, PCI_SLOT(source_id & 0xFF),
1849 1850 1851
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1852
		pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1853 1854
		       type ? "DMA Read" : "DMA Write",
		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1855 1856
		       PCI_FUNC(source_id & 0xFF), pasid, addr,
		       fault_reason, reason);
1857 1858 1859 1860
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1861
irqreturn_t dmar_fault(int irq, void *dev_id)
1862 1863 1864 1865 1866
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;
1867 1868 1869 1870
	static DEFINE_RATELIMIT_STATE(rs,
				      DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

1871
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1872
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1873
	if (fault_status && __ratelimit(&rs))
1874
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1875 1876 1877

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1878
		goto unlock_exit;
1879 1880 1881 1882

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
1883 1884
		/* Disable printing, simply clear the fault when ratelimited */
		bool ratelimited = !__ratelimit(&rs);
1885 1886 1887
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
1888 1889
		u32 pasid;
		int type;
1890
		u32 data;
1891
		bool pasid_present;
1892 1893 1894 1895 1896 1897 1898

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

1899 1900 1901
		if (!ratelimited) {
			fault_reason = dma_frcd_fault_reason(data);
			type = dma_frcd_type(data);
1902

1903
			pasid = dma_frcd_pasid_value(data);
1904 1905 1906 1907
			data = readl(iommu->reg + reg +
				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
			source_id = dma_frcd_source_id(data);

1908
			pasid_present = dma_frcd_pasid_present(data);
1909 1910 1911 1912
			guest_addr = dmar_readq(iommu->reg + reg +
					fault_index * PRIMARY_FAULT_REG_LEN);
			guest_addr = dma_frcd_page_addr(guest_addr);
		}
1913 1914 1915 1916 1917

		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1918
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1919

1920
		if (!ratelimited)
1921
			/* Using pasid -1 if pasid is not present */
1922
			dmar_fault_do_one(iommu, type, fault_reason,
1923
					  pasid_present ? pasid : -1,
1924
					  source_id, guest_addr);
1925 1926

		fault_index++;
1927
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1928
			fault_index = 0;
1929
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1930 1931
	}

1932 1933
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
	       iommu->reg + DMAR_FSTS_REG);
1934 1935

unlock_exit:
1936
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1937 1938 1939 1940 1941 1942 1943
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1944 1945 1946 1947 1948 1949
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1950 1951 1952 1953
	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
	if (irq > 0) {
		iommu->irq = irq;
	} else {
J
Joerg Roedel 已提交
1954
		pr_err("No free IRQ vectors\n");
1955 1956 1957
		return -EINVAL;
	}

1958
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1959
	if (ret)
J
Joerg Roedel 已提交
1960
		pr_err("Can't request irq\n");
1961 1962
	return ret;
}
1963 1964 1965 1966

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;
1967
	struct intel_iommu *iommu;
1968 1969 1970 1971

	/*
	 * Enable fault control interrupt.
	 */
1972
	for_each_iommu(iommu, drhd) {
1973
		u32 fault_status;
1974
		int ret = dmar_set_interrupt(iommu);
1975 1976

		if (ret) {
1977
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1978 1979 1980
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1981 1982 1983 1984 1985

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1986 1987
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1988 1989 1990 1991
	}

	return 0;
}
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
2017 2018 2019 2020

/*
 * Check interrupt remapping support in DMAR table description.
 */
2021
int __init dmar_ir_support(void)
2022 2023 2024
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
2025 2026
	if (!dmar)
		return 0;
2027 2028
	return dmar->flags & 0x1;
}
2029

2030 2031 2032 2033 2034 2035
/* Check whether DMAR units are in use */
static inline bool dmar_in_use(void)
{
	return irq_remapping_enabled || intel_iommu_enabled;
}

2036 2037 2038 2039
static int __init dmar_free_unused_resources(void)
{
	struct dmar_drhd_unit *dmaru, *dmaru_n;

2040
	if (dmar_in_use())
2041 2042
		return 0;

2043 2044
	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2045

2046
	down_write(&dmar_global_lock);
2047 2048 2049 2050
	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
		list_del(&dmaru->list);
		dmar_free_drhd(dmaru);
	}
2051
	up_write(&dmar_global_lock);
2052 2053 2054 2055 2056

	return 0;
}

late_initcall(dmar_free_unused_resources);
2057
IOMMU_INIT_POST(detect_intel_iommu);
2058 2059 2060 2061 2062 2063 2064

/*
 * DMAR Hotplug Support
 * For more details, please refer to Intel(R) Virtualization Technology
 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
 * "Remapping Hardware Unit Hot Plug".
 */
2065 2066 2067
static guid_t dmar_hp_guid =
	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

/*
 * Currently there's only one revision and BIOS will not check the revision id,
 * so use 0 for safety.
 */
#define	DMAR_DSM_REV_ID			0
#define	DMAR_DSM_FUNC_DRHD		1
#define	DMAR_DSM_FUNC_ATSR		2
#define	DMAR_DSM_FUNC_RHSA		3

static inline bool dmar_detect_dsm(acpi_handle handle, int func)
{
2080
	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
}

static int dmar_walk_dsm_resource(acpi_handle handle, int func,
				  dmar_res_handler_t handler, void *arg)
{
	int ret = -ENODEV;
	union acpi_object *obj;
	struct acpi_dmar_header *start;
	struct dmar_res_callback callback;
	static int res_type[] = {
		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
	};

	if (!dmar_detect_dsm(handle, func))
		return 0;

2099
	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
				      func, NULL, ACPI_TYPE_BUFFER);
	if (!obj)
		return -ENODEV;

	memset(&callback, 0, sizeof(callback));
	callback.cb[res_type[func]] = handler;
	callback.arg[res_type[func]] = arg;
	start = (struct acpi_dmar_header *)obj->buffer.pointer;
	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);

	ACPI_FREE(obj);

	return ret;
}

static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
{
	int ret;
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (!dmaru)
		return -ENODEV;

	ret = dmar_ir_hotplug(dmaru, true);
	if (ret == 0)
		ret = dmar_iommu_hotplug(dmaru, true);

	return ret;
}

static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
{
	int i, ret;
	struct device *dev;
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (!dmaru)
		return 0;

	/*
	 * All PCI devices managed by this unit should have been destroyed.
	 */
2144
	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2145 2146 2147
		for_each_active_dev_scope(dmaru->devices,
					  dmaru->devices_cnt, i, dev)
			return -EBUSY;
2148
	}
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

	ret = dmar_ir_hotplug(dmaru, false);
	if (ret == 0)
		ret = dmar_iommu_hotplug(dmaru, false);

	return ret;
}

static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
{
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (dmaru) {
		list_del_rcu(&dmaru->list);
		synchronize_rcu();
		dmar_free_drhd(dmaru);
	}

	return 0;
}

static int dmar_hotplug_insert(acpi_handle handle)
{
	int ret;
	int drhd_count = 0;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_validate_one_drhd, (void *)1);
	if (ret)
		goto out;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_parse_one_drhd, (void *)&drhd_count);
	if (ret == 0 && drhd_count == 0) {
		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
		goto out;
	} else if (ret) {
		goto release_drhd;
	}

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
				     &dmar_parse_one_rhsa, NULL);
	if (ret)
		goto release_drhd;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
				     &dmar_parse_one_atsr, NULL);
	if (ret)
		goto release_atsr;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_hp_add_drhd, NULL);
	if (!ret)
		return 0;

	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
			       &dmar_hp_remove_drhd, NULL);
release_atsr:
	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
			       &dmar_release_one_atsr, NULL);
release_drhd:
	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
			       &dmar_hp_release_drhd, NULL);
out:
	return ret;
}

static int dmar_hotplug_remove(acpi_handle handle)
{
	int ret;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
				     &dmar_check_one_atsr, NULL);
	if (ret)
		return ret;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_hp_remove_drhd, NULL);
	if (ret == 0) {
		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
					       &dmar_release_one_atsr, NULL));
		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
					       &dmar_hp_release_drhd, NULL));
	} else {
		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				       &dmar_hp_add_drhd, NULL);
	}

	return ret;
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
				       void *context, void **retval)
{
	acpi_handle *phdl = retval;

	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
		*phdl = handle;
		return AE_CTRL_TERMINATE;
	}

	return AE_OK;
}

2254 2255 2256
static int dmar_device_hotplug(acpi_handle handle, bool insert)
{
	int ret;
2257 2258
	acpi_handle tmp = NULL;
	acpi_status status;
2259 2260 2261 2262

	if (!dmar_in_use())
		return 0;

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
		tmp = handle;
	} else {
		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
					     ACPI_UINT32_MAX,
					     dmar_get_dsm_handle,
					     NULL, NULL, &tmp);
		if (ACPI_FAILURE(status)) {
			pr_warn("Failed to locate _DSM method.\n");
			return -ENXIO;
		}
	}
	if (tmp == NULL)
2276 2277 2278 2279
		return 0;

	down_write(&dmar_global_lock);
	if (insert)
2280
		ret = dmar_hotplug_insert(tmp);
2281
	else
2282
		ret = dmar_hotplug_remove(tmp);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	up_write(&dmar_global_lock);

	return ret;
}

int dmar_device_add(acpi_handle handle)
{
	return dmar_device_hotplug(handle, true);
}

int dmar_device_remove(acpi_handle handle)
{
	return dmar_device_hotplug(handle, false);
}
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

/*
 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
 *
 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
 * the ACPI DMAR table. This means that the platform boot firmware has made
 * sure no device can issue DMA outside of RMRR regions.
 */
bool dmar_platform_optin(void)
{
	struct acpi_table_dmar *dmar;
	acpi_status status;
	bool ret;

	status = acpi_get_table(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar);
	if (ACPI_FAILURE(status))
		return false;

	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
	acpi_put_table((struct acpi_table_header *)dmar);

	return ret;
}
EXPORT_SYMBOL_GPL(dmar_platform_optin);