dmar.c 59.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4
/*
 * Copyright (c) 2006, Intel Corporation.
 *
5 6 7 8
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9
 *
10
 * This file implements early detection/parsing of Remapping Devices
11 12
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
13 14
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
15 16
 */

J
Joerg Roedel 已提交
17
#define pr_fmt(fmt)     "DMAR: " fmt
18

19 20
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
21 22
#include <linux/iova.h>
#include <linux/intel-iommu.h>
23
#include <linux/timer.h>
24 25
#include <linux/irq.h>
#include <linux/interrupt.h>
26
#include <linux/tboot.h>
27
#include <linux/dmi.h>
28
#include <linux/slab.h>
29
#include <linux/iommu.h>
30
#include <linux/numa.h>
31
#include <linux/limits.h>
32
#include <asm/irq_remapping.h>
33
#include <asm/iommu_table.h>
34

35
#include "../irq_remapping.h"
36

37 38 39 40 41 42 43 44
typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
struct dmar_res_callback {
	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
	void			*arg[ACPI_DMAR_TYPE_RESERVED];
	bool			ignore_unhandled;
	bool			print_entry;
};

45 46 47 48 49 50 51 52 53 54 55
/*
 * Assumptions:
 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
 *    before IO devices managed by that unit.
 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
 *    after IO devices managed by that unit.
 * 3) Hotplug events are rare.
 *
 * Locking rules for DMA and interrupt remapping related global data structures:
 * 1) Use dmar_global_lock in process context
 * 2) Use RCU in interrupt context
56
 */
57
DECLARE_RWSEM(dmar_global_lock);
58 59
LIST_HEAD(dmar_drhd_units);

60
struct acpi_table_header * __initdata dmar_tbl;
61
static int dmar_dev_scope_status = 1;
62
static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63

64
static int alloc_iommu(struct dmar_drhd_unit *drhd);
65
static void free_iommu(struct intel_iommu *iommu);
66

67 68
extern const struct iommu_ops intel_iommu_ops;

69
static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 71 72 73 74 75
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
76
		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77
	else
78
		list_add_rcu(&drhd->list, &dmar_drhd_units);
79 80
}

81
void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 83 84 85 86 87
{
	struct acpi_dmar_device_scope *scope;

	*cnt = 0;
	while (start < end) {
		scope = start;
88
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 91
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
92 93
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94
			pr_warn("Unsupported device scope\n");
95
		}
96 97 98
		start += scope->length;
	}
	if (*cnt == 0)
99 100
		return NULL;

101
	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 103
}

104
void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105
{
106
	int i;
107
	struct device *tmp_dev;
108

109
	if (*devices && *cnt) {
110
		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111
			put_device(tmp_dev);
112 113
		kfree(*devices);
	}
114 115 116

	*devices = NULL;
	*cnt = 0;
117 118
}

119 120 121 122 123 124 125 126 127 128 129 130 131
/* Optimize out kzalloc()/kfree() for normal cases */
static char dmar_pci_notify_info_buf[64];

static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
{
	int level = 0;
	size_t size;
	struct pci_dev *tmp;
	struct dmar_pci_notify_info *info;

	BUG_ON(dev->is_virtfn);

132 133 134 135 136 137 138
	/*
	 * Ignore devices that have a domain number higher than what can
	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
	 */
	if (pci_domain_nr(dev->bus) > U16_MAX)
		return NULL;

139 140 141 142 143
	/* Only generate path[] for device addition event */
	if (event == BUS_NOTIFY_ADD_DEVICE)
		for (tmp = dev; tmp; tmp = tmp->bus->self)
			level++;

144
	size = struct_size(info, path, level);
145 146 147 148 149 150 151
	if (size <= sizeof(dmar_pci_notify_info_buf)) {
		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
	} else {
		info = kzalloc(size, GFP_KERNEL);
		if (!info) {
			pr_warn("Out of memory when allocating notify_info "
				"for %s.\n", pci_name(dev));
152 153
			if (dmar_dev_scope_status == 0)
				dmar_dev_scope_status = -ENOMEM;
154 155 156 157 158 159 160 161 162
			return NULL;
		}
	}

	info->event = event;
	info->dev = dev;
	info->seg = pci_domain_nr(dev->bus);
	info->level = level;
	if (event == BUS_NOTIFY_ADD_DEVICE) {
163 164
		for (tmp = dev; tmp; tmp = tmp->bus->self) {
			level--;
165
			info->path[level].bus = tmp->bus->number;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
			info->path[level].device = PCI_SLOT(tmp->devfn);
			info->path[level].function = PCI_FUNC(tmp->devfn);
			if (pci_is_root_bus(tmp->bus))
				info->bus = tmp->bus->number;
		}
	}

	return info;
}

static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
{
	if ((void *)info != dmar_pci_notify_info_buf)
		kfree(info);
}

static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
				struct acpi_dmar_pci_path *path, int count)
{
	int i;

	if (info->bus != bus)
188
		goto fallback;
189
	if (info->level != count)
190
		goto fallback;
191 192 193 194

	for (i = 0; i < count; i++) {
		if (path[i].device != info->path[i].device ||
		    path[i].function != info->path[i].function)
195
			goto fallback;
196 197 198
	}

	return true;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

fallback:

	if (count != 1)
		return false;

	i = info->level - 1;
	if (bus              == info->path[i].bus &&
	    path[0].device   == info->path[i].device &&
	    path[0].function == info->path[i].function) {
		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
			bus, path[0].device, path[0].function);
		return true;
	}

	return false;
215 216 217 218 219
}

/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
			  void *start, void*end, u16 segment,
220 221
			  struct dmar_dev_scope *devices,
			  int devices_cnt)
222 223
{
	int i, level;
224
	struct device *tmp, *dev = &info->dev->dev;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	struct acpi_dmar_device_scope *scope;
	struct acpi_dmar_pci_path *path;

	if (segment != info->seg)
		return 0;

	for (; start < end; start += scope->length) {
		scope = start;
		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			continue;

		path = (struct acpi_dmar_pci_path *)(scope + 1);
		level = (scope->length - sizeof(*scope)) / sizeof(*path);
		if (!dmar_match_pci_path(info, scope->bus, path, level))
			continue;

242 243 244 245 246 247 248 249 250 251 252 253 254
		/*
		 * We expect devices with endpoint scope to have normal PCI
		 * headers, and devices with bridge scope to have bridge PCI
		 * headers.  However PCI NTB devices may be listed in the
		 * DMAR table with bridge scope, even though they have a
		 * normal PCI header.  NTB devices are identified by class
		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
		 * for this special case.
		 */
		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255
		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256
			pr_warn("Device scope type does not match for %s\n",
257
				pci_name(info->dev));
258 259 260 261 262
			return -EINVAL;
		}

		for_each_dev_scope(devices, devices_cnt, i, tmp)
			if (tmp == NULL) {
263 264 265 266
				devices[i].bus = info->dev->bus->number;
				devices[i].devfn = info->dev->devfn;
				rcu_assign_pointer(devices[i].dev,
						   get_device(dev));
267 268 269 270 271 272 273 274 275
				return 1;
			}
		BUG_ON(i >= devices_cnt);
	}

	return 0;
}

int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276
			  struct dmar_dev_scope *devices, int count)
277 278
{
	int index;
279
	struct device *tmp;
280 281 282 283 284

	if (info->seg != segment)
		return 0;

	for_each_active_dev_scope(devices, count, index, tmp)
285
		if (tmp == &info->dev->dev) {
286
			RCU_INIT_POINTER(devices[index].dev, NULL);
287
			synchronize_rcu();
288
			put_device(tmp);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			return 1;
		}

	return 0;
}

static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
{
	int ret = 0;
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;

	for_each_drhd_unit(dmaru) {
		if (dmaru->include_all)
			continue;

		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit, header);
		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
				((void *)drhd) + drhd->header.length,
				dmaru->segment,
				dmaru->devices, dmaru->devices_cnt);
311
		if (ret)
312 313 314 315
			break;
	}
	if (ret >= 0)
		ret = dmar_iommu_notify_scope_dev(info);
316 317
	if (ret < 0 && dmar_dev_scope_status == 0)
		dmar_dev_scope_status = ret;
318

319 320 321
	if (ret >= 0)
		intel_irq_remap_add_device(info);

322 323 324 325 326 327 328 329 330 331 332 333 334 335
	return ret;
}

static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
{
	struct dmar_drhd_unit *dmaru;

	for_each_drhd_unit(dmaru)
		if (dmar_remove_dev_scope(info, dmaru->segment,
			dmaru->devices, dmaru->devices_cnt))
			break;
	dmar_iommu_notify_scope_dev(info);
}

336 337 338 339 340
static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
{
	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&pdev->physfn->dev));
}

341 342 343 344 345 346
static int dmar_pci_bus_notifier(struct notifier_block *nb,
				 unsigned long action, void *data)
{
	struct pci_dev *pdev = to_pci_dev(data);
	struct dmar_pci_notify_info *info;

347 348 349
	/* Only care about add/remove events for physical functions.
	 * For VFs we actually do the lookup based on the corresponding
	 * PF in device_to_iommu() anyway. */
350 351 352 353 354 355 356 357 358 359 360
	if (pdev->is_virtfn) {
		/*
		 * Ensure that the VF device inherits the irq domain of the
		 * PF device. Ideally the device would inherit the domain
		 * from the bus, but DMAR can have multiple units per bus
		 * which makes this impossible. The VF 'bus' could inherit
		 * from the PF device, but that's yet another x86'sism to
		 * inflict on everybody else.
		 */
		if (action == BUS_NOTIFY_ADD_DEVICE)
			vf_inherit_msi_domain(pdev);
361
		return NOTIFY_DONE;
362 363
	}

364 365
	if (action != BUS_NOTIFY_ADD_DEVICE &&
	    action != BUS_NOTIFY_REMOVED_DEVICE)
366 367 368 369 370 371 372 373 374
		return NOTIFY_DONE;

	info = dmar_alloc_pci_notify_info(pdev, action);
	if (!info)
		return NOTIFY_DONE;

	down_write(&dmar_global_lock);
	if (action == BUS_NOTIFY_ADD_DEVICE)
		dmar_pci_bus_add_dev(info);
375
	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376 377 378 379 380 381 382 383 384 385 386 387 388
		dmar_pci_bus_del_dev(info);
	up_write(&dmar_global_lock);

	dmar_free_pci_notify_info(info);

	return NOTIFY_OK;
}

static struct notifier_block dmar_pci_bus_nb = {
	.notifier_call = dmar_pci_bus_notifier,
	.priority = INT_MIN,
};

389 390 391 392 393
static struct dmar_drhd_unit *
dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
{
	struct dmar_drhd_unit *dmaru;

394 395
	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
				dmar_rcu_check())
396 397 398 399 400 401 402
		if (dmaru->segment == drhd->segment &&
		    dmaru->reg_base_addr == drhd->address)
			return dmaru;

	return NULL;
}

403
/*
404 405 406 407
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
408
static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
409 410 411
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
412
	int ret;
413

414
	drhd = (struct acpi_dmar_hardware_unit *)header;
415 416 417 418 419
	dmaru = dmar_find_dmaru(drhd);
	if (dmaru)
		goto out;

	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
420 421 422
	if (!dmaru)
		return -ENOMEM;

423 424 425 426 427 428
	/*
	 * If header is allocated from slab by ACPI _DSM method, we need to
	 * copy the content because the memory buffer will be freed on return.
	 */
	dmaru->hdr = (void *)(dmaru + 1);
	memcpy(dmaru->hdr, header, header->length);
429
	dmaru->reg_base_addr = drhd->address;
430
	dmaru->segment = drhd->segment;
431
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
432 433 434 435 436 437
	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
					      ((void *)drhd) + drhd->header.length,
					      &dmaru->devices_cnt);
	if (dmaru->devices_cnt && dmaru->devices == NULL) {
		kfree(dmaru);
		return -ENOMEM;
438
	}
439

440 441
	ret = alloc_iommu(dmaru);
	if (ret) {
442 443
		dmar_free_dev_scope(&dmaru->devices,
				    &dmaru->devices_cnt);
444 445 446 447
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
448

449
out:
450 451 452
	if (arg)
		(*(int *)arg)++;

453 454 455
	return 0;
}

456 457 458 459 460 461 462 463 464
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
{
	if (dmaru->devices && dmaru->devices_cnt)
		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
	if (dmaru->iommu)
		free_iommu(dmaru->iommu);
	kfree(dmaru);
}

465 466
static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
				      void *arg)
D
David Woodhouse 已提交
467 468 469 470
{
	struct acpi_dmar_andd *andd = (void *)header;

	/* Check for NUL termination within the designated length */
471
	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
472
		pr_warn(FW_BUG
D
David Woodhouse 已提交
473 474 475 476 477
			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
478
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
D
David Woodhouse 已提交
479 480 481
		return -EINVAL;
	}
	pr_info("ANDD device: %x name: %s\n", andd->device_number,
482
		andd->device_name);
D
David Woodhouse 已提交
483 484 485 486

	return 0;
}

487
#ifdef CONFIG_ACPI_NUMA
488
static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
489 490 491 492 493
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
494
	for_each_drhd_unit(drhd) {
495
		if (drhd->reg_base_addr == rhsa->base_address) {
496
			int node = pxm_to_node(rhsa->proximity_domain);
497 498

			if (!node_online(node))
499
				node = NUMA_NO_NODE;
500
			drhd->iommu->node = node;
501 502
			return 0;
		}
503
	}
504
	pr_warn(FW_BUG
505 506
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
507
		rhsa->base_address,
508 509 510
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
511
	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
512

513
	return 0;
514
}
515 516
#else
#define	dmar_parse_one_rhsa		dmar_res_noop
517
#endif
518

519
static void
520 521 522 523
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
524
	struct acpi_dmar_atsr *atsr;
525
	struct acpi_dmar_rhsa *rhsa;
526 527 528

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
529 530
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
531
		pr_info("DRHD base: %#016Lx flags: %#x\n",
532
			(unsigned long long)drhd->address, drhd->flags);
533 534
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
535 536
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
537
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
538 539
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
540
		break;
541
	case ACPI_DMAR_TYPE_ROOT_ATS:
542
		atsr = container_of(header, struct acpi_dmar_atsr, header);
543
		pr_info("ATSR flags: %#x\n", atsr->flags);
544
		break;
545
	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
546
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
547
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
548 549 550
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
551
	case ACPI_DMAR_TYPE_NAMESPACE:
D
David Woodhouse 已提交
552 553 554
		/* We don't print this here because we need to sanity-check
		   it first. So print it in dmar_parse_one_andd() instead. */
		break;
555 556 557
	}
}

558 559 560 561 562 563 564 565
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
566
	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
567 568

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
569
		pr_warn("Unable to map DMAR\n");
570 571 572
		status = AE_NOT_FOUND;
	}

573
	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
574
}
575

576 577 578 579 580 581
static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
				       size_t len, struct dmar_res_callback *cb)
{
	struct acpi_dmar_header *iter, *next;
	struct acpi_dmar_header *end = ((void *)start) + len;

582
	for (iter = start; iter < end; iter = next) {
583 584 585 586 587 588 589
		next = (void *)iter + iter->length;
		if (iter->length == 0) {
			/* Avoid looping forever on bad ACPI tables */
			pr_debug(FW_BUG "Invalid 0-length structure\n");
			break;
		} else if (next > end) {
			/* Avoid passing table end */
J
Joerg Roedel 已提交
590
			pr_warn(FW_BUG "Record passes table end\n");
591
			return -EINVAL;
592 593 594 595 596 597 598 599 600 601
		}

		if (cb->print_entry)
			dmar_table_print_dmar_entry(iter);

		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
			/* continue for forward compatibility */
			pr_debug("Unknown DMAR structure type %d\n",
				 iter->type);
		} else if (cb->cb[iter->type]) {
602 603
			int ret;

604
			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
605 606
			if (ret)
				return ret;
607 608 609
		} else if (!cb->ignore_unhandled) {
			pr_warn("No handler for DMAR structure type %d\n",
				iter->type);
610
			return -EINVAL;
611 612 613
		}
	}

614
	return 0;
615 616 617 618 619 620 621 622 623
}

static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
				       struct dmar_res_callback *cb)
{
	return dmar_walk_remapping_entries((void *)(dmar + 1),
			dmar->header.length - sizeof(*dmar), cb);
}

624 625 626 627 628 629 630
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
631
	int drhd_count = 0;
632
	int ret;
633 634 635 636 637 638 639 640 641 642
	struct dmar_res_callback cb = {
		.print_entry = true,
		.ignore_unhandled = true,
		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
	};
643

644 645 646 647 648 649
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

650 651 652 653 654 655
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

656 657 658 659
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
660
	if (dmar->width < PAGE_SHIFT - 1) {
661
		pr_warn("Invalid DMAR haw\n");
662 663 664
		return -EINVAL;
	}

665
	pr_info("Host address width %d\n", dmar->width + 1);
666 667
	ret = dmar_walk_dmar_table(dmar, &cb);
	if (ret == 0 && drhd_count == 0)
668
		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
669

670 671 672
	return ret;
}

673 674
static int dmar_pci_device_match(struct dmar_dev_scope devices[],
				 int cnt, struct pci_dev *dev)
675 676
{
	int index;
677
	struct device *tmp;
678 679

	while (dev) {
680
		for_each_active_dev_scope(devices, cnt, index, tmp)
681
			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
682 683 684 685 686 687 688 689 690 691 692 693
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
694
	struct dmar_drhd_unit *dmaru;
695 696
	struct acpi_dmar_hardware_unit *drhd;

697 698
	dev = pci_physfn(dev);

699
	rcu_read_lock();
700
	for_each_drhd_unit(dmaru) {
701 702 703 704 705 706
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
707
			goto out;
708

709 710
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
711
			goto out;
712
	}
713 714 715
	dmaru = NULL;
out:
	rcu_read_unlock();
716

717
	return dmaru;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static void __init dmar_acpi_insert_dev_scope(u8 device_number,
					      struct acpi_device *adev)
{
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	struct device *tmp;
	int i;
	struct acpi_dmar_pci_path *path;

	for_each_drhd_unit(dmaru) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		for (scope = (void *)(drhd + 1);
		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
		     scope = ((void *)scope) + scope->length) {
738
			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
				continue;
			if (scope->enumeration_id != device_number)
				continue;

			path = (void *)(scope + 1);
			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
				dev_name(&adev->dev), dmaru->reg_base_addr,
				scope->bus, path->device, path->function);
			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
				if (tmp == NULL) {
					dmaru->devices[i].bus = scope->bus;
					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
									    path->function);
					rcu_assign_pointer(dmaru->devices[i].dev,
							   get_device(&adev->dev));
					return;
				}
			BUG_ON(i >= dmaru->devices_cnt);
		}
	}
	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
		device_number, dev_name(&adev->dev));
}

static int __init dmar_acpi_dev_scope_init(void)
{
765 766 767 768 769
	struct acpi_dmar_andd *andd;

	if (dmar_tbl == NULL)
		return -ENODEV;

770 771 772
	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
	     andd = ((void *)andd) + andd->header.length) {
773
		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
774 775 776 777
			acpi_handle h;
			struct acpi_device *adev;

			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
778
							  andd->device_name,
779 780
							  &h))) {
				pr_err("Failed to find handle for ACPI object %s\n",
781
				       andd->device_name);
782 783
				continue;
			}
784
			if (acpi_bus_get_device(h, &adev)) {
785
				pr_err("Failed to get device for ACPI object %s\n",
786
				       andd->device_name);
787 788 789 790 791 792 793 794
				continue;
			}
			dmar_acpi_insert_dev_scope(andd->device_number, adev);
		}
	}
	return 0;
}

795 796
int __init dmar_dev_scope_init(void)
{
797 798
	struct pci_dev *dev = NULL;
	struct dmar_pci_notify_info *info;
799

800 801
	if (dmar_dev_scope_status != 1)
		return dmar_dev_scope_status;
802

803 804 805 806 807
	if (list_empty(&dmar_drhd_units)) {
		dmar_dev_scope_status = -ENODEV;
	} else {
		dmar_dev_scope_status = 0;

808 809
		dmar_acpi_dev_scope_init();

810 811 812 813 814 815 816 817 818 819 820 821 822
		for_each_pci_dev(dev) {
			if (dev->is_virtfn)
				continue;

			info = dmar_alloc_pci_notify_info(dev,
					BUS_NOTIFY_ADD_DEVICE);
			if (!info) {
				return dmar_dev_scope_status;
			} else {
				dmar_pci_bus_add_dev(info);
				dmar_free_pci_notify_info(info);
			}
		}
823 824
	}

825
	return dmar_dev_scope_status;
826 827
}

828
void __init dmar_register_bus_notifier(void)
829 830 831 832
{
	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
}

833 834 835

int __init dmar_table_init(void)
{
836
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
837 838
	int ret;

839 840 841 842
	if (dmar_table_initialized == 0) {
		ret = parse_dmar_table();
		if (ret < 0) {
			if (ret != -ENODEV)
J
Joerg Roedel 已提交
843
				pr_info("Parse DMAR table failure.\n");
844 845 846 847
		} else  if (list_empty(&dmar_drhd_units)) {
			pr_info("No DMAR devices found\n");
			ret = -ENODEV;
		}
F
Fenghua Yu 已提交
848

849 850 851 852
		if (ret < 0)
			dmar_table_initialized = ret;
		else
			dmar_table_initialized = 1;
853
	}
F
Fenghua Yu 已提交
854

855
	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
856 857
}

858 859
static void warn_invalid_dmar(u64 addr, const char *message)
{
860
	pr_warn_once(FW_BUG
861 862 863 864 865 866
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
867
	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
868
}
869

870 871
static int __ref
dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
872 873
{
	struct acpi_dmar_hardware_unit *drhd;
874 875
	void __iomem *addr;
	u64 cap, ecap;
876

877 878 879 880 881
	drhd = (void *)entry;
	if (!drhd->address) {
		warn_invalid_dmar(0, "");
		return -EINVAL;
	}
882

883 884 885 886
	if (arg)
		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
	else
		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
887
	if (!addr) {
J
Joerg Roedel 已提交
888
		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
889 890
		return -EINVAL;
	}
891

892 893
	cap = dmar_readq(addr + DMAR_CAP_REG);
	ecap = dmar_readq(addr + DMAR_ECAP_REG);
894 895 896 897 898

	if (arg)
		iounmap(addr);
	else
		early_iounmap(addr, VTD_PAGE_SIZE);
899

900 901 902
	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
		warn_invalid_dmar(drhd->address, " returns all ones");
		return -EINVAL;
903
	}
904 905

	return 0;
906 907
}

908
int __init detect_intel_iommu(void)
909 910
{
	int ret;
911 912 913 914
	struct dmar_res_callback validate_drhd_cb = {
		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
		.ignore_unhandled = true,
	};
915

916
	down_write(&dmar_global_lock);
917
	ret = dmar_table_detect();
918 919 920
	if (!ret)
		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
					   &validate_drhd_cb);
921 922
	if (!ret && !no_iommu && !iommu_detected &&
	    (!dmar_disabled || dmar_platform_optin())) {
923 924 925 926
		iommu_detected = 1;
		/* Make sure ACS will be enabled */
		pci_request_acs();
	}
927

928
#ifdef CONFIG_X86
929
	if (!ret) {
930
		x86_init.iommu.iommu_init = intel_iommu_init;
931 932 933
		x86_platform.iommu_shutdown = intel_iommu_shutdown;
	}

934
#endif
935

936 937 938 939
	if (dmar_tbl) {
		acpi_put_table(dmar_tbl);
		dmar_tbl = NULL;
	}
940
	up_write(&dmar_global_lock);
941

942
	return ret ? ret : 1;
943 944
}

945 946 947 948 949 950 951 952 953 954
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
955
 *
956
 * Memory map the iommu's registers.  Start w/ a single page, and
957
 * possibly expand if that turns out to be insufficent.
958 959 960 961 962 963 964 965 966
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
J
Joerg Roedel 已提交
967
		pr_err("Can't reserve memory\n");
968 969 970 971 972 973
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
J
Joerg Roedel 已提交
974
		pr_err("Can't map the region\n");
975 976 977 978 979 980 981 982 983 984 985 986
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}
987
	iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
988 989 990 991 992 993 994 995 996 997 998

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
J
Joerg Roedel 已提交
999
			pr_err("Can't reserve memory\n");
1000 1001 1002 1003 1004
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
J
Joerg Roedel 已提交
1005
			pr_err("Can't map the region\n");
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static int dmar_alloc_seq_id(struct intel_iommu *iommu)
{
	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
					    DMAR_UNITS_SUPPORTED);
	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
		iommu->seq_id = -1;
	} else {
		set_bit(iommu->seq_id, dmar_seq_ids);
		sprintf(iommu->name, "dmar%d", iommu->seq_id);
	}

	return iommu->seq_id;
}

static void dmar_free_seq_id(struct intel_iommu *iommu)
{
	if (iommu->seq_id >= 0) {
		clear_bit(iommu->seq_id, dmar_seq_ids);
		iommu->seq_id = -1;
	}
}

1043
static int alloc_iommu(struct dmar_drhd_unit *drhd)
1044
{
1045
	struct intel_iommu *iommu;
1046
	u32 ver, sts;
1047 1048
	int agaw = -1;
	int msagaw = -1;
1049
	int err;
1050

1051
	if (!drhd->reg_base_addr) {
1052
		warn_invalid_dmar(0, "");
1053 1054 1055
		return -EINVAL;
	}

1056 1057
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
1058
		return -ENOMEM;
1059

1060
	if (dmar_alloc_seq_id(iommu) < 0) {
J
Joerg Roedel 已提交
1061
		pr_err("Failed to allocate seq_id\n");
1062 1063 1064
		err = -ENOSPC;
		goto error;
	}
1065

1066 1067
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
J
Joerg Roedel 已提交
1068
		pr_err("Failed to map %s\n", iommu->name);
1069
		goto error_free_seq_id;
1070
	}
1071

1072
	err = -EINVAL;
1073 1074 1075 1076
	if (cap_sagaw(iommu->cap) == 0) {
		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
			iommu->name);
		drhd->ignored = 1;
F
Fenghua Yu 已提交
1077
	}
1078 1079 1080 1081 1082 1083 1084 1085

	if (!drhd->ignored) {
		agaw = iommu_calculate_agaw(iommu);
		if (agaw < 0) {
			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			       iommu->seq_id);
			drhd->ignored = 1;
		}
F
Fenghua Yu 已提交
1086
	}
1087 1088 1089 1090 1091 1092 1093 1094
	if (!drhd->ignored) {
		msagaw = iommu_calculate_max_sagaw(iommu);
		if (msagaw < 0) {
			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
			       iommu->seq_id);
			drhd->ignored = 1;
			agaw = -1;
		}
W
Weidong Han 已提交
1095 1096
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
1097
	iommu->msagaw = msagaw;
1098
	iommu->segment = drhd->segment;
W
Weidong Han 已提交
1099

1100
	iommu->node = NUMA_NO_NODE;
1101

1102
	ver = readl(iommu->reg + DMAR_VER_REG);
J
Joerg Roedel 已提交
1103 1104
	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->name,
F
Fenghua Yu 已提交
1105 1106 1107 1108
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118
	/* Reflect status in gcmd */
	sts = readl(iommu->reg + DMAR_GSTS_REG);
	if (sts & DMA_GSTS_IRES)
		iommu->gcmd |= DMA_GCMD_IRE;
	if (sts & DMA_GSTS_TES)
		iommu->gcmd |= DMA_GCMD_TE;
	if (sts & DMA_GSTS_QIES)
		iommu->gcmd |= DMA_GCMD_QIE;

1119
	raw_spin_lock_init(&iommu->register_lock);
1120

1121 1122 1123 1124 1125 1126
	/*
	 * This is only for hotplug; at boot time intel_iommu_enabled won't
	 * be set yet. When intel_iommu_init() runs, it registers the units
	 * present at boot time, then sets intel_iommu_enabled.
	 */
	if (intel_iommu_enabled && !drhd->ignored) {
1127 1128 1129 1130
		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
					     intel_iommu_groups,
					     "%s", iommu->name);
		if (err)
1131
			goto err_unmap;
1132

1133 1134 1135 1136
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);

		err = iommu_device_register(&iommu->iommu);
		if (err)
1137
			goto err_unmap;
1138 1139
	}

1140
	drhd->iommu = iommu;
1141
	iommu->drhd = drhd;
1142

1143
	return 0;
1144

1145
err_unmap:
1146
	unmap_iommu(iommu);
1147 1148 1149
error_free_seq_id:
	dmar_free_seq_id(iommu);
error:
1150
	kfree(iommu);
1151
	return err;
1152 1153
}

1154
static void free_iommu(struct intel_iommu *iommu)
1155
{
1156
	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1157 1158 1159
		iommu_device_unregister(&iommu->iommu);
		iommu_device_sysfs_remove(&iommu->iommu);
	}
1160

1161
	if (iommu->irq) {
1162 1163 1164 1165 1166
		if (iommu->pr_irq) {
			free_irq(iommu->pr_irq, iommu);
			dmar_free_hwirq(iommu->pr_irq);
			iommu->pr_irq = 0;
		}
1167
		free_irq(iommu->irq, iommu);
1168
		dmar_free_hwirq(iommu->irq);
1169
		iommu->irq = 0;
1170
	}
1171

1172 1173 1174 1175 1176 1177
	if (iommu->qi) {
		free_page((unsigned long)iommu->qi->desc);
		kfree(iommu->qi->desc_status);
		kfree(iommu->qi);
	}

1178
	if (iommu->reg)
1179 1180
		unmap_iommu(iommu);

1181
	dmar_free_seq_id(iommu);
1182 1183
	kfree(iommu);
}
1184 1185 1186 1187 1188 1189

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
1190 1191
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1192 1193 1194 1195 1196 1197
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

1198
static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1199 1200
{
	u32 fault;
1201
	int head, tail;
1202
	struct q_inval *qi = iommu->qi;
1203
	int shift = qi_shift(iommu);
1204

1205 1206 1207
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

1208 1209 1210 1211 1212 1213 1214 1215 1216
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		if ((head >> shift) == index) {
			struct qi_desc *desc = qi->desc + head;

			/*
			 * desc->qw2 and desc->qw3 are either reserved or
			 * used by software as private data. We won't print
			 * out these two qw's for security consideration.
			 */
			pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
			       (unsigned long long)desc->qw0,
			       (unsigned long long)desc->qw1);
			memcpy(desc, qi->desc + (wait_index << shift),
			       1 << shift);
1230 1231 1232 1233 1234
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

1235 1236 1237 1238 1239 1240
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
1241
		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1242 1243
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
1244
		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

1261 1262 1263
	return 0;
}

1264
/*
1265 1266 1267 1268 1269
 * Function to submit invalidation descriptors of all types to the queued
 * invalidation interface(QI). Multiple descriptors can be submitted at a
 * time, a wait descriptor will be appended to each submission to ensure
 * hardware has completed the invalidation before return. Wait descriptors
 * can be part of the submission but it will not be polled for completion.
1270
 */
1271 1272
int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
		   unsigned int count, unsigned long options)
1273 1274
{
	struct q_inval *qi = iommu->qi;
1275
	struct qi_desc wait_desc;
1276 1277
	int wait_index, index;
	unsigned long flags;
1278 1279
	int offset, shift;
	int rc, i;
1280 1281

	if (!qi)
1282
		return 0;
1283

1284 1285 1286
restart:
	rc = 0;

1287
	raw_spin_lock_irqsave(&qi->q_lock, flags);
1288 1289 1290 1291 1292 1293
	/*
	 * Check if we have enough empty slots in the queue to submit,
	 * the calculation is based on:
	 * # of desc + 1 wait desc + 1 space between head and tail
	 */
	while (qi->free_cnt < count + 2) {
1294
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1295
		cpu_relax();
1296
		raw_spin_lock_irqsave(&qi->q_lock, flags);
1297 1298 1299
	}

	index = qi->free_head;
1300
	wait_index = (index + count) % QI_LENGTH;
1301
	shift = qi_shift(iommu);
1302

1303 1304 1305 1306 1307 1308
	for (i = 0; i < count; i++) {
		offset = ((index + i) % QI_LENGTH) << shift;
		memcpy(qi->desc + offset, &desc[i], 1 << shift);
		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
	}
	qi->desc_status[wait_index] = QI_IN_USE;
1309

1310
	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1311
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1312 1313
	if (options & QI_OPT_WAIT_DRAIN)
		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1314 1315 1316
	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
	wait_desc.qw2 = 0;
	wait_desc.qw3 = 0;
1317

1318
	offset = wait_index << shift;
1319
	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1320

1321 1322
	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
	qi->free_cnt -= count + 1;
1323 1324 1325 1326 1327

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
1328
	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1329 1330

	while (qi->desc_status[wait_index] != QI_DONE) {
1331 1332 1333 1334 1335 1336 1337
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
1338
		rc = qi_check_fault(iommu, index, wait_index);
1339
		if (rc)
1340
			break;
1341

1342
		raw_spin_unlock(&qi->q_lock);
1343
		cpu_relax();
1344
		raw_spin_lock(&qi->q_lock);
1345
	}
1346

1347 1348
	for (i = 0; i < count; i++)
		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1349 1350

	reclaim_free_desc(qi);
1351
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1352

1353 1354 1355
	if (rc == -EAGAIN)
		goto restart;

1356
	return rc;
1357 1358 1359 1360 1361 1362 1363 1364 1365
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

1366 1367 1368 1369
	desc.qw0 = QI_IEC_TYPE;
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
1370

1371
	/* should never fail */
1372
	qi_submit_sync(iommu, &desc, 1, 0);
1373 1374
}

1375 1376
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1377 1378 1379
{
	struct qi_desc desc;

1380
	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1381
			| QI_CC_GRAN(type) | QI_CC_TYPE;
1382 1383 1384
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
1385

1386
	qi_submit_sync(iommu, &desc, 1, 0);
1387 1388
}

1389 1390
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

1403
	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1404
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1405
	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1406
		| QI_IOTLB_AM(size_order);
1407 1408
	desc.qw2 = 0;
	desc.qw3 = 0;
1409

1410
	qi_submit_sync(iommu, &desc, 1, 0);
1411 1412
}

J
Jacob Pan 已提交
1413 1414
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
			u16 qdep, u64 addr, unsigned mask)
1415 1416 1417 1418
{
	struct qi_desc desc;

	if (mask) {
1419
		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1420
		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1421
	} else
1422
		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1423 1424 1425 1426

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

1427
	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
J
Jacob Pan 已提交
1428
		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1429 1430
	desc.qw2 = 0;
	desc.qw3 = 0;
1431

1432
	qi_submit_sync(iommu, &desc, 1, 0);
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
/* PASID-based IOTLB invalidation */
void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
		     unsigned long npages, bool ih)
{
	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};

	/*
	 * npages == -1 means a PASID-selective invalidation, otherwise,
	 * a positive value for Page-selective-within-PASID invalidation.
	 * 0 is not a valid input.
	 */
	if (WARN_ON(!npages)) {
		pr_err("Invalid input npages = %ld\n", npages);
		return;
	}

	if (npages == -1) {
		desc.qw0 = QI_EIOTLB_PASID(pasid) |
				QI_EIOTLB_DID(did) |
				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
				QI_EIOTLB_TYPE;
		desc.qw1 = 0;
	} else {
		int mask = ilog2(__roundup_pow_of_two(npages));
		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));

		if (WARN_ON_ONCE(!ALIGN(addr, align)))
			addr &= ~(align - 1);

		desc.qw0 = QI_EIOTLB_PASID(pasid) |
				QI_EIOTLB_DID(did) |
				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
				QI_EIOTLB_TYPE;
		desc.qw1 = QI_EIOTLB_ADDR(addr) |
				QI_EIOTLB_IH(ih) |
				QI_EIOTLB_AM(mask);
	}

1473
	qi_submit_sync(iommu, &desc, 1, 0);
1474 1475
}

1476 1477
/* PASID-based device IOTLB Invalidate */
void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1478
			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
{
	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};

	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
		QI_DEV_IOTLB_PFSID(pfsid);

	/*
	 * If S bit is 0, we only flush a single page. If S bit is set,
	 * The least significant zero bit indicates the invalidation address
	 * range. VT-d spec 6.5.2.6.
	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
	 * size order = 0 is PAGE_SIZE 4KB
	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
	 * ECAP.
	 */
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
				    addr, size_order);

	/* Take page address */
	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);

	if (size_order) {
		/*
		 * Existing 0s in address below size_order may be the least
		 * significant bit, we must set them to 1s to avoid having
		 * smaller size than desired.
		 */
		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
					VTD_PAGE_SHIFT);
		/* Clear size_order bit to indicate size */
		desc.qw1 &= ~mask;
		/* Set the S bit to indicate flushing more than 1 page */
1514
		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1515
	}
1516

1517
	qi_submit_sync(iommu, &desc, 1, 0);
1518 1519 1520
}

void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1521
			  u64 granu, u32 pasid)
1522 1523 1524 1525 1526
{
	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};

	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
			QI_PC_GRAN(granu) | QI_PC_TYPE;
1527
	qi_submit_sync(iommu, &desc, 1, 0);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

1542
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1543

1544
	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1562
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1563 1564
}

1565 1566 1567 1568 1569
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1570
	u32 sts;
1571 1572
	unsigned long flags;
	struct q_inval *qi = iommu->qi;
1573
	u64 val = virt_to_phys(qi->desc);
1574 1575 1576 1577

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1578 1579 1580 1581 1582 1583 1584
	/*
	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
	 * is present.
	 */
	if (ecap_smts(iommu->ecap))
		val |= (1 << 11) | 1;

1585
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1586 1587 1588 1589

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

1590
	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1591 1592

	iommu->gcmd |= DMA_GCMD_QIE;
1593
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1594 1595 1596 1597

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1598
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1609
	struct page *desc_page;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1620
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1621 1622 1623 1624 1625
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1626 1627 1628 1629 1630 1631
	/*
	 * Need two pages to accommodate 256 descriptors of 256 bits each
	 * if the remapping hardware supports scalable mode translation.
	 */
	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
				     !!ecap_smts(iommu->ecap));
1632
	if (!desc_page) {
1633
		kfree(qi);
1634
		iommu->qi = NULL;
1635 1636 1637
		return -ENOMEM;
	}

1638 1639
	qi->desc = page_address(desc_page);

K
Kees Cook 已提交
1640
	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1641 1642 1643
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
1644
		iommu->qi = NULL;
1645 1646 1647
		return -ENOMEM;
	}

1648
	raw_spin_lock_init(&qi->q_lock);
1649

1650
	__dmar_enable_qi(iommu);
1651 1652 1653

	return 0;
}
1654 1655 1656

/* iommu interrupt handling. Most stuff are MSI-like. */

1657 1658 1659 1660 1661 1662 1663
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1678
	"PCE for translation request specifies blocking",
1679
};
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
static const char * const dma_remap_sm_fault_reasons[] = {
	"SM: Invalid Root Table Address",
	"SM: TTM 0 for request with PASID",
	"SM: TTM 0 for page group request",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
	"SM: Error attempting to access Root Entry",
	"SM: Present bit in Root Entry is clear",
	"SM: Non-zero reserved field set in Root Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
	"SM: Error attempting to access Context Entry",
	"SM: Present bit in Context Entry is clear",
	"SM: Non-zero reserved field set in the Context Entry",
	"SM: Invalid Context Entry",
	"SM: DTE field in Context Entry is clear",
	"SM: PASID Enable field in Context Entry is clear",
	"SM: PASID is larger than the max in Context Entry",
	"SM: PRE field in Context-Entry is clear",
	"SM: RID_PASID field error in Context-Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
	"SM: Error attempting to access the PASID Directory Entry",
	"SM: Present bit in Directory Entry is clear",
	"SM: Non-zero reserved field set in PASID Directory Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
	"SM: Error attempting to access PASID Table Entry",
	"SM: Present bit in PASID Table Entry is clear",
	"SM: Non-zero reserved field set in PASID Table Entry",
	"SM: Invalid Scalable-Mode PASID Table Entry",
	"SM: ERE field is clear in PASID Table Entry",
	"SM: SRE field is clear in PASID Table Entry",
	"Unknown", "Unknown",/* 0x5E-0x5F */
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
	"SM: Error attempting to access first-level paging entry",
	"SM: Present bit in first-level paging entry is clear",
	"SM: Non-zero reserved field set in first-level paging entry",
	"SM: Error attempting to access FL-PML4 entry",
	"SM: First-level entry address beyond MGAW in Nested translation",
	"SM: Read permission error in FL-PML4 entry in Nested translation",
	"SM: Read permission error in first-level paging entry in Nested translation",
	"SM: Write permission error in first-level paging entry in Nested translation",
	"SM: Error attempting to access second-level paging entry",
	"SM: Read/Write permission error in second-level paging entry",
	"SM: Non-zero reserved field set in second-level paging entry",
	"SM: Invalid second-level page table pointer",
	"SM: A/D bit update needed in second-level entry when set up in no snoop",
	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
	"SM: Address in first-level translation is not canonical",
	"SM: U/S set 0 for first-level translation with user privilege",
	"SM: No execute permission for request with PASID and ER=1",
	"SM: Address beyond the DMA hardware max",
	"SM: Second-level entry address beyond the max",
	"SM: No write permission for Write/AtomicOp request",
	"SM: No read permission for Read/AtomicOp request",
	"SM: Invalid address-interrupt address",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
	"SM: A/D bit update needed in first-level entry when set up in no snoop",
};

1739
static const char *irq_remap_fault_reasons[] =
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1750
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1751
{
1752 1753
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1754
		*fault_type = INTR_REMAP;
1755
		return irq_remap_fault_reasons[fault_reason - 0x20];
1756 1757 1758 1759
	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
		*fault_type = DMA_REMAP;
		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1760 1761 1762 1763 1764
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1765
		return "Unknown";
1766
	}
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
{
	if (iommu->irq == irq)
		return DMAR_FECTL_REG;
	else if (iommu->pr_irq == irq)
		return DMAR_PECTL_REG;
	else
		BUG();
}

1780
void dmar_msi_unmask(struct irq_data *data)
1781
{
1782
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1783
	int reg = dmar_msi_reg(iommu, data->irq);
1784 1785 1786
	unsigned long flag;

	/* unmask it */
1787
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1788
	writel(0, iommu->reg + reg);
1789
	/* Read a reg to force flush the post write */
1790
	readl(iommu->reg + reg);
1791
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1792 1793
}

1794
void dmar_msi_mask(struct irq_data *data)
1795
{
1796
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1797 1798
	int reg = dmar_msi_reg(iommu, data->irq);
	unsigned long flag;
1799 1800

	/* mask it */
1801
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1802
	writel(DMA_FECTL_IM, iommu->reg + reg);
1803
	/* Read a reg to force flush the post write */
1804
	readl(iommu->reg + reg);
1805
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1806 1807 1808 1809
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1810
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1811
	int reg = dmar_msi_reg(iommu, irq);
1812 1813
	unsigned long flag;

1814
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1815 1816 1817
	writel(msg->data, iommu->reg + reg + 4);
	writel(msg->address_lo, iommu->reg + reg + 8);
	writel(msg->address_hi, iommu->reg + reg + 12);
1818
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1819 1820 1821 1822
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1823
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1824
	int reg = dmar_msi_reg(iommu, irq);
1825 1826
	unsigned long flag;

1827
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1828 1829 1830
	msg->data = readl(iommu->reg + reg + 4);
	msg->address_lo = readl(iommu->reg + reg + 8);
	msg->address_hi = readl(iommu->reg + reg + 12);
1831
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1832 1833 1834
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1835
		u8 fault_reason, u32 pasid, u16 source_id,
1836
		unsigned long long addr)
1837 1838
{
	const char *reason;
1839
	int fault_type;
1840

1841
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1842

1843
	if (fault_type == INTR_REMAP)
1844 1845
		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
			source_id >> 8, PCI_SLOT(source_id & 0xFF),
1846 1847 1848
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1849
		pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1850 1851
		       type ? "DMA Read" : "DMA Write",
		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1852 1853
		       PCI_FUNC(source_id & 0xFF), pasid, addr,
		       fault_reason, reason);
1854 1855 1856 1857
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1858
irqreturn_t dmar_fault(int irq, void *dev_id)
1859 1860 1861 1862 1863
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;
1864 1865 1866 1867
	static DEFINE_RATELIMIT_STATE(rs,
				      DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

1868
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1869
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1870
	if (fault_status && __ratelimit(&rs))
1871
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1872 1873 1874

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1875
		goto unlock_exit;
1876 1877 1878 1879

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
1880 1881
		/* Disable printing, simply clear the fault when ratelimited */
		bool ratelimited = !__ratelimit(&rs);
1882 1883 1884
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
1885 1886
		u32 pasid;
		int type;
1887
		u32 data;
1888
		bool pasid_present;
1889 1890 1891 1892 1893 1894 1895

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

1896 1897 1898
		if (!ratelimited) {
			fault_reason = dma_frcd_fault_reason(data);
			type = dma_frcd_type(data);
1899

1900
			pasid = dma_frcd_pasid_value(data);
1901 1902 1903 1904
			data = readl(iommu->reg + reg +
				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
			source_id = dma_frcd_source_id(data);

1905
			pasid_present = dma_frcd_pasid_present(data);
1906 1907 1908 1909
			guest_addr = dmar_readq(iommu->reg + reg +
					fault_index * PRIMARY_FAULT_REG_LEN);
			guest_addr = dma_frcd_page_addr(guest_addr);
		}
1910 1911 1912 1913 1914

		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1915
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1916

1917
		if (!ratelimited)
1918
			/* Using pasid -1 if pasid is not present */
1919
			dmar_fault_do_one(iommu, type, fault_reason,
1920
					  pasid_present ? pasid : -1,
1921
					  source_id, guest_addr);
1922 1923

		fault_index++;
1924
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1925
			fault_index = 0;
1926
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1927 1928
	}

1929 1930
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
	       iommu->reg + DMAR_FSTS_REG);
1931 1932

unlock_exit:
1933
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1934 1935 1936 1937 1938 1939 1940
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1941 1942 1943 1944 1945 1946
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1947 1948 1949 1950
	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
	if (irq > 0) {
		iommu->irq = irq;
	} else {
J
Joerg Roedel 已提交
1951
		pr_err("No free IRQ vectors\n");
1952 1953 1954
		return -EINVAL;
	}

1955
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1956
	if (ret)
J
Joerg Roedel 已提交
1957
		pr_err("Can't request irq\n");
1958 1959
	return ret;
}
1960 1961 1962 1963

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;
1964
	struct intel_iommu *iommu;
1965 1966 1967 1968

	/*
	 * Enable fault control interrupt.
	 */
1969
	for_each_iommu(iommu, drhd) {
1970
		u32 fault_status;
1971
		int ret = dmar_set_interrupt(iommu);
1972 1973

		if (ret) {
1974
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1975 1976 1977
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1978 1979 1980 1981 1982

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1983 1984
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1985 1986 1987 1988
	}

	return 0;
}
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
2014 2015 2016 2017

/*
 * Check interrupt remapping support in DMAR table description.
 */
2018
int __init dmar_ir_support(void)
2019 2020 2021
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
2022 2023
	if (!dmar)
		return 0;
2024 2025
	return dmar->flags & 0x1;
}
2026

2027 2028 2029 2030 2031 2032
/* Check whether DMAR units are in use */
static inline bool dmar_in_use(void)
{
	return irq_remapping_enabled || intel_iommu_enabled;
}

2033 2034 2035 2036
static int __init dmar_free_unused_resources(void)
{
	struct dmar_drhd_unit *dmaru, *dmaru_n;

2037
	if (dmar_in_use())
2038 2039
		return 0;

2040 2041
	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2042

2043
	down_write(&dmar_global_lock);
2044 2045 2046 2047
	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
		list_del(&dmaru->list);
		dmar_free_drhd(dmaru);
	}
2048
	up_write(&dmar_global_lock);
2049 2050 2051 2052 2053

	return 0;
}

late_initcall(dmar_free_unused_resources);
2054
IOMMU_INIT_POST(detect_intel_iommu);
2055 2056 2057 2058 2059 2060 2061

/*
 * DMAR Hotplug Support
 * For more details, please refer to Intel(R) Virtualization Technology
 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
 * "Remapping Hardware Unit Hot Plug".
 */
2062 2063 2064
static guid_t dmar_hp_guid =
	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

/*
 * Currently there's only one revision and BIOS will not check the revision id,
 * so use 0 for safety.
 */
#define	DMAR_DSM_REV_ID			0
#define	DMAR_DSM_FUNC_DRHD		1
#define	DMAR_DSM_FUNC_ATSR		2
#define	DMAR_DSM_FUNC_RHSA		3

static inline bool dmar_detect_dsm(acpi_handle handle, int func)
{
2077
	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
}

static int dmar_walk_dsm_resource(acpi_handle handle, int func,
				  dmar_res_handler_t handler, void *arg)
{
	int ret = -ENODEV;
	union acpi_object *obj;
	struct acpi_dmar_header *start;
	struct dmar_res_callback callback;
	static int res_type[] = {
		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
	};

	if (!dmar_detect_dsm(handle, func))
		return 0;

2096
	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
				      func, NULL, ACPI_TYPE_BUFFER);
	if (!obj)
		return -ENODEV;

	memset(&callback, 0, sizeof(callback));
	callback.cb[res_type[func]] = handler;
	callback.arg[res_type[func]] = arg;
	start = (struct acpi_dmar_header *)obj->buffer.pointer;
	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);

	ACPI_FREE(obj);

	return ret;
}

static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
{
	int ret;
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (!dmaru)
		return -ENODEV;

	ret = dmar_ir_hotplug(dmaru, true);
	if (ret == 0)
		ret = dmar_iommu_hotplug(dmaru, true);

	return ret;
}

static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
{
	int i, ret;
	struct device *dev;
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (!dmaru)
		return 0;

	/*
	 * All PCI devices managed by this unit should have been destroyed.
	 */
2141
	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2142 2143 2144
		for_each_active_dev_scope(dmaru->devices,
					  dmaru->devices_cnt, i, dev)
			return -EBUSY;
2145
	}
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	ret = dmar_ir_hotplug(dmaru, false);
	if (ret == 0)
		ret = dmar_iommu_hotplug(dmaru, false);

	return ret;
}

static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
{
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (dmaru) {
		list_del_rcu(&dmaru->list);
		synchronize_rcu();
		dmar_free_drhd(dmaru);
	}

	return 0;
}

static int dmar_hotplug_insert(acpi_handle handle)
{
	int ret;
	int drhd_count = 0;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_validate_one_drhd, (void *)1);
	if (ret)
		goto out;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_parse_one_drhd, (void *)&drhd_count);
	if (ret == 0 && drhd_count == 0) {
		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
		goto out;
	} else if (ret) {
		goto release_drhd;
	}

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
				     &dmar_parse_one_rhsa, NULL);
	if (ret)
		goto release_drhd;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
				     &dmar_parse_one_atsr, NULL);
	if (ret)
		goto release_atsr;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_hp_add_drhd, NULL);
	if (!ret)
		return 0;

	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
			       &dmar_hp_remove_drhd, NULL);
release_atsr:
	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
			       &dmar_release_one_atsr, NULL);
release_drhd:
	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
			       &dmar_hp_release_drhd, NULL);
out:
	return ret;
}

static int dmar_hotplug_remove(acpi_handle handle)
{
	int ret;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
				     &dmar_check_one_atsr, NULL);
	if (ret)
		return ret;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_hp_remove_drhd, NULL);
	if (ret == 0) {
		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
					       &dmar_release_one_atsr, NULL));
		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
					       &dmar_hp_release_drhd, NULL));
	} else {
		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				       &dmar_hp_add_drhd, NULL);
	}

	return ret;
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
				       void *context, void **retval)
{
	acpi_handle *phdl = retval;

	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
		*phdl = handle;
		return AE_CTRL_TERMINATE;
	}

	return AE_OK;
}

2251 2252 2253
static int dmar_device_hotplug(acpi_handle handle, bool insert)
{
	int ret;
2254 2255
	acpi_handle tmp = NULL;
	acpi_status status;
2256 2257 2258 2259

	if (!dmar_in_use())
		return 0;

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
		tmp = handle;
	} else {
		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
					     ACPI_UINT32_MAX,
					     dmar_get_dsm_handle,
					     NULL, NULL, &tmp);
		if (ACPI_FAILURE(status)) {
			pr_warn("Failed to locate _DSM method.\n");
			return -ENXIO;
		}
	}
	if (tmp == NULL)
2273 2274 2275 2276
		return 0;

	down_write(&dmar_global_lock);
	if (insert)
2277
		ret = dmar_hotplug_insert(tmp);
2278
	else
2279
		ret = dmar_hotplug_remove(tmp);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	up_write(&dmar_global_lock);

	return ret;
}

int dmar_device_add(acpi_handle handle)
{
	return dmar_device_hotplug(handle, true);
}

int dmar_device_remove(acpi_handle handle)
{
	return dmar_device_hotplug(handle, false);
}
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

/*
 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
 *
 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
 * the ACPI DMAR table. This means that the platform boot firmware has made
 * sure no device can issue DMA outside of RMRR regions.
 */
bool dmar_platform_optin(void)
{
	struct acpi_table_dmar *dmar;
	acpi_status status;
	bool ret;

	status = acpi_get_table(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar);
	if (ACPI_FAILURE(status))
		return false;

	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
	acpi_put_table((struct acpi_table_header *)dmar);

	return ret;
}
EXPORT_SYMBOL_GPL(dmar_platform_optin);