amdtp-stream.c 27.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/pcm.h>
15
#include <sound/pcm_params.h>
16
#include "amdtp-stream.h"
17 18 19 20 21

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

22 23 24 25
/* Always support Linux tracing subsystem. */
#define CREATE_TRACE_POINTS
#include "amdtp-stream-trace.h"

26
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27

28 29
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
30
#define TAG_NO_CIP_HEADER	0
31 32
#define TAG_CIP			1

33
/* common isochronous packet header parameters */
34 35
#define CIP_EOH_SHIFT		31
#define CIP_EOH			(1u << CIP_EOH_SHIFT)
36
#define CIP_EOH_MASK		0x80000000
37 38 39 40
#define CIP_SID_SHIFT		24
#define CIP_SID_MASK		0x3f000000
#define CIP_DBS_MASK		0x00ff0000
#define CIP_DBS_SHIFT		16
41 42
#define CIP_SPH_MASK		0x00000400
#define CIP_SPH_SHIFT		10
43 44
#define CIP_DBC_MASK		0x000000ff
#define CIP_FMT_SHIFT		24
45
#define CIP_FMT_MASK		0x3f000000
46 47
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SHIFT		16
48 49 50
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff

51
/* Audio and Music transfer protocol specific parameters */
52
#define CIP_FMT_AM		0x10
53
#define AMDTP_FDF_NO_DATA	0xff
54 55 56 57 58

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

59
#define IN_PACKET_HEADER_SIZE	4
60 61
#define OUT_PACKET_HEADER_SIZE	0

62 63
static void pcm_period_tasklet(unsigned long data);

64
/**
65 66
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
67
 * @unit: the target of the stream
68
 * @dir: the direction of stream
69
 * @flags: the packet transmission method to use
70
 * @fmt: the value of fmt field in CIP header
71 72
 * @process_data_blocks: callback handler to process data blocks
 * @protocol_size: the size to allocate newly for protocol
73
 */
74
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
75
		      enum amdtp_stream_direction dir, enum cip_flags flags,
76 77 78
		      unsigned int fmt,
		      amdtp_stream_process_data_blocks_t process_data_blocks,
		      unsigned int protocol_size)
79
{
80 81 82 83 84 85 86
	if (process_data_blocks == NULL)
		return -EINVAL;

	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
	if (!s->protocol)
		return -ENOMEM;

87
	s->unit = unit;
88
	s->direction = dir;
89 90 91
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
92
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
93
	s->packet_index = 0;
94

95 96 97
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;

98
	s->fmt = fmt;
99
	s->process_data_blocks = process_data_blocks;
100

101 102
	return 0;
}
103
EXPORT_SYMBOL(amdtp_stream_init);
104 105

/**
106 107
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
108
 */
109
void amdtp_stream_destroy(struct amdtp_stream *s)
110
{
111 112 113 114
	/* Not initialized. */
	if (s->protocol == NULL)
		return;

115
	WARN_ON(amdtp_stream_running(s));
116
	kfree(s->protocol);
117 118
	mutex_destroy(&s->mutex);
}
119
EXPORT_SYMBOL(amdtp_stream_destroy);
120

121
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
122 123 124 125 126 127 128 129 130 131
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

132
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
133 134 135 136 137 138 139 140 141 142
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

143 144 145 146 147 148 149 150
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
151
	struct snd_pcm_hardware *hw = &runtime->hw;
152 153
	int err;

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
	hw->info = SNDRV_PCM_INFO_BATCH |
		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
		   SNDRV_PCM_INFO_INTERLEAVED |
		   SNDRV_PCM_INFO_JOINT_DUPLEX |
		   SNDRV_PCM_INFO_MMAP |
		   SNDRV_PCM_INFO_MMAP_VALID;

	/* SNDRV_PCM_INFO_BATCH */
	hw->periods_min = 2;
	hw->periods_max = UINT_MAX;

	/* bytes for a frame */
	hw->period_bytes_min = 4 * hw->channels_max;

	/* Just to prevent from allocating much pages. */
	hw->period_bytes_max = hw->period_bytes_min * 2048;
	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
196
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
197
	 *
198 199
	 * TODO: These constraints can be improved with proper rules.
	 * Currently apply LCM of SYT_INTERVALs.
200 201 202 203 204 205 206 207 208 209 210 211
	 */
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

212
/**
213 214
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
215
 * @rate: the sample rate
216
 * @data_block_quadlets: the size of a data block in quadlet unit
217
 *
218
 * The parameters must be set before the stream is started, and must not be
219 220
 * changed while the stream is running.
 */
221 222
int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
				unsigned int data_block_quadlets)
223
{
224
	unsigned int sfc;
225

226
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
227
		if (amdtp_rate_table[sfc] == rate)
228 229 230 231
			break;
	}
	if (sfc == ARRAY_SIZE(amdtp_rate_table))
		return -EINVAL;
232 233

	s->sfc = sfc;
234
	s->data_block_quadlets = data_block_quadlets;
235
	s->syt_interval = amdtp_syt_intervals[sfc];
236 237 238 239 240 241

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
242

243
	return 0;
244
}
245
EXPORT_SYMBOL(amdtp_stream_set_parameters);
246 247

/**
248 249
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
250 251
 *
 * This function must not be called before the stream has been configured
252
 * with amdtp_stream_set_parameters().
253
 */
254
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
255
{
256
	unsigned int multiplier = 1;
257
	unsigned int header_size = 0;
258 259 260

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;
261 262
	if (!(s->flags & CIP_NO_HEADER))
		header_size = 8;
263

264 265
	return header_size +
		s->syt_interval * s->data_block_quadlets * 4 * multiplier;
266
}
267
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
268

269
/**
270 271
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
272 273 274
 *
 * This function should be called from the PCM device's .prepare callback.
 */
275
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
276 277 278 279 280
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
}
281
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
282

283 284
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
					  unsigned int syt)
285 286 287
{
	unsigned int phase, data_blocks;

288 289 290 291 292 293 294 295
	/* Blocking mode. */
	if (s->flags & CIP_BLOCKING) {
		/* This module generate empty packet for 'no data'. */
		if (syt == CIP_SYT_NO_INFO)
			data_blocks = 0;
		else
			data_blocks = s->syt_interval;
	/* Non-blocking mode. */
296
	} else {
297 298 299 300 301
		if (!cip_sfc_is_base_44100(s->sfc)) {
			/* Sample_rate / 8000 is an integer, and precomputed. */
			data_blocks = s->data_block_state;
		} else {
			phase = s->data_block_state;
302 303 304 305 306 307 308 309 310

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
311 312 313 314 315 316 317 318 319 320 321
			if (s->sfc == CIP_SFC_44100)
				/* 6 6 5 6 5 6 5 ... */
				data_blocks = 5 + ((phase & 1) ^
						   (phase == 0 || phase >= 40));
			else
				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
			if (++phase >= (80 >> (s->sfc >> 1)))
				phase = 0;
			s->data_block_state = phase;
		}
322 323 324 325 326
	}

	return data_blocks;
}

327
static unsigned int calculate_syt(struct amdtp_stream *s,
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

359
	if (syt_offset < TICKS_PER_CYCLE) {
360
		syt_offset += s->transfer_delay;
361 362
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
363

364
		return syt & CIP_SYT_MASK;
365
	} else {
366
		return CIP_SYT_NO_INFO;
367
	}
368 369
}

370 371 372
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
373 374 375
{
	unsigned int ptr;

376 377 378
	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
379
	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
380 381 382 383 384 385 386 387 388 389 390

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
391
	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
392 393 394 395 396

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

397 398
static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
			unsigned int payload_length)
399 400
{
	struct fw_iso_packet p = {0};
401 402 403 404
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
405 406

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
407
	p.tag = s->tag;
408
	p.header_length = header_length;
409 410 411 412
	if (payload_length > 0)
		p.payload_length = payload_length;
	else
		p.skip = true;
413 414 415 416 417 418 419 420 421 422 423 424 425 426
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
427
				   unsigned int payload_length)
428
{
429
	return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
430 431
}

432 433
static inline int queue_in_packet(struct amdtp_stream *s)
{
434
	return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length);
435 436
}

437 438
static int handle_out_packet(struct amdtp_stream *s,
			     unsigned int payload_length, unsigned int cycle,
439
			     unsigned int index)
440 441
{
	__be32 *buffer;
442 443
	unsigned int syt;
	unsigned int data_blocks;
444
	unsigned int pcm_frames;
445 446
	struct snd_pcm_substream *pcm;

447
	buffer = s->buffer.packets[s->packet_index].buffer;
448 449
	syt = calculate_syt(s, cycle);
	data_blocks = calculate_data_blocks(s, syt);
450
	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
451

452 453 454 455
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter =
				(s->data_block_counter + data_blocks) & 0xff;

456
	buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
457
				(s->data_block_quadlets << CIP_DBS_SHIFT) |
458
				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
459
				s->data_block_counter);
460 461 462 463
	buffer[1] = cpu_to_be32(CIP_EOH |
				((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
				((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
				(syt & CIP_SYT_MASK));
464

465 466 467
	if (!(s->flags & CIP_DBC_IS_END_EVENT))
		s->data_block_counter =
				(s->data_block_counter + data_blocks) & 0xff;
468
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
469

470
	trace_out_packet(s, cycle, buffer, payload_length, index);
471

472
	if (queue_out_packet(s, payload_length) < 0)
473
		return -EIO;
474

475
	pcm = READ_ONCE(s->pcm);
476 477
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
478 479 480

	/* No need to return the number of handled data blocks. */
	return 0;
481 482
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static int handle_out_packet_without_header(struct amdtp_stream *s,
			unsigned int payload_length, unsigned int cycle,
			unsigned int index)
{
	__be32 *buffer;
	unsigned int syt;
	unsigned int data_blocks;
	unsigned int pcm_frames;
	struct snd_pcm_substream *pcm;

	buffer = s->buffer.packets[s->packet_index].buffer;
	syt = calculate_syt(s, cycle);
	data_blocks = calculate_data_blocks(s, syt);
	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

	payload_length = data_blocks * 4 * s->data_block_quadlets;
500 501 502 503

	trace_out_packet_without_header(s, cycle, payload_length, data_blocks,
					index);

504 505 506
	if (queue_out_packet(s, payload_length) < 0)
		return -EIO;

507
	pcm = READ_ONCE(s->pcm);
508 509 510 511 512 513 514
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);

	/* No need to return the number of handled data blocks. */
	return 0;
}

515
static int handle_in_packet(struct amdtp_stream *s,
516
			    unsigned int payload_length, unsigned int cycle,
517
			    unsigned int index)
518
{
519
	__be32 *buffer;
520
	u32 cip_header[2];
521
	unsigned int sph, fmt, fdf, syt;
522
	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
523
	unsigned int data_blocks;
524 525
	struct snd_pcm_substream *pcm;
	unsigned int pcm_frames;
526
	bool lost;
527

528
	buffer = s->buffer.packets[s->packet_index].buffer;
529 530 531
	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

532
	trace_in_packet(s, cycle, cip_header, payload_length, index);
533

534 535
	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
536
	 * For convenience, also check FMT field is AM824 or not.
537
	 */
538 539 540
	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
541 542 543
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
544
		data_blocks = 0;
545
		pcm_frames = 0;
546 547 548
		goto end;
	}

549
	/* Check valid protocol or not. */
550
	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
551
	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
552
	if (sph != s->sph || fmt != s->fmt) {
553 554 555
		dev_info_ratelimited(&s->unit->device,
				     "Detect unexpected protocol: %08x %08x\n",
				     cip_header[0], cip_header[1]);
556
		data_blocks = 0;
557 558
		pcm_frames = 0;
		goto end;
559 560
	}

561
	/* Calculate data blocks */
562
	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
563
	if (payload_length < 12 ||
564
	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
565
		data_blocks = 0;
566 567
	} else {
		data_block_quadlets =
568
			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
569 570
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
571
			dev_err(&s->unit->device,
572 573
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
574
			return -EPROTO;
575
		}
576 577
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
578

579 580
		data_blocks = (payload_length / 4 - 2) /
							data_block_quadlets;
581 582 583
	}

	/* Check data block counter continuity */
584
	data_block_counter = cip_header[0] & CIP_DBC_MASK;
585
	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
586 587 588
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

589 590 591
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
	     data_block_counter == s->tx_first_dbc) ||
	    s->data_block_counter == UINT_MAX) {
592 593
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
594
		lost = data_block_counter != s->data_block_counter;
595
	} else {
596
		if (data_blocks > 0 && s->tx_dbc_interval > 0)
597 598
			dbc_interval = s->tx_dbc_interval;
		else
599
			dbc_interval = data_blocks;
600

601
		lost = data_block_counter !=
602 603
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
604 605

	if (lost) {
606 607 608
		dev_err(&s->unit->device,
			"Detect discontinuity of CIP: %02X %02X\n",
			s->data_block_counter, data_block_counter);
609
		return -EIO;
610 611
	}

612 613
	syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
614

615 616 617 618
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
619
				(data_block_counter + data_blocks) & 0xff;
620 621
end:
	if (queue_in_packet(s) < 0)
622
		return -EIO;
623

624
	pcm = READ_ONCE(s->pcm);
625 626
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
627

628
	return 0;
629 630
}

631 632 633 634 635 636 637 638 639 640 641
static int handle_in_packet_without_header(struct amdtp_stream *s,
			unsigned int payload_quadlets, unsigned int cycle,
			unsigned int index)
{
	__be32 *buffer;
	unsigned int data_blocks;
	struct snd_pcm_substream *pcm;
	unsigned int pcm_frames;

	buffer = s->buffer.packets[s->packet_index].buffer;
	data_blocks = payload_quadlets / s->data_block_quadlets;
642 643 644 645

	trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks,
				       index);

646 647 648 649 650 651
	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

	if (queue_in_packet(s) < 0)
		return -EIO;

652
	pcm = READ_ONCE(s->pcm);
653 654 655 656 657 658
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);

	return 0;
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
/*
 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 */
static inline u32 compute_cycle_count(u32 tstamp)
{
	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
}

static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
{
	cycle += addend;
	if (cycle >= 8 * CYCLES_PER_SECOND)
		cycle -= 8 * CYCLES_PER_SECOND;
	return cycle;
}

677 678 679 680 681 682 683
static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
{
	if (cycle < subtrahend)
		cycle += 8 * CYCLES_PER_SECOND;
	return cycle - subtrahend;
}

684
static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
685 686
				size_t header_length, void *header,
				void *private_data)
687
{
688
	struct amdtp_stream *s = private_data;
689
	unsigned int i, packets = header_length / 4;
690
	u32 cycle;
691

692 693 694
	if (s->packet_index < 0)
		return;

695 696 697 698
	cycle = compute_cycle_count(tstamp);

	/* Align to actual cycle count for the last packet. */
	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
699

700
	for (i = 0; i < packets; ++i) {
701
		cycle = increment_cycle_count(cycle, 1);
702
		if (s->handle_packet(s, 0, cycle, i) < 0) {
703
			s->packet_index = -1;
704 705 706
			if (in_interrupt())
				amdtp_stream_pcm_abort(s);
			WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
707 708
			return;
		}
709
	}
710

711
	fw_iso_context_queue_flush(s->context);
712 713
}

714
static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
715 716 717 718
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
719
	unsigned int i, packets;
720
	unsigned int payload_length, max_payload_length;
721
	__be32 *headers = header;
722
	u32 cycle;
723

724 725 726
	if (s->packet_index < 0)
		return;

727 728 729
	/* The number of packets in buffer */
	packets = header_length / IN_PACKET_HEADER_SIZE;

730 731 732 733 734
	cycle = compute_cycle_count(tstamp);

	/* Align to actual cycle count for the last packet. */
	cycle = decrement_cycle_count(cycle, packets);

735
	/* For buffer-over-run prevention. */
736
	max_payload_length = s->max_payload_length;
737

738
	for (i = 0; i < packets; i++) {
739
		cycle = increment_cycle_count(cycle, 1);
740

741
		/* The number of bytes in this packet */
742 743 744
		payload_length =
			(be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT);
		if (payload_length > max_payload_length) {
745
			dev_err(&s->unit->device,
746 747
				"Detect jumbo payload: %04x %04x\n",
				payload_length, max_payload_length);
748 749 750
			break;
		}

751
		if (s->handle_packet(s, payload_length, cycle, i) < 0)
752
			break;
753 754
	}

755
	/* Queueing error or detecting invalid payload. */
756
	if (i < packets) {
757
		s->packet_index = -1;
758 759 760
		if (in_interrupt())
			amdtp_stream_pcm_abort(s);
		WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
761 762 763
		return;
	}

764 765 766
	fw_iso_context_queue_flush(s->context);
}

767 768
/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
769
					u32 tstamp, size_t header_length,
770 771 772
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;
773 774
	u32 cycle;
	unsigned int packets;
775

776 777
	s->max_payload_length = amdtp_stream_get_max_payload(s);

778 779 780 781 782 783 784
	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

785 786 787 788 789
	cycle = compute_cycle_count(tstamp);

	if (s->direction == AMDTP_IN_STREAM) {
		packets = header_length / IN_PACKET_HEADER_SIZE;
		cycle = decrement_cycle_count(cycle, packets);
790
		context->callback.sc = in_stream_callback;
791 792 793 794
		if (s->flags & CIP_NO_HEADER)
			s->handle_packet = handle_in_packet_without_header;
		else
			s->handle_packet = handle_in_packet;
795 796 797
	} else {
		packets = header_length / 4;
		cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
798
		context->callback.sc = out_stream_callback;
799 800 801 802
		if (s->flags & CIP_NO_HEADER)
			s->handle_packet = handle_out_packet_without_header;
		else
			s->handle_packet = handle_out_packet;
803 804 805
	}

	s->start_cycle = cycle;
806

807
	context->callback.sc(context, tstamp, header_length, header, s);
808 809
}

810
/**
811 812
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
813 814 815 816
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
817 818
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
819
 */
820
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
821 822 823 824 825 826 827 828 829 830 831 832 833
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
834 835
	unsigned int header_size;
	enum dma_data_direction dir;
836
	int type, tag, err;
837 838 839

	mutex_lock(&s->mutex);

840
	if (WARN_ON(amdtp_stream_running(s) ||
841
		    (s->data_block_quadlets < 1))) {
842 843 844 845
		err = -EBADFD;
		goto err_unlock;
	}

846
	if (s->direction == AMDTP_IN_STREAM)
847 848 849
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
850 851 852 853
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

854 855 856 857 858 859 860 861 862 863
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
		header_size = IN_PACKET_HEADER_SIZE;
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
864
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
865
				      amdtp_stream_get_max_payload(s), dir);
866 867 868 869
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
870
					   type, channel, speed, header_size,
871
					   amdtp_stream_first_callback, s);
872 873 874 875
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
876
				"no free stream on this controller\n");
877 878 879
		goto err_buffer;
	}

880
	amdtp_stream_update(s);
881

882 883 884 885 886
	if (s->flags & CIP_NO_HEADER)
		s->tag = TAG_NO_CIP_HEADER;
	else
		s->tag = TAG_CIP;

887
	s->packet_index = 0;
888
	do {
889 890 891
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
892
			err = queue_out_packet(s, 0);
893 894 895
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
896

897
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
898
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
899
	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
900 901
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

902
	s->callbacked = false;
903
	err = fw_iso_context_start(s->context, -1, 0, tag);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
921
EXPORT_SYMBOL(amdtp_stream_start);
922

923
/**
924 925
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
926 927 928
 *
 * Returns the current buffer position, in frames.
 */
929
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
930
{
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	/*
	 * This function is called in software IRQ context of period_tasklet or
	 * process context.
	 *
	 * When the software IRQ context was scheduled by software IRQ context
	 * of IR/IT contexts, queued packets were already handled. Therefore,
	 * no need to flush the queue in buffer anymore.
	 *
	 * When the process context reach here, some packets will be already
	 * queued in the buffer. These packets should be handled immediately
	 * to keep better granularity of PCM pointer.
	 *
	 * Later, the process context will sometimes schedules software IRQ
	 * context of the period_tasklet. Then, no need to flush the queue by
	 * the same reason as described for IR/IT contexts.
	 */
	if (!in_interrupt() && amdtp_stream_running(s))
948
		fw_iso_context_flush_completions(s->context);
949

950
	return READ_ONCE(s->pcm_buffer_pointer);
951
}
952
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/**
 * amdtp_stream_pcm_ack - acknowledge queued PCM frames
 * @s: the AMDTP stream that transfers the PCM frames
 *
 * Returns zero always.
 */
int amdtp_stream_pcm_ack(struct amdtp_stream *s)
{
	/*
	 * Process isochronous packets for recent isochronous cycle to handle
	 * queued PCM frames.
	 */
	if (amdtp_stream_running(s))
		fw_iso_context_flush_completions(s->context);

	return 0;
}
EXPORT_SYMBOL(amdtp_stream_pcm_ack);

973
/**
974 975
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
976
 */
977
void amdtp_stream_update(struct amdtp_stream *s)
978
{
979
	/* Precomputing. */
980 981
	WRITE_ONCE(s->source_node_id_field,
                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
982
}
983
EXPORT_SYMBOL(amdtp_stream_update);
984 985

/**
986 987
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
988 989 990 991
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
992
void amdtp_stream_stop(struct amdtp_stream *s)
993 994 995
{
	mutex_lock(&s->mutex);

996
	if (!amdtp_stream_running(s)) {
997 998 999 1000
		mutex_unlock(&s->mutex);
		return;
	}

1001
	tasklet_kill(&s->period_tasklet);
1002 1003 1004 1005 1006
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1007 1008
	s->callbacked = false;

1009 1010
	mutex_unlock(&s->mutex);
}
1011
EXPORT_SYMBOL(amdtp_stream_stop);
1012 1013

/**
1014
 * amdtp_stream_pcm_abort - abort the running PCM device
1015 1016 1017 1018 1019
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1020
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1021 1022 1023
{
	struct snd_pcm_substream *pcm;

1024
	pcm = READ_ONCE(s->pcm);
1025 1026
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1027
}
1028
EXPORT_SYMBOL(amdtp_stream_pcm_abort);