tid_rdma.c 154.5 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/*
 * Copyright(c) 2018 Intel Corporation.
 *
 */

#include "hfi.h"
K
Kaike Wan 已提交
8
#include "qp.h"
9
#include "rc.h"
10 11
#include "verbs.h"
#include "tid_rdma.h"
12
#include "exp_rcv.h"
K
Kaike Wan 已提交
13
#include "trace.h"
14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/**
 * DOC: TID RDMA READ protocol
 *
 * This is an end-to-end protocol at the hfi1 level between two nodes that
 * improves performance by avoiding data copy on the requester side. It
 * converts a qualified RDMA READ request into a TID RDMA READ request on
 * the requester side and thereafter handles the request and response
 * differently. To be qualified, the RDMA READ request should meet the
 * following:
 * -- The total data length should be greater than 256K;
 * -- The total data length should be a multiple of 4K page size;
 * -- Each local scatter-gather entry should be 4K page aligned;
 * -- Each local scatter-gather entry should be a multiple of 4K page size;
 */

K
Kaike Wan 已提交
30 31 32 33 34 35 36
#define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
#define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
#define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
#define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)

37 38 39
/* Maximum number of packets within a flow generation. */
#define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)

K
Kaike Wan 已提交
40 41 42 43 44 45 46 47 48 49
#define GENERATION_MASK 0xFFFFF

static u32 mask_generation(u32 a)
{
	return a & GENERATION_MASK;
}

/* Reserved generation value to set to unused flows for kernel contexts */
#define KERN_GENERATION_RESERVED mask_generation(U32_MAX)

50 51 52 53 54 55 56 57
/*
 * J_KEY for kernel contexts when TID RDMA is used.
 * See generate_jkey() in hfi.h for more information.
 */
#define TID_RDMA_JKEY                   32
#define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
#define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)

58
/* Maximum number of segments in flight per QP request. */
59 60
#define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
#define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 62 63 64 65
#define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
#define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)

#define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66

67 68 69
#define TID_RDMA_DESTQP_FLOW_SHIFT      11
#define TID_RDMA_DESTQP_FLOW_MASK       0x1f

70 71
#define TID_FLOW_SW_PSN BIT(0)

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#define TID_OPFN_QP_CTXT_MASK 0xff
#define TID_OPFN_QP_CTXT_SHIFT 56
#define TID_OPFN_QP_KDETH_MASK 0xff
#define TID_OPFN_QP_KDETH_SHIFT 48
#define TID_OPFN_MAX_LEN_MASK 0x7ff
#define TID_OPFN_MAX_LEN_SHIFT 37
#define TID_OPFN_TIMEOUT_MASK 0x1f
#define TID_OPFN_TIMEOUT_SHIFT 32
#define TID_OPFN_RESERVED_MASK 0x3f
#define TID_OPFN_RESERVED_SHIFT 26
#define TID_OPFN_URG_MASK 0x1
#define TID_OPFN_URG_SHIFT 25
#define TID_OPFN_VER_MASK 0x7
#define TID_OPFN_VER_SHIFT 22
#define TID_OPFN_JKEY_MASK 0x3f
#define TID_OPFN_JKEY_SHIFT 16
#define TID_OPFN_MAX_READ_MASK 0x3f
#define TID_OPFN_MAX_READ_SHIFT 10
#define TID_OPFN_MAX_WRITE_MASK 0x3f
#define TID_OPFN_MAX_WRITE_SHIFT 4

/*
 * OPFN TID layout
 *
 * 63               47               31               15
 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
 * N - the context Number
 * K - the Kdeth_qp
 * M - Max_len
 * T - Timeout
 * D - reserveD
 * V - version
 * U - Urg capable
 * J - Jkey
 * R - max_Read
 * W - max_Write
 * C - Capcode
 */

112 113
static u32 tid_rdma_flow_wt;

K
Kaike Wan 已提交
114
static void tid_rdma_trigger_resume(struct work_struct *work);
115 116 117 118 119
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
					 gfp_t gfp);
static void hfi1_init_trdma_req(struct rvt_qp *qp,
				struct tid_rdma_request *req);
120
static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
K
Kaike Wan 已提交
121 122 123
static void hfi1_tid_timeout(struct timer_list *t);
static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
K
Kaike Wan 已提交
124 125 126
static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
static void hfi1_tid_retry_timeout(struct timer_list *t);
127 128 129
static int make_tid_rdma_ack(struct rvt_qp *qp,
			     struct ib_other_headers *ohdr,
			     struct hfi1_pkt_state *ps);
K
Kaike Wan 已提交
130
static void hfi1_do_tid_send(struct rvt_qp *qp);
131
static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
K
Kaike Wan 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
{
	return
		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
			TID_OPFN_QP_CTXT_SHIFT) |
		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
			TID_OPFN_QP_KDETH_SHIFT) |
		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
			TID_OPFN_TIMEOUT_SHIFT) |
		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
			TID_OPFN_MAX_READ_SHIFT) |
		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
			TID_OPFN_MAX_WRITE_SHIFT);
}

static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
{
	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
		TID_OPFN_MAX_WRITE_MASK;
	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
		TID_OPFN_MAX_READ_MASK;
	p->qp =
		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
			<< 16) |
		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
}

void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
{
	struct hfi1_qp_priv *priv = qp->priv;

	p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
	p->jkey = priv->rcd->jkey;
	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
	p->timeout = qp->timeout;
	p->urg = is_urg_masked(priv->rcd);
}

bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
{
	struct hfi1_qp_priv *priv = qp->priv;

	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
	return true;
}

bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct tid_rdma_params *remote, *old;
	bool ret = true;

	old = rcu_dereference_protected(priv->tid_rdma.remote,
					lockdep_is_held(&priv->opfn.lock));
	data &= ~0xfULL;
	/*
	 * If data passed in is zero, return true so as not to continue the
	 * negotiation process
	 */
	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
		goto null;
	/*
	 * If kzalloc fails, return false. This will result in:
	 * * at the requester a new OPFN request being generated to retry
	 *   the negotiation
	 * * at the responder, 0 being returned to the requester so as to
	 *   disable TID RDMA at both the requester and the responder
	 */
	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
	if (!remote) {
		ret = false;
		goto null;
	}

	tid_rdma_opfn_decode(remote, data);
	priv->tid_timer_timeout_jiffies =
		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
				   1000UL) << 3) * 7);
K
Kaike Wan 已提交
222 223
	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
	trace_hfi1_opfn_param(qp, 1, remote);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	rcu_assign_pointer(priv->tid_rdma.remote, remote);
	/*
	 * A TID RDMA READ request's segment size is not equal to
	 * remote->max_len only when the request's data length is smaller
	 * than remote->max_len. In that case, there will be only one segment.
	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
	 * during retry, it will lead to req->cur_seg = 0, which is exactly
	 * what is expected.
	 */
	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
	goto free;
null:
	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
	priv->timeout_shift = 0;
free:
	if (old)
		kfree_rcu(old, rcu_head);
	return ret;
}

bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
{
	bool ret;

	ret = tid_rdma_conn_reply(qp, *data);
	*data = 0;
	/*
	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
	 * TID RDMA could not be enabled. This will result in TID RDMA being
	 * disabled at the requester too.
	 */
	if (ret)
		(void)tid_rdma_conn_req(qp, data);
	return ret;
}

void tid_rdma_conn_error(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct tid_rdma_params *old;

	old = rcu_dereference_protected(priv->tid_rdma.remote,
					lockdep_is_held(&priv->opfn.lock));
	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
	if (old)
		kfree_rcu(old, rcu_head);
}

/* This is called at context initialization time */
int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
{
	if (reinit)
		return 0;

	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
	rcd->jkey = TID_RDMA_JKEY;
	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
283
	return hfi1_alloc_ctxt_rcv_groups(rcd);
284 285
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/**
 * qp_to_rcd - determine the receive context used by a qp
 * @qp - the qp
 *
 * This routine returns the receive context associated
 * with a a qp's qpn.
 *
 * Returns the context.
 */
static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
				       struct rvt_qp *qp)
{
	struct hfi1_ibdev *verbs_dev = container_of(rdi,
						    struct hfi1_ibdev,
						    rdi);
	struct hfi1_devdata *dd = container_of(verbs_dev,
					       struct hfi1_devdata,
					       verbs_dev);
	unsigned int ctxt;

	if (qp->ibqp.qp_num == 0)
		ctxt = 0;
	else
		ctxt = ((qp->ibqp.qp_num >> dd->qos_shift) %
			(dd->n_krcv_queues - 1)) + 1;

	return dd->rcd[ctxt];
}

int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
		      struct ib_qp_init_attr *init_attr)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
319
	int i, ret;
320 321 322

	qpriv->rcd = qp_to_rcd(rdi, qp);

323 324
	spin_lock_init(&qpriv->opfn.lock);
	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
K
Kaike Wan 已提交
325 326 327 328 329
	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
	qpriv->flow_state.psn = 0;
	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
330
	qpriv->s_state = TID_OP(WRITE_RESP);
331 332 333
	qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
	qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
	qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
334 335 336 337 338
	qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
	qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
	qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
	qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
	qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
339
	atomic_set(&qpriv->n_requests, 0);
340
	atomic_set(&qpriv->n_tid_requests, 0);
K
Kaike Wan 已提交
341
	timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
K
Kaike Wan 已提交
342
	timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
K
Kaike Wan 已提交
343
	INIT_LIST_HEAD(&qpriv->tid_wait);
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
		struct hfi1_devdata *dd = qpriv->rcd->dd;

		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
						sizeof(*qpriv->pages),
					    GFP_KERNEL, dd->node);
		if (!qpriv->pages)
			return -ENOMEM;
		for (i = 0; i < qp->s_size; i++) {
			struct hfi1_swqe_priv *priv;
			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);

			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
					    dd->node);
			if (!priv)
				return -ENOMEM;

			hfi1_init_trdma_req(qp, &priv->tid_req);
			priv->tid_req.e.swqe = wqe;
			wqe->priv = priv;
		}
		for (i = 0; i < rvt_max_atomic(rdi); i++) {
			struct hfi1_ack_priv *priv;

			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
					    dd->node);
			if (!priv)
				return -ENOMEM;

			hfi1_init_trdma_req(qp, &priv->tid_req);
			priv->tid_req.e.ack = &qp->s_ack_queue[i];

			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
							    GFP_KERNEL);
			if (ret) {
				kfree(priv);
				return ret;
			}
			qp->s_ack_queue[i].priv = priv;
		}
	}

387 388
	return 0;
}
389 390 391

void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct rvt_swqe *wqe;
	u32 i;

	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
		for (i = 0; i < qp->s_size; i++) {
			wqe = rvt_get_swqe_ptr(qp, i);
			kfree(wqe->priv);
			wqe->priv = NULL;
		}
		for (i = 0; i < rvt_max_atomic(rdi); i++) {
			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;

			if (priv)
				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
			kfree(priv);
			qp->s_ack_queue[i].priv = NULL;
		}
		cancel_work_sync(&qpriv->opfn.opfn_work);
		kfree(qpriv->pages);
		qpriv->pages = NULL;
	}
414
}
K
Kaike Wan 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

/* Flow and tid waiter functions */
/**
 * DOC: lock ordering
 *
 * There are two locks involved with the queuing
 * routines: the qp s_lock and the exp_lock.
 *
 * Since the tid space allocation is called from
 * the send engine, the qp s_lock is already held.
 *
 * The allocation routines will get the exp_lock.
 *
 * The first_qp() call is provided to allow the head of
 * the rcd wait queue to be fetched under the exp_lock and
 * followed by a drop of the exp_lock.
 *
 * Any qp in the wait list will have the qp reference count held
 * to hold the qp in memory.
 */

/*
 * return head of rcd wait list
 *
 * Must hold the exp_lock.
 *
 * Get a reference to the QP to hold the QP in memory.
 *
 * The caller must release the reference when the local
 * is no longer being used.
 */
static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue)
	__must_hold(&rcd->exp_lock)
{
	struct hfi1_qp_priv *priv;

	lockdep_assert_held(&rcd->exp_lock);
	priv = list_first_entry_or_null(&queue->queue_head,
					struct hfi1_qp_priv,
					tid_wait);
	if (!priv)
		return NULL;
	rvt_get_qp(priv->owner);
	return priv->owner;
}

/**
 * kernel_tid_waiters - determine rcd wait
 * @rcd: the receive context
 * @qp: the head of the qp being processed
 *
 * This routine will return false IFF
 * the list is NULL or the head of the
 * list is the indicated qp.
 *
 * Must hold the qp s_lock and the exp_lock.
 *
 * Return:
 * false if either of the conditions below are statisfied:
 * 1. The list is empty or
 * 2. The indicated qp is at the head of the list and the
 *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
 * true is returned otherwise.
 */
static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct rvt_qp *fqp;
	bool ret = true;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	fqp = first_qp(rcd, queue);
	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
		ret = false;
	rvt_put_qp(fqp);
	return ret;
}

/**
 * dequeue_tid_waiter - dequeue the qp from the list
 * @qp - the qp to remove the wait list
 *
 * This routine removes the indicated qp from the
 * wait list if it is there.
 *
 * This should be done after the hardware flow and
 * tid array resources have been allocated.
 *
 * Must hold the qp s_lock and the rcd exp_lock.
 *
 * It assumes the s_lock to protect the s_flags
 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
 */
static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	if (list_empty(&priv->tid_wait))
		return;
	list_del_init(&priv->tid_wait);
	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
	queue->dequeue++;
	rvt_put_qp(qp);
}

/**
 * queue_qp_for_tid_wait - suspend QP on tid space
 * @rcd: the receive context
 * @qp: the qp
 *
 * The qp is inserted at the tail of the rcd
 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
 *
 * Must hold the qp s_lock and the exp_lock.
 */
static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
				  struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	if (list_empty(&priv->tid_wait)) {
		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
		list_add_tail(&priv->tid_wait, &queue->queue_head);
		priv->tid_enqueue = ++queue->enqueue;
K
Kaike Wan 已提交
549
		rcd->dd->verbs_dev.n_tidwait++;
K
Kaike Wan 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
		rvt_get_qp(qp);
	}
}

/**
 * __trigger_tid_waiter - trigger tid waiter
 * @qp: the qp
 *
 * This is a private entrance to schedule the qp
 * assuming the caller is holding the qp->s_lock.
 */
static void __trigger_tid_waiter(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	lockdep_assert_held(&qp->s_lock);
	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
		return;
	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
	hfi1_schedule_send(qp);
}

/**
 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
 * @qp - the qp
 *
 * trigger a schedule or a waiting qp in a deadlock
 * safe manner.  The qp reference is held prior
 * to this call via first_qp().
 *
 * If the qp trigger was already scheduled (!rval)
 * the the reference is dropped, otherwise the resume
 * or the destroy cancel will dispatch the reference.
 */
static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv;
	struct hfi1_ibport *ibp;
	struct hfi1_pportdata *ppd;
	struct hfi1_devdata *dd;
	bool rval;

	if (!qp)
		return;

	priv = qp->priv;
	ibp = to_iport(qp->ibqp.device, qp->port_num);
	ppd = ppd_from_ibp(ibp);
	dd = dd_from_ibdev(qp->ibqp.device);

	rval = queue_work_on(priv->s_sde ?
			     priv->s_sde->cpu :
			     cpumask_first(cpumask_of_node(dd->node)),
			     ppd->hfi1_wq,
			     &priv->tid_rdma.trigger_work);
	if (!rval)
		rvt_put_qp(qp);
}

/**
 * tid_rdma_trigger_resume - field a trigger work request
 * @work - the work item
 *
 * Complete the off qp trigger processing by directly
 * calling the progress routine.
 */
static void tid_rdma_trigger_resume(struct work_struct *work)
{
	struct tid_rdma_qp_params *tr;
	struct hfi1_qp_priv *priv;
	struct rvt_qp *qp;

	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
	qp = priv->owner;
	spin_lock_irq(&qp->s_lock);
	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
		spin_unlock_irq(&qp->s_lock);
		hfi1_do_send(priv->owner, true);
	} else {
		spin_unlock_irq(&qp->s_lock);
	}
	rvt_put_qp(qp);
}

/**
 * tid_rdma_flush_wait - unwind any tid space wait
 *
 * This is called when resetting a qp to
 * allow a destroy or reset to get rid
 * of any tid space linkage and reference counts.
 */
static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv;

	if (!qp)
		return;
	lockdep_assert_held(&qp->s_lock);
	priv = qp->priv;
	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
	spin_lock(&priv->rcd->exp_lock);
	if (!list_empty(&priv->tid_wait)) {
		list_del_init(&priv->tid_wait);
		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
		queue->dequeue++;
		rvt_put_qp(qp);
	}
	spin_unlock(&priv->rcd->exp_lock);
}

void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
668
	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
K
Kaike Wan 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
}

/* Flow functions */
/**
 * kern_reserve_flow - allocate a hardware flow
 * @rcd - the context to use for allocation
 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
 *         signify "don't care".
 *
 * Use a bit mask based allocation to reserve a hardware
 * flow for use in receiving KDETH data packets. If a preferred flow is
 * specified the function will attempt to reserve that flow again, if
 * available.
 *
 * The exp_lock must be held.
 *
 * Return:
 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
 * On failure: -EAGAIN
 */
static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
	__must_hold(&rcd->exp_lock)
{
	int nr;

	/* Attempt to reserve the preferred flow index */
	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
	    !test_and_set_bit(last, &rcd->flow_mask))
		return last;

	nr = ffz(rcd->flow_mask);
	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
	if (nr > (RXE_NUM_TID_FLOWS - 1))
		return -EAGAIN;
	set_bit(nr, &rcd->flow_mask);
	return nr;
}

static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
			     u32 flow_idx)
{
	u64 reg;

	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;

	if (generation != KERN_GENERATION_RESERVED)
		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;

	write_uctxt_csr(rcd->dd, rcd->ctxt,
			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
}

static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
	__must_hold(&rcd->exp_lock)
{
	u32 generation = rcd->flows[flow_idx].generation;

	kern_set_hw_flow(rcd, generation, flow_idx);
	return generation;
}

static u32 kern_flow_generation_next(u32 gen)
{
	u32 generation = mask_generation(gen + 1);

	if (generation == KERN_GENERATION_RESERVED)
		generation = mask_generation(generation + 1);
	return generation;
}

static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
	__must_hold(&rcd->exp_lock)
{
	rcd->flows[flow_idx].generation =
		kern_flow_generation_next(rcd->flows[flow_idx].generation);
	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
}

int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
	struct tid_flow_state *fs = &qpriv->flow_state;
	struct rvt_qp *fqp;
	unsigned long flags;
	int ret = 0;

	/* The QP already has an allocated flow */
	if (fs->index != RXE_NUM_TID_FLOWS)
		return ret;

	spin_lock_irqsave(&rcd->exp_lock, flags);
	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
		goto queue;

	ret = kern_reserve_flow(rcd, fs->last_index);
	if (ret < 0)
		goto queue;
	fs->index = ret;
	fs->last_index = fs->index;

	/* Generation received in a RESYNC overrides default flow generation */
	if (fs->generation != KERN_GENERATION_RESERVED)
		rcd->flows[fs->index].generation = fs->generation;
	fs->generation = kern_setup_hw_flow(rcd, fs->index);
	fs->psn = 0;
	fs->flags = 0;
	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->flow_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	tid_rdma_schedule_tid_wakeup(fqp);
	return 0;
queue:
	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	return -EAGAIN;
}

void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
	struct tid_flow_state *fs = &qpriv->flow_state;
	struct rvt_qp *fqp;
	unsigned long flags;

	if (fs->index >= RXE_NUM_TID_FLOWS)
		return;
	spin_lock_irqsave(&rcd->exp_lock, flags);
	kern_clear_hw_flow(rcd, fs->index);
	clear_bit(fs->index, &rcd->flow_mask);
	fs->index = RXE_NUM_TID_FLOWS;
	fs->psn = 0;
	fs->generation = KERN_GENERATION_RESERVED;

	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->flow_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	if (fqp == qp) {
		__trigger_tid_waiter(fqp);
		rvt_put_qp(fqp);
	} else {
		tid_rdma_schedule_tid_wakeup(fqp);
	}
}

void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
{
	int i;

	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
		rcd->flows[i].generation = mask_generation(prandom_u32());
		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
	}
}
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

/* TID allocation functions */
static u8 trdma_pset_order(struct tid_rdma_pageset *s)
{
	u8 count = s->count;

	return ilog2(count) + 1;
}

/**
 * tid_rdma_find_phys_blocks_4k - get groups base on mr info
 * @npages - number of pages
 * @pages - pointer to an array of page structs
 * @list - page set array to return
 *
 * This routine returns the number of groups associated with
 * the current sge information.  This implementation is based
 * on the expected receive find_phys_blocks() adjusted to
 * use the MR information vs. the pfn.
 *
 * Return:
 * the number of RcvArray entries
 */
static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
					struct page **pages,
					u32 npages,
					struct tid_rdma_pageset *list)
{
	u32 pagecount, pageidx, setcount = 0, i;
	void *vaddr, *this_vaddr;

	if (!npages)
		return 0;

	/*
	 * Look for sets of physically contiguous pages in the user buffer.
	 * This will allow us to optimize Expected RcvArray entry usage by
	 * using the bigger supported sizes.
	 */
	vaddr = page_address(pages[0]);
871
	trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
872 873
	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
874 875
		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
					 this_vaddr);
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		/*
		 * If the vaddr's are not sequential, pages are not physically
		 * contiguous.
		 */
		if (this_vaddr != (vaddr + PAGE_SIZE)) {
			/*
			 * At this point we have to loop over the set of
			 * physically contiguous pages and break them down it
			 * sizes supported by the HW.
			 * There are two main constraints:
			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
			 *        If the total set size is bigger than that
			 *        program only a MAX_EXPECTED_BUFFER chunk.
			 *     2. The buffer size has to be a power of two. If
			 *        it is not, round down to the closes power of
			 *        2 and program that size.
			 */
			while (pagecount) {
				int maxpages = pagecount;
				u32 bufsize = pagecount * PAGE_SIZE;

				if (bufsize > MAX_EXPECTED_BUFFER)
					maxpages =
						MAX_EXPECTED_BUFFER >>
						PAGE_SHIFT;
				else if (!is_power_of_2(bufsize))
					maxpages =
						rounddown_pow_of_two(bufsize) >>
						PAGE_SHIFT;

				list[setcount].idx = pageidx;
				list[setcount].count = maxpages;
908 909 910
				trace_hfi1_tid_pageset(flow->req->qp, setcount,
						       list[setcount].idx,
						       list[setcount].count);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
				pagecount -= maxpages;
				pageidx += maxpages;
				setcount++;
			}
			pageidx = i;
			pagecount = 1;
			vaddr = this_vaddr;
		} else {
			vaddr += PAGE_SIZE;
			pagecount++;
		}
	}
	/* insure we always return an even number of sets */
	if (setcount & 1)
		list[setcount++].count = 0;
	return setcount;
}

/**
 * tid_flush_pages - dump out pages into pagesets
 * @list - list of pagesets
 * @idx - pointer to current page index
 * @pages - number of pages to dump
 * @sets - current number of pagesset
 *
 * This routine flushes out accumuated pages.
 *
 * To insure an even number of sets the
 * code may add a filler.
 *
 * This can happen with when pages is not
 * a power of 2 or pages is a power of 2
 * less than the maximum pages.
 *
 * Return:
 * The new number of sets
 */

static u32 tid_flush_pages(struct tid_rdma_pageset *list,
			   u32 *idx, u32 pages, u32 sets)
{
	while (pages) {
		u32 maxpages = pages;

		if (maxpages > MAX_EXPECTED_PAGES)
			maxpages = MAX_EXPECTED_PAGES;
		else if (!is_power_of_2(maxpages))
			maxpages = rounddown_pow_of_two(maxpages);
		list[sets].idx = *idx;
		list[sets++].count = maxpages;
		*idx += maxpages;
		pages -= maxpages;
	}
	/* might need a filler */
	if (sets & 1)
		list[sets++].count = 0;
	return sets;
}

/**
 * tid_rdma_find_phys_blocks_8k - get groups base on mr info
 * @pages - pointer to an array of page structs
 * @npages - number of pages
 * @list - page set array to return
 *
 * This routine parses an array of pages to compute pagesets
 * in an 8k compatible way.
 *
 * pages are tested two at a time, i, i + 1 for contiguous
 * pages and i - 1 and i contiguous pages.
 *
 * If any condition is false, any accumlated pages are flushed and
 * v0,v1 are emitted as separate PAGE_SIZE pagesets
 *
 * Otherwise, the current 8k is totaled for a future flush.
 *
 * Return:
 * The number of pagesets
 * list set with the returned number of pagesets
 *
 */
static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
					struct page **pages,
					u32 npages,
					struct tid_rdma_pageset *list)
{
	u32 idx, sets = 0, i;
	u32 pagecnt = 0;
	void *v0, *v1, *vm1;

	if (!npages)
		return 0;
	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
		/* get a new v0 */
		v0 = page_address(pages[i]);
1006
		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1007 1008
		v1 = i + 1 < npages ?
				page_address(pages[i + 1]) : NULL;
1009
		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		/* compare i, i + 1 vaddr */
		if (v1 != (v0 + PAGE_SIZE)) {
			/* flush out pages */
			sets = tid_flush_pages(list, &idx, pagecnt, sets);
			/* output v0,v1 as two pagesets */
			list[sets].idx = idx++;
			list[sets++].count = 1;
			if (v1) {
				list[sets].count = 1;
				list[sets++].idx = idx++;
			} else {
				list[sets++].count = 0;
			}
			vm1 = NULL;
			pagecnt = 0;
			continue;
		}
		/* i,i+1 consecutive, look at i-1,i */
		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
			/* flush out pages */
			sets = tid_flush_pages(list, &idx, pagecnt, sets);
			pagecnt = 0;
		}
		/* pages will always be a multiple of 8k */
		pagecnt += 2;
		/* save i-1 */
		vm1 = v1;
		/* move to next pair */
	}
	/* dump residual pages at end */
	sets = tid_flush_pages(list, &idx, npages - idx, sets);
	/* by design cannot be odd sets */
	WARN_ON(sets & 1);
	return sets;
}

/**
 * Find pages for one segment of a sge array represented by @ss. The function
 * does not check the sge, the sge must have been checked for alignment with a
 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
 * copy maintained in @ss->sge, the original sge is not modified.
 *
 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
 * releasing the MR reference count at the same time. Otherwise, we'll "leak"
 * references to the MR. This difference requires that we keep track of progress
 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
 * structure.
 */
static u32 kern_find_pages(struct tid_rdma_flow *flow,
			   struct page **pages,
			   struct rvt_sge_state *ss, bool *last)
{
	struct tid_rdma_request *req = flow->req;
	struct rvt_sge *sge = &ss->sge;
	u32 length = flow->req->seg_len;
	u32 len = PAGE_SIZE;
	u32 i = 0;

	while (length && req->isge < ss->num_sge) {
		pages[i++] = virt_to_page(sge->vaddr);

		sge->vaddr += len;
		sge->length -= len;
		sge->sge_length -= len;
		if (!sge->sge_length) {
			if (++req->isge < ss->num_sge)
				*sge = ss->sg_list[req->isge - 1];
		} else if (sge->length == 0 && sge->mr->lkey) {
			if (++sge->n >= RVT_SEGSZ) {
				++sge->m;
				sge->n = 0;
			}
			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
		}
		length -= len;
	}

	flow->length = flow->req->seg_len - length;
	*last = req->isge == ss->num_sge ? false : true;
	return i;
}

static void dma_unmap_flow(struct tid_rdma_flow *flow)
{
	struct hfi1_devdata *dd;
	int i;
	struct tid_rdma_pageset *pset;

	dd = flow->req->rcd->dd;
	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
			i++, pset++) {
		if (pset->count && pset->addr) {
			dma_unmap_page(&dd->pcidev->dev,
				       pset->addr,
				       PAGE_SIZE * pset->count,
				       DMA_FROM_DEVICE);
			pset->mapped = 0;
		}
	}
}

static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
{
	int i;
	struct hfi1_devdata *dd = flow->req->rcd->dd;
	struct tid_rdma_pageset *pset;

	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
			i++, pset++) {
		if (pset->count) {
			pset->addr = dma_map_page(&dd->pcidev->dev,
						  pages[pset->idx],
						  0,
						  PAGE_SIZE * pset->count,
						  DMA_FROM_DEVICE);

			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
				dma_unmap_flow(flow);
				return -ENOMEM;
			}
			pset->mapped = 1;
		}
	}
	return 0;
}

static inline bool dma_mapped(struct tid_rdma_flow *flow)
{
	return !!flow->pagesets[0].mapped;
}

/*
 * Get pages pointers and identify contiguous physical memory chunks for a
 * segment. All segments are of length flow->req->seg_len.
 */
static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
				struct page **pages,
				struct rvt_sge_state *ss, bool *last)
{
	u8 npages;

	/* Reuse previously computed pagesets, if any */
	if (flow->npagesets) {
1155 1156
		trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
					  flow);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		if (!dma_mapped(flow))
			return dma_map_flow(flow, pages);
		return 0;
	}

	npages = kern_find_pages(flow, pages, ss, last);

	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
		flow->npagesets =
			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
						     flow->pagesets);
	else
		flow->npagesets =
			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
						     flow->pagesets);

	return dma_map_flow(flow, pages);
}

static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
				     struct hfi1_ctxtdata *rcd, char *s,
				     struct tid_group *grp, u8 cnt)
{
	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];

	WARN_ON_ONCE(flow->tnode_cnt >=
		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
	if (WARN_ON_ONCE(cnt & 1))
		dd_dev_err(rcd->dd,
			   "unexpected odd allocation cnt %u map 0x%x used %u",
			   cnt, grp->map, grp->used);

	node->grp = grp;
	node->map = grp->map;
	node->cnt = cnt;
1192 1193
	trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
				grp->base, grp->map, grp->used, cnt);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
}

/*
 * Try to allocate pageset_count TID's from TID groups for a context
 *
 * This function allocates TID's without moving groups between lists or
 * modifying grp->map. This is done as follows, being cogizant of the lists
 * between which the TID groups will move:
 * 1. First allocate complete groups of 8 TID's since this is more efficient,
 *    these groups will move from group->full without affecting used
 * 2. If more TID's are needed allocate from used (will move from used->full or
 *    stay in used)
 * 3. If we still don't have the required number of TID's go back and look again
 *    at a complete group (will move from group->used)
 */
static int kern_alloc_tids(struct tid_rdma_flow *flow)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	u32 ngroups, pageidx = 0;
	struct tid_group *group = NULL, *used;
	u8 use;

	flow->tnode_cnt = 0;
	ngroups = flow->npagesets / dd->rcv_entries.group_size;
	if (!ngroups)
		goto used_list;

	/* First look at complete groups */
	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
		kern_add_tid_node(flow, rcd, "complete groups", group,
				  group->size);

		pageidx += group->size;
		if (!--ngroups)
			break;
	}

	if (pageidx >= flow->npagesets)
		goto ok;

used_list:
	/* Now look at partially used groups */
	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
		use = min_t(u32, flow->npagesets - pageidx,
			    used->size - used->used);
		kern_add_tid_node(flow, rcd, "used groups", used, use);

		pageidx += use;
		if (pageidx >= flow->npagesets)
			goto ok;
	}

	/*
	 * Look again at a complete group, continuing from where we left.
	 * However, if we are at the head, we have reached the end of the
	 * complete groups list from the first loop above
	 */
	if (group && &group->list == &rcd->tid_group_list.list)
		goto bail_eagain;
	group = list_prepare_entry(group, &rcd->tid_group_list.list,
				   list);
	if (list_is_last(&group->list, &rcd->tid_group_list.list))
		goto bail_eagain;
	group = list_next_entry(group, list);
	use = min_t(u32, flow->npagesets - pageidx, group->size);
	kern_add_tid_node(flow, rcd, "complete continue", group, use);
	pageidx += use;
	if (pageidx >= flow->npagesets)
		goto ok;
bail_eagain:
1265 1266
	trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
				  (u64)flow->npagesets);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	return -EAGAIN;
ok:
	return 0;
}

static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
				   u32 *pset_idx)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	struct kern_tid_node *node = &flow->tnode[grp_num];
	struct tid_group *grp = node->grp;
	struct tid_rdma_pageset *pset;
	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
	u32 rcventry, npages = 0, pair = 0, tidctrl;
	u8 i, cnt = 0;

	for (i = 0; i < grp->size; i++) {
		rcventry = grp->base + i;

		if (node->map & BIT(i) || cnt >= node->cnt) {
			rcv_array_wc_fill(dd, rcventry);
			continue;
		}
		pset = &flow->pagesets[(*pset_idx)++];
		if (pset->count) {
			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
				     pset->addr, trdma_pset_order(pset));
		} else {
			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
		}
		npages += pset->count;

		rcventry -= rcd->expected_base;
		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
		/*
		 * A single TID entry will be used to use a rcvarr pair (with
		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
		 * (b) the group map shows current and the next bits as free
		 * indicating two consecutive rcvarry entries are available (c)
		 * we actually need 2 more entries
		 */
		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
			node->cnt >= cnt + 2;
		if (!pair) {
			if (!pset->count)
				tidctrl = 0x1;
			flow->tid_entry[flow->tidcnt++] =
				EXP_TID_SET(IDX, rcventry >> 1) |
				EXP_TID_SET(CTRL, tidctrl) |
				EXP_TID_SET(LEN, npages);
1318 1319 1320 1321
			trace_hfi1_tid_entry_alloc(/* entry */
			   flow->req->qp, flow->tidcnt - 1,
			   flow->tid_entry[flow->tidcnt - 1]);

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
			npages = 0;
		}

		if (grp->used == grp->size - 1)
			tid_group_move(grp, &rcd->tid_used_list,
				       &rcd->tid_full_list);
		else if (!grp->used)
			tid_group_move(grp, &rcd->tid_group_list,
				       &rcd->tid_used_list);

		grp->used++;
		grp->map |= BIT(i);
		cnt++;
	}
}

static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	struct kern_tid_node *node = &flow->tnode[grp_num];
	struct tid_group *grp = node->grp;
	u32 rcventry;
	u8 i, cnt = 0;

	for (i = 0; i < grp->size; i++) {
		rcventry = grp->base + i;

		if (node->map & BIT(i) || cnt >= node->cnt) {
			rcv_array_wc_fill(dd, rcventry);
			continue;
		}

		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);

		grp->used--;
		grp->map &= ~BIT(i);
		cnt++;

		if (grp->used == grp->size - 1)
			tid_group_move(grp, &rcd->tid_full_list,
				       &rcd->tid_used_list);
		else if (!grp->used)
			tid_group_move(grp, &rcd->tid_used_list,
				       &rcd->tid_group_list);
	}
	if (WARN_ON_ONCE(cnt & 1)) {
		struct hfi1_ctxtdata *rcd = flow->req->rcd;
		struct hfi1_devdata *dd = rcd->dd;

		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
			   cnt, grp->map, grp->used);
	}
}

static void kern_program_rcvarray(struct tid_rdma_flow *flow)
{
	u32 pset_idx = 0;
	int i;

	flow->npkts = 0;
	flow->tidcnt = 0;
	for (i = 0; i < flow->tnode_cnt; i++)
		kern_program_rcv_group(flow, i, &pset_idx);
1388
	trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
}

/**
 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
 * TID RDMA request
 *
 * @req: TID RDMA request for which the segment/flow is being set up
 * @ss: sge state, maintains state across successive segments of a sge
 * @last: set to true after the last sge segment has been processed
 *
 * This function
 * (1) finds a free flow entry in the flow circular buffer
 * (2) finds pages and continuous physical chunks constituing one segment
 *     of an sge
 * (3) allocates TID group entries for those chunks
 * (4) programs rcvarray entries in the hardware corresponding to those
 *     TID's
 * (5) computes a tidarray with formatted TID entries which can be sent
 *     to the sender
 * (6) Reserves and programs HW flows.
 * (7) It also manages queing the QP when TID/flow resources are not
 *     available.
 *
 * @req points to struct tid_rdma_request of which the segments are a part. The
 * function uses qp, rcd and seg_len members of @req. In the absence of errors,
 * req->flow_idx is the index of the flow which has been prepared in this
 * invocation of function call. With flow = &req->flows[req->flow_idx],
 * flow->tid_entry contains the TID array which the sender can use for TID RDMA
 * sends and flow->npkts contains number of packets required to send the
 * segment.
 *
 * hfi1_check_sge_align should be called prior to calling this function and if
 * it signals error TID RDMA cannot be used for this sge and this function
 * should not be called.
 *
 * For the queuing, caller must hold the flow->req->qp s_lock from the send
 * engine and the function will procure the exp_lock.
 *
 * Return:
 * The function returns -EAGAIN if sufficient number of TID/flow resources to
 * map the segment could not be allocated. In this case the function should be
 * called again with previous arguments to retry the TID allocation. There are
 * no other error returns. The function returns 0 on success.
 */
int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
			    struct rvt_sge_state *ss, bool *last)
	__must_hold(&req->qp->s_lock)
{
	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
	struct hfi1_ctxtdata *rcd = req->rcd;
	struct hfi1_qp_priv *qpriv = req->qp->priv;
	unsigned long flags;
	struct rvt_qp *fqp;
	u16 clear_tail = req->clear_tail;

	lockdep_assert_held(&req->qp->s_lock);
	/*
	 * We return error if either (a) we don't have space in the flow
	 * circular buffer, or (b) we already have max entries in the buffer.
	 * Max entries depend on the type of request we are processing and the
	 * negotiated TID RDMA parameters.
	 */
	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
	    req->n_flows)
		return -EINVAL;

	/*
	 * Get pages, identify contiguous physical memory chunks for the segment
	 * If we can not determine a DMA address mapping we will treat it just
	 * like if we ran out of space above.
	 */
	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
		hfi1_wait_kmem(flow->req->qp);
		return -ENOMEM;
	}

	spin_lock_irqsave(&rcd->exp_lock, flags);
	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
		goto queue;

	/*
	 * At this point we know the number of pagesets and hence the number of
	 * TID's to map the segment. Allocate the TID's from the TID groups. If
	 * we cannot allocate the required number we exit and try again later
	 */
	if (kern_alloc_tids(flow))
		goto queue;
	/*
	 * Finally program the TID entries with the pagesets, compute the
	 * tidarray and enable the HW flow
	 */
	kern_program_rcvarray(flow);

	/*
	 * Setup the flow state with relevant information.
	 * This information is used for tracking the sequence of data packets
	 * for the segment.
	 * The flow is setup here as this is the most accurate time and place
	 * to do so. Doing at a later time runs the risk of the flow data in
	 * qpriv getting out of sync.
	 */
	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
	flow->idx = qpriv->flow_state.index;
	flow->flow_state.generation = qpriv->flow_state.generation;
	flow->flow_state.spsn = qpriv->flow_state.psn;
	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
	flow->flow_state.r_next_psn =
		full_flow_psn(flow, flow->flow_state.spsn);
	qpriv->flow_state.psn += flow->npkts;

	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->rarr_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	tid_rdma_schedule_tid_wakeup(fqp);

	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
	return 0;
queue:
	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	return -EAGAIN;
}

static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
{
	flow->npagesets = 0;
}

/*
 * This function is called after one segment has been successfully sent to
 * release the flow and TID HW/SW resources for that segment. The segments for a
 * TID RDMA request are setup and cleared in FIFO order which is managed using a
 * circular buffer.
 */
int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
	__must_hold(&req->qp->s_lock)
{
	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
	struct hfi1_ctxtdata *rcd = req->rcd;
	unsigned long flags;
	int i;
	struct rvt_qp *fqp;

	lockdep_assert_held(&req->qp->s_lock);
	/* Exit if we have nothing in the flow circular buffer */
	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
		return -EINVAL;

	spin_lock_irqsave(&rcd->exp_lock, flags);

	for (i = 0; i < flow->tnode_cnt; i++)
		kern_unprogram_rcv_group(flow, i);
	/* To prevent double unprogramming */
	flow->tnode_cnt = 0;
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->rarr_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	dma_unmap_flow(flow);

	hfi1_tid_rdma_reset_flow(flow);
	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);

	if (fqp == req->qp) {
		__trigger_tid_waiter(fqp);
		rvt_put_qp(fqp);
	} else {
		tid_rdma_schedule_tid_wakeup(fqp);
	}

	return 0;
}

/*
 * This function is called to release all the tid entries for
 * a request.
 */
void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
	__must_hold(&req->qp->s_lock)
{
	/* Use memory barrier for proper ordering */
	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
		if (hfi1_kern_exp_rcv_clear(req))
			break;
	}
}

/**
 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
 * @req - the tid rdma request to be cleaned
 */
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
{
	kfree(req->flows);
	req->flows = NULL;
}

/**
 * __trdma_clean_swqe - clean up for large sized QPs
 * @qp: the queue patch
 * @wqe: the send wqe
 */
void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
	struct hfi1_swqe_priv *p = wqe->priv;

	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
}

/*
 * This can be called at QP create time or in the data path.
 */
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
					 gfp_t gfp)
{
	struct tid_rdma_flow *flows;
	int i;

	if (likely(req->flows))
		return 0;
	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
			     req->rcd->numa_id);
	if (!flows)
		return -ENOMEM;
	/* mini init */
	for (i = 0; i < MAX_FLOWS; i++) {
		flows[i].req = req;
		flows[i].npagesets = 0;
		flows[i].pagesets[0].mapped =  0;
	}
	req->flows = flows;
	return 0;
}

static void hfi1_init_trdma_req(struct rvt_qp *qp,
				struct tid_rdma_request *req)
{
	struct hfi1_qp_priv *qpriv = qp->priv;

	/*
	 * Initialize various TID RDMA request variables.
	 * These variables are "static", which is why they
	 * can be pre-initialized here before the WRs has
	 * even been submitted.
	 * However, non-NULL values for these variables do not
	 * imply that this WQE has been enabled for TID RDMA.
	 * Drivers should check the WQE's opcode to determine
	 * if a request is a TID RDMA one or not.
	 */
	req->qp = qp;
	req->rcd = qpriv->rcd;
}
K
Kaike Wan 已提交
1643 1644 1645 1646 1647 1648 1649 1650

u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
			    void *context, int vl, int mode, u64 data)
{
	struct hfi1_devdata *dd = context;

	return dd->verbs_dev.n_tidwait;
}
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
					  u32 psn, u16 *fidx)
{
	u16 head, tail;
	struct tid_rdma_flow *flow;

	head = req->setup_head;
	tail = req->clear_tail;
	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
	     tail = CIRC_NEXT(tail, MAX_FLOWS)) {
		flow = &req->flows[tail];
		if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
		    cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
			if (fidx)
				*fidx = tail;
			return flow;
		}
	}
	return NULL;
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static struct tid_rdma_flow *
__find_flow_ranged(struct tid_rdma_request *req, u16 head, u16 tail,
		   u32 psn, u16 *fidx)
{
	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
	      tail = CIRC_NEXT(tail, MAX_FLOWS)) {
		struct tid_rdma_flow *flow = &req->flows[tail];
		u32 spsn, lpsn;

		spsn = full_flow_psn(flow, flow->flow_state.spsn);
		lpsn = full_flow_psn(flow, flow->flow_state.lpsn);

		if (cmp_psn(psn, spsn) >= 0 && cmp_psn(psn, lpsn) <= 0) {
			if (fidx)
				*fidx = tail;
			return flow;
		}
	}
	return NULL;
}

static struct tid_rdma_flow *find_flow(struct tid_rdma_request *req,
				       u32 psn, u16 *fidx)
{
	return __find_flow_ranged(req, req->setup_head, req->clear_tail, psn,
				  fidx);
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/* TID RDMA READ functions */
u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
				    struct ib_other_headers *ohdr, u32 *bth1,
				    u32 *bth2, u32 *len)
{
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
	struct rvt_qp *qp = req->qp;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct hfi1_swqe_priv *wpriv = wqe->priv;
	struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
	struct tid_rdma_params *remote;
	u32 req_len = 0;
	void *req_addr = NULL;

	/* This is the IB psn used to send the request */
	*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1718
	trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

	/* TID Entries for TID RDMA READ payload */
	req_addr = &flow->tid_entry[flow->tid_idx];
	req_len = sizeof(*flow->tid_entry) *
			(flow->tidcnt - flow->tid_idx);

	memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
	wpriv->ss.sge.vaddr = req_addr;
	wpriv->ss.sge.sge_length = req_len;
	wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
	/*
	 * We can safely zero these out. Since the first SGE covers the
	 * entire packet, nothing else should even look at the MR.
	 */
	wpriv->ss.sge.mr = NULL;
	wpriv->ss.sge.m = 0;
	wpriv->ss.sge.n = 0;

	wpriv->ss.sg_list = NULL;
	wpriv->ss.total_len = wpriv->ss.sge.sge_length;
	wpriv->ss.num_sge = 1;

	/* Construct the TID RDMA READ REQ packet header */
	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);

	KDETH_RESET(rreq->kdeth0, KVER, 0x1);
	KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
	rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
			   req->cur_seg * req->seg_len + flow->sent);
	rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
	rreq->reth.length = cpu_to_be32(*len);
	rreq->tid_flow_psn =
		cpu_to_be32((flow->flow_state.generation <<
			     HFI1_KDETH_BTH_SEQ_SHIFT) |
			    ((flow->flow_state.spsn + flow->pkt) &
			     HFI1_KDETH_BTH_SEQ_MASK));
	rreq->tid_flow_qp =
		cpu_to_be32(qpriv->tid_rdma.local.qp |
			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
			     TID_RDMA_DESTQP_FLOW_SHIFT) |
			    qpriv->rcd->ctxt);
	rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
	*bth1 &= ~RVT_QPN_MASK;
	*bth1 |= remote->qp;
	*bth2 |= IB_BTH_REQ_ACK;
	rcu_read_unlock();

	/* We are done with this segment */
	flow->sent += *len;
	req->cur_seg++;
	qp->s_state = TID_OP(READ_REQ);
	req->ack_pending++;
	req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
	qpriv->pending_tid_r_segs++;
	qp->s_num_rd_atomic++;

	/* Set the TID RDMA READ request payload size */
	*len = req_len;

	return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
}

/*
 * @len: contains the data length to read upon entry and the read request
 *       payload length upon exit.
 */
u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
				 struct ib_other_headers *ohdr, u32 *bth1,
				 u32 *bth2, u32 *len)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_flow *flow = NULL;
	u32 hdwords = 0;
	bool last;
	bool retry = true;
	u32 npkts = rvt_div_round_up_mtu(qp, *len);

1799 1800
	trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
					  wqe->lpsn, req);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	/*
	 * Check sync conditions. Make sure that there are no pending
	 * segments before freeing the flow.
	 */
sync_check:
	if (req->state == TID_REQUEST_SYNC) {
		if (qpriv->pending_tid_r_segs)
			goto done;

		hfi1_kern_clear_hw_flow(req->rcd, qp);
		req->state = TID_REQUEST_ACTIVE;
	}

	/*
	 * If the request for this segment is resent, the tid resources should
	 * have been allocated before. In this case, req->flow_idx should
	 * fall behind req->setup_head.
	 */
	if (req->flow_idx == req->setup_head) {
		retry = false;
		if (req->state == TID_REQUEST_RESEND) {
			/*
			 * This is the first new segment for a request whose
			 * earlier segments have been re-sent. We need to
			 * set up the sge pointer correctly.
			 */
			restart_sge(&qp->s_sge, wqe, req->s_next_psn,
				    qp->pmtu);
			req->isge = 0;
			req->state = TID_REQUEST_ACTIVE;
		}

		/*
		 * Check sync. The last PSN of each generation is reserved for
		 * RESYNC.
		 */
		if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
			req->state = TID_REQUEST_SYNC;
			goto sync_check;
		}

		/* Allocate the flow if not yet */
		if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
			goto done;

		/*
		 * The following call will advance req->setup_head after
		 * allocating the tid entries.
		 */
		if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
			req->state = TID_REQUEST_QUEUED;

			/*
			 * We don't have resources for this segment. The QP has
			 * already been queued.
			 */
			goto done;
		}
	}

	/* req->flow_idx should only be one slot behind req->setup_head */
	flow = &req->flows[req->flow_idx];
	flow->pkt = 0;
	flow->tid_idx = 0;
	flow->sent = 0;
	if (!retry) {
		/* Set the first and last IB PSN for the flow in use.*/
		flow->flow_state.ib_spsn = req->s_next_psn;
		flow->flow_state.ib_lpsn =
			flow->flow_state.ib_spsn + flow->npkts - 1;
	}

	/* Calculate the next segment start psn.*/
	req->s_next_psn += flow->npkts;

	/* Build the packet header */
	hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
done:
	return hdwords;
}
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

/*
 * Validate and accept the TID RDMA READ request parameters.
 * Return 0 if the request is accepted successfully;
 * Return 1 otherwise.
 */
static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
				     struct rvt_ack_entry *e,
				     struct hfi1_packet *packet,
				     struct ib_other_headers *ohdr,
				     u32 bth0, u32 psn, u64 vaddr, u32 len)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	u32 flow_psn, i, tidlen = 0, pktlen, tlen;

	req = ack_to_tid_req(e);

	/* Validate the payload first */
	flow = &req->flows[req->setup_head];

	/* payload length = packet length - (header length + ICRC length) */
	pktlen = packet->tlen - (packet->hlen + 4);
	if (pktlen > sizeof(flow->tid_entry))
		return 1;
	memcpy(flow->tid_entry, packet->ebuf, pktlen);
	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);

	/*
	 * Walk the TID_ENTRY list to make sure we have enough space for a
	 * complete segment. Also calculate the number of required packets.
	 */
	flow->npkts = rvt_div_round_up_mtu(qp, len);
	for (i = 0; i < flow->tidcnt; i++) {
1916 1917
		trace_hfi1_tid_entry_rcv_read_req(qp, i,
						  flow->tid_entry[i]);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
		tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
		if (!tlen)
			return 1;

		/*
		 * For tid pair (tidctr == 3), the buffer size of the pair
		 * should be the sum of the buffer size described by each
		 * tid entry. However, only the first entry needs to be
		 * specified in the request (see WFR HAS Section 8.5.7.1).
		 */
		tidlen += tlen;
	}
	if (tidlen * PAGE_SIZE < len)
		return 1;

	/* Empty the flow array */
	req->clear_tail = req->setup_head;
	flow->pkt = 0;
	flow->tid_idx = 0;
	flow->tid_offset = 0;
	flow->sent = 0;
	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
		    TID_RDMA_DESTQP_FLOW_MASK;
	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
	flow->length = len;

	flow->flow_state.lpsn = flow->flow_state.spsn +
		flow->npkts - 1;
	flow->flow_state.ib_spsn = psn;
	flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;

1952
	trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	/* Set the initial flow index to the current flow. */
	req->flow_idx = req->setup_head;

	/* advance circular buffer head */
	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);

	/*
	 * Compute last PSN for request.
	 */
	e->opcode = (bth0 >> 24) & 0xff;
	e->psn = psn;
	e->lpsn = psn + flow->npkts - 1;
	e->sent = 0;

	req->n_flows = qpriv->tid_rdma.local.max_read;
	req->state = TID_REQUEST_ACTIVE;
	req->cur_seg = 0;
	req->comp_seg = 0;
	req->ack_seg = 0;
	req->isge = 0;
	req->seg_len = qpriv->tid_rdma.local.max_len;
	req->total_len = len;
	req->total_segs = 1;
	req->r_flow_psn = e->psn;

1978 1979
	trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
					req);
1980 1981 1982 1983 1984 1985 1986 1987 1988
	return 0;
}

static int tid_rdma_rcv_error(struct hfi1_packet *packet,
			      struct ib_other_headers *ohdr,
			      struct rvt_qp *qp, u32 psn, int diff)
{
	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
	struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1989 1990
	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
	struct hfi1_qp_priv *qpriv = qp->priv;
1991 1992 1993 1994 1995 1996
	struct rvt_ack_entry *e;
	struct tid_rdma_request *req;
	unsigned long flags;
	u8 prev;
	bool old_req;

1997 1998
	trace_hfi1_rsp_tid_rcv_error(qp, psn);
	trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	if (diff > 0) {
		/* sequence error */
		if (!qp->r_nak_state) {
			ibp->rvp.n_rc_seqnak++;
			qp->r_nak_state = IB_NAK_PSN_ERROR;
			qp->r_ack_psn = qp->r_psn;
			rc_defered_ack(rcd, qp);
		}
		goto done;
	}

	ibp->rvp.n_rc_dupreq++;

	spin_lock_irqsave(&qp->s_lock, flags);
	e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2014 2015
	if (!e || (e->opcode != TID_OP(READ_REQ) &&
		   e->opcode != TID_OP(WRITE_REQ)))
2016 2017 2018 2019
		goto unlock;

	req = ack_to_tid_req(e);
	req->r_flow_psn = psn;
2020
	trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (e->opcode == TID_OP(READ_REQ)) {
		struct ib_reth *reth;
		u32 offset;
		u32 len;
		u32 rkey;
		u64 vaddr;
		int ok;
		u32 bth0;

		reth = &ohdr->u.tid_rdma.r_req.reth;
		/*
		 * The requester always restarts from the start of the original
		 * request.
		 */
		offset = delta_psn(psn, e->psn) * qp->pmtu;
		len = be32_to_cpu(reth->length);
		if (psn != e->psn || len != req->total_len)
			goto unlock;

2040
		release_rdma_sge_mr(e);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

		rkey = be32_to_cpu(reth->rkey);
		vaddr = get_ib_reth_vaddr(reth);

		qp->r_len = len;
		ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
				 IB_ACCESS_REMOTE_READ);
		if (unlikely(!ok))
			goto unlock;

		/*
		 * If all the response packets for the current request have
		 * been sent out and this request is complete (old_request
		 * == false) and the TID flow may be unusable (the
		 * req->clear_tail is advanced). However, when an earlier
		 * request is received, this request will not be complete any
		 * more (qp->s_tail_ack_queue is moved back, see below).
		 * Consequently, we need to update the TID flow info everytime
		 * a duplicate request is received.
		 */
		bth0 = be32_to_cpu(ohdr->bth[0]);
		if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
					      vaddr, len))
			goto unlock;

		/*
		 * True if the request is already scheduled (between
		 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
		 */
		if (old_req)
			goto unlock;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	} else {
		struct flow_state *fstate;
		bool schedule = false;
		u8 i;

		if (req->state == TID_REQUEST_RESEND) {
			req->state = TID_REQUEST_RESEND_ACTIVE;
		} else if (req->state == TID_REQUEST_INIT_RESEND) {
			req->state = TID_REQUEST_INIT;
			schedule = true;
		}

		/*
		 * True if the request is already scheduled (between
		 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
		 * Also, don't change requests, which are at the SYNC
		 * point and haven't generated any responses yet.
		 * There is nothing to retransmit for them yet.
		 */
		if (old_req || req->state == TID_REQUEST_INIT ||
		    (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
			for (i = prev + 1; ; i++) {
				if (i > rvt_size_atomic(&dev->rdi))
					i = 0;
				if (i == qp->r_head_ack_queue)
					break;
				e = &qp->s_ack_queue[i];
				req = ack_to_tid_req(e);
				if (e->opcode == TID_OP(WRITE_REQ) &&
				    req->state == TID_REQUEST_INIT)
					req->state = TID_REQUEST_INIT_RESEND;
			}
			/*
			 * If the state of the request has been changed,
			 * the first leg needs to get scheduled in order to
			 * pick up the change. Otherwise, normal response
			 * processing should take care of it.
			 */
			if (!schedule)
				goto unlock;
		}

		/*
		 * If there is no more allocated segment, just schedule the qp
		 * without changing any state.
		 */
		if (req->clear_tail == req->setup_head)
			goto schedule;
		/*
		 * If this request has sent responses for segments, which have
		 * not received data yet (flow_idx != clear_tail), the flow_idx
		 * pointer needs to be adjusted so the same responses can be
		 * re-sent.
		 */
		if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
			fstate = &req->flows[req->clear_tail].flow_state;
			qpriv->pending_tid_w_segs -=
				CIRC_CNT(req->flow_idx, req->clear_tail,
					 MAX_FLOWS);
			req->flow_idx =
				CIRC_ADD(req->clear_tail,
					 delta_psn(psn, fstate->resp_ib_psn),
					 MAX_FLOWS);
			qpriv->pending_tid_w_segs +=
				delta_psn(psn, fstate->resp_ib_psn);
			/*
			 * When flow_idx == setup_head, we've gotten a duplicate
			 * request for a segment, which has not been allocated
			 * yet. In that case, don't adjust this request.
			 * However, we still want to go through the loop below
			 * to adjust all subsequent requests.
			 */
			if (CIRC_CNT(req->setup_head, req->flow_idx,
				     MAX_FLOWS)) {
				req->cur_seg = delta_psn(psn, e->psn);
				req->state = TID_REQUEST_RESEND_ACTIVE;
			}
		}

		for (i = prev + 1; ; i++) {
			/*
			 * Look at everything up to and including
			 * s_tail_ack_queue
			 */
			if (i > rvt_size_atomic(&dev->rdi))
				i = 0;
			if (i == qp->r_head_ack_queue)
				break;
			e = &qp->s_ack_queue[i];
			req = ack_to_tid_req(e);
			trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
						   e->lpsn, req);
			if (e->opcode != TID_OP(WRITE_REQ) ||
			    req->cur_seg == req->comp_seg ||
			    req->state == TID_REQUEST_INIT ||
			    req->state == TID_REQUEST_INIT_RESEND) {
				if (req->state == TID_REQUEST_INIT)
					req->state = TID_REQUEST_INIT_RESEND;
				continue;
			}
			qpriv->pending_tid_w_segs -=
				CIRC_CNT(req->flow_idx,
					 req->clear_tail,
					 MAX_FLOWS);
			req->flow_idx = req->clear_tail;
			req->state = TID_REQUEST_RESEND;
			req->cur_seg = req->comp_seg;
		}
2180
		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2181 2182
	}
	/* Re-process old requests.*/
2183 2184
	if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
		qp->s_acked_ack_queue = prev;
2185 2186 2187 2188 2189 2190 2191 2192
	qp->s_tail_ack_queue = prev;
	/*
	 * Since the qp->s_tail_ack_queue is modified, the
	 * qp->s_ack_state must be changed to re-initialize
	 * qp->s_ack_rdma_sge; Otherwise, we will end up in
	 * wrong memory region.
	 */
	qp->s_ack_state = OP(ACKNOWLEDGE);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
schedule:
	/*
	 * It's possible to receive a retry psn that is earlier than an RNRNAK
	 * psn. In this case, the rnrnak state should be cleared.
	 */
	if (qpriv->rnr_nak_state) {
		qp->s_nak_state = 0;
		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
		qp->r_psn = e->lpsn + 1;
		hfi1_tid_write_alloc_resources(qp, true);
	}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	qp->r_state = e->opcode;
	qp->r_nak_state = 0;
	qp->s_flags |= RVT_S_RESP_PENDING;
	hfi1_schedule_send(qp);
unlock:
	spin_unlock_irqrestore(&qp->s_lock, flags);
done:
	return 1;
}

void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
{
	/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/

	/*
	 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
	 *    (see hfi1_rc_rcv())
	 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
	 *     - Setup struct tid_rdma_req with request info
	 *     - Initialize struct tid_rdma_flow info;
	 *     - Copy TID entries;
	 * 3. Set the qp->s_ack_state.
	 * 4. Set RVT_S_RESP_PENDING in s_flags.
	 * 5. Kick the send engine (hfi1_schedule_send())
	 */
	struct hfi1_ctxtdata *rcd = packet->rcd;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_ack_entry *e;
	unsigned long flags;
	struct ib_reth *reth;
	struct hfi1_qp_priv *qpriv = qp->priv;
	u32 bth0, psn, len, rkey;
	bool is_fecn;
	u8 next;
	u64 vaddr;
	int diff;
	u8 nack_state = IB_NAK_INVALID_REQUEST;

	bth0 = be32_to_cpu(ohdr->bth[0]);
	if (hfi1_ruc_check_hdr(ibp, packet))
		return;

	is_fecn = process_ecn(qp, packet);
	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2251
	trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
		rvt_comm_est(qp);

	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
		goto nack_inv;

	reth = &ohdr->u.tid_rdma.r_req.reth;
	vaddr = be64_to_cpu(reth->vaddr);
	len = be32_to_cpu(reth->length);
	/* The length needs to be in multiples of PAGE_SIZE */
	if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
		goto nack_inv;

	diff = delta_psn(psn, qp->r_psn);
	if (unlikely(diff)) {
		if (tid_rdma_rcv_error(packet, ohdr, qp, psn, diff))
			return;
		goto send_ack;
	}

	/* We've verified the request, insert it into the ack queue. */
	next = qp->r_head_ack_queue + 1;
	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
		next = 0;
	spin_lock_irqsave(&qp->s_lock, flags);
	if (unlikely(next == qp->s_tail_ack_queue)) {
		if (!qp->s_ack_queue[next].sent) {
			nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
			goto nack_inv_unlock;
		}
		update_ack_queue(qp, next);
	}
	e = &qp->s_ack_queue[qp->r_head_ack_queue];
2286
	release_rdma_sge_mr(e);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

	rkey = be32_to_cpu(reth->rkey);
	qp->r_len = len;

	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
				  rkey, IB_ACCESS_REMOTE_READ)))
		goto nack_acc;

	/* Accept the request parameters */
	if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
				      len))
		goto nack_inv_unlock;

	qp->r_state = e->opcode;
	qp->r_nak_state = 0;
	/*
	 * We need to increment the MSN here instead of when we
	 * finish sending the result since a duplicate request would
	 * increment it more than once.
	 */
	qp->r_msn++;
	qp->r_psn += e->lpsn - e->psn + 1;

	qp->r_head_ack_queue = next;

2312 2313 2314 2315 2316 2317 2318 2319
	/*
	 * For all requests other than TID WRITE which are added to the ack
	 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
	 * do this because of interlocks between these and TID WRITE
	 * requests. The same change has also been made in hfi1_rc_rcv().
	 */
	qpriv->r_tid_alloc = qp->r_head_ack_queue;

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	/* Schedule the send tasklet. */
	qp->s_flags |= RVT_S_RESP_PENDING;
	hfi1_schedule_send(qp);

	spin_unlock_irqrestore(&qp->s_lock, flags);
	if (is_fecn)
		goto send_ack;
	return;

nack_inv_unlock:
	spin_unlock_irqrestore(&qp->s_lock, flags);
nack_inv:
	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
	qp->r_nak_state = nack_state;
	qp->r_ack_psn = qp->r_psn;
	/* Queue NAK for later */
	rc_defered_ack(rcd, qp);
	return;
nack_acc:
	spin_unlock_irqrestore(&qp->s_lock, flags);
	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
	qp->r_ack_psn = qp->r_psn;
send_ack:
	hfi1_send_rc_ack(packet, is_fecn);
}
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
				  struct ib_other_headers *ohdr, u32 *bth0,
				  u32 *bth1, u32 *bth2, u32 *len, bool *last)
{
	struct hfi1_ack_priv *epriv = e->priv;
	struct tid_rdma_request *req = &epriv->tid_req;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
	u32 tidentry = flow->tid_entry[flow->tid_idx];
	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
	struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
	u32 next_offset, om = KDETH_OM_LARGE;
	bool last_pkt;
	u32 hdwords = 0;
	struct tid_rdma_params *remote;

	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
	flow->sent += *len;
	next_offset = flow->tid_offset + *len;
	last_pkt = (flow->sent >= flow->length);

2368 2369 2370
	trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
	trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);
	if (!remote) {
		rcu_read_unlock();
		goto done;
	}
	KDETH_RESET(resp->kdeth0, KVER, 0x1);
	KDETH_SET(resp->kdeth0, SH, !last_pkt);
	KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
	KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
	KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
	KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
	KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
	KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
	resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
	rcu_read_unlock();

	resp->aeth = rvt_compute_aeth(qp);
	resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
					       flow->pkt));

	*bth0 = TID_OP(READ_RESP) << 24;
	*bth1 = flow->tid_qpn;
	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
			  HFI1_KDETH_BTH_SEQ_MASK) |
			 (flow->flow_state.generation <<
			  HFI1_KDETH_BTH_SEQ_SHIFT));
	*last = last_pkt;
	if (last_pkt)
		/* Advance to next flow */
		req->clear_tail = (req->clear_tail + 1) &
				  (MAX_FLOWS - 1);

	if (next_offset >= tidlen) {
		flow->tid_offset = 0;
		flow->tid_idx++;
	} else {
		flow->tid_offset = next_offset;
	}

	hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);

done:
	return hdwords;
}
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

static inline struct tid_rdma_request *
find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
	__must_hold(&qp->s_lock)
{
	struct rvt_swqe *wqe;
	struct tid_rdma_request *req = NULL;
	u32 i, end;

	end = qp->s_cur + 1;
	if (end == qp->s_size)
		end = 0;
	for (i = qp->s_acked; i != end;) {
		wqe = rvt_get_swqe_ptr(qp, i);
		if (cmp_psn(psn, wqe->psn) >= 0 &&
		    cmp_psn(psn, wqe->lpsn) <= 0) {
			if (wqe->wr.opcode == opcode)
				req = wqe_to_tid_req(wqe);
			break;
		}
		if (++i == qp->s_size)
			i = 0;
	}

	return req;
}

void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
{
	/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */

	/*
	 * 1. Find matching SWQE
	 * 2. Check that the entire segment has been read.
	 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
	 * 4. Free the TID flow resources.
	 * 5. Kick the send engine (hfi1_schedule_send())
	 */
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_qp_priv *priv = qp->priv;
	struct hfi1_ctxtdata *rcd = packet->rcd;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	u32 opcode, aeth;
	bool is_fecn;
	unsigned long flags;
	u32 kpsn, ipsn;

2465
	trace_hfi1_sender_rcv_tid_read_resp(qp);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	is_fecn = process_ecn(qp, packet);
	kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
	aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;

	spin_lock_irqsave(&qp->s_lock, flags);
	ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
	req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
	if (unlikely(!req))
		goto ack_op_err;

	flow = &req->flows[req->clear_tail];
	/* When header suppression is disabled */
	if (cmp_psn(ipsn, flow->flow_state.ib_lpsn))
		goto ack_done;
	req->ack_pending--;
	priv->pending_tid_r_segs--;
	qp->s_num_rd_atomic--;
	if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
	    !qp->s_num_rd_atomic) {
		qp->s_flags &= ~(RVT_S_WAIT_FENCE |
				 RVT_S_WAIT_ACK);
		hfi1_schedule_send(qp);
	}
	if (qp->s_flags & RVT_S_WAIT_RDMAR) {
		qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
		hfi1_schedule_send(qp);
	}

2495 2496 2497 2498 2499 2500
	trace_hfi1_ack(qp, ipsn);
	trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
					 req->e.swqe->psn, req->e.swqe->lpsn,
					 req);
	trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	/* Release the tid resources */
	hfi1_kern_exp_rcv_clear(req);

	if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
		goto ack_done;

	/* If not done yet, build next read request */
	if (++req->comp_seg >= req->total_segs) {
		priv->tid_r_comp++;
		req->state = TID_REQUEST_COMPLETE;
	}

	/*
	 * Clear the hw flow under two conditions:
	 * 1. This request is a sync point and it is complete;
	 * 2. Current request is completed and there are no more requests.
	 */
	if ((req->state == TID_REQUEST_SYNC &&
	     req->comp_seg == req->cur_seg) ||
	    priv->tid_r_comp == priv->tid_r_reqs) {
		hfi1_kern_clear_hw_flow(priv->rcd, qp);
		if (req->state == TID_REQUEST_SYNC)
			req->state = TID_REQUEST_ACTIVE;
	}

	hfi1_schedule_send(qp);
	goto ack_done;

ack_op_err:
	/*
	 * The test indicates that the send engine has finished its cleanup
	 * after sending the request and it's now safe to put the QP into error
	 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
	 * == qp->s_head), it would be unsafe to complete the wqe pointed by
	 * qp->s_acked here. Putting the qp into error state will safely flush
	 * all remaining requests.
	 */
	if (qp->s_last == qp->s_acked)
		rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);

ack_done:
	spin_unlock_irqrestore(&qp->s_lock, flags);
	if (is_fecn)
		hfi1_send_rc_ack(packet, is_fecn);
}

void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	u32 n = qp->s_acked;
	struct rvt_swqe *wqe;
	struct tid_rdma_request *req;
	struct hfi1_qp_priv *priv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	/* Free any TID entries */
	while (n != qp->s_tail) {
		wqe = rvt_get_swqe_ptr(qp, n);
		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
			req = wqe_to_tid_req(wqe);
			hfi1_kern_exp_rcv_clear_all(req);
		}

		if (++n == qp->s_size)
			n = 0;
	}
	/* Free flow */
	hfi1_kern_clear_hw_flow(priv->rcd, qp);
}

static bool tid_rdma_tid_err(struct hfi1_ctxtdata *rcd,
			     struct hfi1_packet *packet, u8 rcv_type,
			     u8 opcode)
{
	struct rvt_qp *qp = packet->qp;
2576
	struct hfi1_qp_priv *qpriv = qp->priv;
2577 2578
	u32 ipsn;
	struct ib_other_headers *ohdr = packet->ohdr;
2579 2580 2581 2582
	struct rvt_ack_entry *e;
	struct tid_rdma_request *req;
	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
	u32 i;
2583 2584 2585 2586 2587

	if (rcv_type >= RHF_RCV_TYPE_IB)
		goto done;

	spin_lock(&qp->s_lock);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

	/*
	 * We've ran out of space in the eager buffer.
	 * Eagerly received KDETH packets which require space in the
	 * Eager buffer (packet that have payload) are TID RDMA WRITE
	 * response packets. In this case, we have to re-transmit the
	 * TID RDMA WRITE request.
	 */
	if (rcv_type == RHF_RCV_TYPE_EAGER) {
		hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
		hfi1_schedule_send(qp);
		goto done_unlock;
	}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	/*
	 * For TID READ response, error out QP after freeing the tid
	 * resources.
	 */
	if (opcode == TID_OP(READ_RESP)) {
		ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
		if (cmp_psn(ipsn, qp->s_last_psn) > 0 &&
		    cmp_psn(ipsn, qp->s_psn) < 0) {
			hfi1_kern_read_tid_flow_free(qp);
			spin_unlock(&qp->s_lock);
			rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
			goto done;
		}
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		goto done_unlock;
	}

	/*
	 * Error out the qp for TID RDMA WRITE
	 */
	hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
	for (i = 0; i < rvt_max_atomic(rdi); i++) {
		e = &qp->s_ack_queue[i];
		if (e->opcode == TID_OP(WRITE_REQ)) {
			req = ack_to_tid_req(e);
			hfi1_kern_exp_rcv_clear_all(req);
		}
2628
	}
2629 2630 2631
	spin_unlock(&qp->s_lock);
	rvt_rc_error(qp, IB_WC_LOC_LEN_ERR);
	goto done;
2632

2633
done_unlock:
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
	spin_unlock(&qp->s_lock);
done:
	return true;
}

static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
				      struct rvt_qp *qp, struct rvt_swqe *wqe)
{
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;

	/* Start from the right segment */
	qp->r_flags |= RVT_R_RDMAR_SEQ;
	req = wqe_to_tid_req(wqe);
	flow = &req->flows[req->clear_tail];
	hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
	if (list_empty(&qp->rspwait)) {
		qp->r_flags |= RVT_R_RSP_SEND;
		rvt_get_qp(qp);
		list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
	}
}

/*
 * Handle the KDETH eflags for TID RDMA READ response.
 *
 * Return true if the last packet for a segment has been received and it is
 * time to process the response normally; otherwise, return true.
 *
 * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
 */
static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
				     struct hfi1_packet *packet, u8 rcv_type,
				     u8 rte, u32 psn, u32 ibpsn)
	__must_hold(&packet->qp->r_lock) __must_hold(RCU)
{
	struct hfi1_pportdata *ppd = rcd->ppd;
	struct hfi1_devdata *dd = ppd->dd;
	struct hfi1_ibport *ibp;
	struct rvt_swqe *wqe;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	u32 ack_psn;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_qp_priv *priv = qp->priv;
	bool ret = true;
	int diff = 0;
	u32 fpsn;

	lockdep_assert_held(&qp->r_lock);
	/* If the psn is out of valid range, drop the packet */
	if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
	    cmp_psn(ibpsn, qp->s_psn) > 0)
		return ret;

	spin_lock(&qp->s_lock);
	/*
	 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
	 * requests and implicitly NAK RDMA read and atomic requests issued
	 * before the NAK'ed request.
	 */
	ack_psn = ibpsn - 1;
	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
	ibp = to_iport(qp->ibqp.device, qp->port_num);

	/* Complete WQEs that the PSN finishes. */
	while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
		/*
		 * If this request is a RDMA read or atomic, and the NACK is
		 * for a later operation, this NACK NAKs the RDMA read or
		 * atomic.
		 */
		if (wqe->wr.opcode == IB_WR_RDMA_READ ||
		    wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
		    wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
		    wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
			/* Retry this request. */
			if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
				qp->r_flags |= RVT_R_RDMAR_SEQ;
				if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
					restart_tid_rdma_read_req(rcd, qp,
								  wqe);
				} else {
					hfi1_restart_rc(qp, qp->s_last_psn + 1,
							0);
					if (list_empty(&qp->rspwait)) {
						qp->r_flags |= RVT_R_RSP_SEND;
						rvt_get_qp(qp);
						list_add_tail(/* wait */
						   &qp->rspwait,
						   &rcd->qp_wait_list);
					}
				}
			}
			/*
			 * No need to process the NAK since we are
			 * restarting an earlier request.
			 */
			break;
		}

		wqe = do_rc_completion(qp, wqe, ibp);
		if (qp->s_acked == qp->s_tail)
			break;
	}

	/* Handle the eflags for the request */
	if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
		goto s_unlock;

	req = wqe_to_tid_req(wqe);
	switch (rcv_type) {
	case RHF_RCV_TYPE_EXPECTED:
		switch (rte) {
		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
			/*
			 * On the first occurrence of a Flow Sequence error,
			 * the flag TID_FLOW_SW_PSN is set.
			 *
			 * After that, the flow is *not* reprogrammed and the
			 * protocol falls back to SW PSN checking. This is done
			 * to prevent continuous Flow Sequence errors for any
			 * packets that could be still in the fabric.
			 */
			flow = find_flow(req, psn, NULL);
			if (!flow) {
				/*
				 * We can't find the IB PSN matching the
				 * received KDETH PSN. The only thing we can
				 * do at this point is report the error to
				 * the QP.
				 */
				hfi1_kern_read_tid_flow_free(qp);
				spin_unlock(&qp->s_lock);
				rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
				return ret;
			}
			if (priv->flow_state.flags & TID_FLOW_SW_PSN) {
				diff = cmp_psn(psn,
					       priv->flow_state.r_next_psn);
				if (diff > 0) {
					if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
						restart_tid_rdma_read_req(rcd,
									  qp,
									  wqe);

					/* Drop the packet.*/
					goto s_unlock;
				} else if (diff < 0) {
					/*
					 * If a response packet for a restarted
					 * request has come back, reset the
					 * restart flag.
					 */
					if (qp->r_flags & RVT_R_RDMAR_SEQ)
						qp->r_flags &=
							~RVT_R_RDMAR_SEQ;

					/* Drop the packet.*/
					goto s_unlock;
				}

				/*
				 * If SW PSN verification is successful and
				 * this is the last packet in the segment, tell
				 * the caller to process it as a normal packet.
				 */
				fpsn = full_flow_psn(flow,
						     flow->flow_state.lpsn);
				if (cmp_psn(fpsn, psn) == 0) {
					ret = false;
					if (qp->r_flags & RVT_R_RDMAR_SEQ)
						qp->r_flags &=
							~RVT_R_RDMAR_SEQ;
				}
				priv->flow_state.r_next_psn++;
			} else {
				u32 last_psn;

2813 2814
				last_psn = read_r_next_psn(dd, rcd->ctxt,
							   flow->idx);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
				priv->flow_state.r_next_psn = last_psn;
				priv->flow_state.flags |= TID_FLOW_SW_PSN;
				/*
				 * If no request has been restarted yet,
				 * restart the current one.
				 */
				if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
					restart_tid_rdma_read_req(rcd, qp,
								  wqe);
			}

			break;

		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
			/*
			 * Since the TID flow is able to ride through
			 * generation mismatch, drop this stale packet.
			 */
			break;

		default:
			break;
		}
		break;

	case RHF_RCV_TYPE_ERROR:
		switch (rte) {
		case RHF_RTE_ERROR_OP_CODE_ERR:
		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
		case RHF_RTE_ERROR_KHDR_KVER_ERR:
		case RHF_RTE_ERROR_CONTEXT_ERR:
		case RHF_RTE_ERROR_KHDR_TID_ERR:
		default:
			break;
		}
	default:
		break;
	}
s_unlock:
	spin_unlock(&qp->s_lock);
	return ret;
}

bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
			      struct hfi1_pportdata *ppd,
			      struct hfi1_packet *packet)
{
	struct hfi1_ibport *ibp = &ppd->ibport_data;
	struct hfi1_devdata *dd = ppd->dd;
	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
	u8 rcv_type = rhf_rcv_type(packet->rhf);
	u8 rte = rhf_rcv_type_err(packet->rhf);
	struct ib_header *hdr = packet->hdr;
	struct ib_other_headers *ohdr = NULL;
	int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
	u16 lid  = be16_to_cpu(hdr->lrh[1]);
	u8 opcode;
	u32 qp_num, psn, ibpsn;
	struct rvt_qp *qp;
2875
	struct hfi1_qp_priv *qpriv;
2876 2877
	unsigned long flags;
	bool ret = true;
2878 2879 2880
	struct rvt_ack_entry *e;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
2881

2882 2883
	trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
					   packet->rhf);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
		return ret;

	packet->ohdr = &hdr->u.oth;
	ohdr = packet->ohdr;
	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));

	/* Get the destination QP number. */
	qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
		RVT_QPN_MASK;
	if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
		goto drop;

	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;

	rcu_read_lock();
	qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
	if (!qp)
		goto rcu_unlock;

	packet->qp = qp;

	/* Check for valid receive state. */
	spin_lock_irqsave(&qp->r_lock, flags);
	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
		ibp->rvp.n_pkt_drops++;
		goto r_unlock;
	}

	if (packet->rhf & RHF_TID_ERR) {
		/* For TIDERR and RC QPs preemptively schedule a NAK */
		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */

		/* Sanity check packet */
		if (tlen < 24)
			goto r_unlock;

		/*
		 * Check for GRH. We should never get packets with GRH in this
		 * path.
		 */
		if (lnh == HFI1_LRH_GRH)
			goto r_unlock;

		if (tid_rdma_tid_err(rcd, packet, rcv_type, opcode))
			goto r_unlock;
	}

	/* handle TID RDMA READ */
	if (opcode == TID_OP(READ_RESP)) {
		ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
		ibpsn = mask_psn(ibpsn);
		ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
					       ibpsn);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		goto r_unlock;
	}

	/*
	 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
	 * processed. These a completed sequentially so we can be sure that
	 * the pointer will not change until the entire request has completed.
	 */
	spin_lock(&qp->s_lock);
	qpriv = qp->priv;
	e = &qp->s_ack_queue[qpriv->r_tid_tail];
	req = ack_to_tid_req(e);
	flow = &req->flows[req->clear_tail];
2952 2953 2954 2955 2956 2957
	trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
	trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
	trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
	trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
					       e->lpsn, req);
	trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2958 2959 2960 2961 2962 2963 2964

	switch (rcv_type) {
	case RHF_RCV_TYPE_EXPECTED:
		switch (rte) {
		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
			if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
				qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2965 2966 2967
				flow->flow_state.r_next_psn =
					read_r_next_psn(dd, rcd->ctxt,
							flow->idx);
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
				qpriv->r_next_psn_kdeth =
					flow->flow_state.r_next_psn;
				goto nak_psn;
			} else {
				/*
				 * If the received PSN does not match the next
				 * expected PSN, NAK the packet.
				 * However, only do that if we know that the a
				 * NAK has already been sent. Otherwise, this
				 * mismatch could be due to packets that were
				 * already in flight.
				 */
				if (psn != flow->flow_state.r_next_psn) {
					psn = flow->flow_state.r_next_psn;
					goto nak_psn;
				}

				qpriv->s_nak_state = 0;
				/*
				 * If SW PSN verification is successful and this
				 * is the last packet in the segment, tell the
				 * caller to process it as a normal packet.
				 */
				if (psn == full_flow_psn(flow,
							 flow->flow_state.lpsn))
					ret = false;
				qpriv->r_next_psn_kdeth =
					++flow->flow_state.r_next_psn;
			}
			break;

		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
			goto nak_psn;

		default:
			break;
		}
		break;

	case RHF_RCV_TYPE_ERROR:
		switch (rte) {
		case RHF_RTE_ERROR_OP_CODE_ERR:
		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
		case RHF_RTE_ERROR_KHDR_KVER_ERR:
		case RHF_RTE_ERROR_CONTEXT_ERR:
		case RHF_RTE_ERROR_KHDR_TID_ERR:
		default:
			break;
		}
	default:
		break;
3020 3021
	}

3022 3023
unlock:
	spin_unlock(&qp->s_lock);
3024 3025 3026 3027 3028 3029
r_unlock:
	spin_unlock_irqrestore(&qp->r_lock, flags);
rcu_unlock:
	rcu_read_unlock();
drop:
	return ret;
3030 3031 3032 3033 3034 3035 3036 3037 3038
nak_psn:
	ibp->rvp.n_rc_seqnak++;
	if (!qpriv->s_nak_state) {
		qpriv->s_nak_state = IB_NAK_PSN_ERROR;
		/* We are NAK'ing the next expected PSN */
		qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
		qpriv->s_flags |= RVT_S_ACK_PENDING;
		if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID)
			qpriv->r_tid_ack = qpriv->r_tid_tail;
K
Kaike Wan 已提交
3039
		hfi1_schedule_tid_send(qp);
3040 3041
	}
	goto unlock;
3042
}
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

/*
 * "Rewind" the TID request information.
 * This means that we reset the state back to ACTIVE,
 * find the proper flow, set the flow index to that flow,
 * and reset the flow information.
 */
void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
			       u32 *bth2)
{
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_flow *flow;
3055 3056 3057
	struct hfi1_qp_priv *qpriv = qp->priv;
	int diff, delta_pkts;
	u32 tididx = 0, i;
3058 3059 3060 3061 3062
	u16 fidx;

	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
		*bth2 = mask_psn(qp->s_psn);
		flow = find_flow_ib(req, *bth2, &fidx);
3063 3064 3065 3066 3067 3068 3069
		if (!flow) {
			trace_hfi1_msg_tid_restart_req(/* msg */
			   qp, "!!!!!! Could not find flow to restart: bth2 ",
			   (u64)*bth2);
			trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
						       wqe->psn, wqe->lpsn,
						       req);
3070
			return;
3071
		}
3072
	} else {
3073 3074 3075
		fidx = req->acked_tail;
		flow = &req->flows[fidx];
		*bth2 = mask_psn(req->r_ack_psn);
3076 3077
	}

3078 3079 3080 3081 3082 3083 3084
	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
		delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
	else
		delta_pkts = delta_psn(*bth2,
				       full_flow_psn(flow,
						     flow->flow_state.spsn));

3085
	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3086
	diff = delta_pkts + flow->resync_npkts;
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109

	flow->sent = 0;
	flow->pkt = 0;
	flow->tid_idx = 0;
	flow->tid_offset = 0;
	if (diff) {
		for (tididx = 0; tididx < flow->tidcnt; tididx++) {
			u32 tidentry = flow->tid_entry[tididx], tidlen,
				tidnpkts, npkts;

			flow->tid_offset = 0;
			tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
			tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
			npkts = min_t(u32, diff, tidnpkts);
			flow->pkt += npkts;
			flow->sent += (npkts == tidnpkts ? tidlen :
				       npkts * qp->pmtu);
			flow->tid_offset += npkts * qp->pmtu;
			diff -= npkts;
			if (!diff)
				break;
		}
	}
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
		rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
			     flow->sent, 0);
		/*
		 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
		 * during a RESYNC, the generation is incremented and the
		 * sequence is reset to 0. Since we've adjusted the npkts in the
		 * flow and the SGE has been sufficiently advanced, we have to
		 * adjust flow->pkt in order to calculate the correct PSN.
		 */
		flow->pkt -= flow->resync_npkts;
	}
3122 3123 3124 3125 3126 3127 3128

	if (flow->tid_offset ==
	    EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
		tididx++;
		flow->tid_offset = 0;
	}
	flow->tid_idx = tididx;
3129 3130 3131 3132 3133
	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
		/* Move flow_idx to correct index */
		req->flow_idx = fidx;
	else
		req->clear_tail = fidx;
3134

3135 3136 3137
	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
	trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
				       wqe->lpsn, req);
3138
	req->state = TID_REQUEST_ACTIVE;
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
		/* Reset all the flows that we are going to resend */
		fidx = CIRC_NEXT(fidx, MAX_FLOWS);
		i = qpriv->s_tid_tail;
		do {
			for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
			      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
				req->flows[fidx].sent = 0;
				req->flows[fidx].pkt = 0;
				req->flows[fidx].tid_idx = 0;
				req->flows[fidx].tid_offset = 0;
				req->flows[fidx].resync_npkts = 0;
			}
			if (i == qpriv->s_tid_cur)
				break;
			do {
				i = (++i == qp->s_size ? 0 : i);
				wqe = rvt_get_swqe_ptr(qp, i);
			} while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
			req = wqe_to_tid_req(wqe);
			req->cur_seg = req->ack_seg;
			fidx = req->acked_tail;
			/* Pull req->clear_tail back */
			req->clear_tail = fidx;
		} while (1);
	}
3165
}
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
{
	int i, ret;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_flow_state *fs;

	if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
		return;

	/*
	 * First, clear the flow to help prevent any delayed packets from
	 * being delivered.
	 */
	fs = &qpriv->flow_state;
	if (fs->index != RXE_NUM_TID_FLOWS)
		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);

	for (i = qp->s_acked; i != qp->s_head;) {
		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);

		if (++i == qp->s_size)
			i = 0;
		/* Free only locally allocated TID entries */
		if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
			continue;
		do {
			struct hfi1_swqe_priv *priv = wqe->priv;

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
		} while (!ret);
	}
	for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
		struct rvt_ack_entry *e = &qp->s_ack_queue[i];

		if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
			i = 0;
		/* Free only locally allocated TID entries */
		if (e->opcode != TID_OP(WRITE_REQ))
			continue;
		do {
			struct hfi1_ack_priv *priv = e->priv;

3209 3210 3211 3212
			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
		} while (!ret);
	}
}
3213 3214 3215 3216 3217 3218

bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
	struct rvt_swqe *prev;
	struct hfi1_qp_priv *priv = qp->priv;
	u32 s_prev;
3219
	struct tid_rdma_request *req;
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230

	s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
	prev = rvt_get_swqe_ptr(qp, s_prev);

	switch (wqe->wr.opcode) {
	case IB_WR_SEND:
	case IB_WR_SEND_WITH_IMM:
	case IB_WR_SEND_WITH_INV:
	case IB_WR_ATOMIC_CMP_AND_SWP:
	case IB_WR_ATOMIC_FETCH_AND_ADD:
	case IB_WR_RDMA_WRITE:
3231 3232 3233 3234 3235 3236 3237 3238
		switch (prev->wr.opcode) {
		case IB_WR_TID_RDMA_WRITE:
			req = wqe_to_tid_req(prev);
			if (req->ack_seg != req->total_segs)
				goto interlock;
		default:
			break;
		}
3239
		break;
3240
	case IB_WR_RDMA_READ:
3241 3242 3243
		if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
			break;
		/* fall through */
3244 3245 3246 3247 3248 3249
	case IB_WR_TID_RDMA_READ:
		switch (prev->wr.opcode) {
		case IB_WR_RDMA_READ:
			if (qp->s_acked != qp->s_cur)
				goto interlock;
			break;
3250 3251 3252 3253
		case IB_WR_TID_RDMA_WRITE:
			req = wqe_to_tid_req(prev);
			if (req->ack_seg != req->total_segs)
				goto interlock;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
		default:
			break;
		}
	default:
		break;
	}
	return false;

interlock:
	priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
	return true;
}
3266 3267

/* Does @sge meet the alignment requirements for tid rdma? */
3268 3269
static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
					struct rvt_sge *sge, int num_sge)
3270 3271 3272
{
	int i;

3273 3274
	for (i = 0; i < num_sge; i++, sge++) {
		trace_hfi1_sge_check_align(qp, i, sge);
3275 3276 3277
		if ((u64)sge->vaddr & ~PAGE_MASK ||
		    sge->sge_length & ~PAGE_MASK)
			return false;
3278
	}
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	return true;
}

void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
	struct hfi1_swqe_priv *priv = wqe->priv;
	struct tid_rdma_params *remote;
	enum ib_wr_opcode new_opcode;
	bool do_tid_rdma = false;
	struct hfi1_pportdata *ppd = qpriv->rcd->ppd;

	if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
				ppd->lid)
		return;
	if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
		return;

	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);
	/*
	 * If TID RDMA is disabled by the negotiation, don't
	 * use it.
	 */
	if (!remote)
		goto exit;

	if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3307 3308
		if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
					 wqe->wr.num_sge)) {
3309 3310 3311
			new_opcode = IB_WR_TID_RDMA_READ;
			do_tid_rdma = true;
		}
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	} else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
		/*
		 * TID RDMA is enabled for this RDMA WRITE request iff:
		 *   1. The remote address is page-aligned,
		 *   2. The length is larger than the minimum segment size,
		 *   3. The length is page-multiple.
		 */
		if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
		    !(wqe->length & ~PAGE_MASK)) {
			new_opcode = IB_WR_TID_RDMA_WRITE;
			do_tid_rdma = true;
		}
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	}

	if (do_tid_rdma) {
		if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
			goto exit;
		wqe->wr.opcode = new_opcode;
		priv->tid_req.seg_len =
			min_t(u32, remote->max_len, wqe->length);
		priv->tid_req.total_segs =
			DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
		/* Compute the last PSN of the request */
		wqe->lpsn = wqe->psn;
		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
			priv->tid_req.n_flows = remote->max_read;
			qpriv->tid_r_reqs++;
			wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3340 3341 3342
		} else {
			wqe->lpsn += priv->tid_req.total_segs - 1;
			atomic_inc(&qpriv->n_requests);
3343 3344 3345 3346 3347 3348
		}

		priv->tid_req.cur_seg = 0;
		priv->tid_req.comp_seg = 0;
		priv->tid_req.ack_seg = 0;
		priv->tid_req.state = TID_REQUEST_INACTIVE;
3349 3350 3351 3352 3353 3354 3355
		/*
		 * Reset acked_tail.
		 * TID RDMA READ does not have ACKs so it does not
		 * update the pointer. We have to reset it so TID RDMA
		 * WRITE does not get confused.
		 */
		priv->tid_req.acked_tail = priv->tid_req.setup_head;
3356 3357 3358
		trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
						 wqe->psn, wqe->lpsn,
						 &priv->tid_req);
3359 3360 3361 3362
	}
exit:
	rcu_read_unlock();
}
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

/* TID RDMA WRITE functions */

u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
				  struct ib_other_headers *ohdr,
				  u32 *bth1, u32 *bth2, u32 *len)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_params *remote;

	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);
	/*
	 * Set the number of flow to be used based on negotiated
	 * parameters.
	 */
	req->n_flows = remote->max_write;
	req->state = TID_REQUEST_ACTIVE;

	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
	ohdr->u.tid_rdma.w_req.reth.vaddr =
		cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
	ohdr->u.tid_rdma.w_req.reth.rkey =
		cpu_to_be32(wqe->rdma_wr.rkey);
	ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
	ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
	*bth1 &= ~RVT_QPN_MASK;
	*bth1 |= remote->qp;
	qp->s_state = TID_OP(WRITE_REQ);
	qp->s_flags |= HFI1_S_WAIT_TID_RESP;
	*bth2 |= IB_BTH_REQ_ACK;
	*len = 0;

	rcu_read_unlock();
	return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
}
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

void hfi1_compute_tid_rdma_flow_wt(void)
{
	/*
	 * Heuristic for computing the RNR timeout when waiting on the flow
	 * queue. Rather than a computationaly expensive exact estimate of when
	 * a flow will be available, we assume that if a QP is at position N in
	 * the flow queue it has to wait approximately (N + 1) * (number of
	 * segments between two sync points), assuming PMTU of 4K. The rationale
	 * for this is that flows are released and recycled at each sync point.
	 */
	tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) /
		TID_RDMA_MAX_SEGMENT_SIZE;
}

static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
			     struct tid_queue *queue)
{
	return qpriv->tid_enqueue - queue->dequeue;
}

/*
 * @qp: points to rvt_qp context.
 * @to_seg: desired RNR timeout in segments.
 * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
 */
static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	u64 timeout;
	u32 bytes_per_us;
	u8 i;

	bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
	timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
	/*
	 * Find the next highest value in the RNR table to the required
	 * timeout. This gives the responder some padding.
	 */
	for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
		if (rvt_rnr_tbl_to_usec(i) >= timeout)
			return i;
	return 0;
}

/**
 * Central place for resource allocation at TID write responder,
 * is called from write_req and write_data interrupt handlers as
 * well as the send thread when a queued QP is scheduled for
 * resource allocation.
 *
 * Iterates over (a) segments of a request and then (b) queued requests
 * themselves to allocate resources for up to local->max_write
 * segments across multiple requests. Stop allocating when we
 * hit a sync point, resume allocating after data packets at
 * sync point have been received.
 *
 * Resource allocation and sending of responses is decoupled. The
 * request/segment which are being allocated and sent are as follows.
 * Resources are allocated for:
 *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
 * The send thread sends:
 *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
 */
static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
{
	struct tid_rdma_request *req;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct hfi1_ctxtdata *rcd = qpriv->rcd;
	struct tid_rdma_params *local = &qpriv->tid_rdma.local;
	struct rvt_ack_entry *e;
	u32 npkts, to_seg;
	bool last;
	int ret = 0;

	lockdep_assert_held(&qp->s_lock);

	while (1) {
3479 3480
		trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
		trace_hfi1_tid_write_rsp_alloc_res(qp);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		/*
		 * Don't allocate more segments if a RNR NAK has already been
		 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
		 * be sent only when all allocated segments have been sent.
		 * However, if more segments are allocated before that, TID RDMA
		 * WRITE RESP packets will be sent out for these new segments
		 * before the RNR NAK packet. When the requester receives the
		 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
		 * which does not match qp->r_psn and will be dropped.
		 * Consequently, the requester will exhaust its retries and
		 * put the qp into error state.
		 */
		if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
			break;

		/* No requests left to process */
		if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
			/* If all data has been received, clear the flow */
			if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
			    !qpriv->alloc_w_segs)
				hfi1_kern_clear_hw_flow(rcd, qp);
			break;
		}

		e = &qp->s_ack_queue[qpriv->r_tid_alloc];
		if (e->opcode != TID_OP(WRITE_REQ))
			goto next_req;
		req = ack_to_tid_req(e);
3509 3510
		trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
						   e->lpsn, req);
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		/* Finished allocating for all segments of this request */
		if (req->alloc_seg >= req->total_segs)
			goto next_req;

		/* Can allocate only a maximum of local->max_write for a QP */
		if (qpriv->alloc_w_segs >= local->max_write)
			break;

		/* Don't allocate at a sync point with data packets pending */
		if (qpriv->sync_pt && qpriv->alloc_w_segs)
			break;

		/* All data received at the sync point, continue */
		if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
			hfi1_kern_clear_hw_flow(rcd, qp);
			qpriv->sync_pt = false;
			if (qpriv->s_flags & HFI1_R_TID_SW_PSN)
				qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
		}

		/* Allocate flow if we don't have one */
		if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
			ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
			if (ret) {
				to_seg = tid_rdma_flow_wt *
					position_in_queue(qpriv,
							  &rcd->flow_queue);
				break;
			}
		}

		npkts = rvt_div_round_up_mtu(qp, req->seg_len);

		/*
		 * We are at a sync point if we run out of KDETH PSN space.
		 * Last PSN of every generation is reserved for RESYNC.
		 */
		if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
			qpriv->sync_pt = true;
			break;
		}

		/*
		 * If overtaking req->acked_tail, send an RNR NAK. Because the
		 * QP is not queued in this case, and the issue can only be
		 * caused due a delay in scheduling the second leg which we
		 * cannot estimate, we use a rather arbitrary RNR timeout of
		 * (MAX_FLOWS / 2) segments
		 */
		if (!CIRC_SPACE(req->setup_head, req->acked_tail,
				MAX_FLOWS)) {
			ret = -EAGAIN;
			to_seg = MAX_FLOWS >> 1;
			qpriv->s_flags |= RVT_S_ACK_PENDING;
K
Kaike Wan 已提交
3565
			hfi1_schedule_tid_send(qp);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
			break;
		}

		/* Try to allocate rcv array / TID entries */
		ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
		if (ret == -EAGAIN)
			to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
		if (ret)
			break;

		qpriv->alloc_w_segs++;
		req->alloc_seg++;
		continue;
next_req:
		/* Begin processing the next request */
		if (++qpriv->r_tid_alloc >
		    rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
			qpriv->r_tid_alloc = 0;
	}

	/*
	 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
	 * has failed (b) we are called from the rcv handler interrupt context
	 * (c) an RNR NAK has not already been scheduled
	 */
	if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
		goto send_rnr_nak;

	return;

send_rnr_nak:
	lockdep_assert_held(&qp->r_lock);

	/* Set r_nak_state to prevent unrelated events from generating NAK's */
	qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;

	/* Pull back r_psn to the segment being RNR NAK'd */
	qp->r_psn = e->psn + req->alloc_seg;
	qp->r_ack_psn = qp->r_psn;
	/*
	 * Pull back r_head_ack_queue to the ack entry following the request
	 * being RNR NAK'd. This allows resources to be allocated to the request
	 * if the queued QP is scheduled.
	 */
	qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
	if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
		qp->r_head_ack_queue = 0;
	qpriv->r_tid_head = qp->r_head_ack_queue;
	/*
	 * These send side fields are used in make_rc_ack(). They are set in
	 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
	 * for consistency
	 */
	qp->s_nak_state = qp->r_nak_state;
	qp->s_ack_psn = qp->r_ack_psn;
	/*
	 * Clear the ACK PENDING flag to prevent unwanted ACK because we
	 * have modified qp->s_ack_psn here.
	 */
	qp->s_flags &= ~(RVT_S_ACK_PENDING);

3627
	trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	/*
	 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
	 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
	 * used for this because qp->s_lock is dropped before calling
	 * hfi1_send_rc_ack() leading to inconsistency between the receive
	 * interrupt handlers and the send thread in make_rc_ack()
	 */
	qpriv->rnr_nak_state = TID_RNR_NAK_SEND;

	/*
	 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
	 * interrupt handlers but will be sent from the send engine behind any
	 * previous responses that may have been scheduled
	 */
	rc_defered_ack(rcd, qp);
}

void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
{
	/* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/

	/*
	 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
	 *    (see hfi1_rc_rcv())
	 *     - Don't allow 0-length requests.
	 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
	 *     - Setup struct tid_rdma_req with request info
	 *     - Prepare struct tid_rdma_flow array?
	 * 3. Set the qp->s_ack_state as state diagram in design doc.
	 * 4. Set RVT_S_RESP_PENDING in s_flags.
	 * 5. Kick the send engine (hfi1_schedule_send())
	 */
	struct hfi1_ctxtdata *rcd = packet->rcd;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_ack_entry *e;
	unsigned long flags;
	struct ib_reth *reth;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_request *req;
	u32 bth0, psn, len, rkey, num_segs;
	bool is_fecn;
	u8 next;
	u64 vaddr;
	int diff;

	bth0 = be32_to_cpu(ohdr->bth[0]);
	if (hfi1_ruc_check_hdr(ibp, packet))
		return;

	is_fecn = process_ecn(qp, packet);
	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3681
	trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
		rvt_comm_est(qp);

	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
		goto nack_inv;

	reth = &ohdr->u.tid_rdma.w_req.reth;
	vaddr = be64_to_cpu(reth->vaddr);
	len = be32_to_cpu(reth->length);

	num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
	diff = delta_psn(psn, qp->r_psn);
	if (unlikely(diff)) {
		if (tid_rdma_rcv_error(packet, ohdr, qp, psn, diff))
			return;
		goto send_ack;
	}

	/*
	 * The resent request which was previously RNR NAK'd is inserted at the
	 * location of the original request, which is one entry behind
	 * r_head_ack_queue
	 */
	if (qpriv->rnr_nak_state)
		qp->r_head_ack_queue = qp->r_head_ack_queue ?
			qp->r_head_ack_queue - 1 :
			rvt_size_atomic(ib_to_rvt(qp->ibqp.device));

	/* We've verified the request, insert it into the ack queue. */
	next = qp->r_head_ack_queue + 1;
	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
		next = 0;
	spin_lock_irqsave(&qp->s_lock, flags);
	if (unlikely(next == qp->s_acked_ack_queue)) {
		if (!qp->s_ack_queue[next].sent)
			goto nack_inv_unlock;
		update_ack_queue(qp, next);
	}
	e = &qp->s_ack_queue[qp->r_head_ack_queue];
	req = ack_to_tid_req(e);

	/* Bring previously RNR NAK'd request back to life */
	if (qpriv->rnr_nak_state) {
		qp->r_nak_state = 0;
		qp->s_nak_state = 0;
		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
		qp->r_psn = e->lpsn + 1;
		req->state = TID_REQUEST_INIT;
		goto update_head;
	}

3734
	release_rdma_sge_mr(e);
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786

	/* The length needs to be in multiples of PAGE_SIZE */
	if (!len || len & ~PAGE_MASK)
		goto nack_inv_unlock;

	rkey = be32_to_cpu(reth->rkey);
	qp->r_len = len;

	if (e->opcode == TID_OP(WRITE_REQ) &&
	    (req->setup_head != req->clear_tail ||
	     req->clear_tail != req->acked_tail))
		goto nack_inv_unlock;

	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
				  rkey, IB_ACCESS_REMOTE_WRITE)))
		goto nack_acc;

	qp->r_psn += num_segs - 1;

	e->opcode = (bth0 >> 24) & 0xff;
	e->psn = psn;
	e->lpsn = qp->r_psn;
	e->sent = 0;

	req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
	req->state = TID_REQUEST_INIT;
	req->cur_seg = 0;
	req->comp_seg = 0;
	req->ack_seg = 0;
	req->alloc_seg = 0;
	req->isge = 0;
	req->seg_len = qpriv->tid_rdma.local.max_len;
	req->total_len = len;
	req->total_segs = num_segs;
	req->r_flow_psn = e->psn;
	req->ss.sge = e->rdma_sge;
	req->ss.num_sge = 1;

	req->flow_idx = req->setup_head;
	req->clear_tail = req->setup_head;
	req->acked_tail = req->setup_head;

	qp->r_state = e->opcode;
	qp->r_nak_state = 0;
	/*
	 * We need to increment the MSN here instead of when we
	 * finish sending the result since a duplicate request would
	 * increment it more than once.
	 */
	qp->r_msn++;
	qp->r_psn++;

3787 3788 3789
	trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
					 req);

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
		qpriv->r_tid_tail = qp->r_head_ack_queue;
	} else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
		struct tid_rdma_request *ptr;

		e = &qp->s_ack_queue[qpriv->r_tid_tail];
		ptr = ack_to_tid_req(e);

		if (e->opcode != TID_OP(WRITE_REQ) ||
		    ptr->comp_seg == ptr->total_segs) {
			if (qpriv->r_tid_tail == qpriv->r_tid_ack)
				qpriv->r_tid_ack = qp->r_head_ack_queue;
			qpriv->r_tid_tail = qp->r_head_ack_queue;
		}
	}
update_head:
	qp->r_head_ack_queue = next;
	qpriv->r_tid_head = qp->r_head_ack_queue;

	hfi1_tid_write_alloc_resources(qp, true);
3810
	trace_hfi1_tid_write_rsp_rcv_req(qp);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837

	/* Schedule the send tasklet. */
	qp->s_flags |= RVT_S_RESP_PENDING;
	hfi1_schedule_send(qp);

	spin_unlock_irqrestore(&qp->s_lock, flags);
	if (is_fecn)
		goto send_ack;
	return;

nack_inv_unlock:
	spin_unlock_irqrestore(&qp->s_lock, flags);
nack_inv:
	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
	qp->r_nak_state = IB_NAK_INVALID_REQUEST;
	qp->r_ack_psn = qp->r_psn;
	/* Queue NAK for later */
	rc_defered_ack(rcd, qp);
	return;
nack_acc:
	spin_unlock_irqrestore(&qp->s_lock, flags);
	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
	qp->r_ack_psn = qp->r_psn;
send_ack:
	hfi1_send_rc_ack(packet, is_fecn);
}
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
				   struct ib_other_headers *ohdr, u32 *bth1,
				   u32 bth2, u32 *len,
				   struct rvt_sge_state **ss)
{
	struct hfi1_ack_priv *epriv = e->priv;
	struct tid_rdma_request *req = &epriv->tid_req;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_flow *flow = NULL;
	u32 resp_len = 0, hdwords = 0;
	void *resp_addr = NULL;
	struct tid_rdma_params *remote;

3852 3853 3854 3855
	trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
					    req);
	trace_hfi1_tid_write_rsp_build_resp(qp);
	trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	flow = &req->flows[req->flow_idx];
	switch (req->state) {
	default:
		/*
		 * Try to allocate resources here in case QP was queued and was
		 * later scheduled when resources became available
		 */
		hfi1_tid_write_alloc_resources(qp, false);

		/* We've already sent everything which is ready */
		if (req->cur_seg >= req->alloc_seg)
			goto done;

		/*
		 * Resources can be assigned but responses cannot be sent in
		 * rnr_nak state, till the resent request is received
		 */
		if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
			goto done;

		req->state = TID_REQUEST_ACTIVE;
3877
		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3878
		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
K
Kaike Wan 已提交
3879
		hfi1_add_tid_reap_timer(qp);
3880 3881 3882 3883
		break;

	case TID_REQUEST_RESEND_ACTIVE:
	case TID_REQUEST_RESEND:
3884
		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3885 3886 3887 3888
		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
		if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
			req->state = TID_REQUEST_ACTIVE;

K
Kaike Wan 已提交
3889
		hfi1_mod_tid_reap_timer(qp);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
		break;
	}
	flow->flow_state.resp_ib_psn = bth2;
	resp_addr = (void *)flow->tid_entry;
	resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
	req->cur_seg++;

	memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
	epriv->ss.sge.vaddr = resp_addr;
	epriv->ss.sge.sge_length = resp_len;
	epriv->ss.sge.length = epriv->ss.sge.sge_length;
	/*
	 * We can safely zero these out. Since the first SGE covers the
	 * entire packet, nothing else should even look at the MR.
	 */
	epriv->ss.sge.mr = NULL;
	epriv->ss.sge.m = 0;
	epriv->ss.sge.n = 0;

	epriv->ss.sg_list = NULL;
	epriv->ss.total_len = epriv->ss.sge.sge_length;
	epriv->ss.num_sge = 1;

	*ss = &epriv->ss;
	*len = epriv->ss.total_len;

	/* Construct the TID RDMA WRITE RESP packet header */
	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);

	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
	ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
	ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
		cpu_to_be32((flow->flow_state.generation <<
			     HFI1_KDETH_BTH_SEQ_SHIFT) |
			    (flow->flow_state.spsn &
			     HFI1_KDETH_BTH_SEQ_MASK));
	ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
		cpu_to_be32(qpriv->tid_rdma.local.qp |
			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
			     TID_RDMA_DESTQP_FLOW_SHIFT) |
			    qpriv->rcd->ctxt);
	ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
	*bth1 = remote->qp;
	rcu_read_unlock();
	hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
	qpriv->pending_tid_w_segs++;
done:
	return hdwords;
}
K
Kaike Wan 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998

static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
		qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
		qpriv->s_tid_timer.expires = jiffies +
			qpriv->tid_timer_timeout_jiffies;
		add_timer(&qpriv->s_tid_timer);
	}
}

static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
	mod_timer(&qpriv->s_tid_timer, jiffies +
		  qpriv->tid_timer_timeout_jiffies);
}

static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	int rval = 0;

	lockdep_assert_held(&qp->s_lock);
	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
		rval = del_timer(&qpriv->s_tid_timer);
		qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
	}
	return rval;
}

void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = qp->priv;

	del_timer_sync(&qpriv->s_tid_timer);
	qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
}

static void hfi1_tid_timeout(struct timer_list *t)
{
	struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
	struct rvt_qp *qp = qpriv->owner;
	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
	unsigned long flags;
	u32 i;

	spin_lock_irqsave(&qp->r_lock, flags);
	spin_lock(&qp->s_lock);
	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
		dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
			    qp->ibqp.qp_num, __func__, __LINE__);
3999 4000 4001
		trace_hfi1_msg_tid_timeout(/* msg */
			qp, "resource timeout = ",
			(u64)qpriv->tid_timer_timeout_jiffies);
K
Kaike Wan 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
		hfi1_stop_tid_reap_timer(qp);
		/*
		 * Go though the entire ack queue and clear any outstanding
		 * HW flow and RcvArray resources.
		 */
		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
		for (i = 0; i < rvt_max_atomic(rdi); i++) {
			struct tid_rdma_request *req =
				ack_to_tid_req(&qp->s_ack_queue[i]);

			hfi1_kern_exp_rcv_clear_all(req);
		}
		spin_unlock(&qp->s_lock);
		if (qp->ibqp.event_handler) {
			struct ib_event ev;

			ev.device = qp->ibqp.device;
			ev.element.qp = &qp->ibqp;
			ev.event = IB_EVENT_QP_FATAL;
			qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
		}
		rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
		goto unlock_r_lock;
	}
	spin_unlock(&qp->s_lock);
unlock_r_lock:
	spin_unlock_irqrestore(&qp->r_lock, flags);
}
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
{
	/* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */

	/*
	 * 1. Find matching SWQE
	 * 2. Check that TIDENTRY array has enough space for a complete
	 *    segment. If not, put QP in error state.
	 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
	 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
	 * 5. Set qp->s_state
	 * 6. Kick the send engine (hfi1_schedule_send())
	 */
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct hfi1_ctxtdata *rcd = packet->rcd;
	struct rvt_swqe *wqe;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	enum ib_wc_status status;
	u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
	bool is_fecn;
	unsigned long flags;

	is_fecn = process_ecn(qp, packet);
	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
	aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;

	spin_lock_irqsave(&qp->s_lock, flags);

	/* Ignore invalid responses */
	if (cmp_psn(psn, qp->s_next_psn) >= 0)
		goto ack_done;

	/* Ignore duplicate responses. */
	if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
		goto ack_done;

	if (unlikely(qp->s_acked == qp->s_tail))
		goto ack_done;

	/*
	 * If we are waiting for a particular packet sequence number
	 * due to a request being resent, check for it. Otherwise,
	 * ensure that we haven't missed anything.
	 */
	if (qp->r_flags & RVT_R_RDMAR_SEQ) {
		if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
			goto ack_done;
		qp->r_flags &= ~RVT_R_RDMAR_SEQ;
	}

	wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
	if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
		goto ack_op_err;

	req = wqe_to_tid_req(wqe);
	/*
	 * If we've lost ACKs and our acked_tail pointer is too far
	 * behind, don't overwrite segments. Just drop the packet and
	 * let the reliability protocol take care of it.
	 */
	if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
		goto ack_done;

	/*
	 * The call to do_rc_ack() should be last in the chain of
	 * packet checks because it will end up updating the QP state.
	 * Therefore, anything that would prevent the packet from
	 * being accepted as a successful response should be prior
	 * to it.
	 */
	if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
		goto ack_done;

4108 4109
	trace_hfi1_ack(qp, psn);

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	flow = &req->flows[req->setup_head];
	flow->pkt = 0;
	flow->tid_idx = 0;
	flow->tid_offset = 0;
	flow->sent = 0;
	flow->resync_npkts = 0;
	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
		TID_RDMA_DESTQP_FLOW_MASK;
	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
	flow->flow_state.resp_ib_psn = psn;
	flow->length = min_t(u32, req->seg_len,
			     (wqe->length - (req->comp_seg * req->seg_len)));

	flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
	flow->flow_state.lpsn = flow->flow_state.spsn +
		flow->npkts - 1;
	/* payload length = packet length - (header length + ICRC length) */
	pktlen = packet->tlen - (packet->hlen + 4);
	if (pktlen > sizeof(flow->tid_entry)) {
		status = IB_WC_LOC_LEN_ERR;
		goto ack_err;
	}
	memcpy(flow->tid_entry, packet->ebuf, pktlen);
	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4137
	trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4138 4139

	req->comp_seg++;
4140
	trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4141 4142 4143 4144 4145
	/*
	 * Walk the TID_ENTRY list to make sure we have enough space for a
	 * complete segment.
	 */
	for (i = 0; i < flow->tidcnt; i++) {
4146 4147
		trace_hfi1_tid_entry_rcv_write_resp(/* entry */
			qp, i, flow->tid_entry[i]);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
		if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
			status = IB_WC_LOC_LEN_ERR;
			goto ack_err;
		}
		tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
	}
	if (tidlen * PAGE_SIZE < flow->length) {
		status = IB_WC_LOC_LEN_ERR;
		goto ack_err;
	}

4159 4160
	trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
					  wqe->lpsn, req);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	/*
	 * If this is the first response for this request, set the initial
	 * flow index to the current flow.
	 */
	if (!cmp_psn(psn, wqe->psn)) {
		req->r_last_acked = mask_psn(wqe->psn - 1);
		/* Set acked flow index to head index */
		req->acked_tail = req->setup_head;
	}

	/* advance circular buffer head */
	req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
	req->state = TID_REQUEST_ACTIVE;

	/*
	 * If all responses for this TID RDMA WRITE request have been received
	 * advance the pointer to the next one.
	 * Since TID RDMA requests could be mixed in with regular IB requests,
	 * they might not appear sequentially in the queue. Therefore, the
	 * next request needs to be "found".
	 */
	if (qpriv->s_tid_cur != qpriv->s_tid_head &&
	    req->comp_seg == req->total_segs) {
		for (i = qpriv->s_tid_cur + 1; ; i++) {
			if (i == qp->s_size)
				i = 0;
			wqe = rvt_get_swqe_ptr(qp, i);
			if (i == qpriv->s_tid_head)
				break;
			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
				break;
		}
		qpriv->s_tid_cur = i;
	}
	qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;

K
Kaike Wan 已提交
4197
	hfi1_schedule_tid_send(qp);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	goto ack_done;

ack_op_err:
	status = IB_WC_LOC_QP_OP_ERR;
ack_err:
	rvt_error_qp(qp, status);
ack_done:
	spin_unlock_irqrestore(&qp->s_lock, flags);
	if (is_fecn)
		hfi1_send_rc_ack(packet, is_fecn);
}
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234

bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
				struct ib_other_headers *ohdr,
				u32 *bth1, u32 *bth2, u32 *len)
{
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
	struct tid_rdma_params *remote;
	struct rvt_qp *qp = req->qp;
	struct hfi1_qp_priv *qpriv = qp->priv;
	u32 tidentry = flow->tid_entry[flow->tid_idx];
	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
	struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
	u32 next_offset, om = KDETH_OM_LARGE;
	bool last_pkt;

	if (!tidlen) {
		hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
		rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
	}

	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
	flow->sent += *len;
	next_offset = flow->tid_offset + *len;
	last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
		    next_offset >= tidlen) || (flow->sent >= flow->length);
4235 4236
	trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
	trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);
	KDETH_RESET(wd->kdeth0, KVER, 0x1);
	KDETH_SET(wd->kdeth0, SH, !last_pkt);
	KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
	KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
	KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
	KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
	KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
	KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
	wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
	rcu_read_unlock();

	*bth1 = flow->tid_qpn;
	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
			 HFI1_KDETH_BTH_SEQ_MASK) |
			 (flow->flow_state.generation <<
			  HFI1_KDETH_BTH_SEQ_SHIFT));
	if (last_pkt) {
		/* PSNs are zero-based, so +1 to count number of packets */
		if (flow->flow_state.lpsn + 1 +
		    rvt_div_round_up_mtu(qp, req->seg_len) >
		    MAX_TID_FLOW_PSN)
			req->state = TID_REQUEST_SYNC;
		*bth2 |= IB_BTH_REQ_ACK;
	}

	if (next_offset >= tidlen) {
		flow->tid_offset = 0;
		flow->tid_idx++;
	} else {
		flow->tid_offset = next_offset;
	}
	return last_pkt;
}
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318

void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
{
	struct rvt_qp *qp = packet->qp;
	struct hfi1_qp_priv *priv = qp->priv;
	struct hfi1_ctxtdata *rcd = priv->rcd;
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_ack_entry *e;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
	unsigned long flags;
	u32 psn, next;
	u8 opcode;

	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;

	/*
	 * All error handling should be done by now. If we are here, the packet
	 * is either good or been accepted by the error handler.
	 */
	spin_lock_irqsave(&qp->s_lock, flags);
	e = &qp->s_ack_queue[priv->r_tid_tail];
	req = ack_to_tid_req(e);
	flow = &req->flows[req->clear_tail];
	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
		if (cmp_psn(psn, flow->flow_state.r_next_psn))
			goto send_nak;
		flow->flow_state.r_next_psn++;
		goto exit;
	}
	flow->flow_state.r_next_psn = mask_psn(psn + 1);
	hfi1_kern_exp_rcv_clear(req);
	priv->alloc_w_segs--;
	rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
	req->comp_seg++;
	priv->s_nak_state = 0;

	/*
	 * Release the flow if one of the following conditions has been met:
	 *  - The request has reached a sync point AND all outstanding
	 *    segments have been completed, or
	 *  - The entire request is complete and there are no more requests
	 *    (of any kind) in the queue.
	 */
4319 4320 4321 4322
	trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
	trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
					  req);
	trace_hfi1_tid_write_rsp_rcv_data(qp);
4323 4324 4325 4326
	if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
		priv->r_tid_ack = priv->r_tid_tail;

	if (opcode == TID_OP(WRITE_DATA_LAST)) {
4327
		release_rdma_sge_mr(e);
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
		for (next = priv->r_tid_tail + 1; ; next++) {
			if (next > rvt_size_atomic(&dev->rdi))
				next = 0;
			if (next == priv->r_tid_head)
				break;
			e = &qp->s_ack_queue[next];
			if (e->opcode == TID_OP(WRITE_REQ))
				break;
		}
		priv->r_tid_tail = next;
		if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
			qp->s_acked_ack_queue = 0;
	}

	hfi1_tid_write_alloc_resources(qp, true);

	/*
	 * If we need to generate more responses, schedule the
	 * send engine.
	 */
	if (req->cur_seg < req->total_segs ||
	    qp->s_tail_ack_queue != qp->r_head_ack_queue) {
		qp->s_flags |= RVT_S_RESP_PENDING;
		hfi1_schedule_send(qp);
	}

	priv->pending_tid_w_segs--;
	if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
		if (priv->pending_tid_w_segs)
			hfi1_mod_tid_reap_timer(req->qp);
		else
			hfi1_stop_tid_reap_timer(req->qp);
	}

done:
	priv->s_flags |= RVT_S_ACK_PENDING;
K
Kaike Wan 已提交
4364
	hfi1_schedule_tid_send(qp);
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
exit:
	priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
	spin_unlock_irqrestore(&qp->s_lock, flags);
	return;

send_nak:
	if (!priv->s_nak_state) {
		priv->s_nak_state = IB_NAK_PSN_ERROR;
		priv->s_nak_psn = flow->flow_state.r_next_psn;
		priv->s_flags |= RVT_S_ACK_PENDING;
		if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
			priv->r_tid_ack = priv->r_tid_tail;
K
Kaike Wan 已提交
4377
		hfi1_schedule_tid_send(qp);
4378 4379 4380
	}
	goto done;
}
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
{
	return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
		      HFI1_KDETH_BTH_SEQ_MASK);
}

u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
				  struct ib_other_headers *ohdr, u16 iflow,
				  u32 *bth1, u32 *bth2)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_flow_state *fs = &qpriv->flow_state;
	struct tid_rdma_request *req = ack_to_tid_req(e);
	struct tid_rdma_flow *flow = &req->flows[iflow];
	struct tid_rdma_params *remote;

	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);
	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
	*bth1 = remote->qp;
	rcu_read_unlock();

	if (qpriv->resync) {
		*bth2 = mask_psn((fs->generation <<
				  HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
	} else if (qpriv->s_nak_state) {
		*bth2 = mask_psn(qpriv->s_nak_psn);
		ohdr->u.tid_rdma.ack.aeth =
			cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
				    (qpriv->s_nak_state <<
				     IB_AETH_CREDIT_SHIFT));
	} else {
		*bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
	}
	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
	ohdr->u.tid_rdma.ack.tid_flow_qp =
		cpu_to_be32(qpriv->tid_rdma.local.qp |
			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
			     TID_RDMA_DESTQP_FLOW_SHIFT) |
			    qpriv->rcd->ctxt);

	ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
	ohdr->u.tid_rdma.ack.verbs_psn =
		cpu_to_be32(flow->flow_state.resp_ib_psn);

	if (qpriv->resync) {
		/*
		 * If the PSN before the current expect KDETH PSN is the
		 * RESYNC PSN, then we never received a good TID RDMA WRITE
		 * DATA packet after a previous RESYNC.
		 * In this case, the next expected KDETH PSN stays the same.
		 */
		if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
			ohdr->u.tid_rdma.ack.tid_flow_psn =
				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
		} else {
			/*
			 * Because the KDETH PSNs jump during a RESYNC, it's
			 * not possible to infer (or compute) the previous value
			 * of r_next_psn_kdeth in the case of back-to-back
			 * RESYNC packets. Therefore, we save it.
			 */
			qpriv->r_next_psn_kdeth_save =
				qpriv->r_next_psn_kdeth - 1;
			ohdr->u.tid_rdma.ack.tid_flow_psn =
				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
			qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
		}
		qpriv->resync = false;
	}

	return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
}
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471

void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
{
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct rvt_swqe *wqe;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	u32 aeth, psn, req_psn, ack_psn, fspsn, resync_psn, ack_kpsn;
	bool is_fecn;
	unsigned long flags;
	u16 fidx;

4472
	trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4473 4474 4475 4476 4477 4478 4479
	is_fecn = process_ecn(qp, packet);
	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
	aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
	req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
	resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));

	spin_lock_irqsave(&qp->s_lock, flags);
4480
	trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502

	/* If we are waiting for an ACK to RESYNC, drop any other packets */
	if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
	    cmp_psn(psn, qpriv->s_resync_psn))
		goto ack_op_err;

	ack_psn = req_psn;
	if (hfi1_tid_rdma_is_resync_psn(psn))
		ack_kpsn = resync_psn;
	else
		ack_kpsn = psn;
	if (aeth >> 29) {
		ack_psn--;
		ack_kpsn--;
	}

	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);

	if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
		goto ack_op_err;

	req = wqe_to_tid_req(wqe);
4503 4504
	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
				       wqe->lpsn, req);
4505
	flow = &req->flows[req->acked_tail];
4506
	trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

	/* Drop stale ACK/NAK */
	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0)
		goto ack_op_err;

	while (cmp_psn(ack_kpsn,
		       full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
	       req->ack_seg < req->cur_seg) {
		req->ack_seg++;
		/* advance acked segment pointer */
		req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
		req->r_last_acked = flow->flow_state.resp_ib_psn;
4519 4520
		trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
					       wqe->lpsn, req);
4521 4522 4523 4524 4525
		if (req->ack_seg == req->total_segs) {
			req->state = TID_REQUEST_COMPLETE;
			wqe = do_rc_completion(qp, wqe,
					       to_iport(qp->ibqp.device,
							qp->port_num));
4526
			trace_hfi1_sender_rcv_tid_ack(qp);
4527 4528 4529 4530 4531 4532 4533 4534
			atomic_dec(&qpriv->n_tid_requests);
			if (qp->s_acked == qp->s_tail)
				break;
			if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
				break;
			req = wqe_to_tid_req(wqe);
		}
		flow = &req->flows[req->acked_tail];
4535
		trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4536 4537
	}

4538 4539
	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
				       wqe->lpsn, req);
4540 4541 4542 4543 4544
	switch (aeth >> 29) {
	case 0:         /* ACK */
		if (qpriv->s_flags & RVT_S_WAIT_ACK)
			qpriv->s_flags &= ~RVT_S_WAIT_ACK;
		if (!hfi1_tid_rdma_is_resync_psn(psn)) {
K
Kaike Wan 已提交
4545 4546 4547 4548 4549 4550
			/* Check if there is any pending TID ACK */
			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
			    req->ack_seg < req->cur_seg)
				hfi1_mod_tid_retry_timer(qp);
			else
				hfi1_stop_tid_retry_timer(qp);
4551 4552 4553 4554 4555
			hfi1_schedule_send(qp);
		} else {
			u32 spsn, fpsn, last_acked, generation;
			struct tid_rdma_request *rptr;

K
Kaike Wan 已提交
4556 4557
			/* ACK(RESYNC) */
			hfi1_stop_tid_retry_timer(qp);
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
			/* Allow new requests (see hfi1_make_tid_rdma_pkt) */
			qp->s_flags &= ~HFI1_S_WAIT_HALT;
			/*
			 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
			 * ACK is received after the TID retry timer is fired
			 * again. In this case, do not send any more TID
			 * RESYNC request or wait for any more TID ACK packet.
			 */
			qpriv->s_flags &= ~RVT_S_SEND_ONE;
			hfi1_schedule_send(qp);

			if ((qp->s_acked == qpriv->s_tid_tail &&
			     req->ack_seg == req->total_segs) ||
			    qp->s_acked == qp->s_tail) {
				qpriv->s_state = TID_OP(WRITE_DATA_LAST);
				goto done;
			}

			if (req->ack_seg == req->comp_seg) {
				qpriv->s_state = TID_OP(WRITE_DATA);
				goto done;
			}

			/*
			 * The PSN to start with is the next PSN after the
			 * RESYNC PSN.
			 */
			psn = mask_psn(psn + 1);
			generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
			spsn = 0;

			/*
			 * Update to the correct WQE when we get an ACK(RESYNC)
			 * in the middle of a request.
			 */
			if (delta_psn(ack_psn, wqe->lpsn))
				wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
			req = wqe_to_tid_req(wqe);
			flow = &req->flows[req->acked_tail];
			/*
			 * RESYNC re-numbers the PSN ranges of all remaining
			 * segments. Also, PSN's start from 0 in the middle of a
			 * segment and the first segment size is less than the
			 * default number of packets. flow->resync_npkts is used
			 * to track the number of packets from the start of the
			 * real segment to the point of 0 PSN after the RESYNC
			 * in order to later correctly rewind the SGE.
			 */
			fpsn = full_flow_psn(flow, flow->flow_state.spsn);
			req->r_ack_psn = psn;
			flow->resync_npkts +=
				delta_psn(mask_psn(resync_psn + 1), fpsn);
			/*
			 * Renumber all packet sequence number ranges
			 * based on the new generation.
			 */
			last_acked = qp->s_acked;
			rptr = req;
			while (1) {
				/* start from last acked segment */
				for (fidx = rptr->acked_tail;
				     CIRC_CNT(rptr->setup_head, fidx,
					      MAX_FLOWS);
				     fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
					u32 lpsn;
					u32 gen;

					flow = &rptr->flows[fidx];
					gen = flow->flow_state.generation;
					if (WARN_ON(gen == generation &&
						    flow->flow_state.spsn !=
						     spsn))
						continue;
					lpsn = flow->flow_state.lpsn;
					lpsn = full_flow_psn(flow, lpsn);
					flow->npkts =
						delta_psn(lpsn,
							  mask_psn(resync_psn)
							  );
					flow->flow_state.generation =
						generation;
					flow->flow_state.spsn = spsn;
					flow->flow_state.lpsn =
						flow->flow_state.spsn +
						flow->npkts - 1;
					flow->pkt = 0;
					spsn += flow->npkts;
					resync_psn += flow->npkts;
4646 4647 4648
					trace_hfi1_tid_flow_rcv_tid_ack(qp,
									fidx,
									flow);
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
				}
				if (++last_acked == qpriv->s_tid_cur + 1)
					break;
				if (last_acked == qp->s_size)
					last_acked = 0;
				wqe = rvt_get_swqe_ptr(qp, last_acked);
				rptr = wqe_to_tid_req(wqe);
			}
			req->cur_seg = req->ack_seg;
			qpriv->s_tid_tail = qp->s_acked;
			qpriv->s_state = TID_OP(WRITE_REQ);
K
Kaike Wan 已提交
4660
			hfi1_schedule_tid_send(qp);
4661 4662 4663 4664 4665 4666
		}
done:
		qpriv->s_retry = qp->s_retry_cnt;
		break;

	case 3:         /* NAK */
K
Kaike Wan 已提交
4667
		hfi1_stop_tid_retry_timer(qp);
4668 4669 4670 4671 4672
		switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
			IB_AETH_CREDIT_MASK) {
		case 0: /* PSN sequence error */
			flow = &req->flows[req->acked_tail];
			fspsn = full_flow_psn(flow, flow->flow_state.spsn);
4673 4674
			trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
							flow);
4675 4676 4677 4678 4679
			req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
			req->cur_seg = req->ack_seg;
			qpriv->s_tid_tail = qp->s_acked;
			qpriv->s_state = TID_OP(WRITE_REQ);
			qpriv->s_retry = qp->s_retry_cnt;
K
Kaike Wan 已提交
4680
			hfi1_schedule_tid_send(qp);
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
			break;

		default:
			break;
		}
		break;

	default:
		break;
	}

ack_op_err:
	spin_unlock_irqrestore(&qp->s_lock, flags);
}
K
Kaike Wan 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749

void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct ib_qp *ibqp = &qp->ibqp;
	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);

	lockdep_assert_held(&qp->s_lock);
	if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
		priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
		priv->s_tid_retry_timer.expires = jiffies +
			priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
		add_timer(&priv->s_tid_retry_timer);
	}
}

static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct ib_qp *ibqp = &qp->ibqp;
	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);

	lockdep_assert_held(&qp->s_lock);
	priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
	mod_timer(&priv->s_tid_retry_timer, jiffies +
		  priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
}

static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;
	int rval = 0;

	lockdep_assert_held(&qp->s_lock);
	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
		rval = del_timer(&priv->s_tid_retry_timer);
		priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
	}
	return rval;
}

void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;

	del_timer_sync(&priv->s_tid_retry_timer);
	priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
}

static void hfi1_tid_retry_timeout(struct timer_list *t)
{
	struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
	struct rvt_qp *qp = priv->owner;
	struct rvt_swqe *wqe;
	unsigned long flags;
4750
	struct tid_rdma_request *req;
K
Kaike Wan 已提交
4751 4752 4753

	spin_lock_irqsave(&qp->r_lock, flags);
	spin_lock(&qp->s_lock);
4754
	trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
K
Kaike Wan 已提交
4755 4756 4757
	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
		hfi1_stop_tid_retry_timer(qp);
		if (!priv->s_retry) {
4758 4759 4760 4761 4762
			trace_hfi1_msg_tid_retry_timeout(/* msg */
				qp,
				"Exhausted retries. Tid retry timeout = ",
				(u64)priv->tid_retry_timeout_jiffies);

K
Kaike Wan 已提交
4763 4764 4765 4766
			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
			hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
			rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
		} else {
4767 4768 4769 4770 4771
			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
			req = wqe_to_tid_req(wqe);
			trace_hfi1_tid_req_tid_retry_timeout(/* req */
			   qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);

K
Kaike Wan 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
			priv->s_flags &= ~RVT_S_WAIT_ACK;
			/* Only send one packet (the RESYNC) */
			priv->s_flags |= RVT_S_SEND_ONE;
			/*
			 * No additional request shall be made by this QP until
			 * the RESYNC has been complete.
			 */
			qp->s_flags |= HFI1_S_WAIT_HALT;
			priv->s_state = TID_OP(RESYNC);
			priv->s_retry--;
K
Kaike Wan 已提交
4782
			hfi1_schedule_tid_send(qp);
K
Kaike Wan 已提交
4783 4784 4785 4786 4787
		}
	}
	spin_unlock(&qp->s_lock);
	spin_unlock_irqrestore(&qp->r_lock, flags);
}
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813

u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
			       struct ib_other_headers *ohdr, u32 *bth1,
			       u32 *bth2, u16 fidx)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_params *remote;
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_flow *flow = &req->flows[fidx];
	u32 generation;

	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);
	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
	*bth1 = remote->qp;
	rcu_read_unlock();

	generation = kern_flow_generation_next(flow->flow_state.generation);
	*bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
	qpriv->s_resync_psn = *bth2;
	*bth2 |= IB_BTH_REQ_ACK;
	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);

	return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
}
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866

void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
{
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct hfi1_ctxtdata *rcd = qpriv->rcd;
	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
	struct rvt_ack_entry *e;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	struct tid_flow_state *fs = &qpriv->flow_state;
	u32 psn, generation, idx, gen_next;
	bool is_fecn;
	unsigned long flags;

	is_fecn = process_ecn(qp, packet);
	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));

	generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
	spin_lock_irqsave(&qp->s_lock, flags);

	gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
		generation : kern_flow_generation_next(fs->generation);
	/*
	 * RESYNC packet contains the "next" generation and can only be
	 * from the current or previous generations
	 */
	if (generation != mask_generation(gen_next - 1) &&
	    generation != gen_next)
		goto bail;
	/* Already processing a resync */
	if (qpriv->resync)
		goto bail;

	spin_lock(&rcd->exp_lock);
	if (fs->index >= RXE_NUM_TID_FLOWS) {
		/*
		 * If we don't have a flow, save the generation so it can be
		 * applied when a new flow is allocated
		 */
		fs->generation = generation;
	} else {
		/* Reprogram the QP flow with new generation */
		rcd->flows[fs->index].generation = generation;
		fs->generation = kern_setup_hw_flow(rcd, fs->index);
	}
	fs->psn = 0;
	/*
	 * Disable SW PSN checking since a RESYNC is equivalent to a
	 * sync point and the flow has/will be reprogrammed
	 */
	qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4867
	trace_hfi1_tid_write_rsp_rcv_resync(qp);
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881

	/*
	 * Reset all TID flow information with the new generation.
	 * This is done for all requests and segments after the
	 * last received segment
	 */
	for (idx = qpriv->r_tid_tail; ; idx++) {
		u16 flow_idx;

		if (idx > rvt_size_atomic(&dev->rdi))
			idx = 0;
		e = &qp->s_ack_queue[idx];
		if (e->opcode == TID_OP(WRITE_REQ)) {
			req = ack_to_tid_req(e);
4882 4883
			trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
						      e->lpsn, req);
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

			/* start from last unacked segment */
			for (flow_idx = req->clear_tail;
			     CIRC_CNT(req->setup_head, flow_idx,
				      MAX_FLOWS);
			     flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
				u32 lpsn;
				u32 next;

				flow = &req->flows[flow_idx];
				lpsn = full_flow_psn(flow,
						     flow->flow_state.lpsn);
				next = flow->flow_state.r_next_psn;
				flow->npkts = delta_psn(lpsn, next - 1);
				flow->flow_state.generation = fs->generation;
				flow->flow_state.spsn = fs->psn;
				flow->flow_state.lpsn =
					flow->flow_state.spsn + flow->npkts - 1;
				flow->flow_state.r_next_psn =
					full_flow_psn(flow,
						      flow->flow_state.spsn);
				fs->psn += flow->npkts;
4906 4907
				trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
							       flow);
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
			}
		}
		if (idx == qp->s_tail_ack_queue)
			break;
	}

	spin_unlock(&rcd->exp_lock);
	qpriv->resync = true;
	/* RESYNC request always gets a TID RDMA ACK. */
	qpriv->s_nak_state = 0;
	qpriv->s_flags |= RVT_S_ACK_PENDING;
K
Kaike Wan 已提交
4919
	hfi1_schedule_tid_send(qp);
4920 4921 4922
bail:
	spin_unlock_irqrestore(&qp->s_lock, flags);
}
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966

/*
 * Call this function when the last TID RDMA WRITE DATA packet for a request
 * is built.
 */
static void update_tid_tail(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;
	u32 i;
	struct rvt_swqe *wqe;

	lockdep_assert_held(&qp->s_lock);
	/* Can't move beyond s_tid_cur */
	if (priv->s_tid_tail == priv->s_tid_cur)
		return;
	for (i = priv->s_tid_tail + 1; ; i++) {
		if (i == qp->s_size)
			i = 0;

		if (i == priv->s_tid_cur)
			break;
		wqe = rvt_get_swqe_ptr(qp, i);
		if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
			break;
	}
	priv->s_tid_tail = i;
	priv->s_state = TID_OP(WRITE_RESP);
}

int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct rvt_swqe *wqe;
	u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
	struct ib_other_headers *ohdr;
	struct rvt_sge_state *ss = &qp->s_sge;
	struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
	struct tid_rdma_request *req = ack_to_tid_req(e);
	bool last = false;
	u8 opcode = TID_OP(WRITE_DATA);

	lockdep_assert_held(&qp->s_lock);
4967
	trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	/*
	 * Prioritize the sending of the requests and responses over the
	 * sending of the TID RDMA data packets.
	 */
	if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
	     atomic_read(&priv->n_requests) &&
	     !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
			     HFI1_S_ANY_WAIT_IO))) ||
	    (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
	     !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
		struct iowait_work *iowork;

		iowork = iowait_get_ib_work(&priv->s_iowait);
		ps->s_txreq = get_waiting_verbs_txreq(iowork);
		if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
			priv->s_flags |= HFI1_S_TID_BUSY_SET;
			return 1;
		}
	}

	ps->s_txreq = get_txreq(ps->dev, qp);
	if (!ps->s_txreq)
		goto bail_no_tx;

	ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;

4994 4995 4996 4997
	if ((priv->s_flags & RVT_S_ACK_PENDING) &&
	    make_tid_rdma_ack(qp, ohdr, ps))
		return 1;

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) {
		if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND))
			goto bail;
		/* We are in the error state, flush the work request. */
		if (qp->s_last == READ_ONCE(qp->s_head))
			goto bail;
		/* If DMAs are in progress, we can't flush immediately. */
		if (iowait_sdma_pending(&priv->s_iowait)) {
			qp->s_flags |= RVT_S_WAIT_DMA;
			goto bail;
		}
		clear_ahg(qp);
		wqe = rvt_get_swqe_ptr(qp, qp->s_last);
		hfi1_trdma_send_complete(qp, wqe, qp->s_last != qp->s_acked ?
					 IB_WC_SUCCESS : IB_WC_WR_FLUSH_ERR);
		/* will get called again */
		goto done_free_tx;
	}

	if (priv->s_flags & RVT_S_WAIT_ACK)
		goto bail;

	/* Check whether there is anything to do. */
	if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
		goto bail;
	wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
	req = wqe_to_tid_req(wqe);
5025 5026
	trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
					wqe->lpsn, req);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	switch (priv->s_state) {
	case TID_OP(WRITE_REQ):
	case TID_OP(WRITE_RESP):
		priv->tid_ss.sge = wqe->sg_list[0];
		priv->tid_ss.sg_list = wqe->sg_list + 1;
		priv->tid_ss.num_sge = wqe->wr.num_sge;
		priv->tid_ss.total_len = wqe->length;

		if (priv->s_state == TID_OP(WRITE_REQ))
			hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
		priv->s_state = TID_OP(WRITE_DATA);
		/* fall through */

	case TID_OP(WRITE_DATA):
		/*
		 * 1. Check whether TID RDMA WRITE RESP available.
		 * 2. If no:
		 *    2.1 If have more segments and no TID RDMA WRITE RESP,
		 *        set HFI1_S_WAIT_TID_RESP
		 *    2.2 Return indicating no progress made.
		 * 3. If yes:
		 *    3.1 Build TID RDMA WRITE DATA packet.
		 *    3.2 If last packet in segment:
		 *        3.2.1 Change KDETH header bits
		 *        3.2.2 Advance RESP pointers.
		 *    3.3 Return indicating progress made.
		 */
5054 5055
		trace_hfi1_sender_make_tid_pkt(qp);
		trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5056 5057 5058 5059 5060 5061 5062
		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
		req = wqe_to_tid_req(wqe);
		len = wqe->length;

		if (!req->comp_seg || req->cur_seg == req->comp_seg)
			goto bail;

5063 5064
		trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
						wqe->psn, wqe->lpsn, req);
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
		last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
						  &len);

		if (last) {
			/* move pointer to next flow */
			req->clear_tail = CIRC_NEXT(req->clear_tail,
						    MAX_FLOWS);
			if (++req->cur_seg < req->total_segs) {
				if (!CIRC_CNT(req->setup_head, req->clear_tail,
					      MAX_FLOWS))
					qp->s_flags |= HFI1_S_WAIT_TID_RESP;
			} else {
				priv->s_state = TID_OP(WRITE_DATA_LAST);
				opcode = TID_OP(WRITE_DATA_LAST);

				/* Advance the s_tid_tail now */
				update_tid_tail(qp);
			}
		}
		hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
		ss = &priv->tid_ss;
		break;

	case TID_OP(RESYNC):
5089
		trace_hfi1_sender_make_tid_pkt(qp);
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
		/* Use generation from the most recently received response */
		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
		req = wqe_to_tid_req(wqe);
		/* If no responses for this WQE look at the previous one */
		if (!req->comp_seg) {
			wqe = rvt_get_swqe_ptr(qp,
					       (!priv->s_tid_cur ? qp->s_size :
						priv->s_tid_cur) - 1);
			req = wqe_to_tid_req(wqe);
		}
		hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
						     &bth2,
						     CIRC_PREV(req->setup_head,
							       MAX_FLOWS));
		ss = NULL;
		len = 0;
		opcode = TID_OP(RESYNC);
		break;

	default:
		goto bail;
	}
	if (priv->s_flags & RVT_S_SEND_ONE) {
		priv->s_flags &= ~RVT_S_SEND_ONE;
		priv->s_flags |= RVT_S_WAIT_ACK;
		bth2 |= IB_BTH_REQ_ACK;
	}
	qp->s_len -= len;
	ps->s_txreq->hdr_dwords = hwords;
	ps->s_txreq->sde = priv->s_sde;
	ps->s_txreq->ss = ss;
	ps->s_txreq->s_cur_size = len;
	hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
			     middle, ps);
	return 1;
done_free_tx:
	hfi1_put_txreq(ps->s_txreq);
	ps->s_txreq = NULL;
	return 1;

bail:
	hfi1_put_txreq(ps->s_txreq);
bail_no_tx:
	ps->s_txreq = NULL;
	priv->s_flags &= ~RVT_S_BUSY;
	/*
	 * If we didn't get a txreq, the QP will be woken up later to try
	 * again, set the flags to the the wake up which work item to wake
	 * up.
	 * (A better algorithm should be found to do this and generalize the
	 * sleep/wakeup flags.)
	 */
	iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
	return 0;
}
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159

static int make_tid_rdma_ack(struct rvt_qp *qp,
			     struct ib_other_headers *ohdr,
			     struct hfi1_pkt_state *ps)
{
	struct rvt_ack_entry *e;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
	u32 hwords, next;
	u32 len = 0;
	u32 bth1 = 0, bth2 = 0;
	int middle = 0;
	u16 flow;
	struct tid_rdma_request *req, *nreq;

5160
	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	/* Don't send an ACK if we aren't supposed to. */
	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
		goto bail;

	/* header size in 32-bit words LRH+BTH = (8+12)/4. */
	hwords = 5;

	e = &qp->s_ack_queue[qpriv->r_tid_ack];
	req = ack_to_tid_req(e);
	/*
	 * In the RESYNC case, we are exactly one segment past the
	 * previously sent ack or at the previously sent NAK. So to send
	 * the resync ack, we go back one segment (which might be part of
	 * the previous request) and let the do-while loop execute again.
	 * The advantage of executing the do-while loop is that any data
	 * received after the previous ack is automatically acked in the
	 * RESYNC ack. It turns out that for the do-while loop we only need
	 * to pull back qpriv->r_tid_ack, not the segment
	 * indices/counters. The scheme works even if the previous request
	 * was not a TID WRITE request.
	 */
	if (qpriv->resync) {
		if (!req->ack_seg || req->ack_seg == req->total_segs)
			qpriv->r_tid_ack = !qpriv->r_tid_ack ?
				rvt_size_atomic(&dev->rdi) :
				qpriv->r_tid_ack - 1;
		e = &qp->s_ack_queue[qpriv->r_tid_ack];
		req = ack_to_tid_req(e);
	}

5191 5192 5193
	trace_hfi1_rsp_make_tid_ack(qp, e->psn);
	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
					req);
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	/*
	 * If we've sent all the ACKs that we can, we are done
	 * until we get more segments...
	 */
	if (!qpriv->s_nak_state && !qpriv->resync &&
	    req->ack_seg == req->comp_seg)
		goto bail;

	do {
		/*
		 * To deal with coalesced ACKs, the acked_tail pointer
		 * into the flow array is used. The distance between it
		 * and the clear_tail is the number of flows that are
		 * being ACK'ed.
		 */
		req->ack_seg +=
			/* Get up-to-date value */
			CIRC_CNT(req->clear_tail, req->acked_tail,
				 MAX_FLOWS);
		/* Advance acked index */
		req->acked_tail = req->clear_tail;

		/*
		 * req->clear_tail points to the segment currently being
		 * received. So, when sending an ACK, the previous
		 * segment is being ACK'ed.
		 */
		flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
		if (req->ack_seg != req->total_segs)
			break;
		req->state = TID_REQUEST_COMPLETE;

		next = qpriv->r_tid_ack + 1;
		if (next > rvt_size_atomic(&dev->rdi))
			next = 0;
		qpriv->r_tid_ack = next;
		if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
			break;
		nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
		if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
			break;

		/* Move to the next ack entry now */
		e = &qp->s_ack_queue[qpriv->r_tid_ack];
		req = ack_to_tid_req(e);
	} while (1);

	/*
	 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
	 * req could be pointing at the previous ack queue entry
	 */
	if (qpriv->s_nak_state ||
	    (qpriv->resync &&
	     !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
	     (cmp_psn(qpriv->r_next_psn_kdeth - 1,
		      full_flow_psn(&req->flows[flow],
				    req->flows[flow].flow_state.lpsn)) > 0))) {
		/*
		 * A NAK will implicitly acknowledge all previous TID RDMA
		 * requests. Therefore, we NAK with the req->acked_tail
		 * segment for the request at qpriv->r_tid_ack (same at
		 * this point as the req->clear_tail segment for the
		 * qpriv->r_tid_tail request)
		 */
		e = &qp->s_ack_queue[qpriv->r_tid_ack];
		req = ack_to_tid_req(e);
		flow = req->acked_tail;
5261 5262 5263
	} else if (req->ack_seg == req->total_segs &&
		   qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5264

5265 5266 5267
	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
					req);
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
						&bth2);
	len = 0;
	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
	ps->s_txreq->hdr_dwords = hwords;
	ps->s_txreq->sde = qpriv->s_sde;
	ps->s_txreq->s_cur_size = len;
	ps->s_txreq->ss = NULL;
	hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
			     ps);
5278
	ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	return 1;
bail:
	/*
	 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
	 * RVT_S_RESP_PENDING
	 */
	smp_wmb();
	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
	return 0;
}
K
Kaike Wan 已提交
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320

static int hfi1_send_tid_ok(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;

	return !(priv->s_flags & RVT_S_BUSY ||
		 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
		(verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
		 (priv->s_flags & RVT_S_RESP_PENDING) ||
		 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
}

void _hfi1_do_tid_send(struct work_struct *work)
{
	struct iowait_work *w = container_of(work, struct iowait_work, iowork);
	struct rvt_qp *qp = iowait_to_qp(w->iow);

	hfi1_do_tid_send(qp);
}

static void hfi1_do_tid_send(struct rvt_qp *qp)
{
	struct hfi1_pkt_state ps;
	struct hfi1_qp_priv *priv = qp->priv;

	ps.dev = to_idev(qp->ibqp.device);
	ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
	ps.ppd = ppd_from_ibp(ps.ibp);
	ps.wait = iowait_get_tid_work(&priv->s_iowait);
	ps.in_thread = false;
	ps.timeout_int = qp->timeout_jiffies / 8;

5321
	trace_hfi1_rc_do_tid_send(qp, false);
K
Kaike Wan 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	spin_lock_irqsave(&qp->s_lock, ps.flags);

	/* Return if we are already busy processing a work request. */
	if (!hfi1_send_tid_ok(qp)) {
		if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
		spin_unlock_irqrestore(&qp->s_lock, ps.flags);
		return;
	}

	priv->s_flags |= RVT_S_BUSY;

	ps.timeout = jiffies + ps.timeout_int;
	ps.cpu = priv->s_sde ? priv->s_sde->cpu :
		cpumask_first(cpumask_of_node(ps.ppd->dd->node));
	ps.pkts_sent = false;

	/* insure a pre-built packet is handled  */
	ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
	do {
		/* Check for a constructed packet to be sent. */
		if (ps.s_txreq) {
			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
				qp->s_flags |= RVT_S_BUSY;
				ps.wait = iowait_get_ib_work(&priv->s_iowait);
			}
			spin_unlock_irqrestore(&qp->s_lock, ps.flags);

			/*
			 * If the packet cannot be sent now, return and
			 * the send tasklet will be woken up later.
			 */
			if (hfi1_verbs_send(qp, &ps))
				return;

			/* allow other tasks to run */
			if (hfi1_schedule_send_yield(qp, &ps, true))
				return;

			spin_lock_irqsave(&qp->s_lock, ps.flags);
			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
				qp->s_flags &= ~RVT_S_BUSY;
				priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
				ps.wait = iowait_get_tid_work(&priv->s_iowait);
				if (iowait_flag_set(&priv->s_iowait,
						    IOWAIT_PENDING_IB))
					hfi1_schedule_send(qp);
			}
		}
	} while (hfi1_make_tid_rdma_pkt(qp, &ps));
	iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
	spin_unlock_irqrestore(&qp->s_lock, ps.flags);
}

static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct hfi1_ibport *ibp =
		to_iport(qp->ibqp.device, qp->port_num);
	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);

	return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
				   priv->s_sde ?
				   priv->s_sde->cpu :
				   cpumask_first(cpumask_of_node(dd->node)));
}

/**
 * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
 * @qp: the QP
 *
 * This schedules qp progress on the TID RDMA state machine. Caller
 * should hold the s_lock.
 * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
 * the two state machines can step on each other with respect to the
 * RVT_S_BUSY flag.
 * Therefore, a modified test is used.
 * @return true if the second leg is scheduled;
 *  false if the second leg is not scheduled.
 */
bool hfi1_schedule_tid_send(struct rvt_qp *qp)
{
	lockdep_assert_held(&qp->s_lock);
	if (hfi1_send_tid_ok(qp)) {
		/*
		 * The following call returns true if the qp is not on the
		 * queue and false if the qp is already on the queue before
		 * this call. Either way, the qp will be on the queue when the
		 * call returns.
		 */
		_hfi1_schedule_tid_send(qp);
		return true;
	}
	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
				IOWAIT_PENDING_TID);
	return false;
}
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444

bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
{
	struct rvt_ack_entry *prev;
	struct tid_rdma_request *req;
	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
	struct hfi1_qp_priv *priv = qp->priv;
	u32 s_prev;

	s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
		(qp->s_tail_ack_queue - 1);
	prev = &qp->s_ack_queue[s_prev];

	if ((e->opcode == TID_OP(READ_REQ) ||
	     e->opcode == OP(RDMA_READ_REQUEST)) &&
	    prev->opcode == TID_OP(WRITE_REQ)) {
		req = ack_to_tid_req(prev);
		if (req->ack_seg != req->total_segs) {
			priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
			return true;
		}
	}
	return false;
}
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456

static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
{
	u64 reg;

	/*
	 * The only sane way to get the amount of
	 * progress is to read the HW flow state.
	 */
	reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
	return mask_psn(reg);
}