tid_rdma.c 43.4 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/*
 * Copyright(c) 2018 Intel Corporation.
 *
 */

#include "hfi.h"
K
Kaike Wan 已提交
8
#include "qp.h"
9 10
#include "verbs.h"
#include "tid_rdma.h"
11
#include "exp_rcv.h"
K
Kaike Wan 已提交
12
#include "trace.h"
13

K
Kaike Wan 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
#define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
#define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
#define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)

#define GENERATION_MASK 0xFFFFF

static u32 mask_generation(u32 a)
{
	return a & GENERATION_MASK;
}

/* Reserved generation value to set to unused flows for kernel contexts */
#define KERN_GENERATION_RESERVED mask_generation(U32_MAX)

31 32 33 34 35 36 37 38
/*
 * J_KEY for kernel contexts when TID RDMA is used.
 * See generate_jkey() in hfi.h for more information.
 */
#define TID_RDMA_JKEY                   32
#define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
#define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)

39
/* Maximum number of segments in flight per QP request. */
40 41
#define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
#define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
42 43 44 45 46
#define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
#define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)

#define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define TID_OPFN_QP_CTXT_MASK 0xff
#define TID_OPFN_QP_CTXT_SHIFT 56
#define TID_OPFN_QP_KDETH_MASK 0xff
#define TID_OPFN_QP_KDETH_SHIFT 48
#define TID_OPFN_MAX_LEN_MASK 0x7ff
#define TID_OPFN_MAX_LEN_SHIFT 37
#define TID_OPFN_TIMEOUT_MASK 0x1f
#define TID_OPFN_TIMEOUT_SHIFT 32
#define TID_OPFN_RESERVED_MASK 0x3f
#define TID_OPFN_RESERVED_SHIFT 26
#define TID_OPFN_URG_MASK 0x1
#define TID_OPFN_URG_SHIFT 25
#define TID_OPFN_VER_MASK 0x7
#define TID_OPFN_VER_SHIFT 22
#define TID_OPFN_JKEY_MASK 0x3f
#define TID_OPFN_JKEY_SHIFT 16
#define TID_OPFN_MAX_READ_MASK 0x3f
#define TID_OPFN_MAX_READ_SHIFT 10
#define TID_OPFN_MAX_WRITE_MASK 0x3f
#define TID_OPFN_MAX_WRITE_SHIFT 4

/*
 * OPFN TID layout
 *
 * 63               47               31               15
 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
 * N - the context Number
 * K - the Kdeth_qp
 * M - Max_len
 * T - Timeout
 * D - reserveD
 * V - version
 * U - Urg capable
 * J - Jkey
 * R - max_Read
 * W - max_Write
 * C - Capcode
 */

K
Kaike Wan 已提交
88
static void tid_rdma_trigger_resume(struct work_struct *work);
89 90 91 92 93
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
					 gfp_t gfp);
static void hfi1_init_trdma_req(struct rvt_qp *qp,
				struct tid_rdma_request *req);
K
Kaike Wan 已提交
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
{
	return
		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
			TID_OPFN_QP_CTXT_SHIFT) |
		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
			TID_OPFN_QP_KDETH_SHIFT) |
		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
			TID_OPFN_TIMEOUT_SHIFT) |
		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
			TID_OPFN_MAX_READ_SHIFT) |
		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
			TID_OPFN_MAX_WRITE_SHIFT);
}

static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
{
	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
		TID_OPFN_MAX_WRITE_MASK;
	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
		TID_OPFN_MAX_READ_MASK;
	p->qp =
		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
			<< 16) |
		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
}

void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
{
	struct hfi1_qp_priv *priv = qp->priv;

	p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
	p->jkey = priv->rcd->jkey;
	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
	p->timeout = qp->timeout;
	p->urg = is_urg_masked(priv->rcd);
}

bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
{
	struct hfi1_qp_priv *priv = qp->priv;

	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
	return true;
}

bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct tid_rdma_params *remote, *old;
	bool ret = true;

	old = rcu_dereference_protected(priv->tid_rdma.remote,
					lockdep_is_held(&priv->opfn.lock));
	data &= ~0xfULL;
	/*
	 * If data passed in is zero, return true so as not to continue the
	 * negotiation process
	 */
	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
		goto null;
	/*
	 * If kzalloc fails, return false. This will result in:
	 * * at the requester a new OPFN request being generated to retry
	 *   the negotiation
	 * * at the responder, 0 being returned to the requester so as to
	 *   disable TID RDMA at both the requester and the responder
	 */
	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
	if (!remote) {
		ret = false;
		goto null;
	}

	tid_rdma_opfn_decode(remote, data);
	priv->tid_timer_timeout_jiffies =
		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
				   1000UL) << 3) * 7);
K
Kaike Wan 已提交
184 185
	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
	trace_hfi1_opfn_param(qp, 1, remote);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	rcu_assign_pointer(priv->tid_rdma.remote, remote);
	/*
	 * A TID RDMA READ request's segment size is not equal to
	 * remote->max_len only when the request's data length is smaller
	 * than remote->max_len. In that case, there will be only one segment.
	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
	 * during retry, it will lead to req->cur_seg = 0, which is exactly
	 * what is expected.
	 */
	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
	goto free;
null:
	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
	priv->timeout_shift = 0;
free:
	if (old)
		kfree_rcu(old, rcu_head);
	return ret;
}

bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
{
	bool ret;

	ret = tid_rdma_conn_reply(qp, *data);
	*data = 0;
	/*
	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
	 * TID RDMA could not be enabled. This will result in TID RDMA being
	 * disabled at the requester too.
	 */
	if (ret)
		(void)tid_rdma_conn_req(qp, data);
	return ret;
}

void tid_rdma_conn_error(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct tid_rdma_params *old;

	old = rcu_dereference_protected(priv->tid_rdma.remote,
					lockdep_is_held(&priv->opfn.lock));
	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
	if (old)
		kfree_rcu(old, rcu_head);
}

/* This is called at context initialization time */
int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
{
	if (reinit)
		return 0;

	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
	rcd->jkey = TID_RDMA_JKEY;
	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
245
	return hfi1_alloc_ctxt_rcv_groups(rcd);
246 247
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
/**
 * qp_to_rcd - determine the receive context used by a qp
 * @qp - the qp
 *
 * This routine returns the receive context associated
 * with a a qp's qpn.
 *
 * Returns the context.
 */
static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
				       struct rvt_qp *qp)
{
	struct hfi1_ibdev *verbs_dev = container_of(rdi,
						    struct hfi1_ibdev,
						    rdi);
	struct hfi1_devdata *dd = container_of(verbs_dev,
					       struct hfi1_devdata,
					       verbs_dev);
	unsigned int ctxt;

	if (qp->ibqp.qp_num == 0)
		ctxt = 0;
	else
		ctxt = ((qp->ibqp.qp_num >> dd->qos_shift) %
			(dd->n_krcv_queues - 1)) + 1;

	return dd->rcd[ctxt];
}

int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
		      struct ib_qp_init_attr *init_attr)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
281
	int i, ret;
282 283 284

	qpriv->rcd = qp_to_rcd(rdi, qp);

285 286
	spin_lock_init(&qpriv->opfn.lock);
	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
K
Kaike Wan 已提交
287 288 289 290 291 292
	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
	qpriv->flow_state.psn = 0;
	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
	INIT_LIST_HEAD(&qpriv->tid_wait);
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
		struct hfi1_devdata *dd = qpriv->rcd->dd;

		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
						sizeof(*qpriv->pages),
					    GFP_KERNEL, dd->node);
		if (!qpriv->pages)
			return -ENOMEM;
		for (i = 0; i < qp->s_size; i++) {
			struct hfi1_swqe_priv *priv;
			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);

			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
					    dd->node);
			if (!priv)
				return -ENOMEM;

			hfi1_init_trdma_req(qp, &priv->tid_req);
			priv->tid_req.e.swqe = wqe;
			wqe->priv = priv;
		}
		for (i = 0; i < rvt_max_atomic(rdi); i++) {
			struct hfi1_ack_priv *priv;

			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
					    dd->node);
			if (!priv)
				return -ENOMEM;

			hfi1_init_trdma_req(qp, &priv->tid_req);
			priv->tid_req.e.ack = &qp->s_ack_queue[i];

			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
							    GFP_KERNEL);
			if (ret) {
				kfree(priv);
				return ret;
			}
			qp->s_ack_queue[i].priv = priv;
		}
	}

336 337
	return 0;
}
338 339 340

void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct rvt_swqe *wqe;
	u32 i;

	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
		for (i = 0; i < qp->s_size; i++) {
			wqe = rvt_get_swqe_ptr(qp, i);
			kfree(wqe->priv);
			wqe->priv = NULL;
		}
		for (i = 0; i < rvt_max_atomic(rdi); i++) {
			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;

			if (priv)
				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
			kfree(priv);
			qp->s_ack_queue[i].priv = NULL;
		}
		cancel_work_sync(&qpriv->opfn.opfn_work);
		kfree(qpriv->pages);
		qpriv->pages = NULL;
	}
363
}
K
Kaike Wan 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

/* Flow and tid waiter functions */
/**
 * DOC: lock ordering
 *
 * There are two locks involved with the queuing
 * routines: the qp s_lock and the exp_lock.
 *
 * Since the tid space allocation is called from
 * the send engine, the qp s_lock is already held.
 *
 * The allocation routines will get the exp_lock.
 *
 * The first_qp() call is provided to allow the head of
 * the rcd wait queue to be fetched under the exp_lock and
 * followed by a drop of the exp_lock.
 *
 * Any qp in the wait list will have the qp reference count held
 * to hold the qp in memory.
 */

/*
 * return head of rcd wait list
 *
 * Must hold the exp_lock.
 *
 * Get a reference to the QP to hold the QP in memory.
 *
 * The caller must release the reference when the local
 * is no longer being used.
 */
static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue)
	__must_hold(&rcd->exp_lock)
{
	struct hfi1_qp_priv *priv;

	lockdep_assert_held(&rcd->exp_lock);
	priv = list_first_entry_or_null(&queue->queue_head,
					struct hfi1_qp_priv,
					tid_wait);
	if (!priv)
		return NULL;
	rvt_get_qp(priv->owner);
	return priv->owner;
}

/**
 * kernel_tid_waiters - determine rcd wait
 * @rcd: the receive context
 * @qp: the head of the qp being processed
 *
 * This routine will return false IFF
 * the list is NULL or the head of the
 * list is the indicated qp.
 *
 * Must hold the qp s_lock and the exp_lock.
 *
 * Return:
 * false if either of the conditions below are statisfied:
 * 1. The list is empty or
 * 2. The indicated qp is at the head of the list and the
 *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
 * true is returned otherwise.
 */
static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct rvt_qp *fqp;
	bool ret = true;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	fqp = first_qp(rcd, queue);
	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
		ret = false;
	rvt_put_qp(fqp);
	return ret;
}

/**
 * dequeue_tid_waiter - dequeue the qp from the list
 * @qp - the qp to remove the wait list
 *
 * This routine removes the indicated qp from the
 * wait list if it is there.
 *
 * This should be done after the hardware flow and
 * tid array resources have been allocated.
 *
 * Must hold the qp s_lock and the rcd exp_lock.
 *
 * It assumes the s_lock to protect the s_flags
 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
 */
static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	if (list_empty(&priv->tid_wait))
		return;
	list_del_init(&priv->tid_wait);
	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
	queue->dequeue++;
	rvt_put_qp(qp);
}

/**
 * queue_qp_for_tid_wait - suspend QP on tid space
 * @rcd: the receive context
 * @qp: the qp
 *
 * The qp is inserted at the tail of the rcd
 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
 *
 * Must hold the qp s_lock and the exp_lock.
 */
static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
				  struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	if (list_empty(&priv->tid_wait)) {
		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
		list_add_tail(&priv->tid_wait, &queue->queue_head);
		priv->tid_enqueue = ++queue->enqueue;
		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
		rvt_get_qp(qp);
	}
}

/**
 * __trigger_tid_waiter - trigger tid waiter
 * @qp: the qp
 *
 * This is a private entrance to schedule the qp
 * assuming the caller is holding the qp->s_lock.
 */
static void __trigger_tid_waiter(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	lockdep_assert_held(&qp->s_lock);
	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
		return;
	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
	hfi1_schedule_send(qp);
}

/**
 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
 * @qp - the qp
 *
 * trigger a schedule or a waiting qp in a deadlock
 * safe manner.  The qp reference is held prior
 * to this call via first_qp().
 *
 * If the qp trigger was already scheduled (!rval)
 * the the reference is dropped, otherwise the resume
 * or the destroy cancel will dispatch the reference.
 */
static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv;
	struct hfi1_ibport *ibp;
	struct hfi1_pportdata *ppd;
	struct hfi1_devdata *dd;
	bool rval;

	if (!qp)
		return;

	priv = qp->priv;
	ibp = to_iport(qp->ibqp.device, qp->port_num);
	ppd = ppd_from_ibp(ibp);
	dd = dd_from_ibdev(qp->ibqp.device);

	rval = queue_work_on(priv->s_sde ?
			     priv->s_sde->cpu :
			     cpumask_first(cpumask_of_node(dd->node)),
			     ppd->hfi1_wq,
			     &priv->tid_rdma.trigger_work);
	if (!rval)
		rvt_put_qp(qp);
}

/**
 * tid_rdma_trigger_resume - field a trigger work request
 * @work - the work item
 *
 * Complete the off qp trigger processing by directly
 * calling the progress routine.
 */
static void tid_rdma_trigger_resume(struct work_struct *work)
{
	struct tid_rdma_qp_params *tr;
	struct hfi1_qp_priv *priv;
	struct rvt_qp *qp;

	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
	qp = priv->owner;
	spin_lock_irq(&qp->s_lock);
	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
		spin_unlock_irq(&qp->s_lock);
		hfi1_do_send(priv->owner, true);
	} else {
		spin_unlock_irq(&qp->s_lock);
	}
	rvt_put_qp(qp);
}

/**
 * tid_rdma_flush_wait - unwind any tid space wait
 *
 * This is called when resetting a qp to
 * allow a destroy or reset to get rid
 * of any tid space linkage and reference counts.
 */
static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv;

	if (!qp)
		return;
	lockdep_assert_held(&qp->s_lock);
	priv = qp->priv;
	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
	spin_lock(&priv->rcd->exp_lock);
	if (!list_empty(&priv->tid_wait)) {
		list_del_init(&priv->tid_wait);
		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
		queue->dequeue++;
		rvt_put_qp(qp);
	}
	spin_unlock(&priv->rcd->exp_lock);
}

void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
616
	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
K
Kaike Wan 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
}

/* Flow functions */
/**
 * kern_reserve_flow - allocate a hardware flow
 * @rcd - the context to use for allocation
 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
 *         signify "don't care".
 *
 * Use a bit mask based allocation to reserve a hardware
 * flow for use in receiving KDETH data packets. If a preferred flow is
 * specified the function will attempt to reserve that flow again, if
 * available.
 *
 * The exp_lock must be held.
 *
 * Return:
 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
 * On failure: -EAGAIN
 */
static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
	__must_hold(&rcd->exp_lock)
{
	int nr;

	/* Attempt to reserve the preferred flow index */
	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
	    !test_and_set_bit(last, &rcd->flow_mask))
		return last;

	nr = ffz(rcd->flow_mask);
	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
	if (nr > (RXE_NUM_TID_FLOWS - 1))
		return -EAGAIN;
	set_bit(nr, &rcd->flow_mask);
	return nr;
}

static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
			     u32 flow_idx)
{
	u64 reg;

	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;

	if (generation != KERN_GENERATION_RESERVED)
		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;

	write_uctxt_csr(rcd->dd, rcd->ctxt,
			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
}

static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
	__must_hold(&rcd->exp_lock)
{
	u32 generation = rcd->flows[flow_idx].generation;

	kern_set_hw_flow(rcd, generation, flow_idx);
	return generation;
}

static u32 kern_flow_generation_next(u32 gen)
{
	u32 generation = mask_generation(gen + 1);

	if (generation == KERN_GENERATION_RESERVED)
		generation = mask_generation(generation + 1);
	return generation;
}

static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
	__must_hold(&rcd->exp_lock)
{
	rcd->flows[flow_idx].generation =
		kern_flow_generation_next(rcd->flows[flow_idx].generation);
	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
}

int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
	struct tid_flow_state *fs = &qpriv->flow_state;
	struct rvt_qp *fqp;
	unsigned long flags;
	int ret = 0;

	/* The QP already has an allocated flow */
	if (fs->index != RXE_NUM_TID_FLOWS)
		return ret;

	spin_lock_irqsave(&rcd->exp_lock, flags);
	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
		goto queue;

	ret = kern_reserve_flow(rcd, fs->last_index);
	if (ret < 0)
		goto queue;
	fs->index = ret;
	fs->last_index = fs->index;

	/* Generation received in a RESYNC overrides default flow generation */
	if (fs->generation != KERN_GENERATION_RESERVED)
		rcd->flows[fs->index].generation = fs->generation;
	fs->generation = kern_setup_hw_flow(rcd, fs->index);
	fs->psn = 0;
	fs->flags = 0;
	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->flow_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	tid_rdma_schedule_tid_wakeup(fqp);
	return 0;
queue:
	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	return -EAGAIN;
}

void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
	struct tid_flow_state *fs = &qpriv->flow_state;
	struct rvt_qp *fqp;
	unsigned long flags;

	if (fs->index >= RXE_NUM_TID_FLOWS)
		return;
	spin_lock_irqsave(&rcd->exp_lock, flags);
	kern_clear_hw_flow(rcd, fs->index);
	clear_bit(fs->index, &rcd->flow_mask);
	fs->index = RXE_NUM_TID_FLOWS;
	fs->psn = 0;
	fs->generation = KERN_GENERATION_RESERVED;

	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->flow_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	if (fqp == qp) {
		__trigger_tid_waiter(fqp);
		rvt_put_qp(fqp);
	} else {
		tid_rdma_schedule_tid_wakeup(fqp);
	}
}

void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
{
	int i;

	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
		rcd->flows[i].generation = mask_generation(prandom_u32());
		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
	}
}
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

/* TID allocation functions */
static u8 trdma_pset_order(struct tid_rdma_pageset *s)
{
	u8 count = s->count;

	return ilog2(count) + 1;
}

/**
 * tid_rdma_find_phys_blocks_4k - get groups base on mr info
 * @npages - number of pages
 * @pages - pointer to an array of page structs
 * @list - page set array to return
 *
 * This routine returns the number of groups associated with
 * the current sge information.  This implementation is based
 * on the expected receive find_phys_blocks() adjusted to
 * use the MR information vs. the pfn.
 *
 * Return:
 * the number of RcvArray entries
 */
static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
					struct page **pages,
					u32 npages,
					struct tid_rdma_pageset *list)
{
	u32 pagecount, pageidx, setcount = 0, i;
	void *vaddr, *this_vaddr;

	if (!npages)
		return 0;

	/*
	 * Look for sets of physically contiguous pages in the user buffer.
	 * This will allow us to optimize Expected RcvArray entry usage by
	 * using the bigger supported sizes.
	 */
	vaddr = page_address(pages[0]);
	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
		/*
		 * If the vaddr's are not sequential, pages are not physically
		 * contiguous.
		 */
		if (this_vaddr != (vaddr + PAGE_SIZE)) {
			/*
			 * At this point we have to loop over the set of
			 * physically contiguous pages and break them down it
			 * sizes supported by the HW.
			 * There are two main constraints:
			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
			 *        If the total set size is bigger than that
			 *        program only a MAX_EXPECTED_BUFFER chunk.
			 *     2. The buffer size has to be a power of two. If
			 *        it is not, round down to the closes power of
			 *        2 and program that size.
			 */
			while (pagecount) {
				int maxpages = pagecount;
				u32 bufsize = pagecount * PAGE_SIZE;

				if (bufsize > MAX_EXPECTED_BUFFER)
					maxpages =
						MAX_EXPECTED_BUFFER >>
						PAGE_SHIFT;
				else if (!is_power_of_2(bufsize))
					maxpages =
						rounddown_pow_of_two(bufsize) >>
						PAGE_SHIFT;

				list[setcount].idx = pageidx;
				list[setcount].count = maxpages;
				pagecount -= maxpages;
				pageidx += maxpages;
				setcount++;
			}
			pageidx = i;
			pagecount = 1;
			vaddr = this_vaddr;
		} else {
			vaddr += PAGE_SIZE;
			pagecount++;
		}
	}
	/* insure we always return an even number of sets */
	if (setcount & 1)
		list[setcount++].count = 0;
	return setcount;
}

/**
 * tid_flush_pages - dump out pages into pagesets
 * @list - list of pagesets
 * @idx - pointer to current page index
 * @pages - number of pages to dump
 * @sets - current number of pagesset
 *
 * This routine flushes out accumuated pages.
 *
 * To insure an even number of sets the
 * code may add a filler.
 *
 * This can happen with when pages is not
 * a power of 2 or pages is a power of 2
 * less than the maximum pages.
 *
 * Return:
 * The new number of sets
 */

static u32 tid_flush_pages(struct tid_rdma_pageset *list,
			   u32 *idx, u32 pages, u32 sets)
{
	while (pages) {
		u32 maxpages = pages;

		if (maxpages > MAX_EXPECTED_PAGES)
			maxpages = MAX_EXPECTED_PAGES;
		else if (!is_power_of_2(maxpages))
			maxpages = rounddown_pow_of_two(maxpages);
		list[sets].idx = *idx;
		list[sets++].count = maxpages;
		*idx += maxpages;
		pages -= maxpages;
	}
	/* might need a filler */
	if (sets & 1)
		list[sets++].count = 0;
	return sets;
}

/**
 * tid_rdma_find_phys_blocks_8k - get groups base on mr info
 * @pages - pointer to an array of page structs
 * @npages - number of pages
 * @list - page set array to return
 *
 * This routine parses an array of pages to compute pagesets
 * in an 8k compatible way.
 *
 * pages are tested two at a time, i, i + 1 for contiguous
 * pages and i - 1 and i contiguous pages.
 *
 * If any condition is false, any accumlated pages are flushed and
 * v0,v1 are emitted as separate PAGE_SIZE pagesets
 *
 * Otherwise, the current 8k is totaled for a future flush.
 *
 * Return:
 * The number of pagesets
 * list set with the returned number of pagesets
 *
 */
static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
					struct page **pages,
					u32 npages,
					struct tid_rdma_pageset *list)
{
	u32 idx, sets = 0, i;
	u32 pagecnt = 0;
	void *v0, *v1, *vm1;

	if (!npages)
		return 0;
	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
		/* get a new v0 */
		v0 = page_address(pages[i]);
		v1 = i + 1 < npages ?
				page_address(pages[i + 1]) : NULL;
		/* compare i, i + 1 vaddr */
		if (v1 != (v0 + PAGE_SIZE)) {
			/* flush out pages */
			sets = tid_flush_pages(list, &idx, pagecnt, sets);
			/* output v0,v1 as two pagesets */
			list[sets].idx = idx++;
			list[sets++].count = 1;
			if (v1) {
				list[sets].count = 1;
				list[sets++].idx = idx++;
			} else {
				list[sets++].count = 0;
			}
			vm1 = NULL;
			pagecnt = 0;
			continue;
		}
		/* i,i+1 consecutive, look at i-1,i */
		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
			/* flush out pages */
			sets = tid_flush_pages(list, &idx, pagecnt, sets);
			pagecnt = 0;
		}
		/* pages will always be a multiple of 8k */
		pagecnt += 2;
		/* save i-1 */
		vm1 = v1;
		/* move to next pair */
	}
	/* dump residual pages at end */
	sets = tid_flush_pages(list, &idx, npages - idx, sets);
	/* by design cannot be odd sets */
	WARN_ON(sets & 1);
	return sets;
}

/**
 * Find pages for one segment of a sge array represented by @ss. The function
 * does not check the sge, the sge must have been checked for alignment with a
 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
 * copy maintained in @ss->sge, the original sge is not modified.
 *
 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
 * releasing the MR reference count at the same time. Otherwise, we'll "leak"
 * references to the MR. This difference requires that we keep track of progress
 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
 * structure.
 */
static u32 kern_find_pages(struct tid_rdma_flow *flow,
			   struct page **pages,
			   struct rvt_sge_state *ss, bool *last)
{
	struct tid_rdma_request *req = flow->req;
	struct rvt_sge *sge = &ss->sge;
	u32 length = flow->req->seg_len;
	u32 len = PAGE_SIZE;
	u32 i = 0;

	while (length && req->isge < ss->num_sge) {
		pages[i++] = virt_to_page(sge->vaddr);

		sge->vaddr += len;
		sge->length -= len;
		sge->sge_length -= len;
		if (!sge->sge_length) {
			if (++req->isge < ss->num_sge)
				*sge = ss->sg_list[req->isge - 1];
		} else if (sge->length == 0 && sge->mr->lkey) {
			if (++sge->n >= RVT_SEGSZ) {
				++sge->m;
				sge->n = 0;
			}
			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
		}
		length -= len;
	}

	flow->length = flow->req->seg_len - length;
	*last = req->isge == ss->num_sge ? false : true;
	return i;
}

static void dma_unmap_flow(struct tid_rdma_flow *flow)
{
	struct hfi1_devdata *dd;
	int i;
	struct tid_rdma_pageset *pset;

	dd = flow->req->rcd->dd;
	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
			i++, pset++) {
		if (pset->count && pset->addr) {
			dma_unmap_page(&dd->pcidev->dev,
				       pset->addr,
				       PAGE_SIZE * pset->count,
				       DMA_FROM_DEVICE);
			pset->mapped = 0;
		}
	}
}

static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
{
	int i;
	struct hfi1_devdata *dd = flow->req->rcd->dd;
	struct tid_rdma_pageset *pset;

	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
			i++, pset++) {
		if (pset->count) {
			pset->addr = dma_map_page(&dd->pcidev->dev,
						  pages[pset->idx],
						  0,
						  PAGE_SIZE * pset->count,
						  DMA_FROM_DEVICE);

			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
				dma_unmap_flow(flow);
				return -ENOMEM;
			}
			pset->mapped = 1;
		}
	}
	return 0;
}

static inline bool dma_mapped(struct tid_rdma_flow *flow)
{
	return !!flow->pagesets[0].mapped;
}

/*
 * Get pages pointers and identify contiguous physical memory chunks for a
 * segment. All segments are of length flow->req->seg_len.
 */
static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
				struct page **pages,
				struct rvt_sge_state *ss, bool *last)
{
	u8 npages;

	/* Reuse previously computed pagesets, if any */
	if (flow->npagesets) {
		if (!dma_mapped(flow))
			return dma_map_flow(flow, pages);
		return 0;
	}

	npages = kern_find_pages(flow, pages, ss, last);

	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
		flow->npagesets =
			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
						     flow->pagesets);
	else
		flow->npagesets =
			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
						     flow->pagesets);

	return dma_map_flow(flow, pages);
}

static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
				     struct hfi1_ctxtdata *rcd, char *s,
				     struct tid_group *grp, u8 cnt)
{
	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];

	WARN_ON_ONCE(flow->tnode_cnt >=
		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
	if (WARN_ON_ONCE(cnt & 1))
		dd_dev_err(rcd->dd,
			   "unexpected odd allocation cnt %u map 0x%x used %u",
			   cnt, grp->map, grp->used);

	node->grp = grp;
	node->map = grp->map;
	node->cnt = cnt;
}

/*
 * Try to allocate pageset_count TID's from TID groups for a context
 *
 * This function allocates TID's without moving groups between lists or
 * modifying grp->map. This is done as follows, being cogizant of the lists
 * between which the TID groups will move:
 * 1. First allocate complete groups of 8 TID's since this is more efficient,
 *    these groups will move from group->full without affecting used
 * 2. If more TID's are needed allocate from used (will move from used->full or
 *    stay in used)
 * 3. If we still don't have the required number of TID's go back and look again
 *    at a complete group (will move from group->used)
 */
static int kern_alloc_tids(struct tid_rdma_flow *flow)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	u32 ngroups, pageidx = 0;
	struct tid_group *group = NULL, *used;
	u8 use;

	flow->tnode_cnt = 0;
	ngroups = flow->npagesets / dd->rcv_entries.group_size;
	if (!ngroups)
		goto used_list;

	/* First look at complete groups */
	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
		kern_add_tid_node(flow, rcd, "complete groups", group,
				  group->size);

		pageidx += group->size;
		if (!--ngroups)
			break;
	}

	if (pageidx >= flow->npagesets)
		goto ok;

used_list:
	/* Now look at partially used groups */
	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
		use = min_t(u32, flow->npagesets - pageidx,
			    used->size - used->used);
		kern_add_tid_node(flow, rcd, "used groups", used, use);

		pageidx += use;
		if (pageidx >= flow->npagesets)
			goto ok;
	}

	/*
	 * Look again at a complete group, continuing from where we left.
	 * However, if we are at the head, we have reached the end of the
	 * complete groups list from the first loop above
	 */
	if (group && &group->list == &rcd->tid_group_list.list)
		goto bail_eagain;
	group = list_prepare_entry(group, &rcd->tid_group_list.list,
				   list);
	if (list_is_last(&group->list, &rcd->tid_group_list.list))
		goto bail_eagain;
	group = list_next_entry(group, list);
	use = min_t(u32, flow->npagesets - pageidx, group->size);
	kern_add_tid_node(flow, rcd, "complete continue", group, use);
	pageidx += use;
	if (pageidx >= flow->npagesets)
		goto ok;
bail_eagain:
	return -EAGAIN;
ok:
	return 0;
}

static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
				   u32 *pset_idx)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	struct kern_tid_node *node = &flow->tnode[grp_num];
	struct tid_group *grp = node->grp;
	struct tid_rdma_pageset *pset;
	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
	u32 rcventry, npages = 0, pair = 0, tidctrl;
	u8 i, cnt = 0;

	for (i = 0; i < grp->size; i++) {
		rcventry = grp->base + i;

		if (node->map & BIT(i) || cnt >= node->cnt) {
			rcv_array_wc_fill(dd, rcventry);
			continue;
		}
		pset = &flow->pagesets[(*pset_idx)++];
		if (pset->count) {
			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
				     pset->addr, trdma_pset_order(pset));
		} else {
			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
		}
		npages += pset->count;

		rcventry -= rcd->expected_base;
		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
		/*
		 * A single TID entry will be used to use a rcvarr pair (with
		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
		 * (b) the group map shows current and the next bits as free
		 * indicating two consecutive rcvarry entries are available (c)
		 * we actually need 2 more entries
		 */
		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
			node->cnt >= cnt + 2;
		if (!pair) {
			if (!pset->count)
				tidctrl = 0x1;
			flow->tid_entry[flow->tidcnt++] =
				EXP_TID_SET(IDX, rcventry >> 1) |
				EXP_TID_SET(CTRL, tidctrl) |
				EXP_TID_SET(LEN, npages);
			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
			npages = 0;
		}

		if (grp->used == grp->size - 1)
			tid_group_move(grp, &rcd->tid_used_list,
				       &rcd->tid_full_list);
		else if (!grp->used)
			tid_group_move(grp, &rcd->tid_group_list,
				       &rcd->tid_used_list);

		grp->used++;
		grp->map |= BIT(i);
		cnt++;
	}
}

static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	struct kern_tid_node *node = &flow->tnode[grp_num];
	struct tid_group *grp = node->grp;
	u32 rcventry;
	u8 i, cnt = 0;

	for (i = 0; i < grp->size; i++) {
		rcventry = grp->base + i;

		if (node->map & BIT(i) || cnt >= node->cnt) {
			rcv_array_wc_fill(dd, rcventry);
			continue;
		}

		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);

		grp->used--;
		grp->map &= ~BIT(i);
		cnt++;

		if (grp->used == grp->size - 1)
			tid_group_move(grp, &rcd->tid_full_list,
				       &rcd->tid_used_list);
		else if (!grp->used)
			tid_group_move(grp, &rcd->tid_used_list,
				       &rcd->tid_group_list);
	}
	if (WARN_ON_ONCE(cnt & 1)) {
		struct hfi1_ctxtdata *rcd = flow->req->rcd;
		struct hfi1_devdata *dd = rcd->dd;

		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
			   cnt, grp->map, grp->used);
	}
}

static void kern_program_rcvarray(struct tid_rdma_flow *flow)
{
	u32 pset_idx = 0;
	int i;

	flow->npkts = 0;
	flow->tidcnt = 0;
	for (i = 0; i < flow->tnode_cnt; i++)
		kern_program_rcv_group(flow, i, &pset_idx);
}

/**
 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
 * TID RDMA request
 *
 * @req: TID RDMA request for which the segment/flow is being set up
 * @ss: sge state, maintains state across successive segments of a sge
 * @last: set to true after the last sge segment has been processed
 *
 * This function
 * (1) finds a free flow entry in the flow circular buffer
 * (2) finds pages and continuous physical chunks constituing one segment
 *     of an sge
 * (3) allocates TID group entries for those chunks
 * (4) programs rcvarray entries in the hardware corresponding to those
 *     TID's
 * (5) computes a tidarray with formatted TID entries which can be sent
 *     to the sender
 * (6) Reserves and programs HW flows.
 * (7) It also manages queing the QP when TID/flow resources are not
 *     available.
 *
 * @req points to struct tid_rdma_request of which the segments are a part. The
 * function uses qp, rcd and seg_len members of @req. In the absence of errors,
 * req->flow_idx is the index of the flow which has been prepared in this
 * invocation of function call. With flow = &req->flows[req->flow_idx],
 * flow->tid_entry contains the TID array which the sender can use for TID RDMA
 * sends and flow->npkts contains number of packets required to send the
 * segment.
 *
 * hfi1_check_sge_align should be called prior to calling this function and if
 * it signals error TID RDMA cannot be used for this sge and this function
 * should not be called.
 *
 * For the queuing, caller must hold the flow->req->qp s_lock from the send
 * engine and the function will procure the exp_lock.
 *
 * Return:
 * The function returns -EAGAIN if sufficient number of TID/flow resources to
 * map the segment could not be allocated. In this case the function should be
 * called again with previous arguments to retry the TID allocation. There are
 * no other error returns. The function returns 0 on success.
 */
int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
			    struct rvt_sge_state *ss, bool *last)
	__must_hold(&req->qp->s_lock)
{
	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
	struct hfi1_ctxtdata *rcd = req->rcd;
	struct hfi1_qp_priv *qpriv = req->qp->priv;
	unsigned long flags;
	struct rvt_qp *fqp;
	u16 clear_tail = req->clear_tail;

	lockdep_assert_held(&req->qp->s_lock);
	/*
	 * We return error if either (a) we don't have space in the flow
	 * circular buffer, or (b) we already have max entries in the buffer.
	 * Max entries depend on the type of request we are processing and the
	 * negotiated TID RDMA parameters.
	 */
	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
	    req->n_flows)
		return -EINVAL;

	/*
	 * Get pages, identify contiguous physical memory chunks for the segment
	 * If we can not determine a DMA address mapping we will treat it just
	 * like if we ran out of space above.
	 */
	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
		hfi1_wait_kmem(flow->req->qp);
		return -ENOMEM;
	}

	spin_lock_irqsave(&rcd->exp_lock, flags);
	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
		goto queue;

	/*
	 * At this point we know the number of pagesets and hence the number of
	 * TID's to map the segment. Allocate the TID's from the TID groups. If
	 * we cannot allocate the required number we exit and try again later
	 */
	if (kern_alloc_tids(flow))
		goto queue;
	/*
	 * Finally program the TID entries with the pagesets, compute the
	 * tidarray and enable the HW flow
	 */
	kern_program_rcvarray(flow);

	/*
	 * Setup the flow state with relevant information.
	 * This information is used for tracking the sequence of data packets
	 * for the segment.
	 * The flow is setup here as this is the most accurate time and place
	 * to do so. Doing at a later time runs the risk of the flow data in
	 * qpriv getting out of sync.
	 */
	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
	flow->idx = qpriv->flow_state.index;
	flow->flow_state.generation = qpriv->flow_state.generation;
	flow->flow_state.spsn = qpriv->flow_state.psn;
	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
	flow->flow_state.r_next_psn =
		full_flow_psn(flow, flow->flow_state.spsn);
	qpriv->flow_state.psn += flow->npkts;

	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->rarr_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	tid_rdma_schedule_tid_wakeup(fqp);

	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
	return 0;
queue:
	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	return -EAGAIN;
}

static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
{
	flow->npagesets = 0;
}

/*
 * This function is called after one segment has been successfully sent to
 * release the flow and TID HW/SW resources for that segment. The segments for a
 * TID RDMA request are setup and cleared in FIFO order which is managed using a
 * circular buffer.
 */
int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
	__must_hold(&req->qp->s_lock)
{
	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
	struct hfi1_ctxtdata *rcd = req->rcd;
	unsigned long flags;
	int i;
	struct rvt_qp *fqp;

	lockdep_assert_held(&req->qp->s_lock);
	/* Exit if we have nothing in the flow circular buffer */
	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
		return -EINVAL;

	spin_lock_irqsave(&rcd->exp_lock, flags);

	for (i = 0; i < flow->tnode_cnt; i++)
		kern_unprogram_rcv_group(flow, i);
	/* To prevent double unprogramming */
	flow->tnode_cnt = 0;
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->rarr_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	dma_unmap_flow(flow);

	hfi1_tid_rdma_reset_flow(flow);
	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);

	if (fqp == req->qp) {
		__trigger_tid_waiter(fqp);
		rvt_put_qp(fqp);
	} else {
		tid_rdma_schedule_tid_wakeup(fqp);
	}

	return 0;
}

/*
 * This function is called to release all the tid entries for
 * a request.
 */
void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
	__must_hold(&req->qp->s_lock)
{
	/* Use memory barrier for proper ordering */
	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
		if (hfi1_kern_exp_rcv_clear(req))
			break;
	}
}

/**
 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
 * @req - the tid rdma request to be cleaned
 */
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
{
	kfree(req->flows);
	req->flows = NULL;
}

/**
 * __trdma_clean_swqe - clean up for large sized QPs
 * @qp: the queue patch
 * @wqe: the send wqe
 */
void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
	struct hfi1_swqe_priv *p = wqe->priv;

	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
}

/*
 * This can be called at QP create time or in the data path.
 */
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
					 gfp_t gfp)
{
	struct tid_rdma_flow *flows;
	int i;

	if (likely(req->flows))
		return 0;
	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
			     req->rcd->numa_id);
	if (!flows)
		return -ENOMEM;
	/* mini init */
	for (i = 0; i < MAX_FLOWS; i++) {
		flows[i].req = req;
		flows[i].npagesets = 0;
		flows[i].pagesets[0].mapped =  0;
	}
	req->flows = flows;
	return 0;
}

static void hfi1_init_trdma_req(struct rvt_qp *qp,
				struct tid_rdma_request *req)
{
	struct hfi1_qp_priv *qpriv = qp->priv;

	/*
	 * Initialize various TID RDMA request variables.
	 * These variables are "static", which is why they
	 * can be pre-initialized here before the WRs has
	 * even been submitted.
	 * However, non-NULL values for these variables do not
	 * imply that this WQE has been enabled for TID RDMA.
	 * Drivers should check the WQE's opcode to determine
	 * if a request is a TID RDMA one or not.
	 */
	req->qp = qp;
	req->rcd = qpriv->rcd;
}