free-space-cache.c 92.4 KB
Newer Older
J
Josef Bacik 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/pagemap.h>
J
Josef Bacik 已提交
20
#include <linux/sched.h>
21
#include <linux/slab.h>
22
#include <linux/math64.h>
23
#include <linux/ratelimit.h>
J
Josef Bacik 已提交
24
#include "ctree.h"
25 26
#include "free-space-cache.h"
#include "transaction.h"
27
#include "disk-io.h"
28
#include "extent_io.h"
29
#include "inode-map.h"
30
#include "volumes.h"
31

32
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33
#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
J
Josef Bacik 已提交
34

35 36 37 38 39 40
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

41
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
42
			   struct btrfs_free_space *info);
43 44
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
45 46 47 48
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
			     struct btrfs_trans_handle *trans,
			     struct btrfs_io_ctl *io_ctl,
			     struct btrfs_path *path);
J
Josef Bacik 已提交
49

50 51 52
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
53
{
54
	struct btrfs_fs_info *fs_info = root->fs_info;
55 56 57 58 59 60 61 62 63
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
64
	key.offset = offset;
65 66 67 68 69 70
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
71
		btrfs_release_path(path);
72 73 74 75 76 77 78 79
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
80
	btrfs_release_path(path);
81

82
	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
83 84 85 86 87 88 89
	if (IS_ERR(inode))
		return inode;
	if (is_bad_inode(inode)) {
		iput(inode);
		return ERR_PTR(-ENOENT);
	}

A
Al Viro 已提交
90
	mapping_set_gfp_mask(inode->i_mapping,
91 92
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
93

94 95 96
	return inode;
}

97
struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
98 99 100 101
				      struct btrfs_block_group_cache
				      *block_group, struct btrfs_path *path)
{
	struct inode *inode = NULL;
102
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
103 104 105 106 107 108 109 110

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

111
	inode = __lookup_free_space_inode(fs_info->tree_root, path,
112 113 114 115
					  block_group->key.objectid);
	if (IS_ERR(inode))
		return inode;

116
	spin_lock(&block_group->lock);
117
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
118
		btrfs_info(fs_info, "Old style space inode found, converting.");
119 120
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
121 122 123
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

124
	if (!block_group->iref) {
125 126 127 128 129 130 131 132
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

133 134 135 136
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
137 138 139 140 141 142
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
143
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
144 145
	int ret;

146
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
147 148 149
	if (ret)
		return ret;

150 151 152 153
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

154 155 156 157
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
158
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
159 160 161 162 163 164 165
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
166
	btrfs_set_inode_flags(leaf, inode_item, flags);
167 168
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
169
	btrfs_set_inode_block_group(leaf, inode_item, offset);
170
	btrfs_mark_buffer_dirty(leaf);
171
	btrfs_release_path(path);
172 173

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
174
	key.offset = offset;
175 176 177 178
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
179
		btrfs_release_path(path);
180 181
		return ret;
	}
182

183 184 185
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
186
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
187 188
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
189
	btrfs_release_path(path);
190 191 192 193

	return 0;
}

194
int create_free_space_inode(struct btrfs_fs_info *fs_info,
195 196 197 198 199 200 201
			    struct btrfs_trans_handle *trans,
			    struct btrfs_block_group_cache *block_group,
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

202
	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
203 204 205
	if (ret < 0)
		return ret;

206
	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
207 208 209
					 block_group->key.objectid);
}

210
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211
				       struct btrfs_block_rsv *rsv)
212
{
213
	u64 needed_bytes;
214
	int ret;
215 216

	/* 1 for slack space, 1 for updating the inode */
217 218
	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
		btrfs_calc_trans_metadata_size(fs_info, 1);
219

220 221 222 223 224 225
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
226
	return ret;
227 228
}

229
int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230
				    struct btrfs_block_group_cache *block_group,
231 232
				    struct inode *inode)
{
233
	struct btrfs_root *root = BTRFS_I(inode)->root;
234
	int ret = 0;
235
	bool locked = false;
236 237

	if (block_group) {
238 239 240 241 242 243
		struct btrfs_path *path = btrfs_alloc_path();

		if (!path) {
			ret = -ENOMEM;
			goto fail;
		}
244
		locked = true;
245 246 247 248
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

249
			btrfs_wait_cache_io(trans, block_group, path);
250 251 252 253 254 255 256 257 258 259
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
260
		btrfs_free_path(path);
261
	}
262

263
	btrfs_i_size_write(BTRFS_I(inode), 0);
264
	truncate_pagecache(inode, 0);
265 266 267 268

	/*
	 * We don't need an orphan item because truncating the free space cache
	 * will never be split across transactions.
269 270
	 * We don't need to check for -EAGAIN because we're a free space
	 * cache inode
271 272 273
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
274 275
	if (ret)
		goto fail;
276

277
	ret = btrfs_update_inode(trans, root, inode);
278 279

fail:
280 281
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
282
	if (ret)
283
		btrfs_abort_transaction(trans, ret);
284

285
	return ret;
286 287
}

288
static void readahead_cache(struct inode *inode)
289 290 291 292 293 294
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
295
		return;
296 297

	file_ra_state_init(ra, inode->i_mapping);
298
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
299 300 301 302 303 304

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);
}

305
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
306
		       int write)
307
{
308 309 310
	int num_pages;
	int check_crcs = 0;

311
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312

313
	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
314 315 316 317
		check_crcs = 1;

	/* Make sure we can fit our crcs into the first page */
	if (write && check_crcs &&
318
	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
319 320
		return -ENOSPC;

321
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
322

323
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
324 325
	if (!io_ctl->pages)
		return -ENOMEM;
326 327

	io_ctl->num_pages = num_pages;
328
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
329
	io_ctl->check_crcs = check_crcs;
330
	io_ctl->inode = inode;
331

332 333 334
	return 0;
}

335
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
336 337
{
	kfree(io_ctl->pages);
338
	io_ctl->pages = NULL;
339 340
}

341
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
342 343 344 345 346 347 348
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

349
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
350
{
351
	ASSERT(io_ctl->index < io_ctl->num_pages);
352
	io_ctl->page = io_ctl->pages[io_ctl->index++];
353
	io_ctl->cur = page_address(io_ctl->page);
354
	io_ctl->orig = io_ctl->cur;
355
	io_ctl->size = PAGE_SIZE;
356
	if (clear)
357
		memset(io_ctl->cur, 0, PAGE_SIZE);
358 359
}

360
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
361 362 363 364 365 366
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
367 368 369
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
370
			put_page(io_ctl->pages[i]);
371
		}
372 373 374
	}
}

375
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
				int uptodate)
{
	struct page *page;
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
393 394
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
395 396 397 398 399 400
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

401 402 403 404 405
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

406 407 408
	return 0;
}

409
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
410
{
A
Al Viro 已提交
411
	__le64 *val;
412 413 414 415

	io_ctl_map_page(io_ctl, 1);

	/*
416 417
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
418
	 */
419 420 421 422 423 424 425
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
426 427 428 429 430 431

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

432
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
433
{
A
Al Viro 已提交
434
	__le64 *gen;
435

436 437 438 439 440 441 442 443 444 445 446 447
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
448 449 450

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
451
		btrfs_err_rl(io_ctl->fs_info,
452 453
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
454 455 456 457
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
458 459 460
	return 0;
}

461
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
462 463 464 465 466 467 468 469 470 471 472
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
473
		offset = sizeof(u32) * io_ctl->num_pages;
474

475
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
476
			      PAGE_SIZE - offset);
477
	btrfs_csum_final(crc, (u8 *)&crc);
478
	io_ctl_unmap_page(io_ctl);
479
	tmp = page_address(io_ctl->pages[0]);
480 481 482 483
	tmp += index;
	*tmp = crc;
}

484
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
485 486 487 488 489 490 491 492 493 494 495 496 497
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

498
	tmp = page_address(io_ctl->pages[0]);
499 500 501 502
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
503
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
504
			      PAGE_SIZE - offset);
505
	btrfs_csum_final(crc, (u8 *)&crc);
506
	if (val != crc) {
507
		btrfs_err_rl(io_ctl->fs_info,
508
			"csum mismatch on free space cache");
509 510 511 512
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

513 514 515
	return 0;
}

516
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

535
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 537 538 539 540 541 542 543 544 545

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

546
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
547 548 549 550 551 552 553 554 555
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
556
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
557 558 559 560 561
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

562
	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
563
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
564 565 566 567 568
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

569
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
570
{
571 572 573 574 575 576 577 578
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
579 580 581

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
582
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
583 584 585
	}
}

586
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
587
			    struct btrfs_free_space *entry, u8 *type)
588 589
{
	struct btrfs_free_space_entry *e;
590 591 592 593 594 595 596
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
597 598 599 600

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
601
	*type = e->type;
602 603 604 605
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
606
		return 0;
607 608 609

	io_ctl_unmap_page(io_ctl);

610
	return 0;
611 612
}

613
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
614
			      struct btrfs_free_space *entry)
615
{
616 617 618 619 620 621
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

622
	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
623
	io_ctl_unmap_page(io_ctl);
624 625

	return 0;
626 627
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

666 667 668
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
669
{
670
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
671 672
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
673
	struct btrfs_io_ctl io_ctl;
674
	struct btrfs_key key;
675
	struct btrfs_free_space *e, *n;
676
	LIST_HEAD(bitmaps);
677 678 679
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
680
	u8 type;
681
	int ret = 0;
682 683

	/* Nothing in the space cache, goodbye */
684
	if (!i_size_read(inode))
685
		return 0;
686 687

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
688
	key.offset = offset;
689 690 691
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
692
	if (ret < 0)
693
		return 0;
694
	else if (ret > 0) {
695
		btrfs_release_path(path);
696
		return 0;
697 698
	}

699 700
	ret = -1;

701 702 703 704 705 706
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
707
	btrfs_release_path(path);
708

709
	if (!BTRFS_I(inode)->generation) {
710
		btrfs_info(fs_info,
711 712 713 714 715
			   "The free space cache file (%llu) is invalid. skip it\n",
			   offset);
		return 0;
	}

716
	if (BTRFS_I(inode)->generation != generation) {
717 718 719
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
720
		return 0;
721 722 723
	}

	if (!num_entries)
724
		return 0;
725

726
	ret = io_ctl_init(&io_ctl, inode, 0);
727 728 729
	if (ret)
		return ret;

730
	readahead_cache(inode);
731

732 733 734
	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
	if (ret)
		goto out;
735

736 737 738 739
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

740 741 742
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
743

744 745 746 747
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
748 749
			goto free_cache;

750 751 752 753 754 755
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

756 757 758
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
759
		}
760 761 762 763 764 765

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
766
				btrfs_err(fs_info,
767
					"Duplicate entries in free space cache, dumping");
768
				kmem_cache_free(btrfs_free_space_cachep, e);
769 770
				goto free_cache;
			}
771
		} else {
772
			ASSERT(num_bitmaps);
773
			num_bitmaps--;
774
			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
775 776 777
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
778 779
				goto free_cache;
			}
780 781 782 783 784 785
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
786
				btrfs_err(fs_info,
787
					"Duplicate entries in free space cache, dumping");
788
				kmem_cache_free(btrfs_free_space_cachep, e);
789 790
				goto free_cache;
			}
791
			list_add_tail(&e->list, &bitmaps);
792 793
		}

794 795
		num_entries--;
	}
796

797 798
	io_ctl_unmap_page(&io_ctl);

799 800 801 802 803
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
804
		list_del_init(&e->list);
805 806 807
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
808 809
	}

810
	io_ctl_drop_pages(&io_ctl);
811
	merge_space_tree(ctl);
812 813
	ret = 1;
out:
814
	io_ctl_free(&io_ctl);
815 816
	return ret;
free_cache:
817
	io_ctl_drop_pages(&io_ctl);
818
	__btrfs_remove_free_space_cache(ctl);
819 820 821
	goto out;
}

822 823
int load_free_space_cache(struct btrfs_fs_info *fs_info,
			  struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
824
{
825
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
826 827
	struct inode *inode;
	struct btrfs_path *path;
828
	int ret = 0;
829 830 831 832 833 834 835
	bool matched;
	u64 used = btrfs_block_group_used(&block_group->item);

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
836
	spin_lock(&block_group->lock);
837 838 839 840
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
841
	spin_unlock(&block_group->lock);
842 843 844 845

	path = btrfs_alloc_path();
	if (!path)
		return 0;
846 847
	path->search_commit_root = 1;
	path->skip_locking = 1;
848

849
	inode = lookup_free_space_inode(fs_info, block_group, path);
850 851 852 853 854
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

855 856 857 858
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
859
		btrfs_free_path(path);
860 861 862 863
		goto out;
	}
	spin_unlock(&block_group->lock);

864 865 866 867 868 869 870 871 872 873 874 875 876
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
				      path, block_group->key.objectid);
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
	matched = (ctl->free_space == (block_group->key.offset - used -
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
J
Jeff Mahoney 已提交
877 878 879
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
			   block_group->key.objectid);
880 881 882 883 884 885 886 887
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
888
		ret = 0;
889

J
Jeff Mahoney 已提交
890 891 892
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
			   block_group->key.objectid);
893 894 895 896
	}

	iput(inode);
	return ret;
897 898
}

899
static noinline_for_stack
900
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
901 902 903 904
			      struct btrfs_free_space_ctl *ctl,
			      struct btrfs_block_group_cache *block_group,
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
905
{
906
	int ret;
907
	struct btrfs_free_cluster *cluster = NULL;
908
	struct btrfs_free_cluster *cluster_locked = NULL;
909
	struct rb_node *node = rb_first(&ctl->free_space_offset);
910
	struct btrfs_trim_range *trim_entry;
911

912
	/* Get the cluster for this block_group if it exists */
913
	if (block_group && !list_empty(&block_group->cluster_list)) {
914 915 916
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
917
	}
918

919
	if (!node && cluster) {
920 921
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
922 923 924 925
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

926 927 928
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
929

930
		e = rb_entry(node, struct btrfs_free_space, offset_index);
931
		*entries += 1;
J
Josef Bacik 已提交
932

933
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
934 935
				       e->bitmap);
		if (ret)
936
			goto fail;
937

938
		if (e->bitmap) {
939 940
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
941
		}
942 943 944
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
945 946
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
947
			cluster = NULL;
948
		}
949
	}
950 951 952 953
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

969 970
	return 0;
fail:
971 972
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
					 inode->i_size - 1,
					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
					 NULL, GFP_NOFS);
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

static noinline_for_stack int
1032
write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1033
			    struct btrfs_block_group_cache *block_group,
1034
			    struct btrfs_io_ctl *io_ctl,
1035
			    int *entries)
1036 1037 1038 1039
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1040

1041 1042 1043
	if (!block_group)
		return 0;

1044 1045 1046
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1047
	 *
1048 1049 1050
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1051
	unpin = fs_info->pinned_extents;
1052

1053
	start = block_group->key.objectid;
1054

1055
	while (start < block_group->key.objectid + block_group->key.offset) {
1056 1057
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1058
					    EXTENT_DIRTY, NULL);
1059 1060
		if (ret)
			return 0;
J
Josef Bacik 已提交
1061

1062
		/* This pinned extent is out of our range */
1063
		if (extent_start >= block_group->key.objectid +
1064
		    block_group->key.offset)
1065
			return 0;
1066

1067 1068 1069 1070
		extent_start = max(extent_start, start);
		extent_end = min(block_group->key.objectid +
				 block_group->key.offset, extent_end + 1);
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1071

1072 1073
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1074
		if (ret)
1075
			return -ENOSPC;
J
Josef Bacik 已提交
1076

1077
		start = extent_end;
1078
	}
J
Josef Bacik 已提交
1079

1080 1081 1082 1083
	return 0;
}

static noinline_for_stack int
1084
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1085
{
1086
	struct btrfs_free_space *entry, *next;
1087 1088
	int ret;

J
Josef Bacik 已提交
1089
	/* Write out the bitmaps */
1090
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1091
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1092
		if (ret)
1093
			return -ENOSPC;
J
Josef Bacik 已提交
1094
		list_del_init(&entry->list);
1095 1096
	}

1097 1098
	return 0;
}
J
Josef Bacik 已提交
1099

1100 1101 1102
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1103

1104
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1105
	if (ret)
1106 1107 1108
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
J
Josef Bacik 已提交
1109

1110
	return ret;
1111 1112 1113
}

static void noinline_for_stack
1114
cleanup_bitmap_list(struct list_head *bitmap_list)
1115
{
1116
	struct btrfs_free_space *entry, *next;
1117

1118
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1119
		list_del_init(&entry->list);
1120 1121 1122 1123 1124
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
1125
			   struct extent_state **cached_state)
1126
{
1127 1128 1129 1130 1131
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, cached_state,
			     GFP_NOFS);
}
1132

1133 1134 1135 1136 1137
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
				 struct btrfs_block_group_cache *block_group,
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1138 1139 1140
{
	int ret;
	struct inode *inode = io_ctl->inode;
1141
	struct btrfs_fs_info *fs_info;
1142

1143 1144 1145
	if (!inode)
		return 0;

1146 1147
	fs_info = btrfs_sb(inode->i_sb);

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
1163 1164 1165
			btrfs_err(fs_info,
				  "failed to write free space cache for block group %llu",
				  block_group->key.objectid);
1166 1167 1168 1169 1170 1171
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1172 1173 1174 1175
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1176 1177 1178 1179
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1180 1181
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1182 1183 1184 1185 1186 1187 1188
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1189
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1190 1191 1192 1193 1194 1195 1196 1197
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
				    struct btrfs_io_ctl *io_ctl,
				    struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
}

int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
			struct btrfs_block_group_cache *block_group,
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
				     path, block_group->key.objectid);
}

1215 1216 1217 1218 1219 1220 1221 1222
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1223
 * on mount.  This will return 0 if it was successful in writing the cache out,
1224
 * or an errno if it was not.
1225 1226 1227 1228
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_block_group_cache *block_group,
1229
				   struct btrfs_io_ctl *io_ctl,
1230
				   struct btrfs_trans_handle *trans)
1231
{
1232
	struct btrfs_fs_info *fs_info = root->fs_info;
1233
	struct extent_state *cached_state = NULL;
1234
	LIST_HEAD(bitmap_list);
1235 1236 1237
	int entries = 0;
	int bitmaps = 0;
	int ret;
1238
	int must_iput = 0;
1239 1240

	if (!i_size_read(inode))
1241
		return -EIO;
1242

1243
	WARN_ON(io_ctl->pages);
1244
	ret = io_ctl_init(io_ctl, inode, 1);
1245
	if (ret)
1246
		return ret;
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1257
			must_iput = 1;
1258 1259 1260 1261 1262
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1263
	/* Lock all pages first so we can lock the extent safely. */
1264 1265 1266
	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
	if (ret)
		goto out;
1267 1268

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1269
			 &cached_state);
1270

1271
	io_ctl_set_generation(io_ctl, trans->transid);
1272

1273
	mutex_lock(&ctl->cache_writeout_mutex);
1274
	/* Write out the extent entries in the free space cache */
1275
	spin_lock(&ctl->tree_lock);
1276
	ret = write_cache_extent_entries(io_ctl, ctl,
1277 1278
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1279 1280
	if (ret)
		goto out_nospc_locked;
1281

1282 1283 1284 1285
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1286 1287 1288
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1289
	 */
1290 1291
	ret = write_pinned_extent_entries(fs_info, block_group,
					  io_ctl, &entries);
1292 1293
	if (ret)
		goto out_nospc_locked;
1294

1295 1296 1297 1298 1299
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1300
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1301
	spin_unlock(&ctl->tree_lock);
1302
	mutex_unlock(&ctl->cache_writeout_mutex);
1303 1304 1305 1306
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1307
	io_ctl_zero_remaining_pages(io_ctl);
1308

1309
	/* Everything is written out, now we dirty the pages in the file. */
1310 1311
	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
				i_size_read(inode), &cached_state);
1312
	if (ret)
1313
		goto out_nospc;
1314

1315 1316
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1317 1318 1319 1320
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1321
	io_ctl_drop_pages(io_ctl);
1322 1323 1324 1325

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);

1326 1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1335
	if (ret)
1336 1337
		goto out;

1338 1339
	return 0;

1340
out:
1341 1342
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1343
	if (ret) {
1344
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1345 1346 1347
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1348 1349
	if (must_iput)
		iput(inode);
1350
	return ret;
1351

1352 1353 1354 1355 1356
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1357
out_nospc:
1358
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1359 1360 1361 1362

	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1363
	goto out;
1364 1365
}

1366
int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
			  struct btrfs_trans_handle *trans,
			  struct btrfs_block_group_cache *block_group,
			  struct btrfs_path *path)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1378 1379
		return 0;
	}
1380 1381
	spin_unlock(&block_group->lock);

1382
	inode = lookup_free_space_inode(fs_info, block_group, path);
1383 1384 1385
	if (IS_ERR(inode))
		return 0;

1386 1387
	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
				block_group, &block_group->io_ctl, trans);
1388 1389
	if (ret) {
#ifdef DEBUG
1390 1391 1392
		btrfs_err(fs_info,
			  "failed to write free space cache for block group %llu",
			  block_group->key.objectid);
1393
#endif
1394 1395 1396 1397 1398 1399
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1400 1401
	}

1402 1403 1404 1405 1406
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1407 1408 1409
	return ret;
}

1410
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1411
					  u64 offset)
J
Josef Bacik 已提交
1412
{
1413
	ASSERT(offset >= bitmap_start);
1414
	offset -= bitmap_start;
1415
	return (unsigned long)(div_u64(offset, unit));
1416
}
J
Josef Bacik 已提交
1417

1418
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1419
{
1420
	return (unsigned long)(div_u64(bytes, unit));
1421
}
J
Josef Bacik 已提交
1422

1423
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1424 1425 1426
				   u64 offset)
{
	u64 bitmap_start;
1427
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1428

1429 1430
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1431
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1432
	bitmap_start *= bytes_per_bitmap;
1433
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1434

1435
	return bitmap_start;
J
Josef Bacik 已提交
1436 1437
}

1438 1439
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1440 1441 1442 1443 1444 1445 1446
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1447
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1448

1449
		if (offset < info->offset) {
J
Josef Bacik 已提交
1450
			p = &(*p)->rb_left;
1451
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1452
			p = &(*p)->rb_right;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1468 1469 1470 1471
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1472 1473
				p = &(*p)->rb_right;
			} else {
1474 1475 1476 1477
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1478 1479 1480
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1490 1491
 * searches the tree for the given offset.
 *
1492 1493 1494
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1495
 */
1496
static struct btrfs_free_space *
1497
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1498
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1499
{
1500
	struct rb_node *n = ctl->free_space_offset.rb_node;
1501 1502 1503 1504 1505 1506 1507 1508
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1509 1510

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1511
		prev = entry;
J
Josef Bacik 已提交
1512

1513
		if (offset < entry->offset)
J
Josef Bacik 已提交
1514
			n = n->rb_left;
1515
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1516
			n = n->rb_right;
1517
		else
J
Josef Bacik 已提交
1518 1519 1520
			break;
	}

1521 1522 1523 1524 1525
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1537

1538 1539 1540 1541
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1542
			/*
1543 1544
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1545
			 */
1546 1547
			n = rb_prev(&entry->offset_index);
			if (n) {
1548 1549
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1550 1551 1552
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1553
			}
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1568
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1569
		} else {
1570 1571 1572 1573
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1574 1575 1576
		}
	}

1577
	if (entry->bitmap) {
1578 1579
		n = rb_prev(&entry->offset_index);
		if (n) {
1580 1581
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1582 1583 1584
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1585
		}
1586
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1597
			    ctl->unit > offset)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1610 1611
}

1612
static inline void
1613
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1614
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1615
{
1616 1617
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1618 1619
}

1620
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1621 1622
			      struct btrfs_free_space *info)
{
1623 1624
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1625 1626
}

1627
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1628 1629 1630 1631
			   struct btrfs_free_space *info)
{
	int ret = 0;

1632
	ASSERT(info->bytes || info->bitmap);
1633
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1634
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1635 1636 1637
	if (ret)
		return ret;

1638 1639
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1640 1641 1642
	return ret;
}

1643
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1644
{
1645
	struct btrfs_block_group_cache *block_group = ctl->private;
1646 1647 1648
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1649
	u64 size = block_group->key.offset;
1650 1651
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1652

1653
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1654

1655
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1656 1657 1658 1659 1660 1661

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
1662
	if (size < SZ_1G)
1663 1664
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1665
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1666

1667 1668 1669 1670 1671
	/*
	 * we want to account for 1 more bitmap than what we have so we can make
	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
	 * we add more bitmaps.
	 */
1672
	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1673

1674
	if (bitmap_bytes >= max_bytes) {
1675
		ctl->extents_thresh = 0;
1676 1677
		return;
	}
1678

1679
	/*
1680
	 * we want the extent entry threshold to always be at most 1/2 the max
1681 1682 1683
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1684
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1685

1686
	ctl->extents_thresh =
1687
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1688 1689
}

1690 1691 1692
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1693
{
L
Li Zefan 已提交
1694
	unsigned long start, count;
1695

1696 1697
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1698
	ASSERT(start + count <= BITS_PER_BITMAP);
1699

L
Li Zefan 已提交
1700
	bitmap_clear(info->bitmap, start, count);
1701 1702

	info->bytes -= bytes;
1703 1704 1705 1706 1707 1708 1709
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1710
	ctl->free_space -= bytes;
1711 1712
}

1713
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1714 1715
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1716
{
L
Li Zefan 已提交
1717
	unsigned long start, count;
1718

1719 1720
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1721
	ASSERT(start + count <= BITS_PER_BITMAP);
1722

L
Li Zefan 已提交
1723
	bitmap_set(info->bitmap, start, count);
1724 1725

	info->bytes += bytes;
1726
	ctl->free_space += bytes;
1727 1728
}

1729 1730 1731 1732
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1733
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1734
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1735
			 u64 *bytes, bool for_alloc)
1736 1737
{
	unsigned long found_bits = 0;
1738
	unsigned long max_bits = 0;
1739 1740
	unsigned long bits, i;
	unsigned long next_zero;
1741
	unsigned long extent_bits;
1742

1743 1744 1745 1746
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1747 1748
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1749 1750 1751 1752 1753
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1754
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1755
			  max_t(u64, *offset, bitmap_info->offset));
1756
	bits = bytes_to_bits(*bytes, ctl->unit);
1757

1758
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1759 1760 1761 1762
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1763 1764
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1765 1766 1767
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1768
			break;
1769 1770
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1771 1772 1773 1774 1775
		}
		i = next_zero;
	}

	if (found_bits) {
1776 1777
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1778 1779 1780
		return 0;
	}

1781
	*bytes = (u64)(max_bits) * ctl->unit;
1782
	bitmap_info->max_extent_size = *bytes;
1783 1784 1785
	return -1;
}

1786
/* Cache the size of the max extent in bytes */
1787
static struct btrfs_free_space *
D
David Woodhouse 已提交
1788
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1789
		unsigned long align, u64 *max_extent_size)
1790 1791 1792
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1793 1794
	u64 tmp;
	u64 align_off;
1795 1796
	int ret;

1797
	if (!ctl->free_space_offset.rb_node)
1798
		goto out;
1799

1800
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1801
	if (!entry)
1802
		goto out;
1803 1804 1805

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1806 1807 1808
		if (entry->bytes < *bytes) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
1809
			continue;
1810
		}
1811

D
David Woodhouse 已提交
1812 1813 1814 1815
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1816
			tmp = entry->offset - ctl->start + align - 1;
1817
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1818 1819 1820 1821 1822 1823 1824
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1825 1826 1827
		if (entry->bytes < *bytes + align_off) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
D
David Woodhouse 已提交
1828
			continue;
1829
		}
D
David Woodhouse 已提交
1830

1831
		if (entry->bitmap) {
1832 1833
			u64 size = *bytes;

1834
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1835 1836
			if (!ret) {
				*offset = tmp;
1837
				*bytes = size;
1838
				return entry;
1839 1840
			} else if (size > *max_extent_size) {
				*max_extent_size = size;
D
David Woodhouse 已提交
1841
			}
1842 1843 1844
			continue;
		}

D
David Woodhouse 已提交
1845 1846
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1847 1848
		return entry;
	}
1849
out:
1850 1851 1852
	return NULL;
}

1853
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1854 1855
			   struct btrfs_free_space *info, u64 offset)
{
1856
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1857
	info->bytes = 0;
1858
	INIT_LIST_HEAD(&info->list);
1859 1860
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1861

1862
	ctl->op->recalc_thresholds(ctl);
1863 1864
}

1865
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1866 1867
			struct btrfs_free_space *bitmap_info)
{
1868
	unlink_free_space(ctl, bitmap_info);
1869
	kfree(bitmap_info->bitmap);
1870
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1871 1872
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1873 1874
}

1875
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1876 1877 1878 1879
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1880 1881
	u64 search_start, search_bytes;
	int ret;
1882 1883

again:
1884
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1885

1886
	/*
1887 1888 1889 1890
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1891 1892
	 */
	search_start = *offset;
1893
	search_bytes = ctl->unit;
1894
	search_bytes = min(search_bytes, end - search_start + 1);
1895 1896
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1897 1898
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1909 1910

	if (*bytes) {
1911
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1912
		if (!bitmap_info->bytes)
1913
			free_bitmap(ctl, bitmap_info);
1914

1915 1916 1917 1918 1919
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1920 1921
			return -EINVAL;

1922 1923 1924 1925 1926 1927 1928
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1929 1930 1931
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1932 1933 1934 1935 1936 1937 1938
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
1939
		search_bytes = ctl->unit;
1940
		ret = search_bitmap(ctl, bitmap_info, &search_start,
1941
				    &search_bytes, false);
1942 1943 1944
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

1945
		goto again;
1946
	} else if (!bitmap_info->bytes)
1947
		free_bitmap(ctl, bitmap_info);
1948 1949 1950 1951

	return 0;
}

J
Josef Bacik 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
			       u64 bytes)
{
	u64 bytes_to_set = 0;
	u64 end;

	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

1965 1966 1967 1968 1969 1970
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
1971 1972 1973 1974
	return bytes_to_set;

}

1975 1976
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
1977
{
1978
	struct btrfs_block_group_cache *block_group = ctl->private;
1979
	struct btrfs_fs_info *fs_info = block_group->fs_info;
1980 1981 1982
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
1983
	if (btrfs_should_fragment_free_space(block_group))
1984 1985
		forced = true;
#endif
1986 1987 1988 1989 1990

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
1991
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1992 1993 1994
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
1995
		 * to reserve them to larger extents, however if we have plenty
1996 1997 1998
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
1999
		if (info->bytes <= fs_info->sectorsize * 4) {
2000 2001
			if (ctl->free_extents * 2 <= ctl->extents_thresh)
				return false;
2002
		} else {
2003
			return false;
2004 2005
		}
	}
2006 2007

	/*
2008 2009 2010 2011 2012 2013
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2014
	 */
2015
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2016 2017 2018 2019 2020
		return false;

	return true;
}

2021
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2022 2023 2024 2025
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2026 2027 2028 2029
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
J
Josef Bacik 已提交
2030
	struct btrfs_block_group_cache *block_group = NULL;
2031
	int added = 0;
J
Josef Bacik 已提交
2032
	u64 bytes, offset, bytes_added;
2033
	int ret;
2034 2035 2036 2037

	bytes = info->bytes;
	offset = info->offset;

2038 2039 2040
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2041 2042
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2043
again:
J
Josef Bacik 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2061
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2062 2063 2064 2065 2066
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2067
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
			bytes_added = add_bytes_to_bitmap(ctl, entry,
							  offset, bytes);
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2082 2083

no_cluster_bitmap:
2084
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2085 2086
					 1, 0);
	if (!bitmap_info) {
2087
		ASSERT(added == 0);
2088 2089 2090
		goto new_bitmap;
	}

J
Josef Bacik 已提交
2091 2092 2093 2094
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2095 2096 2097 2098 2099 2100 2101 2102 2103

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2104
		add_new_bitmap(ctl, info, offset);
2105 2106 2107 2108
		added = 1;
		info = NULL;
		goto again;
	} else {
2109
		spin_unlock(&ctl->tree_lock);
2110 2111 2112

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2113 2114
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2115
			if (!info) {
2116
				spin_lock(&ctl->tree_lock);
2117 2118 2119 2120 2121 2122
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2123
		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2124
		spin_lock(&ctl->tree_lock);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
		if (info->bitmap)
			kfree(info->bitmap);
2136
		kmem_cache_free(btrfs_free_space_cachep, info);
2137
	}
J
Josef Bacik 已提交
2138 2139 2140 2141

	return ret;
}

2142
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2143
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2144
{
2145 2146 2147 2148 2149
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2150

J
Josef Bacik 已提交
2151 2152 2153 2154 2155
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2156
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2157 2158 2159 2160
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2161
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2162

2163
	if (right_info && !right_info->bitmap) {
2164
		if (update_stat)
2165
			unlink_free_space(ctl, right_info);
2166
		else
2167
			__unlink_free_space(ctl, right_info);
2168
		info->bytes += right_info->bytes;
2169
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2170
		merged = true;
J
Josef Bacik 已提交
2171 2172
	}

2173 2174
	if (left_info && !left_info->bitmap &&
	    left_info->offset + left_info->bytes == offset) {
2175
		if (update_stat)
2176
			unlink_free_space(ctl, left_info);
2177
		else
2178
			__unlink_free_space(ctl, left_info);
2179 2180
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2181
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2182
		merged = true;
J
Josef Bacik 已提交
2183 2184
	}

2185 2186 2187
	return merged;
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2310 2311
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2312
			   u64 offset, u64 bytes)
2313 2314 2315 2316
{
	struct btrfs_free_space *info;
	int ret = 0;

2317
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2318 2319 2320 2321 2322
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2323
	RB_CLEAR_NODE(&info->offset_index);
2324

2325
	spin_lock(&ctl->tree_lock);
2326

2327
	if (try_merge_free_space(ctl, info, true))
2328 2329 2330 2331 2332 2333 2334
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2335
	ret = insert_into_bitmap(ctl, info);
2336 2337 2338 2339 2340 2341 2342
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

2351
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2352
	if (ret)
2353
		kmem_cache_free(btrfs_free_space_cachep, info);
2354
out:
2355
	spin_unlock(&ctl->tree_lock);
2356

J
Josef Bacik 已提交
2357
	if (ret) {
2358
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2359
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2360 2361 2362 2363 2364
	}

	return ret;
}

2365 2366
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2367
{
2368
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2369
	struct btrfs_free_space *info;
2370 2371
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2372

2373
	spin_lock(&ctl->tree_lock);
2374

2375
again:
2376
	ret = 0;
2377 2378 2379
	if (!bytes)
		goto out_lock;

2380
	info = tree_search_offset(ctl, offset, 0, 0);
2381
	if (!info) {
2382 2383 2384 2385
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2386
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2387 2388
					  1, 0);
		if (!info) {
2389 2390 2391 2392
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2393
			 */
2394
			WARN_ON(re_search);
2395 2396
			goto out_lock;
		}
2397 2398
	}

2399
	re_search = false;
2400
	if (!info->bitmap) {
2401
		unlink_free_space(ctl, info);
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2413

2414 2415 2416 2417 2418
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2419

2420
			info->bytes = offset - info->offset;
2421
			ret = link_free_space(ctl, info);
2422 2423 2424 2425
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

			ret = btrfs_add_free_space(block_group, offset + bytes,
						   old_end - (offset + bytes));
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2442
	}
2443

2444
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2445 2446
	if (ret == -EAGAIN) {
		re_search = true;
2447
		goto again;
2448
	}
2449
out_lock:
2450
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2451
out:
2452 2453 2454
	return ret;
}

J
Josef Bacik 已提交
2455 2456 2457
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
2458
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2459
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2460 2461 2462 2463
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2464
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2465
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2466
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2467
			count++;
2468
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2469
			   info->offset, info->bytes,
2470
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2471
	}
2472
	btrfs_info(fs_info, "block group has cluster?: %s",
2473
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2474
	btrfs_info(fs_info,
2475
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2476 2477
}

2478
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
2479
{
2480
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2481
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2482

2483
	spin_lock_init(&ctl->tree_lock);
2484
	ctl->unit = fs_info->sectorsize;
2485 2486 2487
	ctl->start = block_group->key.objectid;
	ctl->private = block_group;
	ctl->op = &free_space_op;
2488 2489
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2490

2491 2492 2493 2494 2495
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2496
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2497 2498
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
2510
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2511 2512 2513 2514 2515 2516 2517
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2518
	cluster->block_group = NULL;
2519
	cluster->window_start = 0;
2520 2521
	list_del_init(&cluster->block_group_list);

2522
	node = rb_first(&cluster->root);
2523
	while (node) {
2524 2525
		bool bitmap;

2526 2527 2528
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2529
		RB_CLEAR_NODE(&entry->offset_index);
2530 2531

		bitmap = (entry->bitmap != NULL);
2532
		if (!bitmap) {
2533
			try_merge_free_space(ctl, entry, false);
2534 2535
			steal_from_bitmap(ctl, entry, false);
		}
2536
		tree_insert_offset(&ctl->free_space_offset,
2537
				   entry->offset, &entry->offset_index, bitmap);
2538
	}
2539
	cluster->root = RB_ROOT;
2540

2541 2542
out:
	spin_unlock(&cluster->lock);
2543
	btrfs_put_block_group(block_group);
2544 2545 2546
	return 0;
}

2547 2548
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2549 2550 2551
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2552 2553 2554

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2555 2556 2557 2558 2559 2560
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2561 2562

		cond_resched_lock(&ctl->tree_lock);
2563
	}
2564 2565 2566 2567 2568 2569
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2570 2571 2572 2573 2574 2575
	spin_unlock(&ctl->tree_lock);
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2576
	struct btrfs_free_cluster *cluster;
2577
	struct list_head *head;
J
Josef Bacik 已提交
2578

2579
	spin_lock(&ctl->tree_lock);
2580 2581 2582 2583
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2584 2585 2586

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2587 2588

		cond_resched_lock(&ctl->tree_lock);
2589
	}
2590
	__btrfs_remove_free_space_cache_locked(ctl);
2591
	spin_unlock(&ctl->tree_lock);
2592

J
Josef Bacik 已提交
2593 2594
}

2595
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2596 2597
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2598
{
2599
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2600
	struct btrfs_free_space *entry = NULL;
2601
	u64 bytes_search = bytes + empty_size;
2602
	u64 ret = 0;
D
David Woodhouse 已提交
2603 2604
	u64 align_gap = 0;
	u64 align_gap_len = 0;
J
Josef Bacik 已提交
2605

2606
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2607
	entry = find_free_space(ctl, &offset, &bytes_search,
2608
				block_group->full_stripe_len, max_extent_size);
2609
	if (!entry)
2610 2611 2612 2613
		goto out;

	ret = offset;
	if (entry->bitmap) {
2614
		bitmap_clear_bits(ctl, entry, offset, bytes);
2615
		if (!entry->bytes)
2616
			free_bitmap(ctl, entry);
2617
	} else {
2618
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2619 2620 2621 2622 2623 2624 2625
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;

		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2626
		if (!entry->bytes)
2627
			kmem_cache_free(btrfs_free_space_cachep, entry);
2628
		else
2629
			link_free_space(ctl, entry);
2630
	}
2631
out:
2632
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2633

D
David Woodhouse 已提交
2634
	if (align_gap_len)
2635 2636
		__btrfs_add_free_space(block_group->fs_info, ctl,
				       align_gap, align_gap_len);
J
Josef Bacik 已提交
2637 2638
	return ret;
}
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
2652
	struct btrfs_free_space_ctl *ctl;
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2671 2672
	ctl = block_group->free_space_ctl;

2673
	/* now return any extents the cluster had on it */
2674
	spin_lock(&ctl->tree_lock);
2675
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2676
	spin_unlock(&ctl->tree_lock);
2677 2678 2679 2680 2681 2682

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2683 2684
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
				   struct btrfs_free_cluster *cluster,
2685
				   struct btrfs_free_space *entry,
2686 2687
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2688
{
2689
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2690 2691 2692 2693 2694 2695 2696 2697
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2698
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2699 2700 2701
	if (err) {
		if (search_bytes > *max_extent_size)
			*max_extent_size = search_bytes;
2702
		return 0;
2703
	}
2704 2705

	ret = search_start;
2706
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2707 2708 2709 2710

	return ret;
}

2711 2712 2713 2714 2715 2716 2717
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
2718
			     u64 min_start, u64 *max_extent_size)
2719
{
2720
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2737
	while (1) {
2738 2739 2740
		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
			*max_extent_size = entry->bytes;

2741 2742
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2743 2744 2745 2746 2747 2748 2749 2750
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2751 2752 2753
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2754 2755
						      cluster->window_start,
						      max_extent_size);
2756 2757 2758 2759 2760 2761 2762 2763
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2764
			cluster->window_start += bytes;
2765 2766 2767 2768 2769 2770
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2771

2772
		if (entry->bytes == 0)
2773 2774 2775 2776 2777
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
2778

2779 2780 2781
	if (!ret)
		return 0;

2782
	spin_lock(&ctl->tree_lock);
2783

2784
	ctl->free_space -= bytes;
2785
	if (entry->bytes == 0) {
2786
		ctl->free_extents--;
2787 2788
		if (entry->bitmap) {
			kfree(entry->bitmap);
2789 2790
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
2791
		}
2792
		kmem_cache_free(btrfs_free_space_cachep, entry);
2793 2794
	}

2795
	spin_unlock(&ctl->tree_lock);
2796

2797 2798 2799
	return ret;
}

2800 2801 2802
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
2803 2804
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
2805
{
2806
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2807 2808
	unsigned long next_zero;
	unsigned long i;
2809 2810
	unsigned long want_bits;
	unsigned long min_bits;
2811
	unsigned long found_bits;
2812
	unsigned long max_bits = 0;
2813 2814
	unsigned long start = 0;
	unsigned long total_found = 0;
2815
	int ret;
2816

2817
	i = offset_to_bit(entry->offset, ctl->unit,
2818
			  max_t(u64, offset, entry->offset));
2819 2820
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2821

2822 2823 2824 2825 2826 2827 2828
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
2829 2830
again:
	found_bits = 0;
2831
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2832 2833
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
2834
		if (next_zero - i >= min_bits) {
2835
			found_bits = next_zero - i;
2836 2837
			if (found_bits > max_bits)
				max_bits = found_bits;
2838 2839
			break;
		}
2840 2841
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
2842 2843 2844
		i = next_zero;
	}

2845 2846
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
2847
		return -ENOSPC;
2848
	}
2849

2850
	if (!total_found) {
2851
		start = i;
2852
		cluster->max_size = 0;
2853 2854 2855 2856
	}

	total_found += found_bits;

2857 2858
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
2859

2860 2861
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
2862 2863 2864
		goto again;
	}

2865
	cluster->window_start = start * ctl->unit + entry->offset;
2866
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2867 2868
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
2869
	ASSERT(!ret); /* -EEXIST; Logic error */
2870

J
Josef Bacik 已提交
2871
	trace_btrfs_setup_cluster(block_group, cluster,
2872
				  total_found * ctl->unit, 1);
2873 2874 2875
	return 0;
}

2876 2877
/*
 * This searches the block group for just extents to fill the cluster with.
2878 2879
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
2880
 */
2881 2882 2883 2884
static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
2885
			u64 cont1_bytes, u64 min_bytes)
2886
{
2887
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2888 2889 2890 2891 2892 2893
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
2894
	u64 total_size = 0;
2895

2896
	entry = tree_search_offset(ctl, offset, 0, 1);
2897 2898 2899 2900 2901 2902 2903
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
2904 2905
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
2906
			list_add_tail(&entry->list, bitmaps);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

2918 2919
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
2920 2921
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

2922 2923 2924
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
2925
			continue;
2926 2927
		}

2928 2929 2930 2931 2932 2933
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
2934 2935 2936
			max_extent = entry->bytes;
	}

2937 2938 2939
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
2953
		if (entry->bitmap || entry->bytes < min_bytes)
2954 2955
			continue;

2956
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2957 2958
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
2959
		total_size += entry->bytes;
2960
		ASSERT(!ret); /* -EEXIST; Logic error */
2961 2962 2963
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
2964
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2965 2966 2967 2968 2969 2970 2971
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
2972 2973 2974 2975
static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
2976
		     u64 cont1_bytes, u64 min_bytes)
2977
{
2978
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979
	struct btrfs_free_space *entry = NULL;
2980
	int ret = -ENOSPC;
2981
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2982

2983
	if (ctl->total_bitmaps == 0)
2984 2985
		return -ENOSPC;

2986 2987 2988 2989
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
2990 2991 2992 2993
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
2994 2995 2996 2997 2998
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

2999
	list_for_each_entry(entry, bitmaps, list) {
3000
		if (entry->bytes < bytes)
3001 3002
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3003
					   bytes, cont1_bytes, min_bytes);
3004 3005 3006 3007 3008
		if (!ret)
			return 0;
	}

	/*
3009 3010
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3011
	 */
3012
	return -ENOSPC;
3013 3014
}

3015 3016
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3017
 * is to find at least bytes+empty_size.
3018 3019 3020 3021 3022
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3023
int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3024 3025 3026 3027
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3028
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3029
	struct btrfs_free_space *entry, *tmp;
3030
	LIST_HEAD(bitmaps);
3031
	u64 min_bytes;
3032
	u64 cont1_bytes;
3033 3034
	int ret;

3035 3036 3037 3038 3039 3040
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3041
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3042
		cont1_bytes = min_bytes = bytes + empty_size;
3043
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3044
		cont1_bytes = bytes;
3045
		min_bytes = fs_info->sectorsize;
3046 3047
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3048
		min_bytes = fs_info->sectorsize;
3049
	}
3050

3051
	spin_lock(&ctl->tree_lock);
3052 3053 3054 3055 3056

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3057
	if (ctl->free_space < bytes) {
3058
		spin_unlock(&ctl->tree_lock);
3059 3060 3061
		return -ENOSPC;
	}

3062 3063 3064 3065 3066 3067 3068 3069
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3070 3071 3072
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3073
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3074 3075
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3076
	if (ret)
3077
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3078 3079
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3080 3081 3082 3083

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3084

3085 3086 3087 3088 3089
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3090 3091
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3092 3093 3094
	}
out:
	spin_unlock(&cluster->lock);
3095
	spin_unlock(&ctl->tree_lock);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3107
	cluster->root = RB_ROOT;
3108
	cluster->max_size = 0;
3109
	cluster->fragmented = false;
3110 3111 3112 3113
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3114 3115
static int do_trimming(struct btrfs_block_group_cache *block_group,
		       u64 *total_trimmed, u64 start, u64 bytes,
3116 3117
		       u64 reserved_start, u64 reserved_bytes,
		       struct btrfs_trim_range *trim_entry)
3118
{
3119
	struct btrfs_space_info *space_info = block_group->space_info;
3120
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3121
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3122 3123 3124
	int ret;
	int update = 0;
	u64 trimmed = 0;
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3136
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3137 3138 3139
	if (!ret)
		*total_trimmed += trimmed;

3140
	mutex_lock(&ctl->cache_writeout_mutex);
3141
	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3142 3143
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&space_info->lock);
		spin_unlock(&block_group->lock);
	}

	return ret;
}

static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
	u64 bytes;
3169 3170

	while (start < end) {
3171 3172 3173
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3174
		spin_lock(&ctl->tree_lock);
3175

3176 3177
		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3178
			mutex_unlock(&ctl->cache_writeout_mutex);
3179 3180 3181
			break;
		}

3182
		entry = tree_search_offset(ctl, start, 0, 1);
3183
		if (!entry) {
3184
			spin_unlock(&ctl->tree_lock);
3185
			mutex_unlock(&ctl->cache_writeout_mutex);
3186 3187 3188
			break;
		}

3189 3190 3191 3192
		/* skip bitmaps */
		while (entry->bitmap) {
			node = rb_next(&entry->offset_index);
			if (!node) {
3193
				spin_unlock(&ctl->tree_lock);
3194
				mutex_unlock(&ctl->cache_writeout_mutex);
3195
				goto out;
3196
			}
3197 3198
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3199 3200
		}

3201 3202
		if (entry->offset >= end) {
			spin_unlock(&ctl->tree_lock);
3203
			mutex_unlock(&ctl->cache_writeout_mutex);
3204
			break;
3205 3206
		}

3207 3208 3209 3210 3211 3212
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
		start = max(start, extent_start);
		bytes = min(extent_start + extent_bytes, end) - start;
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3213
			mutex_unlock(&ctl->cache_writeout_mutex);
3214
			goto next;
3215 3216
		}

3217 3218 3219
		unlink_free_space(ctl, entry);
		kmem_cache_free(btrfs_free_space_cachep, entry);

3220
		spin_unlock(&ctl->tree_lock);
3221 3222 3223 3224
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3225

3226
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3227
				  extent_start, extent_bytes, &trim_entry);
3228 3229 3230 3231
		if (ret)
			break;
next:
		start += bytes;
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
out:
	return ret;
}

static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);

	while (offset < end) {
		bool next_bitmap = false;
3256
		struct btrfs_trim_range trim_entry;
3257

3258
		mutex_lock(&ctl->cache_writeout_mutex);
3259 3260 3261 3262
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3263
			mutex_unlock(&ctl->cache_writeout_mutex);
3264 3265 3266 3267 3268 3269
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
		if (!entry) {
			spin_unlock(&ctl->tree_lock);
3270
			mutex_unlock(&ctl->cache_writeout_mutex);
3271 3272 3273 3274 3275
			next_bitmap = true;
			goto next;
		}

		bytes = minlen;
3276
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3277 3278
		if (ret2 || start >= end) {
			spin_unlock(&ctl->tree_lock);
3279
			mutex_unlock(&ctl->cache_writeout_mutex);
3280 3281 3282 3283 3284 3285 3286
			next_bitmap = true;
			goto next;
		}

		bytes = min(bytes, end - start);
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3287
			mutex_unlock(&ctl->cache_writeout_mutex);
3288 3289 3290 3291 3292 3293 3294 3295
			goto next;
		}

		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3296 3297 3298 3299
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3300 3301

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3302
				  start, bytes, &trim_entry);
3303 3304 3305 3306 3307 3308 3309 3310 3311
		if (ret)
			break;
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
		} else {
			start += bytes;
			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
				offset += BITS_PER_BITMAP * ctl->unit;
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		}

		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

	return ret;
}
3324

3325
void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3326
{
3327 3328
	atomic_inc(&cache->trimming);
}
3329

3330 3331
void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
{
3332
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3333 3334 3335
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;
3336

3337
	spin_lock(&block_group->lock);
3338 3339
	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
		   block_group->removed);
3340 3341
	spin_unlock(&block_group->lock);

3342
	if (cleanup) {
3343
		mutex_lock(&fs_info->chunk_mutex);
3344
		em_tree = &fs_info->mapping_tree.map_tree;
3345 3346 3347 3348
		write_lock(&em_tree->lock);
		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
					   1);
		BUG_ON(!em); /* logic error, can't happen */
3349 3350 3351 3352
		/*
		 * remove_extent_mapping() will delete us from the pinned_chunks
		 * list, which is protected by the chunk mutex.
		 */
3353 3354
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
3355
		mutex_unlock(&fs_info->chunk_mutex);
3356 3357 3358 3359

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3360 3361 3362 3363 3364 3365

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	}
}

int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3378
		spin_unlock(&block_group->lock);
3379
		return 0;
3380
	}
3381 3382 3383 3384 3385 3386
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
	if (ret)
		goto out;
3387

3388 3389 3390
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
out:
	btrfs_put_block_group_trimming(block_group);
3391 3392 3393
	return ret;
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3430
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3431
		/* Logic error; Should be empty if it can't find anything */
3432
		ASSERT(!ret);
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3444 3445 3446 3447 3448 3449

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3450 3451 3452 3453
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3454 3455 3456 3457 3458 3459 3460
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3461
	spin_lock(&root->ino_cache_lock);
3462
	if (!btrfs_fs_closing(root->fs_info))
3463 3464
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

3485
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3486 3487
		return 0;

3488 3489 3490 3491
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3492
	if (btrfs_fs_closing(fs_info))
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3509 3510 3511
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3512 3513 3514 3515 3516 3517 3518 3519 3520
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3521 3522
			      struct btrfs_path *path,
			      struct inode *inode)
3523
{
3524
	struct btrfs_fs_info *fs_info = root->fs_info;
3525 3526
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3527
	struct btrfs_io_ctl io_ctl;
3528
	bool release_metadata = true;
3529

3530
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3531 3532
		return 0;

C
Chris Mason 已提交
3533
	memset(&io_ctl, 0, sizeof(io_ctl));
3534
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3535 3536 3537 3538 3539 3540 3541 3542
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
3543
		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3544
	}
C
Chris Mason 已提交
3545

3546
	if (ret) {
3547
		if (release_metadata)
3548 3549
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
					inode->i_size);
3550
#ifdef DEBUG
3551 3552 3553
		btrfs_err(fs_info,
			  "failed to write free ino cache for root %llu",
			  root->root_key.objectid);
3554 3555
#endif
	}
3556 3557 3558

	return ret;
}
3559 3560

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3561 3562 3563 3564 3565 3566 3567 3568
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
			      u64 offset, u64 bytes, bool bitmap)
3569
{
3570 3571 3572 3573 3574
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
	u64 bytes_added;
	int ret;
3575

3576 3577 3578 3579 3580
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3581 3582
	}

3583 3584 3585 3586
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
3587
		info->max_extent_size = 0;
3588 3589 3590 3591 3592 3593 3594 3595
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
3596
		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3611
		info = NULL;
3612
	}
3613

3614
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3615

3616 3617 3618
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3619

3620 3621
	if (bytes)
		goto again;
3622

3623 3624
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3625 3626 3627
	if (map)
		kfree(map);
	return 0;
3628 3629 3630 3631 3632 3633 3634
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3635 3636
int test_check_exists(struct btrfs_block_group_cache *cache,
		      u64 offset, u64 bytes)
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
3659
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
3678
				n = rb_prev(&tmp->offset_index);
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
3692
				n = rb_next(&tmp->offset_index);
3693 3694 3695 3696 3697 3698
				continue;
			}
			info = tmp;
			goto have_info;
		}

3699
		ret = 0;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3714
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */