i915_gem.c 105.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44 45 46
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
47
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 49 50
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
51 52
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
53 54
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
55
				struct drm_i915_gem_pwrite *args,
56 57
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58

59
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60
				    struct shrink_control *sc);
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

77 78
static int
i915_gem_wait_for_error(struct drm_device *dev)
79 80 81 82 83 84 85 86 87 88 89 90 91
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

92 93 94 95 96 97 98 99 100 101 102
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
103 104
}

105
int i915_mutex_lock_interruptible(struct drm_device *dev)
106 107 108
{
	int ret;

109
	ret = i915_gem_wait_for_error(dev);
110 111 112 113 114 115 116
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

117
	WARN_ON(i915_verify_lists(dev));
118 119
	return 0;
}
120

121
static inline bool
122
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
123
{
124
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
125 126
}

127 128 129 130
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
131 132 133
{
	drm_i915_private_t *dev_priv = dev->dev_private;

134
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
135

136 137 138
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
139
	dev_priv->mm.gtt_total = end - start;
140
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
141 142 143

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
144
}
145

J
Jesse Barnes 已提交
146 147
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
148
		    struct drm_file *file)
J
Jesse Barnes 已提交
149 150
{
	struct drm_i915_gem_init *args = data;
151 152 153 154

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
155 156

	mutex_lock(&dev->struct_mutex);
157
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 159
	mutex_unlock(&dev->struct_mutex);

160
	return 0;
161 162
}

163 164
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165
			    struct drm_file *file)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	struct drm_i915_gem_get_aperture *args = data;
169 170
	struct drm_i915_gem_object *obj;
	size_t pinned;
171 172 173 174

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

175
	pinned = 0;
176
	mutex_lock(&dev->struct_mutex);
177 178
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
179
	mutex_unlock(&dev->struct_mutex);
180

181
	args->aper_size = dev_priv->mm.gtt_total;
182
	args->aper_available_size = args->aper_size - pinned;
183

184 185 186
	return 0;
}

187 188 189 190 191
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
192
{
193
	struct drm_i915_gem_object *obj;
194 195
	int ret;
	u32 handle;
196

197
	size = roundup(size, PAGE_SIZE);
198 199
	if (size == 0)
		return -EINVAL;
200 201

	/* Allocate the new object */
202
	obj = i915_gem_alloc_object(dev, size);
203 204 205
	if (obj == NULL)
		return -ENOMEM;

206
	ret = drm_gem_handle_create(file, &obj->base, &handle);
207
	if (ret) {
208 209
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
210
		kfree(obj);
211
		return ret;
212
	}
213

214
	/* drop reference from allocate - handle holds it now */
215
	drm_gem_object_unreference(&obj->base);
216 217
	trace_i915_gem_object_create(obj);

218
	*handle_p = handle;
219 220 221
	return 0;
}

222 223 224 225 226 227
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
228
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

253
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
254
{
255
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
256 257

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
258
		obj->tiling_mode != I915_TILING_NONE;
259 260
}

261
static inline void
262 263 264 265 266 267 268 269
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

270 271
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
272 273 274

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

275 276
	kunmap(src_page);
	kunmap(dst_page);
277 278
}

279
static inline void
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

299 300
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

324 325
	kunmap(cpu_page);
	kunmap(gpu_page);
326 327
}

328 329 330 331 332 333
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
334 335
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
336
			  struct drm_i915_gem_pread *args,
337
			  struct drm_file *file)
338
{
339
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
340
	ssize_t remain;
341
	loff_t offset;
342 343 344 345 346 347 348 349 350
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
351 352 353 354
		struct page *page;
		char *vaddr;
		int ret;

355 356 357 358 359
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
360
		page_offset = offset_in_page(offset);
361 362 363 364
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

365
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
366 367 368 369 370 371 372 373 374 375 376 377
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
378
			return -EFAULT;
379 380 381 382 383 384

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

385
	return 0;
386 387 388 389 390 391 392 393 394
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
395 396
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
397
			  struct drm_i915_gem_pread *args,
398
			  struct drm_file *file)
399
{
400
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 402 403 404 405
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
406 407
	int shmem_page_offset;
	int data_page_index, data_page_offset;
408 409 410
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
411
	int do_bit17_swizzling;
412 413 414 415 416 417 418 419 420 421 422

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

423
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 425 426
	if (user_pages == NULL)
		return -ENOMEM;

427
	mutex_unlock(&dev->struct_mutex);
428 429
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430
				      num_pages, 1, 0, user_pages, NULL);
431
	up_read(&mm->mmap_sem);
432
	mutex_lock(&dev->struct_mutex);
433 434
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
435
		goto out;
436 437
	}

438 439 440
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
441
	if (ret)
442
		goto out;
443

444
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
445 446 447 448

	offset = args->offset;

	while (remain > 0) {
449 450
		struct page *page;

451 452 453 454 455 456 457
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
458
		shmem_page_offset = offset_in_page(offset);
459
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460
		data_page_offset = offset_in_page(data_ptr);
461 462 463 464 465 466 467

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

468
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
469 470 471 472
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}
473

474
		if (do_bit17_swizzling) {
475
			slow_shmem_bit17_copy(page,
476
					      shmem_page_offset,
477 478 479 480 481 482 483
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
484
					page,
485 486
					shmem_page_offset,
					page_length);
487
		}
488

489 490 491
		mark_page_accessed(page);
		page_cache_release(page);

492 493 494 495 496
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

497
out:
498 499
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
500
		mark_page_accessed(user_pages[i]);
501 502
		page_cache_release(user_pages[i]);
	}
503
	drm_free_large(user_pages);
504 505 506 507

	return ret;
}

508 509 510 511 512 513 514
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515
		     struct drm_file *file)
516 517
{
	struct drm_i915_gem_pread *args = data;
518
	struct drm_i915_gem_object *obj;
519
	int ret = 0;
520

521 522 523 524 525 526 527 528 529 530 531 532 533
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

534
	ret = i915_mutex_lock_interruptible(dev);
535
	if (ret)
536
		return ret;
537

538
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539
	if (&obj->base == NULL) {
540 541
		ret = -ENOENT;
		goto unlock;
542
	}
543

544
	/* Bounds check source.  */
545 546
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
547
		ret = -EINVAL;
548
		goto out;
C
Chris Wilson 已提交
549 550
	}

C
Chris Wilson 已提交
551 552
	trace_i915_gem_object_pread(obj, args->offset, args->size);

553 554 555 556
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
557
		goto out;
558 559 560

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
561
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
562
	if (ret == -EFAULT)
563
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
564

565
out:
566
	drm_gem_object_unreference(&obj->base);
567
unlock:
568
	mutex_unlock(&dev->struct_mutex);
569
	return ret;
570 571
}

572 573
/* This is the fast write path which cannot handle
 * page faults in the source data
574
 */
575 576 577 578 579 580

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
581 582
{
	char *vaddr_atomic;
583
	unsigned long unwritten;
584

P
Peter Zijlstra 已提交
585
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 587
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
588
	io_mapping_unmap_atomic(vaddr_atomic);
589
	return unwritten;
590 591 592 593 594 595
}

/* Here's the write path which can sleep for
 * page faults
 */

596
static inline void
597 598 599 600
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
601
{
602 603
	char __iomem *dst_vaddr;
	char *src_vaddr;
604

605 606 607 608 609 610 611 612 613
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
614 615
}

616 617 618 619
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
620
static int
621 622
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
623
			 struct drm_i915_gem_pwrite *args,
624
			 struct drm_file *file)
625
{
626
	drm_i915_private_t *dev_priv = dev->dev_private;
627
	ssize_t remain;
628
	loff_t offset, page_base;
629
	char __user *user_data;
630
	int page_offset, page_length;
631 632 633 634

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

635
	offset = obj->gtt_offset + args->offset;
636 637 638 639

	while (remain > 0) {
		/* Operation in this page
		 *
640 641 642
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
643
		 */
644 645
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
646 647 648 649 650
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
651 652
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
653
		 */
654 655 656
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))
			return -EFAULT;
657

658 659 660
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
661 662
	}

663
	return 0;
664 665
}

666 667 668 669 670 671 672
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
673
static int
674 675
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
676
			 struct drm_i915_gem_pwrite *args,
677
			 struct drm_file *file)
678
{
679 680 681 682 683 684 685 686
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
687
	int ret;
688 689 690 691 692 693 694 695 696 697 698 699
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

700
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 702 703
	if (user_pages == NULL)
		return -ENOMEM;

704
	mutex_unlock(&dev->struct_mutex);
705 706 707 708
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
709
	mutex_lock(&dev->struct_mutex);
710 711 712 713
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
714

715 716 717 718 719
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
720
	if (ret)
721
		goto out_unpin_pages;
722

723
	offset = obj->gtt_offset + args->offset;
724 725 726 727 728 729 730 731 732 733 734

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
735
		gtt_page_offset = offset_in_page(offset);
736
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737
		data_page_offset = offset_in_page(data_ptr);
738 739 740 741 742 743 744

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

745 746 747 748 749
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
750 751 752 753 754 755 756 757 758

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
759
	drm_free_large(user_pages);
760 761 762 763

	return ret;
}

764 765 766 767
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
768
static int
769 770
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
771
			   struct drm_i915_gem_pwrite *args,
772
			   struct drm_file *file)
773
{
774
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775
	ssize_t remain;
776
	loff_t offset;
777 778 779 780 781
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
782

783
	offset = args->offset;
784
	obj->dirty = 1;
785 786

	while (remain > 0) {
787 788 789 790
		struct page *page;
		char *vaddr;
		int ret;

791 792 793 794 795
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
796
		page_offset = offset_in_page(offset);
797 798 799 800
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

801
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802 803 804
		if (IS_ERR(page))
			return PTR_ERR(page);

805
		vaddr = kmap_atomic(page);
806 807 808
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
809
		kunmap_atomic(vaddr);
810 811 812 813 814 815 816 817 818 819

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
820
			return -EFAULT;
821 822 823 824 825 826

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

827
	return 0;
828 829 830 831 832 833 834 835 836 837
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
838 839
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
840
			   struct drm_i915_gem_pwrite *args,
841
			   struct drm_file *file)
842
{
843
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
844 845 846 847 848
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
849
	int shmem_page_offset;
850 851 852 853
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
854
	int do_bit17_swizzling;
855 856 857 858 859 860 861 862 863 864 865

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

866
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
867 868 869
	if (user_pages == NULL)
		return -ENOMEM;

870
	mutex_unlock(&dev->struct_mutex);
871 872 873 874
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
875
	mutex_lock(&dev->struct_mutex);
876 877
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
878
		goto out;
879 880
	}

881
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
882
	if (ret)
883
		goto out;
884

885
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886

887
	offset = args->offset;
888
	obj->dirty = 1;
889

890
	while (remain > 0) {
891 892
		struct page *page;

893 894 895 896 897 898 899
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
900
		shmem_page_offset = offset_in_page(offset);
901
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
902
		data_page_offset = offset_in_page(data_ptr);
903 904 905 906 907 908 909

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

910
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
911 912 913 914 915
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

916
		if (do_bit17_swizzling) {
917
			slow_shmem_bit17_copy(page,
918 919 920
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
921 922 923
					      page_length,
					      0);
		} else {
924
			slow_shmem_copy(page,
925 926 927 928
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
929
		}
930

931 932 933 934
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

935 936 937
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
938 939
	}

940
out:
941 942
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
943
	drm_free_large(user_pages);
944

945
	return ret;
946 947 948 949 950 951 952 953 954
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
955
		      struct drm_file *file)
956 957
{
	struct drm_i915_gem_pwrite *args = data;
958
	struct drm_i915_gem_object *obj;
959 960 961 962 963 964 965 966 967 968 969 970 971 972
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
973

974
	ret = i915_mutex_lock_interruptible(dev);
975
	if (ret)
976
		return ret;
977

978
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
979
	if (&obj->base == NULL) {
980 981
		ret = -ENOENT;
		goto unlock;
982
	}
983

984
	/* Bounds check destination. */
985 986
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
987
		ret = -EINVAL;
988
		goto out;
C
Chris Wilson 已提交
989 990
	}

C
Chris Wilson 已提交
991 992
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

993 994 995 996 997 998
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
999
	if (obj->phys_obj)
1000
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1001
	else if (obj->gtt_space &&
1002
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
		ret = i915_gem_object_pin(obj, 0, true);
1004 1005 1006
		if (ret)
			goto out;

1007 1008 1009 1010 1011
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
1012 1013 1014 1015 1016 1017 1018 1019 1020
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1021
	} else {
1022 1023
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1024
			goto out;
1025

1026 1027 1028 1029 1030 1031
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1032

1033
out:
1034
	drm_gem_object_unreference(&obj->base);
1035
unlock:
1036
	mutex_unlock(&dev->struct_mutex);
1037 1038 1039 1040
	return ret;
}

/**
1041 1042
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1043 1044 1045
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1046
			  struct drm_file *file)
1047 1048
{
	struct drm_i915_gem_set_domain *args = data;
1049
	struct drm_i915_gem_object *obj;
1050 1051
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1052 1053 1054 1055 1056
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1057
	/* Only handle setting domains to types used by the CPU. */
1058
	if (write_domain & I915_GEM_GPU_DOMAINS)
1059 1060
		return -EINVAL;

1061
	if (read_domains & I915_GEM_GPU_DOMAINS)
1062 1063 1064 1065 1066 1067 1068 1069
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		return ret;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080 1081
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1082 1083 1084 1085 1086 1087 1088

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1089
	} else {
1090
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1091 1092
	}

1093
	drm_gem_object_unreference(&obj->base);
1094
unlock:
1095 1096 1097 1098 1099 1100 1101 1102 1103
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1104
			 struct drm_file *file)
1105 1106
{
	struct drm_i915_gem_sw_finish *args = data;
1107
	struct drm_i915_gem_object *obj;
1108 1109 1110 1111 1112
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1113
	ret = i915_mutex_lock_interruptible(dev);
1114
	if (ret)
1115
		return ret;
1116

1117
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1118
	if (&obj->base == NULL) {
1119 1120
		ret = -ENOENT;
		goto unlock;
1121 1122 1123
	}

	/* Pinned buffers may be scanout, so flush the cache */
1124
	if (obj->pin_count)
1125 1126
		i915_gem_object_flush_cpu_write_domain(obj);

1127
	drm_gem_object_unreference(&obj->base);
1128
unlock:
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1142
		    struct drm_file *file)
1143
{
1144
	struct drm_i915_private *dev_priv = dev->dev_private;
1145 1146 1147 1148 1149 1150 1151
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1152
	obj = drm_gem_object_lookup(dev, file, args->handle);
1153
	if (obj == NULL)
1154
		return -ENOENT;
1155

1156 1157 1158 1159 1160
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1161 1162 1163 1164 1165
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1166
	drm_gem_object_unreference_unlocked(obj);
1167 1168 1169 1170 1171 1172 1173 1174
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1193 1194
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1195
	drm_i915_private_t *dev_priv = dev->dev_private;
1196 1197 1198
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1199
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1200 1201 1202 1203 1204

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1205 1206 1207
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1208

C
Chris Wilson 已提交
1209 1210
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1211
	/* Now bind it into the GTT if needed */
1212 1213 1214 1215
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1216
	}
1217
	if (!obj->gtt_space) {
1218
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1219 1220
		if (ret)
			goto unlock;
1221

1222 1223 1224 1225
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1226

1227 1228 1229
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1230
		ret = i915_gem_object_get_fence(obj, NULL);
1231 1232
	if (ret)
		goto unlock;
1233

1234 1235
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1236

1237 1238
	obj->fault_mappable = true;

1239
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1240 1241 1242 1243
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1244
unlock:
1245
	mutex_unlock(&dev->struct_mutex);
1246
out:
1247
	switch (ret) {
1248
	case -EIO:
1249
	case -EAGAIN:
1250 1251 1252 1253 1254 1255 1256
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1257
		set_need_resched();
1258 1259
	case 0:
	case -ERESTARTSYS:
1260
	case -EINTR:
1261
		return VM_FAULT_NOPAGE;
1262 1263 1264
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1265
		return VM_FAULT_SIGBUS;
1266 1267 1268
	}
}

1269 1270 1271 1272
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1273
 * Preserve the reservation of the mmapping with the DRM core code, but
1274 1275 1276 1277 1278 1279 1280 1281 1282
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1283
void
1284
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1285
{
1286 1287
	if (!obj->fault_mappable)
		return;
1288

1289 1290 1291 1292
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1293

1294
	obj->fault_mappable = false;
1295 1296
}

1297
static uint32_t
1298
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1299
{
1300
	uint32_t gtt_size;
1301 1302

	if (INTEL_INFO(dev)->gen >= 4 ||
1303 1304
	    tiling_mode == I915_TILING_NONE)
		return size;
1305 1306 1307

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1308
		gtt_size = 1024*1024;
1309
	else
1310
		gtt_size = 512*1024;
1311

1312 1313
	while (gtt_size < size)
		gtt_size <<= 1;
1314

1315
	return gtt_size;
1316 1317
}

1318 1319 1320 1321 1322
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1323
 * potential fence register mapping.
1324 1325
 */
static uint32_t
1326 1327 1328
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1329 1330 1331 1332 1333
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1334
	if (INTEL_INFO(dev)->gen >= 4 ||
1335
	    tiling_mode == I915_TILING_NONE)
1336 1337
		return 4096;

1338 1339 1340 1341
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1342
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1343 1344
}

1345 1346 1347
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1348 1349 1350
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1351 1352 1353 1354
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1355
uint32_t
1356 1357 1358
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1359 1360 1361 1362 1363
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1364
	    tiling_mode == I915_TILING_NONE)
1365 1366
		return 4096;

1367 1368 1369
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1370
	 */
1371
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1372 1373
}

1374
int
1375 1376 1377 1378
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1379
{
1380
	struct drm_i915_private *dev_priv = dev->dev_private;
1381
	struct drm_i915_gem_object *obj;
1382 1383 1384 1385 1386
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1387
	ret = i915_mutex_lock_interruptible(dev);
1388
	if (ret)
1389
		return ret;
1390

1391
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1392
	if (&obj->base == NULL) {
1393 1394 1395
		ret = -ENOENT;
		goto unlock;
	}
1396

1397
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1398
		ret = -E2BIG;
1399
		goto out;
1400 1401
	}

1402
	if (obj->madv != I915_MADV_WILLNEED) {
1403
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 1405
		ret = -EINVAL;
		goto out;
1406 1407
	}

1408
	if (!obj->base.map_list.map) {
1409
		ret = drm_gem_create_mmap_offset(&obj->base);
1410 1411
		if (ret)
			goto out;
1412 1413
	}

1414
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1415

1416
out:
1417
	drm_gem_object_unreference(&obj->base);
1418
unlock:
1419
	mutex_unlock(&dev->struct_mutex);
1420
	return ret;
1421 1422
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1451
static int
1452
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1463 1464 1465 1466
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1467 1468
		return -ENOMEM;

1469
	inode = obj->base.filp->f_path.dentry->d_inode;
1470
	mapping = inode->i_mapping;
1471 1472
	gfpmask |= mapping_gfp_mask(mapping);

1473
	for (i = 0; i < page_count; i++) {
1474
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1475 1476 1477
		if (IS_ERR(page))
			goto err_pages;

1478
		obj->pages[i] = page;
1479 1480
	}

1481
	if (i915_gem_object_needs_bit17_swizzle(obj))
1482 1483 1484 1485 1486 1487
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1488
		page_cache_release(obj->pages[i]);
1489

1490 1491
	drm_free_large(obj->pages);
	obj->pages = NULL;
1492 1493 1494
	return PTR_ERR(page);
}

1495
static void
1496
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1497
{
1498
	int page_count = obj->base.size / PAGE_SIZE;
1499 1500
	int i;

1501
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1502

1503
	if (i915_gem_object_needs_bit17_swizzle(obj))
1504 1505
		i915_gem_object_save_bit_17_swizzle(obj);

1506 1507
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1508 1509

	for (i = 0; i < page_count; i++) {
1510 1511
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1512

1513 1514
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1515

1516
		page_cache_release(obj->pages[i]);
1517
	}
1518
	obj->dirty = 0;
1519

1520 1521
	drm_free_large(obj->pages);
	obj->pages = NULL;
1522 1523
}

1524
void
1525
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1526 1527
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1528
{
1529
	struct drm_device *dev = obj->base.dev;
1530
	struct drm_i915_private *dev_priv = dev->dev_private;
1531

1532
	BUG_ON(ring == NULL);
1533
	obj->ring = ring;
1534 1535

	/* Add a reference if we're newly entering the active list. */
1536 1537 1538
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1539
	}
1540

1541
	/* Move from whatever list we were on to the tail of execution. */
1542 1543
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1544

1545
	obj->last_rendering_seqno = seqno;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1564 1565
}

1566
static void
1567
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1568
{
1569
	struct drm_device *dev = obj->base.dev;
1570 1571
	drm_i915_private_t *dev_priv = dev->dev_private;

1572 1573
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1597
	obj->pending_gpu_write = false;
1598 1599 1600
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1601
}
1602

1603 1604
/* Immediately discard the backing storage */
static void
1605
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1606
{
C
Chris Wilson 已提交
1607
	struct inode *inode;
1608

1609 1610 1611
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1612
	 * backing pages, *now*.
1613
	 */
1614
	inode = obj->base.filp->f_path.dentry->d_inode;
1615
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1616

1617
	obj->madv = __I915_MADV_PURGED;
1618 1619 1620
}

static inline int
1621
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1622
{
1623
	return obj->madv == I915_MADV_DONTNEED;
1624 1625
}

1626
static void
C
Chris Wilson 已提交
1627 1628
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1629
{
1630
	struct drm_i915_gem_object *obj, *next;
1631

1632
	list_for_each_entry_safe(obj, next,
1633
				 &ring->gpu_write_list,
1634
				 gpu_write_list) {
1635 1636
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1637

1638 1639
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1640
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1641
						       i915_gem_next_request_seqno(ring));
1642 1643

			trace_i915_gem_object_change_domain(obj,
1644
							    obj->base.read_domains,
1645 1646 1647 1648
							    old_write_domain);
		}
	}
}
1649

1650
int
C
Chris Wilson 已提交
1651
i915_add_request(struct intel_ring_buffer *ring,
1652
		 struct drm_file *file,
C
Chris Wilson 已提交
1653
		 struct drm_i915_gem_request *request)
1654
{
C
Chris Wilson 已提交
1655
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1656 1657
	uint32_t seqno;
	int was_empty;
1658 1659 1660
	int ret;

	BUG_ON(request == NULL);
1661

1662 1663 1664
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1665

C
Chris Wilson 已提交
1666
	trace_i915_gem_request_add(ring, seqno);
1667 1668

	request->seqno = seqno;
1669
	request->ring = ring;
1670
	request->emitted_jiffies = jiffies;
1671 1672 1673
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1674 1675 1676
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1677
		spin_lock(&file_priv->mm.lock);
1678
		request->file_priv = file_priv;
1679
		list_add_tail(&request->client_list,
1680
			      &file_priv->mm.request_list);
1681
		spin_unlock(&file_priv->mm.lock);
1682
	}
1683

C
Chris Wilson 已提交
1684 1685
	ring->outstanding_lazy_request = false;

B
Ben Gamari 已提交
1686
	if (!dev_priv->mm.suspended) {
1687 1688 1689 1690 1691
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1692
		if (was_empty)
1693 1694
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1695
	}
1696
	return 0;
1697 1698
}

1699 1700
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1701
{
1702
	struct drm_i915_file_private *file_priv = request->file_priv;
1703

1704 1705
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1706

1707
	spin_lock(&file_priv->mm.lock);
1708 1709 1710 1711
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1712
	spin_unlock(&file_priv->mm.lock);
1713 1714
}

1715 1716
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1717
{
1718 1719
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1720

1721 1722 1723
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1724

1725
		list_del(&request->list);
1726
		i915_gem_request_remove_from_client(request);
1727 1728
		kfree(request);
	}
1729

1730
	while (!list_empty(&ring->active_list)) {
1731
		struct drm_i915_gem_object *obj;
1732

1733 1734 1735
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1736

1737 1738 1739
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1740 1741 1742
	}
}

1743 1744 1745 1746 1747
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1748
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1749
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1750 1751 1752 1753 1754 1755 1756 1757
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1758 1759 1760 1761 1762
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1763 1764 1765
	}
}

1766
void i915_gem_reset(struct drm_device *dev)
1767
{
1768
	struct drm_i915_private *dev_priv = dev->dev_private;
1769
	struct drm_i915_gem_object *obj;
1770
	int i;
1771

1772 1773
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1774 1775 1776 1777 1778 1779

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1780
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1781 1782
				      struct drm_i915_gem_object,
				      mm_list);
1783

1784 1785 1786
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1787 1788 1789 1790 1791
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1792
	list_for_each_entry(obj,
1793
			    &dev_priv->mm.inactive_list,
1794
			    mm_list)
1795
	{
1796
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1797
	}
1798 1799

	/* The fence registers are invalidated so clear them out */
1800
	i915_gem_reset_fences(dev);
1801 1802 1803 1804 1805
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1806
static void
C
Chris Wilson 已提交
1807
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1808 1809
{
	uint32_t seqno;
1810
	int i;
1811

C
Chris Wilson 已提交
1812
	if (list_empty(&ring->request_list))
1813 1814
		return;

C
Chris Wilson 已提交
1815
	WARN_ON(i915_verify_lists(ring->dev));
1816

1817
	seqno = ring->get_seqno(ring);
1818

1819
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1820 1821 1822
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1823
	while (!list_empty(&ring->request_list)) {
1824 1825
		struct drm_i915_gem_request *request;

1826
		request = list_first_entry(&ring->request_list,
1827 1828 1829
					   struct drm_i915_gem_request,
					   list);

1830
		if (!i915_seqno_passed(seqno, request->seqno))
1831 1832
			break;

C
Chris Wilson 已提交
1833
		trace_i915_gem_request_retire(ring, request->seqno);
1834 1835

		list_del(&request->list);
1836
		i915_gem_request_remove_from_client(request);
1837 1838
		kfree(request);
	}
1839

1840 1841 1842 1843
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1844
		struct drm_i915_gem_object *obj;
1845

1846
		obj = list_first_entry(&ring->active_list,
1847 1848
				      struct drm_i915_gem_object,
				      ring_list);
1849

1850
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1851
			break;
1852

1853
		if (obj->base.write_domain != 0)
1854 1855 1856
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1857
	}
1858

C
Chris Wilson 已提交
1859 1860
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1861
		ring->irq_put(ring);
C
Chris Wilson 已提交
1862
		ring->trace_irq_seqno = 0;
1863
	}
1864

C
Chris Wilson 已提交
1865
	WARN_ON(i915_verify_lists(ring->dev));
1866 1867
}

1868 1869 1870 1871
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1872
	int i;
1873

1874
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1875
	    struct drm_i915_gem_object *obj, *next;
1876 1877 1878 1879 1880 1881

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1882
	    list_for_each_entry_safe(obj, next,
1883
				     &dev_priv->mm.deferred_free_list,
1884
				     mm_list)
1885
		    i915_gem_free_object_tail(obj);
1886 1887
	}

1888
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1889
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1890 1891
}

1892
static void
1893 1894 1895 1896
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1897 1898
	bool idle;
	int i;
1899 1900 1901 1902 1903

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1904 1905 1906 1907 1908 1909
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1910
	i915_gem_retire_requests(dev);
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1923 1924
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1925 1926
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1927
			    i915_add_request(ring, NULL, request))
1928 1929 1930 1931 1932 1933 1934
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1935
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1936

1937 1938 1939
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1940 1941 1942 1943
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1944
int
C
Chris Wilson 已提交
1945
i915_wait_request(struct intel_ring_buffer *ring,
1946
		  uint32_t seqno)
1947
{
C
Chris Wilson 已提交
1948
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1949
	u32 ier;
1950 1951 1952 1953
	int ret = 0;

	BUG_ON(seqno == 0);

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1966

1967
	if (seqno == ring->outstanding_lazy_request) {
1968 1969 1970 1971
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1972
			return -ENOMEM;
1973

C
Chris Wilson 已提交
1974
		ret = i915_add_request(ring, NULL, request);
1975 1976 1977 1978 1979 1980
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1981
	}
1982

1983
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1984
		if (HAS_PCH_SPLIT(ring->dev))
1985 1986 1987
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1988 1989 1990
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1991 1992
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1993 1994
		}

C
Chris Wilson 已提交
1995
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1996

1997
		ring->waiting_seqno = seqno;
1998
		if (ring->irq_get(ring)) {
1999
			if (dev_priv->mm.interruptible)
2000 2001 2002 2003 2004 2005 2006 2007 2008
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2009 2010 2011 2012
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2013
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2014

C
Chris Wilson 已提交
2015
		trace_i915_gem_request_wait_end(ring, seqno);
2016
	}
2017
	if (atomic_read(&dev_priv->mm.wedged))
2018
		ret = -EAGAIN;
2019 2020

	if (ret && ret != -ERESTARTSYS)
2021
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2022
			  __func__, ret, seqno, ring->get_seqno(ring),
2023
			  dev_priv->next_seqno);
2024 2025 2026 2027 2028 2029 2030

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
C
Chris Wilson 已提交
2031
		i915_gem_retire_requests_ring(ring);
2032 2033 2034 2035 2036 2037 2038 2039

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2040
int
2041
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2042 2043 2044
{
	int ret;

2045 2046
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2047
	 */
2048
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2049 2050 2051 2052

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2053
	if (obj->active) {
2054
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2055
		if (ret)
2056 2057 2058 2059 2060 2061
			return ret;
	}

	return 0;
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2072 2073 2074
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2086 2087 2088
/**
 * Unbinds an object from the GTT aperture.
 */
2089
int
2090
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2091 2092 2093
{
	int ret = 0;

2094
	if (obj->gtt_space == NULL)
2095 2096
		return 0;

2097
	if (obj->pin_count != 0) {
2098 2099 2100 2101
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2102 2103 2104 2105 2106 2107 2108 2109
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2110
	i915_gem_object_finish_gtt(obj);
2111

2112 2113
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2114
	 * are flushed when we go to remap it.
2115
	 */
2116 2117
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2118
	if (ret == -ERESTARTSYS)
2119
		return ret;
2120
	if (ret) {
2121 2122 2123
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2124
		i915_gem_clflush_object(obj);
2125
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2126
	}
2127

2128
	/* release the fence reg _after_ flushing */
2129 2130 2131
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2132

C
Chris Wilson 已提交
2133 2134
	trace_i915_gem_object_unbind(obj);

2135
	i915_gem_gtt_unbind_object(obj);
2136
	i915_gem_object_put_pages_gtt(obj);
2137

2138
	list_del_init(&obj->gtt_list);
2139
	list_del_init(&obj->mm_list);
2140
	/* Avoid an unnecessary call to unbind on rebind. */
2141
	obj->map_and_fenceable = true;
2142

2143 2144 2145
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2146

2147
	if (i915_gem_object_is_purgeable(obj))
2148 2149
		i915_gem_object_truncate(obj);

2150
	return ret;
2151 2152
}

2153
int
C
Chris Wilson 已提交
2154
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2155 2156 2157
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2158 2159
	int ret;

2160 2161 2162
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2163 2164
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2165 2166 2167 2168
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2169 2170 2171
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2172
	return 0;
2173 2174
}

C
Chris Wilson 已提交
2175
static int i915_ring_idle(struct intel_ring_buffer *ring)
2176
{
2177 2178
	int ret;

2179
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2180 2181
		return 0;

2182
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2183
		ret = i915_gem_flush_ring(ring,
2184
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2185 2186 2187 2188
		if (ret)
			return ret;
	}

2189
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2190 2191
}

2192
int
2193 2194 2195
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2196
	int ret, i;
2197 2198

	/* Flush everything onto the inactive list. */
2199
	for (i = 0; i < I915_NUM_RINGS; i++) {
C
Chris Wilson 已提交
2200
		ret = i915_ring_idle(&dev_priv->ring[i]);
2201 2202 2203
		if (ret)
			return ret;
	}
2204

2205
	return 0;
2206 2207
}

2208 2209
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2210
{
2211
	struct drm_device *dev = obj->base.dev;
2212
	drm_i915_private_t *dev_priv = dev->dev_private;
2213 2214
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2215 2216
	uint64_t val;

2217
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2218
			 0xfffff000) << 32;
2219 2220
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2221 2222
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2223
	if (obj->tiling_mode == I915_TILING_Y)
2224 2225 2226
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2243 2244
}

2245 2246
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2247
{
2248
	struct drm_device *dev = obj->base.dev;
2249
	drm_i915_private_t *dev_priv = dev->dev_private;
2250 2251
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2252 2253
	uint64_t val;

2254
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2255
		    0xfffff000) << 32;
2256 2257 2258
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2259 2260 2261
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2278 2279
}

2280 2281
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2282
{
2283
	struct drm_device *dev = obj->base.dev;
2284
	drm_i915_private_t *dev_priv = dev->dev_private;
2285
	u32 size = obj->gtt_space->size;
2286
	u32 fence_reg, val, pitch_val;
2287
	int tile_width;
2288

2289 2290 2291 2292 2293 2294
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2295

2296
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2297
		tile_width = 128;
2298
	else
2299 2300 2301
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2302
	pitch_val = obj->stride / tile_width;
2303
	pitch_val = ffs(pitch_val) - 1;
2304

2305 2306
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2307
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2308
	val |= I915_FENCE_SIZE_BITS(size);
2309 2310 2311
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2312
	fence_reg = obj->fence_reg;
2313 2314
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2315
	else
2316
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2332 2333
}

2334 2335
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2336
{
2337
	struct drm_device *dev = obj->base.dev;
2338
	drm_i915_private_t *dev_priv = dev->dev_private;
2339 2340
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2341 2342 2343
	uint32_t val;
	uint32_t pitch_val;

2344 2345 2346 2347 2348 2349
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2350

2351
	pitch_val = obj->stride / 128;
2352 2353
	pitch_val = ffs(pitch_val) - 1;

2354 2355
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2356
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2357
	val |= I830_FENCE_SIZE_BITS(size);
2358 2359 2360
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2375 2376
}

2377 2378 2379 2380 2381 2382 2383
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2384
			    struct intel_ring_buffer *pipelined)
2385 2386 2387 2388
{
	int ret;

	if (obj->fenced_gpu_access) {
2389
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2390
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2391 2392 2393 2394
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2395 2396 2397 2398 2399 2400 2401

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2402
			ret = i915_wait_request(obj->last_fenced_ring,
2403
						obj->last_fenced_seqno);
2404 2405 2406 2407 2408 2409 2410 2411
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2412 2413 2414 2415 2416 2417
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2429
	ret = i915_gem_object_flush_fence(obj, NULL);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2447 2448
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2449 2450
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2451 2452

	/* First try to find a free reg */
2453
	avail = NULL;
2454 2455 2456
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2457
			return reg;
2458

2459
		if (!reg->obj->pin_count)
2460
			avail = reg;
2461 2462
	}

2463 2464
	if (avail == NULL)
		return NULL;
2465 2466

	/* None available, try to steal one or wait for a user to finish */
2467 2468 2469
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2470 2471
			continue;

2472 2473 2474 2475 2476 2477 2478 2479 2480
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2481 2482
	}

2483 2484
	if (avail == NULL)
		avail = first;
2485

2486
	return avail;
2487 2488
}

2489
/**
2490
 * i915_gem_object_get_fence - set up a fence reg for an object
2491
 * @obj: object to map through a fence reg
2492 2493
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2504
int
2505
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2506
			  struct intel_ring_buffer *pipelined)
2507
{
2508
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2509
	struct drm_i915_private *dev_priv = dev->dev_private;
2510
	struct drm_i915_fence_reg *reg;
2511
	int ret;
2512

2513 2514 2515
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2516
	/* Just update our place in the LRU if our fence is getting reused. */
2517 2518
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2519
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2520

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2538 2539 2540 2541 2542

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2543
					ret = i915_wait_request(obj->last_fenced_ring,
2544
								reg->setup_seqno);
2545 2546 2547 2548 2549 2550 2551 2552
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2553
			ret = i915_gem_object_flush_fence(obj, pipelined);
2554 2555 2556 2557
			if (ret)
				return ret;
		}

2558 2559 2560
		return 0;
	}

2561 2562 2563
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2564

2565
	ret = i915_gem_object_flush_fence(obj, pipelined);
2566
	if (ret)
2567
		return ret;
2568

2569 2570 2571 2572 2573 2574 2575 2576
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2577
		ret = i915_gem_object_flush_fence(old, pipelined);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2589
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2590 2591 2592 2593

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2594

2595
	reg->obj = obj;
2596 2597 2598
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2599

2600
	reg->setup_seqno =
C
Chris Wilson 已提交
2601
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2602 2603 2604 2605
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2606
	switch (INTEL_INFO(dev)->gen) {
2607
	case 7:
2608
	case 6:
2609
		ret = sandybridge_write_fence_reg(obj, pipelined);
2610 2611 2612
		break;
	case 5:
	case 4:
2613
		ret = i965_write_fence_reg(obj, pipelined);
2614 2615
		break;
	case 3:
2616
		ret = i915_write_fence_reg(obj, pipelined);
2617 2618
		break;
	case 2:
2619
		ret = i830_write_fence_reg(obj, pipelined);
2620 2621
		break;
	}
2622

2623
	return ret;
2624 2625 2626 2627 2628 2629 2630
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2631
 * data structures in dev_priv and obj.
2632 2633
 */
static void
2634 2635
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2636
{
J
Jesse Barnes 已提交
2637
	drm_i915_private_t *dev_priv = dev->dev_private;
2638
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2639

2640
	switch (INTEL_INFO(dev)->gen) {
2641
	case 7:
2642
	case 6:
2643
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2644 2645 2646
		break;
	case 5:
	case 4:
2647
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2648 2649
		break;
	case 3:
2650 2651
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2652
		else
2653
	case 2:
2654
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2655 2656

		I915_WRITE(fence_reg, 0);
2657
		break;
2658
	}
2659

2660
	list_del_init(&reg->lru_list);
2661 2662
	reg->obj = NULL;
	reg->setup_seqno = 0;
2663 2664
}

2665 2666 2667 2668
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2669
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2670
			    unsigned alignment,
2671
			    bool map_and_fenceable)
2672
{
2673
	struct drm_device *dev = obj->base.dev;
2674 2675
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2676
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2677
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2678
	bool mappable, fenceable;
2679
	int ret;
2680

2681
	if (obj->madv != I915_MADV_WILLNEED) {
2682 2683 2684 2685
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2696

2697
	if (alignment == 0)
2698 2699
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2700
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2701 2702 2703 2704
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2705
	size = map_and_fenceable ? fence_size : obj->base.size;
2706

2707 2708 2709
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2710
	if (obj->base.size >
2711
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2712 2713 2714 2715
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2716
 search_free:
2717
	if (map_and_fenceable)
2718 2719
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2720
						    size, alignment, 0,
2721 2722 2723 2724
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2725
						size, alignment, 0);
2726 2727

	if (free_space != NULL) {
2728
		if (map_and_fenceable)
2729
			obj->gtt_space =
2730
				drm_mm_get_block_range_generic(free_space,
2731
							       size, alignment, 0,
2732 2733 2734
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2735
			obj->gtt_space =
2736
				drm_mm_get_block(free_space, size, alignment);
2737
	}
2738
	if (obj->gtt_space == NULL) {
2739 2740 2741
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2742 2743
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2744
		if (ret)
2745
			return ret;
2746

2747 2748 2749
		goto search_free;
	}

2750
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2751
	if (ret) {
2752 2753
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2754 2755

		if (ret == -ENOMEM) {
2756 2757
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2758 2759
			if (ret) {
				/* now try to shrink everyone else */
2760 2761 2762
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2763 2764
				}

2765
				return -ENOMEM;
2766 2767 2768 2769 2770
			}

			goto search_free;
		}

2771 2772 2773
		return ret;
	}

2774 2775
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2776
		i915_gem_object_put_pages_gtt(obj);
2777 2778
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2779

2780
		if (i915_gem_evict_everything(dev, false))
2781 2782 2783
			return ret;

		goto search_free;
2784 2785
	}

2786
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2787
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2788

2789 2790 2791 2792
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2793 2794
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2795

2796
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2797

2798
	fenceable =
2799
		obj->gtt_space->size == fence_size &&
2800
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2801

2802
	mappable =
2803
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2804

2805
	obj->map_and_fenceable = mappable && fenceable;
2806

C
Chris Wilson 已提交
2807
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2808 2809 2810 2811
	return 0;
}

void
2812
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2813 2814 2815 2816 2817
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2818
	if (obj->pages == NULL)
2819 2820
		return;

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2832
	trace_i915_gem_object_clflush(obj);
2833

2834
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2835 2836
}

2837
/** Flushes any GPU write domain for the object if it's dirty. */
2838
static int
2839
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2840
{
2841
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2842
		return 0;
2843 2844

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2845
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2846 2847 2848 2849
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2850
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2851
{
C
Chris Wilson 已提交
2852 2853
	uint32_t old_write_domain;

2854
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2855 2856
		return;

2857
	/* No actual flushing is required for the GTT write domain.  Writes
2858 2859
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2860 2861 2862 2863
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2864
	 */
2865 2866
	wmb();

2867 2868
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2869 2870

	trace_i915_gem_object_change_domain(obj,
2871
					    obj->base.read_domains,
C
Chris Wilson 已提交
2872
					    old_write_domain);
2873 2874 2875 2876
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2877
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2878
{
C
Chris Wilson 已提交
2879
	uint32_t old_write_domain;
2880

2881
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2882 2883 2884
		return;

	i915_gem_clflush_object(obj);
2885
	intel_gtt_chipset_flush();
2886 2887
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2888 2889

	trace_i915_gem_object_change_domain(obj,
2890
					    obj->base.read_domains,
C
Chris Wilson 已提交
2891
					    old_write_domain);
2892 2893
}

2894 2895 2896 2897 2898 2899
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2900
int
2901
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2902
{
C
Chris Wilson 已提交
2903
	uint32_t old_write_domain, old_read_domains;
2904
	int ret;
2905

2906
	/* Not valid to be called on unbound objects. */
2907
	if (obj->gtt_space == NULL)
2908 2909
		return -EINVAL;

2910 2911 2912
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2913 2914 2915 2916
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2917
	if (obj->pending_gpu_write || write) {
2918
		ret = i915_gem_object_wait_rendering(obj);
2919 2920 2921
		if (ret)
			return ret;
	}
2922

2923
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2924

2925 2926
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2927

2928 2929 2930
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2931 2932
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2933
	if (write) {
2934 2935 2936
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2937 2938
	}

C
Chris Wilson 已提交
2939 2940 2941 2942
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2943 2944 2945
	return 0;
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

		i915_gem_gtt_rebind_object(obj, cache_level);
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3006
/*
3007 3008 3009 3010 3011 3012 3013 3014
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
 *
 * For the display plane, we want to be in the GTT but out of any write
 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
 * ability to pipeline the waits, pinning and any additional subtleties
 * that may differentiate the display plane from ordinary buffers.
3015 3016
 */
int
3017 3018
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3019
				     struct intel_ring_buffer *pipelined)
3020
{
3021
	u32 old_read_domains, old_write_domain;
3022 3023
	int ret;

3024 3025 3026 3027
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3028
	if (pipelined != obj->ring) {
3029
		ret = i915_gem_object_wait_rendering(obj);
3030
		if (ret == -ERESTARTSYS)
3031 3032 3033
			return ret;
	}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3047 3048 3049 3050 3051 3052 3053 3054
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3055 3056
	i915_gem_object_flush_cpu_write_domain(obj);

3057
	old_write_domain = obj->base.write_domain;
3058
	old_read_domains = obj->base.read_domains;
3059 3060 3061 3062 3063

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3064
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3065 3066 3067

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3068
					    old_write_domain);
3069 3070 3071 3072

	return 0;
}

3073
int
3074
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3075
{
3076 3077
	int ret;

3078
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3079 3080
		return 0;

3081
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3082
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3083 3084 3085
		if (ret)
			return ret;
	}
3086

3087 3088 3089
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;

3090
	return i915_gem_object_wait_rendering(obj);
3091 3092
}

3093 3094 3095 3096 3097 3098 3099
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3100
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3101
{
C
Chris Wilson 已提交
3102
	uint32_t old_write_domain, old_read_domains;
3103 3104
	int ret;

3105 3106 3107
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3108 3109 3110 3111
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3112
	ret = i915_gem_object_wait_rendering(obj);
3113
	if (ret)
3114
		return ret;
3115

3116
	i915_gem_object_flush_gtt_write_domain(obj);
3117

3118 3119
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3120
	 */
3121
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3122

3123 3124
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3125

3126
	/* Flush the CPU cache if it's still invalid. */
3127
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3128 3129
		i915_gem_clflush_object(obj);

3130
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3131 3132 3133 3134 3135
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3136
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3137 3138 3139 3140 3141

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3142 3143
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3144
	}
3145

C
Chris Wilson 已提交
3146 3147 3148 3149
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3150 3151 3152
	return 0;
}

3153
/**
3154
 * Moves the object from a partially CPU read to a full one.
3155
 *
3156 3157
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3158
 */
3159
static void
3160
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3161
{
3162
	if (!obj->page_cpu_valid)
3163 3164 3165 3166
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3167
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3168 3169
		int i;

3170 3171
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3172
				continue;
3173
			drm_clflush_pages(obj->pages + i, 1);
3174 3175 3176 3177 3178 3179
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3180 3181
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3197
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3198 3199
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3200
	uint32_t old_read_domains;
3201
	int i, ret;
3202

3203
	if (offset == 0 && size == obj->base.size)
3204
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3205

3206 3207 3208 3209
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3210
	ret = i915_gem_object_wait_rendering(obj);
3211
	if (ret)
3212
		return ret;
3213

3214 3215 3216
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3217 3218
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3219
		return 0;
3220

3221 3222 3223
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3224 3225 3226 3227
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3228
			return -ENOMEM;
3229 3230
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3231 3232 3233 3234

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3235 3236
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3237
		if (obj->page_cpu_valid[i])
3238 3239
			continue;

3240
		drm_clflush_pages(obj->pages + i, 1);
3241

3242
		obj->page_cpu_valid[i] = 1;
3243 3244
	}

3245 3246 3247
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3248
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3249

3250 3251
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3252

C
Chris Wilson 已提交
3253 3254
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3255
					    obj->base.write_domain);
C
Chris Wilson 已提交
3256

3257 3258 3259 3260 3261 3262
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3263 3264 3265 3266
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3267 3268 3269
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3270
static int
3271
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3272
{
3273 3274
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3275
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3276 3277 3278 3279
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3280

3281 3282 3283
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3284
	spin_lock(&file_priv->mm.lock);
3285
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3286 3287
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3288

3289 3290
		ring = request->ring;
		seqno = request->seqno;
3291
	}
3292
	spin_unlock(&file_priv->mm.lock);
3293

3294 3295
	if (seqno == 0)
		return 0;
3296

3297
	ret = 0;
3298
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3299 3300 3301 3302 3303
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3304 3305 3306 3307 3308
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3309

3310 3311 3312
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3313 3314
	}

3315 3316
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3317 3318 3319 3320

	return ret;
}

3321
int
3322 3323
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3324
		    bool map_and_fenceable)
3325
{
3326
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3327
	struct drm_i915_private *dev_priv = dev->dev_private;
3328 3329
	int ret;

3330
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3331
	WARN_ON(i915_verify_lists(dev));
3332

3333 3334 3335 3336
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3337
			     "bo is already pinned with incorrect alignment:"
3338 3339
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3340
			     obj->gtt_offset, alignment,
3341
			     map_and_fenceable,
3342
			     obj->map_and_fenceable);
3343 3344 3345 3346 3347 3348
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3349
	if (obj->gtt_space == NULL) {
3350
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3351
						  map_and_fenceable);
3352
		if (ret)
3353
			return ret;
3354
	}
J
Jesse Barnes 已提交
3355

3356 3357 3358
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3359
				       &dev_priv->mm.pinned_list);
3360
	}
3361
	obj->pin_mappable |= map_and_fenceable;
3362

3363
	WARN_ON(i915_verify_lists(dev));
3364 3365 3366 3367
	return 0;
}

void
3368
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3369
{
3370
	struct drm_device *dev = obj->base.dev;
3371 3372
	drm_i915_private_t *dev_priv = dev->dev_private;

3373
	WARN_ON(i915_verify_lists(dev));
3374 3375
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3376

3377 3378 3379
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3380
				       &dev_priv->mm.inactive_list);
3381
		obj->pin_mappable = false;
3382
	}
3383
	WARN_ON(i915_verify_lists(dev));
3384 3385 3386 3387
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3388
		   struct drm_file *file)
3389 3390
{
	struct drm_i915_gem_pin *args = data;
3391
	struct drm_i915_gem_object *obj;
3392 3393
	int ret;

3394 3395 3396
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3397

3398
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3399
	if (&obj->base == NULL) {
3400 3401
		ret = -ENOENT;
		goto unlock;
3402 3403
	}

3404
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3405
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3406 3407
		ret = -EINVAL;
		goto out;
3408 3409
	}

3410
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3411 3412
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3413 3414
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3415 3416
	}

3417 3418 3419
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3420
		ret = i915_gem_object_pin(obj, args->alignment, true);
3421 3422
		if (ret)
			goto out;
3423 3424 3425 3426 3427
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3428
	i915_gem_object_flush_cpu_write_domain(obj);
3429
	args->offset = obj->gtt_offset;
3430
out:
3431
	drm_gem_object_unreference(&obj->base);
3432
unlock:
3433
	mutex_unlock(&dev->struct_mutex);
3434
	return ret;
3435 3436 3437 3438
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3439
		     struct drm_file *file)
3440 3441
{
	struct drm_i915_gem_pin *args = data;
3442
	struct drm_i915_gem_object *obj;
3443
	int ret;
3444

3445 3446 3447
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3448

3449
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3450
	if (&obj->base == NULL) {
3451 3452
		ret = -ENOENT;
		goto unlock;
3453
	}
3454

3455
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3456 3457
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3458 3459
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3460
	}
3461 3462 3463
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3464 3465
		i915_gem_object_unpin(obj);
	}
3466

3467
out:
3468
	drm_gem_object_unreference(&obj->base);
3469
unlock:
3470
	mutex_unlock(&dev->struct_mutex);
3471
	return ret;
3472 3473 3474 3475
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3476
		    struct drm_file *file)
3477 3478
{
	struct drm_i915_gem_busy *args = data;
3479
	struct drm_i915_gem_object *obj;
3480 3481
	int ret;

3482
	ret = i915_mutex_lock_interruptible(dev);
3483
	if (ret)
3484
		return ret;
3485

3486
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3487
	if (&obj->base == NULL) {
3488 3489
		ret = -ENOENT;
		goto unlock;
3490
	}
3491

3492 3493 3494 3495
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3496
	 */
3497
	args->busy = obj->active;
3498 3499 3500 3501 3502 3503
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3504
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3505
			ret = i915_gem_flush_ring(obj->ring,
3506
						  0, obj->base.write_domain);
3507 3508 3509 3510
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3511 3512 3513
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3514 3515
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
3516
				ret = i915_add_request(obj->ring, NULL, request);
3517
			else
3518 3519
				ret = -ENOMEM;
		}
3520 3521 3522 3523 3524 3525

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3526
		i915_gem_retire_requests_ring(obj->ring);
3527

3528
		args->busy = obj->active;
3529
	}
3530

3531
	drm_gem_object_unreference(&obj->base);
3532
unlock:
3533
	mutex_unlock(&dev->struct_mutex);
3534
	return ret;
3535 3536 3537 3538 3539 3540
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3541
	return i915_gem_ring_throttle(dev, file_priv);
3542 3543
}

3544 3545 3546 3547 3548
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3549
	struct drm_i915_gem_object *obj;
3550
	int ret;
3551 3552 3553 3554 3555 3556 3557 3558 3559

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3560 3561 3562 3563
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3564
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3565
	if (&obj->base == NULL) {
3566 3567
		ret = -ENOENT;
		goto unlock;
3568 3569
	}

3570
	if (obj->pin_count) {
3571 3572
		ret = -EINVAL;
		goto out;
3573 3574
	}

3575 3576
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3577

3578
	/* if the object is no longer bound, discard its backing storage */
3579 3580
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3581 3582
		i915_gem_object_truncate(obj);

3583
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3584

3585
out:
3586
	drm_gem_object_unreference(&obj->base);
3587
unlock:
3588
	mutex_unlock(&dev->struct_mutex);
3589
	return ret;
3590 3591
}

3592 3593
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3594
{
3595
	struct drm_i915_private *dev_priv = dev->dev_private;
3596
	struct drm_i915_gem_object *obj;
3597
	struct address_space *mapping;
3598

3599 3600 3601
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3602

3603 3604 3605 3606
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3607

3608 3609 3610
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3611 3612
	i915_gem_info_add_obj(dev_priv, size);

3613 3614
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3615

3616
	if (IS_GEN6(dev) || IS_GEN7(dev)) {
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		/* On Gen6, we can have the GPU use the LLC (the CPU
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3633
	obj->base.driver_private = NULL;
3634
	obj->fence_reg = I915_FENCE_REG_NONE;
3635
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3636
	INIT_LIST_HEAD(&obj->gtt_list);
3637
	INIT_LIST_HEAD(&obj->ring_list);
3638
	INIT_LIST_HEAD(&obj->exec_list);
3639 3640
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3641 3642
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3643

3644
	return obj;
3645 3646 3647 3648 3649
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3650

3651 3652 3653
	return 0;
}

3654
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3655
{
3656
	struct drm_device *dev = obj->base.dev;
3657 3658
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3659

3660 3661
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3662
		list_move(&obj->mm_list,
3663 3664 3665
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3666

3667 3668
	trace_i915_gem_object_destroy(obj);

3669
	if (obj->base.map_list.map)
3670
		drm_gem_free_mmap_offset(&obj->base);
3671

3672 3673
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3674

3675 3676 3677
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3678 3679
}

3680
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3681
{
3682 3683
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3684

3685
	while (obj->pin_count > 0)
3686 3687
		i915_gem_object_unpin(obj);

3688
	if (obj->phys_obj)
3689 3690 3691 3692 3693
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3694 3695 3696 3697 3698
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3699

3700
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3701

3702
	if (dev_priv->mm.suspended) {
3703 3704
		mutex_unlock(&dev->struct_mutex);
		return 0;
3705 3706
	}

3707
	ret = i915_gpu_idle(dev);
3708 3709
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3710
		return ret;
3711
	}
3712

3713 3714
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3715
		ret = i915_gem_evict_inactive(dev, false);
3716 3717 3718 3719 3720 3721
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3722 3723
	i915_gem_reset_fences(dev);

3724 3725 3726 3727 3728
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3729
	del_timer_sync(&dev_priv->hangcheck_timer);
3730 3731

	i915_kernel_lost_context(dev);
3732
	i915_gem_cleanup_ringbuffer(dev);
3733

3734 3735
	mutex_unlock(&dev->struct_mutex);

3736 3737 3738
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3739 3740 3741
	return 0;
}

3742 3743 3744 3745 3746
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3747

3748
	ret = intel_init_render_ring_buffer(dev);
3749
	if (ret)
3750
		return ret;
3751 3752

	if (HAS_BSD(dev)) {
3753
		ret = intel_init_bsd_ring_buffer(dev);
3754 3755
		if (ret)
			goto cleanup_render_ring;
3756
	}
3757

3758 3759 3760 3761 3762 3763
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3764 3765
	dev_priv->next_seqno = 1;

3766 3767
	return 0;

3768
cleanup_bsd_ring:
3769
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3770
cleanup_render_ring:
3771
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3772 3773 3774 3775 3776 3777 3778
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3779
	int i;
3780

3781 3782
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3783 3784
}

3785 3786 3787 3788 3789
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3790
	int ret, i;
3791

J
Jesse Barnes 已提交
3792 3793 3794
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3795
	if (atomic_read(&dev_priv->mm.wedged)) {
3796
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3797
		atomic_set(&dev_priv->mm.wedged, 0);
3798 3799 3800
	}

	mutex_lock(&dev->struct_mutex);
3801 3802 3803
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3804 3805
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3806
		return ret;
3807
	}
3808

3809
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3810 3811
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3812 3813 3814 3815
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3816
	mutex_unlock(&dev->struct_mutex);
3817

3818 3819 3820
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3821

3822
	return 0;
3823 3824 3825 3826 3827 3828 3829 3830

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3831 3832 3833 3834 3835 3836
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3837 3838 3839
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3840
	drm_irq_uninstall(dev);
3841
	return i915_gem_idle(dev);
3842 3843 3844 3845 3846 3847 3848
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3849 3850 3851
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3852 3853 3854
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3855 3856
}

3857 3858 3859 3860 3861 3862 3863 3864
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3865 3866 3867
void
i915_gem_load(struct drm_device *dev)
{
3868
	int i;
3869 3870
	drm_i915_private_t *dev_priv = dev->dev_private;

3871
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3872 3873
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3874
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3875
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3876
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3877
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3878 3879
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3880
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3881
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3882 3883
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3884
	init_completion(&dev_priv->error_completion);
3885

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3896 3897
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3898
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3899 3900
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3901

3902
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3903 3904 3905 3906
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3907
	/* Initialize fence registers to zero */
3908 3909
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3910
	}
3911

3912
	i915_gem_detect_bit_6_swizzle(dev);
3913
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3914

3915 3916
	dev_priv->mm.interruptible = true;

3917 3918 3919
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3920
}
3921 3922 3923 3924 3925

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3926 3927
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3928 3929 3930 3931 3932 3933 3934 3935
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3936
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3937 3938 3939 3940 3941
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3942
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3955
	kfree(phys_obj);
3956 3957 3958
	return ret;
}

3959
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3984
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3985 3986 3987 3988
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3989
				 struct drm_i915_gem_object *obj)
3990
{
3991
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3992
	char *vaddr;
3993 3994 3995
	int i;
	int page_count;

3996
	if (!obj->phys_obj)
3997
		return;
3998
	vaddr = obj->phys_obj->handle->vaddr;
3999

4000
	page_count = obj->base.size / PAGE_SIZE;
4001
	for (i = 0; i < page_count; i++) {
4002
		struct page *page = shmem_read_mapping_page(mapping, i);
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4014
	}
4015
	intel_gtt_chipset_flush();
4016

4017 4018
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4019 4020 4021 4022
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4023
			    struct drm_i915_gem_object *obj,
4024 4025
			    int id,
			    int align)
4026
{
4027
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4028 4029 4030 4031 4032 4033 4034 4035
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4036 4037
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4038 4039 4040 4041 4042 4043 4044
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4045
						obj->base.size, align);
4046
		if (ret) {
4047 4048
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4049
			return ret;
4050 4051 4052 4053
		}
	}

	/* bind to the object */
4054 4055
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4056

4057
	page_count = obj->base.size / PAGE_SIZE;
4058 4059

	for (i = 0; i < page_count; i++) {
4060 4061 4062
		struct page *page;
		char *dst, *src;

4063
		page = shmem_read_mapping_page(mapping, i);
4064 4065
		if (IS_ERR(page))
			return PTR_ERR(page);
4066

4067
		src = kmap_atomic(page);
4068
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4069
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4070
		kunmap_atomic(src);
4071

4072 4073 4074
		mark_page_accessed(page);
		page_cache_release(page);
	}
4075

4076 4077 4078 4079
	return 0;
}

static int
4080 4081
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4082 4083 4084
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4085
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4086
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4087

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4101

4102
	intel_gtt_chipset_flush();
4103 4104
	return 0;
}
4105

4106
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4107
{
4108
	struct drm_i915_file_private *file_priv = file->driver_priv;
4109 4110 4111 4112 4113

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4114
	spin_lock(&file_priv->mm.lock);
4115 4116 4117 4118 4119 4120 4121 4122 4123
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4124
	spin_unlock(&file_priv->mm.lock);
4125
}
4126

4127 4128 4129 4130 4131 4132 4133
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4134
		      list_empty(&dev_priv->mm.active_list);
4135 4136 4137 4138

	return !lists_empty;
}

4139
static int
4140
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4141
{
4142 4143 4144 4145 4146 4147
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4148
	int nr_to_scan = sc->nr_to_scan;
4149 4150 4151
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4152
		return 0;
4153 4154 4155

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4156 4157 4158 4159 4160 4161 4162
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4163 4164
	}

4165
rescan:
4166
	/* first scan for clean buffers */
4167
	i915_gem_retire_requests(dev);
4168

4169 4170 4171 4172
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4173 4174
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4175
				break;
4176 4177 4178 4179
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4180 4181 4182 4183
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4184 4185
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4186
			nr_to_scan--;
4187
		else
4188 4189 4190 4191
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4192 4193 4194 4195 4196 4197
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4198
		if (i915_gpu_idle(dev) == 0)
4199 4200
			goto rescan;
	}
4201 4202
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4203
}