net.txt 14.8 KB
Newer Older
1
Documentation for /proc/sys/net/*
2 3 4 5 6 7 8 9 10 11
	(c) 1999		Terrehon Bowden <terrehon@pacbell.net>
				Bodo Bauer <bb@ricochet.net>
	(c) 2000		Jorge Nerin <comandante@zaralinux.com>
	(c) 2009		Shen Feng <shen@cn.fujitsu.com>

For general info and legal blurb, please look in README.

==============================================================

This file contains the documentation for the sysctl files in
12
/proc/sys/net
13 14

The interface  to  the  networking  parts  of  the  kernel  is  located  in
15
/proc/sys/net. The following table shows all possible subdirectories.  You may
16 17 18 19 20 21 22 23 24 25 26 27 28
see only some of them, depending on your kernel's configuration.


Table : Subdirectories in /proc/sys/net
..............................................................................
 Directory Content             Directory  Content
 core      General parameter   appletalk  Appletalk protocol
 unix      Unix domain sockets netrom     NET/ROM
 802       E802 protocol       ax25       AX25
 ethernet  Ethernet protocol   rose       X.25 PLP layer
 ipv4      IP version 4        x25        X.25 protocol
 ipx       IPX                 token-ring IBM token ring
 bridge    Bridging            decnet     DEC net
29
 ipv6      IP version 6        tipc       TIPC
30 31 32 33 34
..............................................................................

1. /proc/sys/net/core - Network core options
-------------------------------------------------------

35 36 37
bpf_jit_enable
--------------

38 39 40 41 42 43 44 45 46
This enables the BPF Just in Time (JIT) compiler. BPF is a flexible
and efficient infrastructure allowing to execute bytecode at various
hook points. It is used in a number of Linux kernel subsystems such
as networking (e.g. XDP, tc), tracing (e.g. kprobes, uprobes, tracepoints)
and security (e.g. seccomp). LLVM has a BPF back end that can compile
restricted C into a sequence of BPF instructions. After program load
through bpf(2) and passing a verifier in the kernel, a JIT will then
translate these BPF proglets into native CPU instructions. There are
two flavors of JITs, the newer eBPF JIT currently supported on:
47
  - x86_64
48
  - x86_32
49
  - arm64
50
  - arm32
51 52 53
  - ppc64
  - sparc64
  - mips64
54
  - s390x
55

56
And the older cBPF JIT supported on the following archs:
57 58 59 60
  - mips
  - ppc
  - sparc

61 62 63 64 65
eBPF JITs are a superset of cBPF JITs, meaning the kernel will
migrate cBPF instructions into eBPF instructions and then JIT
compile them transparently. Older cBPF JITs can only translate
tcpdump filters, seccomp rules, etc, but not mentioned eBPF
programs loaded through bpf(2).
66

67 68 69 70 71
Values :
	0 - disable the JIT (default value)
	1 - enable the JIT
	2 - enable the JIT and ask the compiler to emit traces on kernel log.

72 73 74
bpf_jit_harden
--------------

75 76 77
This enables hardening for the BPF JIT compiler. Supported are eBPF
JIT backends. Enabling hardening trades off performance, but can
mitigate JIT spraying.
78 79 80 81 82
Values :
	0 - disable JIT hardening (default value)
	1 - enable JIT hardening for unprivileged users only
	2 - enable JIT hardening for all users

83 84 85
bpf_jit_kallsyms
----------------

86 87 88 89 90
When BPF JIT compiler is enabled, then compiled images are unknown
addresses to the kernel, meaning they neither show up in traces nor
in /proc/kallsyms. This enables export of these addresses, which can
be used for debugging/tracing. If bpf_jit_harden is enabled, this
feature is disabled.
91 92 93 94
Values :
	0 - disable JIT kallsyms export (default value)
	1 - enable JIT kallsyms export for privileged users only

95 96 97 98 99 100 101 102
bpf_jit_limit
-------------

This enforces a global limit for memory allocations to the BPF JIT
compiler in order to reject unprivileged JIT requests once it has
been surpassed. bpf_jit_limit contains the value of the global limit
in bytes.

103 104 105 106
dev_weight
--------------

The maximum number of packets that kernel can handle on a NAPI interrupt,
107 108 109
it's a Per-CPU variable. For drivers that support LRO or GRO_HW, a hardware
aggregated packet is counted as one packet in this context.

110 111
Default: 64

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
dev_weight_rx_bias
--------------

RPS (e.g. RFS, aRFS) processing is competing with the registered NAPI poll function
of the driver for the per softirq cycle netdev_budget. This parameter influences
the proportion of the configured netdev_budget that is spent on RPS based packet
processing during RX softirq cycles. It is further meant for making current
dev_weight adaptable for asymmetric CPU needs on RX/TX side of the network stack.
(see dev_weight_tx_bias) It is effective on a per CPU basis. Determination is based
on dev_weight and is calculated multiplicative (dev_weight * dev_weight_rx_bias).
Default: 1

dev_weight_tx_bias
--------------

Scales the maximum number of packets that can be processed during a TX softirq cycle.
Effective on a per CPU basis. Allows scaling of current dev_weight for asymmetric
net stack processing needs. Be careful to avoid making TX softirq processing a CPU hog.
Calculation is based on dev_weight (dev_weight * dev_weight_tx_bias).
Default: 1

133 134 135 136
default_qdisc
--------------

The default queuing discipline to use for network devices. This allows
137 138 139 140 141 142 143 144 145
overriding the default of pfifo_fast with an alternative. Since the default
queuing discipline is created without additional parameters so is best suited
to queuing disciplines that work well without configuration like stochastic
fair queue (sfq), CoDel (codel) or fair queue CoDel (fq_codel). Don't use
queuing disciplines like Hierarchical Token Bucket or Deficit Round Robin
which require setting up classes and bandwidths. Note that physical multiqueue
interfaces still use mq as root qdisc, which in turn uses this default for its
leaves. Virtual devices (like e.g. lo or veth) ignore this setting and instead
default to noqueue.
146 147
Default: pfifo_fast

148
busy_read
E
Eliezer Tamir 已提交
149
----------------
150
Low latency busy poll timeout for socket reads. (needs CONFIG_NET_RX_BUSY_POLL)
151
Approximate time in us to busy loop waiting for packets on the device queue.
152 153 154 155
This sets the default value of the SO_BUSY_POLL socket option.
Can be set or overridden per socket by setting socket option SO_BUSY_POLL,
which is the preferred method of enabling. If you need to enable the feature
globally via sysctl, a value of 50 is recommended.
156
Will increase power usage.
E
Eliezer Tamir 已提交
157 158
Default: 0 (off)

159
busy_poll
160
----------------
161
Low latency busy poll timeout for poll and select. (needs CONFIG_NET_RX_BUSY_POLL)
162
Approximate time in us to busy loop waiting for events.
163 164 165
Recommended value depends on the number of sockets you poll on.
For several sockets 50, for several hundreds 100.
For more than that you probably want to use epoll.
166 167 168
Note that only sockets with SO_BUSY_POLL set will be busy polled,
so you want to either selectively set SO_BUSY_POLL on those sockets or set
sysctl.net.busy_read globally.
169
Will increase power usage.
170 171
Default: 0 (off)

172 173 174 175 176 177 178 179 180 181
rmem_default
------------

The default setting of the socket receive buffer in bytes.

rmem_max
--------

The maximum receive socket buffer size in bytes.

182 183 184 185 186 187 188 189
tstamp_allow_data
-----------------
Allow processes to receive tx timestamps looped together with the original
packet contents. If disabled, transmit timestamp requests from unprivileged
processes are dropped unless socket option SOF_TIMESTAMPING_OPT_TSONLY is set.
Default: 1 (on)


190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
wmem_default
------------

The default setting (in bytes) of the socket send buffer.

wmem_max
--------

The maximum send socket buffer size in bytes.

message_burst and message_cost
------------------------------

These parameters  are used to limit the warning messages written to the kernel
log from  the  networking  code.  They  enforce  a  rate  limit  to  make  a
denial-of-service attack  impossible. A higher message_cost factor, results in
fewer messages that will be written. Message_burst controls when messages will
be dropped.  The  default  settings  limit  warning messages to one every five
seconds.

warnings
--------

213 214 215 216 217 218 219 220
This sysctl is now unused.

This was used to control console messages from the networking stack that
occur because of problems on the network like duplicate address or bad
checksums.

These messages are now emitted at KERN_DEBUG and can generally be enabled
and controlled by the dynamic_debug facility.
221 222 223 224 225 226

netdev_budget
-------------

Maximum number of packets taken from all interfaces in one polling cycle (NAPI
poll). In one polling cycle interfaces which are registered to polling are
227 228 229 230 231 232 233 234 235 236
probed in a round-robin manner. Also, a polling cycle may not exceed
netdev_budget_usecs microseconds, even if netdev_budget has not been
exhausted.

netdev_budget_usecs
---------------------

Maximum number of microseconds in one NAPI polling cycle. Polling
will exit when either netdev_budget_usecs have elapsed during the
poll cycle or the number of packets processed reaches netdev_budget.
237 238 239 240 241 242 243

netdev_max_backlog
------------------

Maximum number  of  packets,  queued  on  the  INPUT  side, when the interface
receives packets faster than kernel can process them.

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
netdev_rss_key
--------------

RSS (Receive Side Scaling) enabled drivers use a 40 bytes host key that is
randomly generated.
Some user space might need to gather its content even if drivers do not
provide ethtool -x support yet.

myhost:~# cat /proc/sys/net/core/netdev_rss_key
84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8: ... (52 bytes total)

File contains nul bytes if no driver ever called netdev_rss_key_fill() function.
Note:
/proc/sys/net/core/netdev_rss_key contains 52 bytes of key,
but most drivers only use 40 bytes of it.

myhost:~# ethtool -x eth0
RX flow hash indirection table for eth0 with 8 RX ring(s):
    0:    0     1     2     3     4     5     6     7
RSS hash key:
84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8:43:e3:c9:0c:fd:17:55:c2:3a:4d:69:ed:f1:42:89

E
Eric Dumazet 已提交
266 267 268 269 270 271 272 273 274 275
netdev_tstamp_prequeue
----------------------

If set to 0, RX packet timestamps can be sampled after RPS processing, when
the target CPU processes packets. It might give some delay on timestamps, but
permit to distribute the load on several cpus.

If set to 1 (default), timestamps are sampled as soon as possible, before
queueing.

276 277 278 279 280 281
optmem_max
----------

Maximum ancillary buffer size allowed per socket. Ancillary data is a sequence
of struct cmsghdr structures with appended data.

282 283 284 285 286 287 288 289 290 291 292 293
fb_tunnels_only_for_init_net
----------------------------

Controls if fallback tunnels (like tunl0, gre0, gretap0, erspan0,
sit0, ip6tnl0, ip6gre0) are automatically created when a new
network namespace is created, if corresponding tunnel is present
in initial network namespace.
If set to 1, these devices are not automatically created, and
user space is responsible for creating them if needed.

Default : 0  (for compatibility reasons)

294 295 296
2. /proc/sys/net/unix - Parameters for Unix domain sockets
-------------------------------------------------------

297 298
There is only one file in this directory.
unix_dgram_qlen limits the max number of datagrams queued in Unix domain
299
socket's buffer. It will not take effect unless PF_UNIX flag is specified.
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376


3. /proc/sys/net/ipv4 - IPV4 settings
-------------------------------------------------------
Please see: Documentation/networking/ip-sysctl.txt and ipvs-sysctl.txt for
descriptions of these entries.


4. Appletalk
-------------------------------------------------------

The /proc/sys/net/appletalk  directory  holds the Appletalk configuration data
when Appletalk is loaded. The configurable parameters are:

aarp-expiry-time
----------------

The amount  of  time  we keep an ARP entry before expiring it. Used to age out
old hosts.

aarp-resolve-time
-----------------

The amount of time we will spend trying to resolve an Appletalk address.

aarp-retransmit-limit
---------------------

The number of times we will retransmit a query before giving up.

aarp-tick-time
--------------

Controls the rate at which expires are checked.

The directory  /proc/net/appletalk  holds the list of active Appletalk sockets
on a machine.

The fields  indicate  the DDP type, the local address (in network:node format)
the remote  address,  the  size of the transmit pending queue, the size of the
received queue  (bytes waiting for applications to read) the state and the uid
owning the socket.

/proc/net/atalk_iface lists  all  the  interfaces  configured for appletalk.It
shows the  name  of the interface, its Appletalk address, the network range on
that address  (or  network number for phase 1 networks), and the status of the
interface.

/proc/net/atalk_route lists  each  known  network  route.  It lists the target
(network) that the route leads to, the router (may be directly connected), the
route flags, and the device the route is using.


5. IPX
-------------------------------------------------------

The IPX protocol has no tunable values in proc/sys/net.

The IPX  protocol  does,  however,  provide  proc/net/ipx. This lists each IPX
socket giving  the  local  and  remote  addresses  in  Novell  format (that is
network:node:port). In  accordance  with  the  strange  Novell  tradition,
everything but the port is in hex. Not_Connected is displayed for sockets that
are not  tied to a specific remote address. The Tx and Rx queue sizes indicate
the number  of  bytes  pending  for  transmission  and  reception.  The  state
indicates the  state  the  socket  is  in and the uid is the owning uid of the
socket.

The /proc/net/ipx_interface  file lists all IPX interfaces. For each interface
it gives  the network number, the node number, and indicates if the network is
the primary  network.  It  also  indicates  which  device  it  is bound to (or
Internal for  internal  networks)  and  the  Frame  Type if appropriate. Linux
supports 802.3,  802.2,  802.2  SNAP  and DIX (Blue Book) ethernet framing for
IPX.

The /proc/net/ipx_route  table  holds  a list of IPX routes. For each route it
gives the  destination  network, the router node (or Directly) and the network
address of the router (or Connected) for internal networks.
377 378 379 380

6. TIPC
-------------------------------------------------------

381 382 383
tipc_rmem
----------

384 385 386 387 388 389 390 391 392 393 394
The TIPC protocol now has a tunable for the receive memory, similar to the
tcp_rmem - i.e. a vector of 3 INTEGERs: (min, default, max)

    # cat /proc/sys/net/tipc/tipc_rmem
    4252725 34021800        68043600
    #

The max value is set to CONN_OVERLOAD_LIMIT, and the default and min values
are scaled (shifted) versions of that same value.  Note that the min value
is not at this point in time used in any meaningful way, but the triplet is
preserved in order to be consistent with things like tcp_rmem.
395 396 397 398 399 400 401 402 403 404 405 406 407

named_timeout
--------------

TIPC name table updates are distributed asynchronously in a cluster, without
any form of transaction handling. This means that different race scenarios are
possible. One such is that a name withdrawal sent out by one node and received
by another node may arrive after a second, overlapping name publication already
has been accepted from a third node, although the conflicting updates
originally may have been issued in the correct sequential order.
If named_timeout is nonzero, failed topology updates will be placed on a defer
queue until another event arrives that clears the error, or until the timeout
expires. Value is in milliseconds.