entry_32.S 36.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3
 *  Copyright (C) 1991,1992  Linus Torvalds
L
Linus Torvalds 已提交
4
 *
5
 * entry_32.S contains the system-call and low-level fault and trap handling routines.
L
Linus Torvalds 已提交
6
 *
7
 * Stack layout while running C code:
8 9 10
 *	ptrace needs to have all registers on the stack.
 *	If the order here is changed, it needs to be
 *	updated in fork.c:copy_process(), signal.c:do_signal(),
L
Linus Torvalds 已提交
11 12 13 14 15
 *	ptrace.c and ptrace.h
 *
 *	 0(%esp) - %ebx
 *	 4(%esp) - %ecx
 *	 8(%esp) - %edx
16
 *	 C(%esp) - %esi
L
Linus Torvalds 已提交
17 18 19 20 21
 *	10(%esp) - %edi
 *	14(%esp) - %ebp
 *	18(%esp) - %eax
 *	1C(%esp) - %ds
 *	20(%esp) - %es
22
 *	24(%esp) - %fs
23 24 25 26 27 28 29
 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 *	2C(%esp) - orig_eax
 *	30(%esp) - %eip
 *	34(%esp) - %cs
 *	38(%esp) - %eflags
 *	3C(%esp) - %oldesp
 *	40(%esp) - %oldss
L
Linus Torvalds 已提交
30 31 32
 */

#include <linux/linkage.h>
33
#include <linux/err.h>
L
Linus Torvalds 已提交
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
L
Linus Torvalds 已提交
36 37 38
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
S
Stas Sergeev 已提交
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative-asm.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/nospec-branch.h>
L
Linus Torvalds 已提交
48

49 50
#include "calling.h"

J
Jiri Olsa 已提交
51 52
	.section .entry.text, "ax"

53 54 55 56 57
/*
 * We use macros for low-level operations which need to be overridden
 * for paravirtualization.  The following will never clobber any registers:
 *   INTERRUPT_RETURN (aka. "iret")
 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
58
 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
59 60 61 62 63 64 65
 *
 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 * Allowing a register to be clobbered can shrink the paravirt replacement
 * enough to patch inline, increasing performance.
 */

L
Linus Torvalds 已提交
66
#ifdef CONFIG_PREEMPT
67
# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
L
Linus Torvalds 已提交
68
#else
69
# define preempt_stop(clobbers)
70
# define resume_kernel		restore_all_kernel
L
Linus Torvalds 已提交
71 72
#endif

73 74
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
75 76
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
	jz	1f
77 78 79 80 81
	TRACE_IRQS_ON
1:
#endif
.endm

82 83
#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)

84 85 86 87 88 89 90 91 92 93 94 95 96
/*
 * User gs save/restore
 *
 * %gs is used for userland TLS and kernel only uses it for stack
 * canary which is required to be at %gs:20 by gcc.  Read the comment
 * at the top of stackprotector.h for more info.
 *
 * Local labels 98 and 99 are used.
 */
#ifdef CONFIG_X86_32_LAZY_GS

 /* unfortunately push/pop can't be no-op */
.macro PUSH_GS
97
	pushl	$0
98 99
.endm
.macro POP_GS pop=0
100
	addl	$(4 + \pop), %esp
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
.endm
.macro POP_GS_EX
.endm

 /* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm

#else	/* CONFIG_X86_32_LAZY_GS */

.macro PUSH_GS
120
	pushl	%gs
121 122 123
.endm

.macro POP_GS pop=0
124
98:	popl	%gs
125
  .if \pop <> 0
126
	add	$\pop, %esp
127 128 129 130
  .endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
131 132
99:	movl	$0, (%esp)
	jmp	98b
133
.popsection
134
	_ASM_EXTABLE(98b, 99b)
135 136 137
.endm

.macro PTGS_TO_GS
138
98:	mov	PT_GS(%esp), %gs
139 140 141
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
142 143
99:	movl	$0, PT_GS(%esp)
	jmp	98b
144
.popsection
145
	_ASM_EXTABLE(98b, 99b)
146 147 148
.endm

.macro GS_TO_REG reg
149
	movl	%gs, \reg
150 151
.endm
.macro REG_TO_PTGS reg
152
	movl	\reg, PT_GS(%esp)
153 154
.endm
.macro SET_KERNEL_GS reg
155 156
	movl	$(__KERNEL_STACK_CANARY), \reg
	movl	\reg, %gs
157 158
.endm

159
#endif /* CONFIG_X86_32_LAZY_GS */
160

161 162 163 164 165 166 167 168 169 170
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI

	movl	%cr3, \scratch_reg
	orl	$PTI_SWITCH_MASK, \scratch_reg
	movl	\scratch_reg, %cr3
.Lend_\@:
.endm

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	.if \no_user_check == 0
	/* coming from usermode? */
	testl	$SEGMENT_RPL_MASK, PT_CS(%esp)
	jz	.Lend_\@
	.endif
	/* On user-cr3? */
	movl	%cr3, %eax
	testl	$PTI_SWITCH_MASK, %eax
	jnz	.Lend_\@
	/* From userspace with kernel cr3 - BUG */
	ud2
.Lend_\@:
#endif
.endm

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Switch to kernel cr3 if not already loaded and return current cr3 in
 * \scratch_reg
 */
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	movl	%cr3, \scratch_reg
	/* Test if we are already on kernel CR3 */
	testl	$PTI_SWITCH_MASK, \scratch_reg
	jz	.Lend_\@
	andl	$(~PTI_SWITCH_MASK), \scratch_reg
	movl	\scratch_reg, %cr3
	/* Return original CR3 in \scratch_reg */
	orl	$PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm

206
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0
207
	cld
208
	PUSH_GS
209 210 211
	pushl	%fs
	pushl	%es
	pushl	%ds
212
	pushl	\pt_regs_ax
213 214 215 216 217 218 219 220 221 222 223
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
	movl	$(__USER_DS), %edx
	movl	%edx, %ds
	movl	%edx, %es
	movl	$(__KERNEL_PERCPU), %edx
	movl	%edx, %fs
224
	SET_KERNEL_GS %edx
225 226 227 228 229 230

	/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
	SWITCH_TO_KERNEL_STACK
.endif

231
.endm
L
Linus Torvalds 已提交
232

233
.macro SAVE_ALL_NMI cr3_reg:req
234
	SAVE_ALL
235

236 237
	BUG_IF_WRONG_CR3

238 239 240 241 242 243 244 245 246 247
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We can enter with either user or kernel cr3, the code will
	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
	 * if necessary.
	 */
	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg

.Lend_\@:
248
.endm
249

250 251 252
/*
 * This is a sneaky trick to help the unwinder find pt_regs on the stack.  The
 * frame pointer is replaced with an encoded pointer to pt_regs.  The encoding
253
 * is just clearing the MSB, which makes it an invalid stack address and is also
254 255 256 257 258 259 260 261
 * a signal to the unwinder that it's a pt_regs pointer in disguise.
 *
 * NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
 * original rbp.
 */
.macro ENCODE_FRAME_POINTER
#ifdef CONFIG_FRAME_POINTER
	mov %esp, %ebp
262
	andl $0x7fffffff, %ebp
263 264 265
#endif
.endm

266
.macro RESTORE_INT_REGS
267 268 269 270 271 272 273
	popl	%ebx
	popl	%ecx
	popl	%edx
	popl	%esi
	popl	%edi
	popl	%ebp
	popl	%eax
274
.endm
L
Linus Torvalds 已提交
275

276
.macro RESTORE_REGS pop=0
277
	RESTORE_INT_REGS
278 279 280
1:	popl	%ds
2:	popl	%es
3:	popl	%fs
281
	POP_GS \pop
282
.pushsection .fixup, "ax"
283 284 285 286 287 288
4:	movl	$0, (%esp)
	jmp	1b
5:	movl	$0, (%esp)
	jmp	2b
6:	movl	$0, (%esp)
	jmp	3b
289
.popsection
290 291 292
	_ASM_EXTABLE(1b, 4b)
	_ASM_EXTABLE(2b, 5b)
	_ASM_EXTABLE(3b, 6b)
293
	POP_GS_EX
294
.endm
L
Linus Torvalds 已提交
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We enter with kernel cr3 and switch the cr3 to the value
	 * stored on \cr3_reg, which is either a user or a kernel cr3.
	 */
	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI

	testl	$PTI_SWITCH_MASK, \cr3_reg
	jz	.Lswitched_\@

	/* User cr3 in \cr3_reg - write it to hardware cr3 */
	movl	\cr3_reg, %cr3

.Lswitched_\@:

313 314
	BUG_IF_WRONG_CR3

315 316 317
	RESTORE_REGS pop=\pop
.endm

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)

	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX

	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
	/*
	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
	 * are returning to the kernel.
	 * See comments in process.c:copy_thread() for details.
	 */
	movb	PT_OLDSS(%esp), %ah
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
	jne	.Lend_\@	# returning to user-space with LDT SS

	/*
	 * Setup and switch to ESPFIX stack
	 *
	 * We're returning to userspace with a 16 bit stack. The CPU will not
	 * restore the high word of ESP for us on executing iret... This is an
	 * "official" bug of all the x86-compatible CPUs, which we can work
	 * around to make dosemu and wine happy. We do this by preloading the
	 * high word of ESP with the high word of the userspace ESP while
	 * compensating for the offset by changing to the ESPFIX segment with
	 * a base address that matches for the difference.
	 */
	mov	%esp, %edx			/* load kernel esp */
	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
	mov	%dx, %ax			/* eax: new kernel esp */
	sub	%eax, %edx			/* offset (low word is 0) */
	shr	$16, %edx
	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
	pushl	$__ESPFIX_SS
	pushl	%eax				/* new kernel esp */
	/*
	 * Disable interrupts, but do not irqtrace this section: we
	 * will soon execute iret and the tracer was already set to
	 * the irqstate after the IRET:
	 */
	DISABLE_INTERRUPTS(CLBR_ANY)
	lss	(%esp), %esp			/* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
366 367 368 369 370 371 372 373 374 375 376

/*
 * Called with pt_regs fully populated and kernel segments loaded,
 * so we can access PER_CPU and use the integer registers.
 *
 * We need to be very careful here with the %esp switch, because an NMI
 * can happen everywhere. If the NMI handler finds itself on the
 * entry-stack, it will overwrite the task-stack and everything we
 * copied there. So allocate the stack-frame on the task-stack and
 * switch to it before we do any copying.
 */
377 378

#define CS_FROM_ENTRY_STACK	(1 << 31)
379
#define CS_FROM_USER_CR3	(1 << 30)
380

381 382 383 384
.macro SWITCH_TO_KERNEL_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

385 386
	BUG_IF_WRONG_CR3

387 388 389 390 391 392 393
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax

	/*
	 * %eax now contains the entry cr3 and we carry it forward in
	 * that register for the time this macro runs
	 */

J
Jan Kiszka 已提交
394 395 396 397 398 399 400
	/*
	 * The high bits of the CS dword (__csh) are used for
	 * CS_FROM_ENTRY_STACK and CS_FROM_USER_CR3. Clear them in case
	 * hardware didn't do this for us.
	 */
	andl	$(0x0000ffff), PT_CS(%esp)

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	/* Are we on the entry stack? Bail out if not! */
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
	jae	.Lend_\@

	/* Load stack pointer into %esi and %edi */
	movl	%esp, %esi
	movl	%esi, %edi

	/* Move %edi to the top of the entry stack */
	andl	$(MASK_entry_stack), %edi
	addl	$(SIZEOF_entry_stack), %edi

	/* Load top of task-stack into %edi */
	movl	TSS_entry2task_stack(%edi), %edi

419
	/* Special case - entry from kernel mode via entry stack */
420 421 422 423 424 425 426 427 428 429
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
	movb	PT_CS(%esp), %cl
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
	movl	PT_CS(%esp), %ecx
	andl	$SEGMENT_RPL_MASK, %ecx
#endif
	cmpl	$USER_RPL, %ecx
	jb	.Lentry_from_kernel_\@
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444
	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
	jz	.Lcopy_pt_regs_\@

	/*
	 * Stack-frame contains 4 additional segment registers when
	 * coming from VM86 mode
	 */
	addl	$(4 * 4), %ecx

#endif
445
.Lcopy_pt_regs_\@:
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

	/* Allocate frame on task-stack */
	subl	%ecx, %edi

	/* Switch to task-stack */
	movl	%edi, %esp

	/*
	 * We are now on the task-stack and can safely copy over the
	 * stack-frame
	 */
	shrl	$2, %ecx
	cld
	rep movsl

461 462 463 464 465 466 467 468 469 470 471
	jmp .Lend_\@

.Lentry_from_kernel_\@:

	/*
	 * This handles the case when we enter the kernel from
	 * kernel-mode and %esp points to the entry-stack. When this
	 * happens we need to switch to the task-stack to run C code,
	 * but switch back to the entry-stack again when we approach
	 * iret and return to the interrupted code-path. This usually
	 * happens when we hit an exception while restoring user-space
472 473
	 * segment registers on the way back to user-space or when the
	 * sysenter handler runs with eflags.tf set.
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	 *
	 * When we switch to the task-stack here, we can't trust the
	 * contents of the entry-stack anymore, as the exception handler
	 * might be scheduled out or moved to another CPU. Therefore we
	 * copy the complete entry-stack to the task-stack and set a
	 * marker in the iret-frame (bit 31 of the CS dword) to detect
	 * what we've done on the iret path.
	 *
	 * On the iret path we copy everything back and switch to the
	 * entry-stack, so that the interrupted kernel code-path
	 * continues on the same stack it was interrupted with.
	 *
	 * Be aware that an NMI can happen anytime in this code.
	 *
	 * %esi: Entry-Stack pointer (same as %esp)
	 * %edi: Top of the task stack
490
	 * %eax: CR3 on kernel entry
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	 */

	/* Calculate number of bytes on the entry stack in %ecx */
	movl	%esi, %ecx

	/* %ecx to the top of entry-stack */
	andl	$(MASK_entry_stack), %ecx
	addl	$(SIZEOF_entry_stack), %ecx

	/* Number of bytes on the entry stack to %ecx */
	sub	%esi, %ecx

	/* Mark stackframe as coming from entry stack */
	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)

506 507 508 509 510 511 512 513
	/*
	 * Test the cr3 used to enter the kernel and add a marker
	 * so that we can switch back to it before iret.
	 */
	testl	$PTI_SWITCH_MASK, %eax
	jz	.Lcopy_pt_regs_\@
	orl	$CS_FROM_USER_CR3, PT_CS(%esp)

514 515 516 517 518 519 520
	/*
	 * %esi and %edi are unchanged, %ecx contains the number of
	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
	 * the stack-frame on task-stack and copy everything over
	 */
	jmp .Lcopy_pt_regs_\@

521 522 523
.Lend_\@:
.endm

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * Switch back from the kernel stack to the entry stack.
 *
 * The %esp register must point to pt_regs on the task stack. It will
 * first calculate the size of the stack-frame to copy, depending on
 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 * to copy the contents of the stack over to the entry stack.
 *
 * We must be very careful here, as we can't trust the contents of the
 * task-stack once we switched to the entry-stack. When an NMI happens
 * while on the entry-stack, the NMI handler will switch back to the top
 * of the task stack, overwriting our stack-frame we are about to copy.
 * Therefore we switch the stack only after everything is copied over.
 */
.macro SWITCH_TO_ENTRY_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
	jz	.Lcopy_pt_regs_\@

	/* Additional 4 registers to copy when returning to VM86 mode */
	addl    $(4 * 4), %ecx

.Lcopy_pt_regs_\@:
#endif

	/* Initialize source and destination for movsl */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
	subl	%ecx, %edi
	movl	%esp, %esi

	/* Save future stack pointer in %ebx */
	movl	%edi, %ebx

	/* Copy over the stack-frame */
	shrl	$2, %ecx
	cld
	rep movsl

	/*
	 * Switch to entry-stack - needs to happen after everything is
	 * copied because the NMI handler will overwrite the task-stack
	 * when on entry-stack
	 */
	movl	%ebx, %esp

.Lend_\@:
.endm

578 579
/*
 * This macro handles the case when we return to kernel-mode on the iret
580
 * path and have to switch back to the entry stack and/or user-cr3
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
 *
 * See the comments below the .Lentry_from_kernel_\@ label in the
 * SWITCH_TO_KERNEL_STACK macro for more details.
 */
.macro PARANOID_EXIT_TO_KERNEL_MODE

	/*
	 * Test if we entered the kernel with the entry-stack. Most
	 * likely we did not, because this code only runs on the
	 * return-to-kernel path.
	 */
	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
	jz	.Lend_\@

	/* Unlikely slow-path */

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)

	/* Copy the remaining task-stack contents to entry-stack */
	movl	%esp, %esi
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi

	/* Bytes on the task-stack to ecx */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
	subl	%esi, %ecx

	/* Allocate stack-frame on entry-stack */
	subl	%ecx, %edi

	/*
	 * Save future stack-pointer, we must not switch until the
	 * copy is done, otherwise the NMI handler could destroy the
	 * contents of the task-stack we are about to copy.
	 */
	movl	%edi, %ebx

	/* Do the copy */
	shrl	$2, %ecx
	cld
	rep movsl

	/* Safe to switch to entry-stack now */
	movl	%ebx, %esp

626 627 628 629 630 631 632 633 634 635 636 637
	/*
	 * We came from entry-stack and need to check if we also need to
	 * switch back to user cr3.
	 */
	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
	jz	.Lend_\@

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)

	SWITCH_TO_USER_CR3 scratch_reg=%eax

638 639
.Lend_\@:
.endm
640 641 642 643 644 645 646 647 648 649 650 651 652
/*
 * %eax: prev task
 * %edx: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in struct inactive_task_frame
	 */
	pushl	%ebp
	pushl	%ebx
	pushl	%edi
	pushl	%esi
653
	pushfl
654 655 656 657 658

	/* switch stack */
	movl	%esp, TASK_threadsp(%eax)
	movl	TASK_threadsp(%edx), %esp

659
#ifdef CONFIG_STACKPROTECTOR
660 661 662 663
	movl	TASK_stack_canary(%edx), %ebx
	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif

664 665 666 667 668 669 670 671
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
672
	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
673 674
#endif

675
	/* restore callee-saved registers */
676
	popfl
677 678 679 680 681 682 683 684
	popl	%esi
	popl	%edi
	popl	%ebx
	popl	%ebp

	jmp	__switch_to
END(__switch_to_asm)

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
/*
 * The unwinder expects the last frame on the stack to always be at the same
 * offset from the end of the page, which allows it to validate the stack.
 * Calling schedule_tail() directly would break that convention because its an
 * asmlinkage function so its argument has to be pushed on the stack.  This
 * wrapper creates a proper "end of stack" frame header before the call.
 */
ENTRY(schedule_tail_wrapper)
	FRAME_BEGIN

	pushl	%eax
	call	schedule_tail
	popl	%eax

	FRAME_END
	ret
ENDPROC(schedule_tail_wrapper)
702 703 704 705
/*
 * A newly forked process directly context switches into this address.
 *
 * eax: prev task we switched from
706 707
 * ebx: kernel thread func (NULL for user thread)
 * edi: kernel thread arg
708
 */
L
Linus Torvalds 已提交
709
ENTRY(ret_from_fork)
710
	call	schedule_tail_wrapper
711

712 713 714 715
	testl	%ebx, %ebx
	jnz	1f		/* kernel threads are uncommon */

2:
716
	/* When we fork, we trace the syscall return in the child, too. */
717
	movl    %esp, %eax
718
	call    syscall_return_slowpath
719
	STACKLEAK_ERASE
720 721
	jmp     restore_all

722 723
	/* kernel thread */
1:	movl	%edi, %eax
724
	CALL_NOSPEC %ebx
725
	/*
726 727 728
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
729
	 */
730 731 732
	movl	$0, PT_EAX(%esp)
	jmp	2b
END(ret_from_fork)
733

L
Linus Torvalds 已提交
734 735 736 737 738 739 740 741 742 743
/*
 * Return to user mode is not as complex as all this looks,
 * but we want the default path for a system call return to
 * go as quickly as possible which is why some of this is
 * less clear than it otherwise should be.
 */

	# userspace resumption stub bypassing syscall exit tracing
	ALIGN
ret_from_exception:
744
	preempt_stop(CLBR_ANY)
L
Linus Torvalds 已提交
745
ret_from_intr:
746
#ifdef CONFIG_VM86
747 748 749
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
750 751
#else
	/*
752
	 * We can be coming here from child spawned by kernel_thread().
753
	 */
754 755
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
756
#endif
757 758
	cmpl	$USER_RPL, %eax
	jb	resume_kernel			# not returning to v8086 or userspace
759

L
Linus Torvalds 已提交
760
ENTRY(resume_userspace)
761
	DISABLE_INTERRUPTS(CLBR_ANY)
762
	TRACE_IRQS_OFF
763 764
	movl	%esp, %eax
	call	prepare_exit_to_usermode
765
	jmp	restore_all
766
END(ret_from_exception)
L
Linus Torvalds 已提交
767 768 769

#ifdef CONFIG_PREEMPT
ENTRY(resume_kernel)
770
	DISABLE_INTERRUPTS(CLBR_ANY)
771
.Lneed_resched:
772
	cmpl	$0, PER_CPU_VAR(__preempt_count)
773
	jnz	restore_all_kernel
774
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
775
	jz	restore_all_kernel
776
	call	preempt_schedule_irq
777
	jmp	.Lneed_resched
778
END(resume_kernel)
L
Linus Torvalds 已提交
779 780
#endif

781 782 783 784 785 786 787 788 789 790
GLOBAL(__begin_SYSENTER_singlestep_region)
/*
 * All code from here through __end_SYSENTER_singlestep_region is subject
 * to being single-stepped if a user program sets TF and executes SYSENTER.
 * There is absolutely nothing that we can do to prevent this from happening
 * (thanks Intel!).  To keep our handling of this situation as simple as
 * possible, we handle TF just like AC and NT, except that our #DB handler
 * will ignore all of the single-step traps generated in this range.
 */

791
#ifdef CONFIG_XEN_PV
792 793 794 795 796 797
/*
 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 * entry point expects, so fix it up before using the normal path.
 */
ENTRY(xen_sysenter_target)
	addl	$5*4, %esp			/* remove xen-provided frame */
798
	jmp	.Lsysenter_past_esp
799 800
#endif

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/*
 * 32-bit SYSENTER entry.
 *
 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 * if X86_FEATURE_SEP is available.  This is the preferred system call
 * entry on 32-bit systems.
 *
 * The SYSENTER instruction, in principle, should *only* occur in the
 * vDSO.  In practice, a small number of Android devices were shipped
 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 * never happened in any of Google's Bionic versions -- it only happened
 * in a narrow range of Intel-provided versions.
 *
 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 * SYSENTER does not save anything on the stack,
 * and does not save old EIP (!!!), ESP, or EFLAGS.
 *
 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 * user and/or vm86 state), we explicitly disable the SYSENTER
 * instruction in vm86 mode by reprogramming the MSRs.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  user stack
 * 0(%ebp) arg6
 */
833
ENTRY(entry_SYSENTER_32)
834 835 836 837 838 839 840
	/*
	 * On entry-stack with all userspace-regs live - save and
	 * restore eflags and %eax to use it as scratch-reg for the cr3
	 * switch.
	 */
	pushfl
	pushl	%eax
841
	BUG_IF_WRONG_CR3 no_user_check=1
842 843 844 845 846
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
	popl	%eax
	popfl

	/* Stack empty again, switch to task stack */
847
	movl	TSS_entry2task_stack(%esp), %esp
848

849
.Lsysenter_past_esp:
850
	pushl	$__USER_DS		/* pt_regs->ss */
851
	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
852 853 854 855 856
	pushfl				/* pt_regs->flags (except IF = 0) */
	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
	pushl	$__USER_CS		/* pt_regs->cs */
	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
	pushl	%eax			/* pt_regs->orig_ax */
857
	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
858

859
	/*
860 861
	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
	 * and TF ourselves.  To save a few cycles, we can check whether
862 863 864 865
	 * either was set instead of doing an unconditional popfq.
	 * This needs to happen before enabling interrupts so that
	 * we don't get preempted with NT set.
	 *
866 867 868 869 870 871
	 * If TF is set, we will single-step all the way to here -- do_debug
	 * will ignore all the traps.  (Yes, this is slow, but so is
	 * single-stepping in general.  This allows us to avoid having
	 * a more complicated code to handle the case where a user program
	 * forces us to single-step through the SYSENTER entry code.)
	 *
872 873 874 875 876 877
	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
	 * out-of-line as an optimization: NT is unlikely to be set in the
	 * majority of the cases and instead of polluting the I$ unnecessarily,
	 * we're keeping that code behind a branch which will predict as
	 * not-taken and therefore its instructions won't be fetched.
	 */
878
	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
879 880 881
	jnz	.Lsysenter_fix_flags
.Lsysenter_flags_fixed:

882
	/*
883 884
	 * User mode is traced as though IRQs are on, and SYSENTER
	 * turned them off.
885
	 */
886
	TRACE_IRQS_OFF
887 888 889

	movl	%esp, %eax
	call	do_fast_syscall_32
890 891 892
	/* XEN PV guests always use IRET path */
	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
893

894 895
	STACKLEAK_ERASE

896 897
/* Opportunistic SYSEXIT */
	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

	/*
	 * Setup entry stack - we keep the pointer in %eax and do the
	 * switch after almost all user-state is restored.
	 */

	/* Load entry stack pointer and allocate frame for eflags/eax */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
	subl	$(2*4), %eax

	/* Copy eflags and eax to entry stack */
	movl	PT_EFLAGS(%esp), %edi
	movl	PT_EAX(%esp), %esi
	movl	%edi, (%eax)
	movl	%esi, 4(%eax)

	/* Restore user registers and segments */
915 916
	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
917 918
1:	mov	PT_FS(%esp), %fs
	PTGS_TO_GS
919

920 921 922 923 924
	popl	%ebx			/* pt_regs->bx */
	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
	popl	%esi			/* pt_regs->si */
	popl	%edi			/* pt_regs->di */
	popl	%ebp			/* pt_regs->bp */
925 926 927

	/* Switch to entry stack */
	movl	%eax, %esp
928

929 930 931
	/* Now ready to switch the cr3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

932 933 934 935 936
	/*
	 * Restore all flags except IF. (We restore IF separately because
	 * STI gives a one-instruction window in which we won't be interrupted,
	 * whereas POPF does not.)
	 */
937
	btrl	$X86_EFLAGS_IF_BIT, (%esp)
938
	BUG_IF_WRONG_CR3 no_user_check=1
939
	popfl
940
	popl	%eax
941

942 943 944 945
	/*
	 * Return back to the vDSO, which will pop ecx and edx.
	 * Don't bother with DS and ES (they already contain __USER_DS).
	 */
946 947
	sti
	sysexit
R
Roland McGrath 已提交
948

949 950 951
.pushsection .fixup, "ax"
2:	movl	$0, PT_FS(%esp)
	jmp	1b
952
.popsection
953
	_ASM_EXTABLE(1b, 2b)
954
	PTGS_TO_GS_EX
955 956 957 958 959

.Lsysenter_fix_flags:
	pushl	$X86_EFLAGS_FIXED
	popfl
	jmp	.Lsysenter_flags_fixed
960
GLOBAL(__end_SYSENTER_singlestep_region)
961
ENDPROC(entry_SYSENTER_32)
L
Linus Torvalds 已提交
962

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/*
 * 32-bit legacy system call entry.
 *
 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 * instruction.  INT $0x80 lands here.
 *
 * This entry point can be used by any 32-bit perform system calls.
 * Instances of INT $0x80 can be found inline in various programs and
 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 * fallback for hardware that doesn't support a faster entry method.
 * Restarted 32-bit system calls also fall back to INT $0x80
 * regardless of what instruction was originally used to do the system
 * call.  (64-bit programs can use INT $0x80 as well, but they can
 * only run on 64-bit kernels and therefore land in
 * entry_INT80_compat.)
 *
 * This is considered a slow path.  It is not used by most libc
 * implementations on modern hardware except during process startup.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  arg6
 */
991
ENTRY(entry_INT80_32)
992
	ASM_CLAC
993
	pushl	%eax			/* pt_regs->orig_ax */
994 995

	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
996 997

	/*
998 999
	 * User mode is traced as though IRQs are on, and the interrupt gate
	 * turned them off.
1000
	 */
1001
	TRACE_IRQS_OFF
1002 1003

	movl	%esp, %eax
1004
	call	do_int80_syscall_32
1005
.Lsyscall_32_done:
L
Linus Torvalds 已提交
1006

1007 1008
	STACKLEAK_ERASE

L
Linus Torvalds 已提交
1009
restore_all:
1010
	TRACE_IRQS_IRET
1011
	SWITCH_TO_ENTRY_STACK
1012
.Lrestore_all_notrace:
1013
	CHECK_AND_APPLY_ESPFIX
1014
.Lrestore_nocheck:
1015 1016 1017
	/* Switch back to user CR3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1018 1019
	BUG_IF_WRONG_CR3

1020 1021
	/* Restore user state */
	RESTORE_REGS pop=4			# skip orig_eax/error_code
1022
.Lirq_return:
1023 1024 1025 1026 1027
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler and when returning from
	 * scheduler to user-space.
	 */
I
Ingo Molnar 已提交
1028
	INTERRUPT_RETURN
1029

1030 1031
restore_all_kernel:
	TRACE_IRQS_IRET
1032
	PARANOID_EXIT_TO_KERNEL_MODE
1033
	BUG_IF_WRONG_CR3
1034 1035 1036
	RESTORE_REGS 4
	jmp	.Lirq_return

1037 1038 1039 1040
.section .fixup, "ax"
ENTRY(iret_exc	)
	pushl	$0				# no error code
	pushl	$do_iret_error
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * The stack-frame here is the one that iret faulted on, so its a
	 * return-to-user frame. We are on kernel-cr3 because we come here from
	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
	 * as the checker expects it.
	 */
	pushl	%eax
	SWITCH_TO_USER_CR3 scratch_reg=%eax
	popl	%eax
#endif

1054
	jmp	common_exception
L
Linus Torvalds 已提交
1055
.previous
1056
	_ASM_EXTABLE(.Lirq_return, iret_exc)
1057
ENDPROC(entry_INT80_32)
L
Linus Torvalds 已提交
1058

1059
.macro FIXUP_ESPFIX_STACK
1060 1061 1062 1063 1064 1065 1066
/*
 * Switch back for ESPFIX stack to the normal zerobased stack
 *
 * We can't call C functions using the ESPFIX stack. This code reads
 * the high word of the segment base from the GDT and swiches to the
 * normal stack and adjusts ESP with the matching offset.
 */
1067
#ifdef CONFIG_X86_ESPFIX32
1068
	/* fixup the stack */
1069 1070
	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
1071
	shl	$16, %eax
1072 1073 1074 1075
	addl	%esp, %eax			/* the adjusted stack pointer */
	pushl	$__KERNEL_DS
	pushl	%eax
	lss	(%esp), %esp			/* switch to the normal stack segment */
1076
#endif
1077 1078
.endm
.macro UNWIND_ESPFIX_STACK
1079
#ifdef CONFIG_X86_ESPFIX32
1080
	movl	%ss, %eax
1081
	/* see if on espfix stack */
1082 1083 1084 1085 1086
	cmpw	$__ESPFIX_SS, %ax
	jne	27f
	movl	$__KERNEL_DS, %eax
	movl	%eax, %ds
	movl	%eax, %es
1087 1088 1089
	/* switch to normal stack */
	FIXUP_ESPFIX_STACK
27:
1090
#endif
1091
.endm
L
Linus Torvalds 已提交
1092 1093

/*
1094 1095
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
L
Linus Torvalds 已提交
1096
 */
1097
	.align 8
L
Linus Torvalds 已提交
1098
ENTRY(irq_entries_start)
1099 1100
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1101
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1102 1103 1104 1105
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
1106 1107
END(irq_entries_start)

1108 1109 1110 1111
/*
 * the CPU automatically disables interrupts when executing an IRQ vector,
 * so IRQ-flags tracing has to follow that:
 */
1112
	.p2align CONFIG_X86_L1_CACHE_SHIFT
L
Linus Torvalds 已提交
1113
common_interrupt:
1114
	ASM_CLAC
1115
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1116 1117

	SAVE_ALL switch_stacks=1
1118
	ENCODE_FRAME_POINTER
1119
	TRACE_IRQS_OFF
1120 1121 1122
	movl	%esp, %eax
	call	do_IRQ
	jmp	ret_from_intr
1123
ENDPROC(common_interrupt)
L
Linus Torvalds 已提交
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
#define BUILD_INTERRUPT3(name, nr, fn)			\
ENTRY(name)						\
	ASM_CLAC;					\
	pushl	$~(nr);					\
	SAVE_ALL switch_stacks=1;			\
	ENCODE_FRAME_POINTER;				\
	TRACE_IRQS_OFF					\
	movl	%esp, %eax;				\
	call	fn;					\
	jmp	ret_from_intr;				\
1135
ENDPROC(name)
L
Linus Torvalds 已提交
1136

1137 1138
#define BUILD_INTERRUPT(name, nr)		\
	BUILD_INTERRUPT3(name, nr, smp_##name);	\
T
Tejun Heo 已提交
1139

L
Linus Torvalds 已提交
1140
/* The include is where all of the SMP etc. interrupts come from */
1141
#include <asm/entry_arch.h>
L
Linus Torvalds 已提交
1142 1143

ENTRY(coprocessor_error)
1144
	ASM_CLAC
1145 1146
	pushl	$0
	pushl	$do_coprocessor_error
1147
	jmp	common_exception
1148
END(coprocessor_error)
L
Linus Torvalds 已提交
1149 1150

ENTRY(simd_coprocessor_error)
1151
	ASM_CLAC
1152
	pushl	$0
1153 1154
#ifdef CONFIG_X86_INVD_BUG
	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
1155 1156
	ALTERNATIVE "pushl	$do_general_protection",	\
		    "pushl	$do_simd_coprocessor_error",	\
1157
		    X86_FEATURE_XMM
1158
#else
1159
	pushl	$do_simd_coprocessor_error
1160
#endif
1161
	jmp	common_exception
1162
END(simd_coprocessor_error)
L
Linus Torvalds 已提交
1163 1164

ENTRY(device_not_available)
1165
	ASM_CLAC
1166 1167
	pushl	$-1				# mark this as an int
	pushl	$do_device_not_available
1168
	jmp	common_exception
1169
END(device_not_available)
L
Linus Torvalds 已提交
1170

1171 1172
#ifdef CONFIG_PARAVIRT
ENTRY(native_iret)
I
Ingo Molnar 已提交
1173
	iret
1174
	_ASM_EXTABLE(native_iret, iret_exc)
1175
END(native_iret)
1176 1177
#endif

L
Linus Torvalds 已提交
1178
ENTRY(overflow)
1179
	ASM_CLAC
1180 1181
	pushl	$0
	pushl	$do_overflow
1182
	jmp	common_exception
1183
END(overflow)
L
Linus Torvalds 已提交
1184 1185

ENTRY(bounds)
1186
	ASM_CLAC
1187 1188
	pushl	$0
	pushl	$do_bounds
1189
	jmp	common_exception
1190
END(bounds)
L
Linus Torvalds 已提交
1191 1192

ENTRY(invalid_op)
1193
	ASM_CLAC
1194 1195
	pushl	$0
	pushl	$do_invalid_op
1196
	jmp	common_exception
1197
END(invalid_op)
L
Linus Torvalds 已提交
1198 1199

ENTRY(coprocessor_segment_overrun)
1200
	ASM_CLAC
1201 1202
	pushl	$0
	pushl	$do_coprocessor_segment_overrun
1203
	jmp	common_exception
1204
END(coprocessor_segment_overrun)
L
Linus Torvalds 已提交
1205 1206

ENTRY(invalid_TSS)
1207
	ASM_CLAC
1208
	pushl	$do_invalid_TSS
1209
	jmp	common_exception
1210
END(invalid_TSS)
L
Linus Torvalds 已提交
1211 1212

ENTRY(segment_not_present)
1213
	ASM_CLAC
1214
	pushl	$do_segment_not_present
1215
	jmp	common_exception
1216
END(segment_not_present)
L
Linus Torvalds 已提交
1217 1218

ENTRY(stack_segment)
1219
	ASM_CLAC
1220
	pushl	$do_stack_segment
1221
	jmp	common_exception
1222
END(stack_segment)
L
Linus Torvalds 已提交
1223 1224

ENTRY(alignment_check)
1225
	ASM_CLAC
1226
	pushl	$do_alignment_check
1227
	jmp	common_exception
1228
END(alignment_check)
L
Linus Torvalds 已提交
1229

1230
ENTRY(divide_error)
1231
	ASM_CLAC
1232 1233
	pushl	$0				# no error code
	pushl	$do_divide_error
1234
	jmp	common_exception
1235
END(divide_error)
L
Linus Torvalds 已提交
1236 1237 1238

#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
1239
	ASM_CLAC
1240 1241
	pushl	$0
	pushl	machine_check_vector
1242
	jmp	common_exception
1243
END(machine_check)
L
Linus Torvalds 已提交
1244 1245 1246
#endif

ENTRY(spurious_interrupt_bug)
1247
	ASM_CLAC
1248 1249
	pushl	$0
	pushl	$do_spurious_interrupt_bug
1250
	jmp	common_exception
1251
END(spurious_interrupt_bug)
L
Linus Torvalds 已提交
1252

1253
#ifdef CONFIG_XEN_PV
1254
ENTRY(xen_hypervisor_callback)
1255
	pushl	$-1				/* orig_ax = -1 => not a system call */
1256
	SAVE_ALL
1257
	ENCODE_FRAME_POINTER
1258
	TRACE_IRQS_OFF
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * Check to see if we got the event in the critical
	 * region in xen_iret_direct, after we've reenabled
	 * events and checked for pending events.  This simulates
	 * iret instruction's behaviour where it delivers a
	 * pending interrupt when enabling interrupts:
	 */
	movl	PT_EIP(%esp), %eax
	cmpl	$xen_iret_start_crit, %eax
	jb	1f
	cmpl	$xen_iret_end_crit, %eax
	jae	1f
1272

1273
	jmp	xen_iret_crit_fixup
1274 1275

ENTRY(xen_do_upcall)
1276 1277
1:	mov	%esp, %eax
	call	xen_evtchn_do_upcall
1278
#ifndef CONFIG_PREEMPT
1279
	call	xen_maybe_preempt_hcall
1280
#endif
1281
	jmp	ret_from_intr
1282 1283
ENDPROC(xen_hypervisor_callback)

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/*
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we fix up by reattempting the load, and zeroing the segment
 * register if the load fails.
 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by maintaining a status value in EAX.
 */
1296
ENTRY(xen_failsafe_callback)
1297 1298 1299 1300 1301 1302
	pushl	%eax
	movl	$1, %eax
1:	mov	4(%esp), %ds
2:	mov	8(%esp), %es
3:	mov	12(%esp), %fs
4:	mov	16(%esp), %gs
1303 1304
	/* EAX == 0 => Category 1 (Bad segment)
	   EAX != 0 => Category 2 (Bad IRET) */
1305 1306 1307 1308 1309 1310
	testl	%eax, %eax
	popl	%eax
	lea	16(%esp), %esp
	jz	5f
	jmp	iret_exc
5:	pushl	$-1				/* orig_ax = -1 => not a system call */
1311
	SAVE_ALL
1312
	ENCODE_FRAME_POINTER
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	jmp	ret_from_exception

.section .fixup, "ax"
6:	xorl	%eax, %eax
	movl	%eax, 4(%esp)
	jmp	1b
7:	xorl	%eax, %eax
	movl	%eax, 8(%esp)
	jmp	2b
8:	xorl	%eax, %eax
	movl	%eax, 12(%esp)
	jmp	3b
9:	xorl	%eax, %eax
	movl	%eax, 16(%esp)
	jmp	4b
1328
.previous
1329 1330 1331 1332
	_ASM_EXTABLE(1b, 6b)
	_ASM_EXTABLE(2b, 7b)
	_ASM_EXTABLE(3b, 8b)
	_ASM_EXTABLE(4b, 9b)
1333
ENDPROC(xen_failsafe_callback)
1334
#endif /* CONFIG_XEN_PV */
1335

1336
#ifdef CONFIG_XEN_PVHVM
1337
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1338
		 xen_evtchn_do_upcall)
1339
#endif
1340

1341 1342 1343 1344

#if IS_ENABLED(CONFIG_HYPERV)

BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1345
		 hyperv_vector_handler)
1346

1347 1348 1349
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
		 hyperv_reenlightenment_intr)

1350 1351 1352
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
		 hv_stimer0_vector_handler)

1353
#endif /* CONFIG_HYPERV */
1354

1355
ENTRY(page_fault)
1356
	ASM_CLAC
1357
	pushl	$do_page_fault
1358
	ALIGN
1359 1360 1361 1362
	jmp common_exception
END(page_fault)

common_exception:
1363
	/* the function address is in %gs's slot on the stack */
1364 1365 1366 1367
	pushl	%fs
	pushl	%es
	pushl	%ds
	pushl	%eax
1368 1369 1370 1371 1372
	movl	$(__USER_DS), %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	$(__KERNEL_PERCPU), %eax
	movl	%eax, %fs
1373 1374 1375 1376 1377 1378
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
1379
	SWITCH_TO_KERNEL_STACK
1380
	ENCODE_FRAME_POINTER
1381 1382
	cld
	UNWIND_ESPFIX_STACK
1383
	GS_TO_REG %ecx
1384 1385 1386
	movl	PT_GS(%esp), %edi		# get the function address
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1387 1388
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx
1389
	TRACE_IRQS_OFF
1390
	movl	%esp, %eax			# pt_regs pointer
1391
	CALL_NOSPEC %edi
1392
	jmp	ret_from_exception
1393
END(common_exception)
1394 1395

ENTRY(debug)
1396
	/*
1397
	 * Entry from sysenter is now handled in common_exception
1398
	 */
1399
	ASM_CLAC
1400
	pushl	$-1				# mark this as an int
1401 1402
	pushl	$do_debug
	jmp	common_exception
1403 1404 1405
END(debug)

/*
1406 1407 1408 1409 1410
 * NMI is doubly nasty.  It can happen on the first instruction of
 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 * switched stacks.  We handle both conditions by simply checking whether we
 * interrupted kernel code running on the SYSENTER stack.
1411 1412
 */
ENTRY(nmi)
1413
	ASM_CLAC
1414

1415
#ifdef CONFIG_X86_ESPFIX32
1416 1417 1418 1419
	pushl	%eax
	movl	%ss, %eax
	cmpw	$__ESPFIX_SS, %ax
	popl	%eax
1420
	je	.Lnmi_espfix_stack
1421
#endif
1422 1423

	pushl	%eax				# pt_regs->orig_ax
1424
	SAVE_ALL_NMI cr3_reg=%edi
1425
	ENCODE_FRAME_POINTER
1426 1427
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
1428 1429

	/* Are we currently on the SYSENTER stack? */
1430
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1431 1432 1433
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
1434 1435 1436
	jb	.Lnmi_from_sysenter_stack

	/* Not on SYSENTER stack. */
1437
	call	do_nmi
1438
	jmp	.Lnmi_return
1439

1440 1441 1442 1443 1444
.Lnmi_from_sysenter_stack:
	/*
	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
	 * is using the thread stack right now, so it's safe for us to use it.
	 */
1445
	movl	%esp, %ebx
1446 1447
	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
	call	do_nmi
1448
	movl	%ebx, %esp
1449 1450 1451

.Lnmi_return:
	CHECK_AND_APPLY_ESPFIX
1452
	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1453
	jmp	.Lirq_return
1454

1455
#ifdef CONFIG_X86_ESPFIX32
1456
.Lnmi_espfix_stack:
1457
	/*
1458 1459
	 * create the pointer to lss back
	 */
1460 1461 1462
	pushl	%ss
	pushl	%esp
	addl	$4, (%esp)
1463 1464
	/* copy the iret frame of 12 bytes */
	.rept 3
1465
	pushl	16(%esp)
1466
	.endr
1467
	pushl	%eax
1468
	SAVE_ALL_NMI cr3_reg=%edi
1469
	ENCODE_FRAME_POINTER
1470 1471 1472
	FIXUP_ESPFIX_STACK			# %eax == %esp
	xorl	%edx, %edx			# zero error code
	call	do_nmi
1473
	RESTORE_ALL_NMI cr3_reg=%edi
1474
	lss	12+4(%esp), %esp		# back to espfix stack
1475
	jmp	.Lirq_return
1476
#endif
1477 1478 1479
END(nmi)

ENTRY(int3)
1480
	ASM_CLAC
1481
	pushl	$-1				# mark this as an int
1482 1483

	SAVE_ALL switch_stacks=1
1484
	ENCODE_FRAME_POINTER
1485
	TRACE_IRQS_OFF
1486 1487 1488 1489
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
	call	do_int3
	jmp	ret_from_exception
1490 1491 1492
END(int3)

ENTRY(general_protection)
1493
	pushl	$do_general_protection
1494
	jmp	common_exception
1495 1496
END(general_protection)

G
Gleb Natapov 已提交
1497 1498
#ifdef CONFIG_KVM_GUEST
ENTRY(async_page_fault)
1499
	ASM_CLAC
1500
	pushl	$do_async_page_fault
1501
	jmp	common_exception
1502
END(async_page_fault)
G
Gleb Natapov 已提交
1503
#endif
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)