arm-smmu-v3.c 75.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

23 24
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
25
#include <linux/bitfield.h>
26
#include <linux/bitops.h>
27
#include <linux/crash_dump.h>
28
#include <linux/delay.h>
29
#include <linux/dma-iommu.h>
30 31 32 33 34
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/module.h>
35
#include <linux/msi.h>
36 37
#include <linux/of.h>
#include <linux/of_address.h>
38
#include <linux/of_iommu.h>
39
#include <linux/of_platform.h>
40 41 42
#include <linux/pci.h>
#include <linux/platform_device.h>

43 44
#include <linux/amba/bus.h>

45 46 47 48
#include "io-pgtable.h"

/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
49 50 51 52 53 54 55 56 57
#define IDR0_ST_LVL			GENMASK(28, 27)
#define IDR0_ST_LVL_2LVL		1
#define IDR0_STALL_MODEL		GENMASK(25, 24)
#define IDR0_STALL_MODEL_STALL		0
#define IDR0_STALL_MODEL_FORCE		2
#define IDR0_TTENDIAN			GENMASK(22, 21)
#define IDR0_TTENDIAN_MIXED		0
#define IDR0_TTENDIAN_LE		2
#define IDR0_TTENDIAN_BE		3
58 59 60 61 62 63 64 65 66
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
67 68 69
#define IDR0_TTF			GENMASK(3, 2)
#define IDR0_TTF_AARCH64		2
#define IDR0_TTF_AARCH32_64		3
70 71 72 73 74 75 76
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
77 78 79 80 81
#define IDR1_CMDQS			GENMASK(25, 21)
#define IDR1_EVTQS			GENMASK(20, 16)
#define IDR1_PRIQS			GENMASK(15, 11)
#define IDR1_SSIDSIZE			GENMASK(10, 6)
#define IDR1_SIDSIZE			GENMASK(5, 0)
82 83

#define ARM_SMMU_IDR5			0x14
84
#define IDR5_STALL_MAX			GENMASK(31, 16)
85 86 87
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
88 89 90 91 92 93 94
#define IDR5_OAS			GENMASK(2, 0)
#define IDR5_OAS_32_BIT			0
#define IDR5_OAS_36_BIT			1
#define IDR5_OAS_40_BIT			2
#define IDR5_OAS_42_BIT			3
#define IDR5_OAS_44_BIT			4
#define IDR5_OAS_48_BIT			5
95
#define IDR5_OAS_52_BIT			6
96 97
#define IDR5_VAX			GENMASK(11, 10)
#define IDR5_VAX_52_BIT			1
98 99 100 101 102 103 104 105 106 107

#define ARM_SMMU_CR0			0x20
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
108 109 110 111 112 113 114
#define CR1_TABLE_SH			GENMASK(11, 10)
#define CR1_TABLE_OC			GENMASK(9, 8)
#define CR1_TABLE_IC			GENMASK(7, 6)
#define CR1_QUEUE_SH			GENMASK(5, 4)
#define CR1_QUEUE_OC			GENMASK(3, 2)
#define CR1_QUEUE_IC			GENMASK(1, 0)
/* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
115 116 117 118 119 120 121 122 123
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

124 125
#define ARM_SMMU_GBPA			0x44
#define GBPA_UPDATE			(1 << 31)
126
#define GBPA_ABORT			(1 << 20)
127

128 129
#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
130
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
154
#define STRTAB_BASE_ADDR_MASK		GENMASK_ULL(51, 6)
155 156

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
157 158 159 160 161
#define STRTAB_BASE_CFG_FMT		GENMASK(17, 16)
#define STRTAB_BASE_CFG_FMT_LINEAR	0
#define STRTAB_BASE_CFG_FMT_2LVL	1
#define STRTAB_BASE_CFG_SPLIT		GENMASK(10, 6)
#define STRTAB_BASE_CFG_LOG2SIZE	GENMASK(5, 0)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
182
#define MSI_CFG0_ADDR_MASK		GENMASK_ULL(51, 2)
183 184 185 186 187 188 189 190
#define MSI_CFG2_SH			GENMASK(5, 4)
#define MSI_CFG2_MEMATTR		GENMASK(3, 0)

/* Common memory attribute values */
#define ARM_SMMU_SH_NSH			0
#define ARM_SMMU_SH_OSH			2
#define ARM_SMMU_SH_ISH			3
#define ARM_SMMU_MEMATTR_DEVICE_nGnRE	0x1
191
#define ARM_SMMU_MEMATTR_OIWB		0xf
192 193 194 195 196 197 198 199 200

#define Q_IDX(q, p)			((p) & ((1 << (q)->max_n_shift) - 1))
#define Q_WRP(q, p)			((p) & (1 << (q)->max_n_shift))
#define Q_OVERFLOW_FLAG			(1 << 31)
#define Q_OVF(q, p)			((p) & Q_OVERFLOW_FLAG)
#define Q_ENT(q, p)			((q)->base +			\
					 Q_IDX(q, p) * (q)->ent_dwords)

#define Q_BASE_RWA			(1UL << 62)
201
#define Q_BASE_ADDR_MASK		GENMASK_ULL(51, 5)
202
#define Q_BASE_LOG2SIZE			GENMASK(4, 0)
203 204 205 206 207

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
208 209
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
210
 */
211
#define STRTAB_L1_SZ_SHIFT		20
212 213 214
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
215
#define STRTAB_L1_DESC_SPAN		GENMASK_ULL(4, 0)
216
#define STRTAB_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 6)
217 218 219

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
220 221 222 223 224 225 226 227
#define STRTAB_STE_0_CFG		GENMASK_ULL(3, 1)
#define STRTAB_STE_0_CFG_ABORT		0
#define STRTAB_STE_0_CFG_BYPASS		4
#define STRTAB_STE_0_CFG_S1_TRANS	5
#define STRTAB_STE_0_CFG_S2_TRANS	6

#define STRTAB_STE_0_S1FMT		GENMASK_ULL(5, 4)
#define STRTAB_STE_0_S1FMT_LINEAR	0
228
#define STRTAB_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
229
#define STRTAB_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
230 231 232 233 234

#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
235 236 237
#define STRTAB_STE_1_S1CIR		GENMASK_ULL(3, 2)
#define STRTAB_STE_1_S1COR		GENMASK_ULL(5, 4)
#define STRTAB_STE_1_S1CSH		GENMASK_ULL(7, 6)
238 239 240

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

241
#define STRTAB_STE_1_EATS		GENMASK_ULL(29, 28)
242 243 244 245
#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL

246
#define STRTAB_STE_1_STRW		GENMASK_ULL(31, 30)
247 248 249
#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL

250
#define STRTAB_STE_1_SHCFG		GENMASK_ULL(45, 44)
251 252
#define STRTAB_STE_1_SHCFG_INCOMING	1UL

253 254
#define STRTAB_STE_2_S2VMID		GENMASK_ULL(15, 0)
#define STRTAB_STE_2_VTCR		GENMASK_ULL(50, 32)
255 256 257 258 259
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

260
#define STRTAB_STE_3_S2TTB_MASK		GENMASK_ULL(51, 4)
261 262 263

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
264 265 266 267 268 269 270 271 272 273 274 275 276 277
#define CTXDESC_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
#define ARM64_TCR_T0SZ			GENMASK_ULL(5, 0)
#define CTXDESC_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
#define ARM64_TCR_TG0			GENMASK_ULL(15, 14)
#define CTXDESC_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
#define ARM64_TCR_IRGN0			GENMASK_ULL(9, 8)
#define CTXDESC_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
#define ARM64_TCR_ORGN0			GENMASK_ULL(11, 10)
#define CTXDESC_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
#define ARM64_TCR_SH0			GENMASK_ULL(13, 12)
#define CTXDESC_CD_0_TCR_EPD0		(1ULL << 14)
#define ARM64_TCR_EPD0			(1ULL << 7)
#define CTXDESC_CD_0_TCR_EPD1		(1ULL << 30)
#define ARM64_TCR_EPD1			(1ULL << 23)
278 279 280 281

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

282 283 284 285
#define CTXDESC_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
#define ARM64_TCR_IPS			GENMASK_ULL(34, 32)
#define CTXDESC_CD_0_TCR_TBI0		(1ULL << 38)
#define ARM64_TCR_TBI0			(1ULL << 37)
286 287

#define CTXDESC_CD_0_AA64		(1UL << 41)
288
#define CTXDESC_CD_0_S			(1UL << 44)
289 290
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
291 292
#define CTXDESC_CD_0_ASET		(1UL << 47)
#define CTXDESC_CD_0_ASID		GENMASK_ULL(63, 48)
293

294
#define CTXDESC_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
295 296

/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
297 298
#define ARM_SMMU_TCR2CD(tcr, fld)	FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
					FIELD_GET(ARM64_TCR_##fld, tcr))
299 300 301 302 303

/* Command queue */
#define CMDQ_ENT_DWORDS			2
#define CMDQ_MAX_SZ_SHIFT		8

304
#define CMDQ_CONS_ERR			GENMASK(30, 24)
305 306 307 308
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2

309
#define CMDQ_0_OP			GENMASK_ULL(7, 0)
310 311
#define CMDQ_0_SSV			(1UL << 11)

312 313
#define CMDQ_PREFETCH_0_SID		GENMASK_ULL(63, 32)
#define CMDQ_PREFETCH_1_SIZE		GENMASK_ULL(4, 0)
314
#define CMDQ_PREFETCH_1_ADDR_MASK	GENMASK_ULL(63, 12)
315

316
#define CMDQ_CFGI_0_SID			GENMASK_ULL(63, 32)
317
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
318
#define CMDQ_CFGI_1_RANGE		GENMASK_ULL(4, 0)
319

320 321
#define CMDQ_TLBI_0_VMID		GENMASK_ULL(47, 32)
#define CMDQ_TLBI_0_ASID		GENMASK_ULL(63, 48)
322
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
323
#define CMDQ_TLBI_1_VA_MASK		GENMASK_ULL(63, 12)
324
#define CMDQ_TLBI_1_IPA_MASK		GENMASK_ULL(51, 12)
325

326 327 328 329 330 331 332 333 334 335 336 337
#define CMDQ_PRI_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_PRI_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_PRI_1_GRPID		GENMASK_ULL(8, 0)
#define CMDQ_PRI_1_RESP			GENMASK_ULL(13, 12)

#define CMDQ_SYNC_0_CS			GENMASK_ULL(13, 12)
#define CMDQ_SYNC_0_CS_NONE		0
#define CMDQ_SYNC_0_CS_IRQ		1
#define CMDQ_SYNC_0_CS_SEV		2
#define CMDQ_SYNC_0_MSH			GENMASK_ULL(23, 22)
#define CMDQ_SYNC_0_MSIATTR		GENMASK_ULL(27, 24)
#define CMDQ_SYNC_0_MSIDATA		GENMASK_ULL(63, 32)
338
#define CMDQ_SYNC_1_MSIADDR_MASK	GENMASK_ULL(51, 2)
339 340 341 342 343

/* Event queue */
#define EVTQ_ENT_DWORDS			4
#define EVTQ_MAX_SZ_SHIFT		7

344
#define EVTQ_0_ID			GENMASK_ULL(7, 0)
345 346 347 348 349

/* PRI queue */
#define PRIQ_ENT_DWORDS			2
#define PRIQ_MAX_SZ_SHIFT		8

350 351
#define PRIQ_0_SID			GENMASK_ULL(31, 0)
#define PRIQ_0_SSID			GENMASK_ULL(51, 32)
352 353 354 355 356 357 358
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

359
#define PRIQ_1_PRG_IDX			GENMASK_ULL(8, 0)
360
#define PRIQ_1_ADDR_MASK		GENMASK_ULL(63, 12)
361 362 363

/* High-level queue structures */
#define ARM_SMMU_POLL_TIMEOUT_US	100
364
#define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US	1000000 /* 1s! */
365
#define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT	10
366

367 368 369
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

370
static bool disable_bypass = 1;
371 372 373 374 375
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
376 377 378
	PRI_RESP_DENY = 0,
	PRI_RESP_FAIL = 1,
	PRI_RESP_SUCC = 2,
379 380
};

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
		struct {
			u32			sid;
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
452 453 454 455
		struct {
			u32			msidata;
			u64			msiaddr;
		} sync;
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	};
};

struct arm_smmu_queue {
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;
	u32				max_n_shift;
	u32				prod;
	u32				cons;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
	spinlock_t			lock;
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

struct arm_smmu_s1_cfg {
	__le64				*cdptr;
	dma_addr_t			cdptr_dma;

	struct arm_smmu_ctx_desc {
		u16	asid;
		u64	ttbr;
		u64	tcr;
		u64	mair;
	}				cd;
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_ent {
516 517 518 519 520 521 522 523
	/*
	 * An STE is "assigned" if the master emitting the corresponding SID
	 * is attached to a domain. The behaviour of an unassigned STE is
	 * determined by the disable_bypass parameter, whereas an assigned
	 * STE behaves according to s1_cfg/s2_cfg, which themselves are
	 * configured according to the domain type.
	 */
	bool				assigned;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	struct arm_smmu_s1_cfg		*s1_cfg;
	struct arm_smmu_s2_cfg		*s2_cfg;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
556
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
557
#define ARM_SMMU_FEAT_VAX		(1 << 14)
558 559
	u32				features;

560
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
561
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
562 563
	u32				options;

564 565 566 567 568
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
569
	int				combined_irq;
570
	atomic_t			sync_nr;
571 572 573

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
574
	unsigned long			pgsize_bitmap;
575 576 577 578 579 580 581 582 583 584 585 586 587

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
588

589 590
	u32				sync_count;

591 592
	/* IOMMU core code handle */
	struct iommu_device		iommu;
593 594
};

595 596
/* SMMU private data for each master */
struct arm_smmu_master_data {
597 598 599 600 601 602 603 604 605
	struct arm_smmu_device		*smmu;
	struct arm_smmu_strtab_ent	ste;
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
606
	ARM_SMMU_DOMAIN_BYPASS,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
};

624 625 626 627 628 629 630
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
631
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
632 633 634
	{ 0, NULL},
};

635 636 637 638 639 640 641 642 643 644
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
	if ((offset > SZ_64K) &&
	    (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
		offset -= SZ_64K;

	return smmu->base + offset;
}

645 646 647 648 649
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
/* Low-level queue manipulation functions */
static bool queue_full(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

static bool queue_empty(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

static void queue_sync_cons(struct arm_smmu_queue *q)
{
	q->cons = readl_relaxed(q->cons_reg);
}

static void queue_inc_cons(struct arm_smmu_queue *q)
{
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;

	q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
	writel(q->cons, q->cons_reg);
}

static int queue_sync_prod(struct arm_smmu_queue *q)
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

	if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
		ret = -EOVERFLOW;

	q->prod = prod;
	return ret;
}

static void queue_inc_prod(struct arm_smmu_queue *q)
{
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;

	q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
	writel(q->prod, q->prod_reg);
}

710
/*
711
 * Wait for the SMMU to consume items. If sync is true, wait until the queue
712 713
 * is empty. Otherwise, wait until there is at least one free slot.
 */
714
static int queue_poll_cons(struct arm_smmu_queue *q, bool sync, bool wfe)
715
{
716
	ktime_t timeout;
717
	unsigned int delay = 1, spin_cnt = 0;
718

719 720 721
	/* Wait longer if it's a CMD_SYNC */
	timeout = ktime_add_us(ktime_get(), sync ?
					    ARM_SMMU_CMDQ_SYNC_TIMEOUT_US :
722
					    ARM_SMMU_POLL_TIMEOUT_US);
723

724
	while (queue_sync_cons(q), (sync ? !queue_empty(q) : queue_full(q))) {
725 726 727 728 729
		if (ktime_compare(ktime_get(), timeout) > 0)
			return -ETIMEDOUT;

		if (wfe) {
			wfe();
730
		} else if (++spin_cnt < ARM_SMMU_CMDQ_SYNC_SPIN_COUNT) {
731
			cpu_relax();
732 733
			continue;
		} else {
734 735
			udelay(delay);
			delay *= 2;
736
			spin_cnt = 0;
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
		}
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_full(q))
		return -ENOSPC;

	queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
	queue_inc_prod(q);
	return 0;
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_empty(q))
		return -EAGAIN;

	queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
	queue_inc_cons(q);
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
	memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
783
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
784 785 786 787 788 789

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
790 791
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
792 793 794
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
	case CMDQ_OP_CFGI_STE:
795 796
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
797 798 799
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
800
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
801 802
		break;
	case CMDQ_OP_TLBI_NH_VA:
803 804
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
805 806
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
807
	case CMDQ_OP_TLBI_S2_IPA:
808 809
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
810
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
811 812
		break;
	case CMDQ_OP_TLBI_NH_ASID:
813
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
814 815
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
816
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
817 818
		break;
	case CMDQ_OP_PRI_RESP:
819 820 821 822
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
823 824 825 826 827 828 829 830
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
831
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
832 833
		break;
	case CMDQ_OP_CMD_SYNC:
834
		if (ent->sync.msiaddr)
835
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
836
		else
837 838 839 840
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIDATA, ent->sync.msidata);
841
		cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
862
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
863 864 865 866 867
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
868
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
869 870 871 872 873 874

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
875 876 877 878
	case CMDQ_ERR_CERROR_ILL_IDX:
		/* Fallthrough */
	default:
		break;
879 880 881 882 883 884
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
885
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
886 887 888 889 890 891 892 893 894 895
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

896
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
897 898
}

899 900 901 902 903 904 905 906 907 908 909
static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device *smmu, u64 *cmd)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);

	while (queue_insert_raw(q, cmd) == -ENOSPC) {
		if (queue_poll_cons(q, false, wfe))
			dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
	}
}

910 911 912 913
static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_ent *ent)
{
	u64 cmd[CMDQ_ENT_DWORDS];
914
	unsigned long flags;
915 916 917 918 919 920 921

	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return;
	}

922
	spin_lock_irqsave(&smmu->cmdq.lock, flags);
923 924 925
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
}
926

927 928 929 930
/*
 * The difference between val and sync_idx is bounded by the maximum size of
 * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
 */
931
static int __arm_smmu_sync_poll_msi(struct arm_smmu_device *smmu, u32 sync_idx)
932
{
933 934 935 936 937 938 939
	ktime_t timeout;
	u32 val;

	timeout = ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US);
	val = smp_cond_load_acquire(&smmu->sync_count,
				    (int)(VAL - sync_idx) >= 0 ||
				    !ktime_before(ktime_get(), timeout));
940 941 942 943

	return (int)(val - sync_idx) < 0 ? -ETIMEDOUT : 0;
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device *smmu)
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
		.sync	= {
			.msidata = atomic_inc_return_relaxed(&smmu->sync_nr),
			.msiaddr = virt_to_phys(&smmu->sync_count),
		},
	};

	arm_smmu_cmdq_build_cmd(cmd, &ent);

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);

	return __arm_smmu_sync_poll_msi(smmu, ent.sync.msidata);
}

static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
966 967 968 969 970 971 972 973 974 975 976
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	struct arm_smmu_cmdq_ent ent = { .opcode = CMDQ_OP_CMD_SYNC };
	int ret;

	arm_smmu_cmdq_build_cmd(cmd, &ent);

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
977
	ret = queue_poll_cons(&smmu->cmdq.q, true, wfe);
978
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
979

980 981 982 983 984 985 986 987 988 989 990
	return ret;
}

static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	int ret;
	bool msi = (smmu->features & ARM_SMMU_FEAT_MSI) &&
		   (smmu->features & ARM_SMMU_FEAT_COHERENCY);

	ret = msi ? __arm_smmu_cmdq_issue_sync_msi(smmu)
		  : __arm_smmu_cmdq_issue_sync(smmu);
991 992
	if (ret)
		dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
}

/* Context descriptor manipulation functions */
static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
{
	u64 val = 0;

	/* Repack the TCR. Just care about TTBR0 for now */
	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
	val |= ARM_SMMU_TCR2CD(tcr, TG0);
	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
	val |= ARM_SMMU_TCR2CD(tcr, SH0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
	val |= ARM_SMMU_TCR2CD(tcr, IPS);
	val |= ARM_SMMU_TCR2CD(tcr, TBI0);

	return val;
}

static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
				    struct arm_smmu_s1_cfg *cfg)
{
	u64 val;

	/*
	 * We don't need to issue any invalidation here, as we'll invalidate
	 * the STE when installing the new entry anyway.
	 */
	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
#ifdef __BIG_ENDIAN
	      CTXDESC_CD_0_ENDI |
#endif
1027 1028
	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
	      CTXDESC_CD_0_AA64 | FIELD_PREP(CTXDESC_CD_0_ASID, cfg->cd.asid) |
1029
	      CTXDESC_CD_0_V;
1030 1031 1032 1033 1034

	/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
	if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		val |= CTXDESC_CD_0_S;

1035 1036
	cfg->cdptr[0] = cpu_to_le64(val);

1037
	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK;
1038 1039
	cfg->cdptr[1] = cpu_to_le64(val);

1040
	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair);
1041 1042 1043 1044 1045 1046 1047 1048
}

/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1049
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1050
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1066
	arm_smmu_cmdq_issue_sync(smmu);
1067 1068 1069 1070 1071 1072 1073 1074 1075
}

static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
				      __le64 *dst, struct arm_smmu_strtab_ent *ste)
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1076 1077 1078
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

	if (val & STRTAB_STE_0_V) {
1098
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1099 1100 1101 1102 1103 1104
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1105 1106 1107
		case STRTAB_STE_0_CFG_ABORT:
			if (disable_bypass)
				break;
1108 1109 1110 1111 1112
		default:
			BUG(); /* STE corruption */
		}
	}

1113
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1114 1115 1116 1117 1118
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
	if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
		if (!ste->assigned && disable_bypass)
1119
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1120
		else
1121
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1122 1123

		dst[0] = cpu_to_le64(val);
1124 1125
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1126
		dst[2] = 0; /* Nuke the VMID */
1127 1128 1129 1130 1131
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1132 1133 1134 1135 1136 1137 1138
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

	if (ste->s1_cfg) {
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1139 1140 1141
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1142
#ifdef CONFIG_PCI_ATS
1143
			 FIELD_PREP(STRTAB_STE_1_EATS, STRTAB_STE_1_EATS_TRANS) |
1144
#endif
1145
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1146

1147 1148
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1149 1150
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1151
		val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1152
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS);
1153 1154 1155 1156 1157
	}

	if (ste->s2_cfg) {
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1158 1159
			 FIELD_PREP(STRTAB_STE_2_S2VMID, ste->s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, ste->s2_cfg->vtcr) |
1160 1161 1162 1163 1164 1165
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1166
		dst[3] = cpu_to_le64(ste->s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1167

1168
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1169 1170 1171 1172 1173 1174 1175
	}

	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1176 1177
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1178 1179 1180 1181 1182
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;
1183
	struct arm_smmu_strtab_ent ste = { .assigned = false };
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	for (i = 0; i < nent; ++i) {
		arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1202
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1203 1204

	desc->span = STRTAB_SPLIT + 1;
1205 1206
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL | __GFP_ZERO);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
	u64 evt[EVTQ_ENT_DWORDS];

1227 1228
	do {
		while (!queue_remove_raw(q, evt)) {
1229
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
	} while (!queue_empty(q));
1245 1246 1247 1248 1249 1250

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
	return IRQ_HANDLED;
}

1251 1252 1253 1254 1255 1256
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1257 1258 1259 1260 1261
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1262 1263 1264 1265 1266 1267 1268 1269 1270

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1271
		 evt[1] & PRIQ_1_ADDR_MASK);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1284

1285 1286
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1287 1288 1289 1290 1291 1292 1293 1294
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
	u64 evt[PRIQ_ENT_DWORDS];

1295 1296 1297
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1298

1299 1300 1301
		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
	} while (!queue_empty(q));
1302 1303 1304

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1305
	writel(q->cons, q->cons_reg);
1306 1307 1308 1309 1310 1311 1312
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1313
	u32 gerror, gerrorn, active;
1314 1315 1316 1317 1318
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1319 1320
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1321 1322 1323 1324
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1325
		 active);
1326

1327
	if (active & GERROR_SFM_ERR) {
1328 1329 1330 1331
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1332
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1333 1334
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1335
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1336 1337
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1338
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1339 1340
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1341
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1342 1343
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1344
	if (active & GERROR_PRIQ_ABT_ERR)
1345 1346
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1347
	if (active & GERROR_EVTQ_ABT_ERR)
1348 1349
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1350
	if (active & GERROR_CMDQ_ERR)
1351 1352 1353 1354 1355 1356
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1374 1375 1376
/* IO_PGTABLE API */
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
1377
	arm_smmu_cmdq_issue_sync(smmu);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}

static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1406
					  size_t granule, bool leaf, void *cookie)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
			.addr	= iova,
		},
	};

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1425 1426 1427 1428
	do {
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		cmd.tlbi.addr += granule;
	} while (size -= granule);
1429 1430
}

1431
static const struct iommu_gather_ops arm_smmu_gather_ops = {
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

1454 1455 1456
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

1468 1469 1470 1471 1472 1473
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	mutex_init(&smmu_domain->init_mutex);
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1501
	iommu_put_dma_cookie(domain);
1502
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1503 1504 1505 1506 1507 1508

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

		if (cfg->cdptr) {
1509 1510 1511 1512
			dmam_free_coherent(smmu_domain->smmu->dev,
					   CTXDESC_CD_DWORDS << 3,
					   cfg->cdptr,
					   cfg->cdptr_dma);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1529
	int asid;
1530 1531 1532 1533
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1534
	if (asid < 0)
1535 1536
		return asid;

1537 1538 1539
	cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
					 &cfg->cdptr_dma,
					 GFP_KERNEL | __GFP_ZERO);
1540 1541
	if (!cfg->cdptr) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1542
		ret = -ENOMEM;
1543 1544 1545
		goto out_free_asid;
	}

1546
	cfg->cd.asid	= (u16)asid;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1560
	int vmid;
1561 1562 1563 1564
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1565
	if (vmid < 0)
1566 1567
		return vmid;

1568
	cfg->vmid	= (u16)vmid;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	return 0;
}

static int arm_smmu_domain_finalise(struct iommu_domain *domain)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1586 1587 1588 1589 1590
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

1591 1592 1593 1594 1595 1596 1597 1598
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
1599 1600
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
1617
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1618 1619 1620
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
1621
		.iommu_dev	= smmu->dev,
1622 1623
	};

1624 1625 1626
	if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
		pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;

1627 1628 1629 1630
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

1631
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1632
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
1633
	domain->geometry.force_aperture = true;
1634 1635

	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1636
	if (ret < 0) {
1637
		free_io_pgtable_ops(pgtbl_ops);
1638 1639
		return ret;
	}
1640

1641 1642
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

1667
static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1668
{
1669
	int i, j;
1670 1671
	struct arm_smmu_master_data *master = fwspec->iommu_priv;
	struct arm_smmu_device *smmu = master->smmu;
1672

1673 1674
	for (i = 0; i < fwspec->num_ids; ++i) {
		u32 sid = fwspec->ids[i];
1675 1676
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

1677 1678 1679 1680 1681 1682 1683
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
			if (fwspec->ids[j] == sid)
				break;
		if (j < i)
			continue;

1684
		arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1685 1686 1687
	}
}

1688 1689
static void arm_smmu_detach_dev(struct device *dev)
{
1690
	struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1691

1692
	master->ste.assigned = false;
1693
	arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1694 1695
}

1696 1697 1698 1699 1700
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1701 1702
	struct arm_smmu_master_data *master;
	struct arm_smmu_strtab_ent *ste;
1703

1704
	if (!dev->iommu_fwspec)
1705 1706
		return -ENOENT;

1707 1708 1709 1710
	master = dev->iommu_fwspec->iommu_priv;
	smmu = master->smmu;
	ste = &master->ste;

1711
	/* Already attached to a different domain? */
1712
	if (ste->assigned)
1713
		arm_smmu_detach_dev(dev);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	}

1733
	ste->assigned = true;
1734

1735 1736 1737 1738
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
		ste->s1_cfg = NULL;
		ste->s2_cfg = NULL;
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1739 1740 1741 1742 1743 1744 1745
		ste->s1_cfg = &smmu_domain->s1_cfg;
		ste->s2_cfg = NULL;
		arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
	} else {
		ste->s1_cfg = NULL;
		ste->s2_cfg = &smmu_domain->s2_cfg;
	}
1746

1747
	arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1748 1749 1750 1751 1752 1753 1754 1755
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
1756
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1757 1758 1759 1760

	if (!ops)
		return -ENODEV;

1761
	return ops->map(ops, iova, paddr, size, prot);
1762 1763 1764 1765 1766
}

static size_t
arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
{
1767
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1768 1769 1770 1771

	if (!ops)
		return 0;

1772
	return ops->unmap(ops, iova, size);
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782
static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
{
	struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;

	if (smmu)
		__arm_smmu_tlb_sync(smmu);
}

1783 1784 1785
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
1786
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1787

1788 1789 1790
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

1791 1792 1793
	if (!ops)
		return 0;

1794
	return ops->iova_to_phys(ops, iova);
1795 1796
}

1797
static struct platform_driver arm_smmu_driver;
1798

1799
static int arm_smmu_match_node(struct device *dev, void *data)
1800
{
1801
	return dev->fwnode == data;
1802 1803
}

1804 1805
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1806
{
1807
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1808
						fwnode, arm_smmu_match_node);
1809 1810
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

1823 1824
static struct iommu_ops arm_smmu_ops;

1825 1826 1827 1828
static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu;
1829 1830 1831
	struct arm_smmu_master_data *master;
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct iommu_group *group;
1832

1833
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1834
		return -ENODEV;
1835 1836 1837 1838 1839 1840 1841 1842
	/*
	 * We _can_ actually withstand dodgy bus code re-calling add_device()
	 * without an intervening remove_device()/of_xlate() sequence, but
	 * we're not going to do so quietly...
	 */
	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
		master = fwspec->iommu_priv;
		smmu = master->smmu;
1843
	} else {
1844
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1845 1846 1847 1848 1849 1850 1851 1852
		if (!smmu)
			return -ENODEV;
		master = kzalloc(sizeof(*master), GFP_KERNEL);
		if (!master)
			return -ENOMEM;

		master->smmu = smmu;
		fwspec->iommu_priv = master;
1853 1854
	}

1855 1856 1857
	/* Check the SIDs are in range of the SMMU and our stream table */
	for (i = 0; i < fwspec->num_ids; i++) {
		u32 sid = fwspec->ids[i];
1858

1859 1860
		if (!arm_smmu_sid_in_range(smmu, sid))
			return -ERANGE;
1861

1862 1863 1864 1865 1866 1867
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				return ret;
		}
1868 1869
	}

1870
	group = iommu_group_get_for_dev(dev);
1871
	if (!IS_ERR(group)) {
1872
		iommu_group_put(group);
1873 1874
		iommu_device_link(&smmu->iommu, dev);
	}
1875

1876
	return PTR_ERR_OR_ZERO(group);
1877 1878 1879 1880
}

static void arm_smmu_remove_device(struct device *dev)
{
1881 1882
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_data *master;
1883
	struct arm_smmu_device *smmu;
1884 1885 1886 1887 1888

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

	master = fwspec->iommu_priv;
1889
	smmu = master->smmu;
1890
	if (master && master->ste.assigned)
1891
		arm_smmu_detach_dev(dev);
1892
	iommu_group_remove_device(dev);
1893
	iommu_device_unlink(&smmu->iommu, dev);
1894 1895
	kfree(master);
	iommu_fwspec_free(dev);
1896 1897
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1915 1916 1917 1918 1919
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

1920 1921 1922
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

1938 1939 1940
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	mutex_lock(&smmu_domain->init_mutex);

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

		break;
	default:
		ret = -ENODEV;
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

1965 1966 1967 1968 1969
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

1970 1971 1972 1973 1974 1975 1976
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1977
					 prot, IOMMU_RESV_SW_MSI);
1978 1979 1980 1981
	if (!region)
		return;

	list_add_tail(&region->list, head);
1982 1983

	iommu_dma_get_resv_regions(dev, head);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

1995 1996 1997 1998 1999 2000 2001
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2002 2003
	.flush_iotlb_all	= arm_smmu_iotlb_sync,
	.iotlb_sync		= arm_smmu_iotlb_sync,
2004 2005 2006
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
2007
	.device_group		= arm_smmu_device_group,
2008 2009
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2010
	.of_xlate		= arm_smmu_of_xlate,
2011 2012
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
				   size_t dwords)
{
	size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;

2025
	q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
2026 2027 2028 2029 2030 2031
	if (!q->base) {
		dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
			qsz);
		return -ENOMEM;
	}

2032 2033
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2034 2035 2036
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2037
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2038
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->max_n_shift);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	q->prod = q->cons = 0;
	return 0;
}

static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	spin_lock_init(&smmu->cmdq.lock);
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
	if (ret)
2053
		return ret;
2054 2055 2056 2057 2058

	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
	if (ret)
2059
		return ret;
2060 2061 2062 2063 2064

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2065 2066
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2094
	u32 size, l1size;
2095 2096
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2097 2098 2099
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2100 2101 2102 2103
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2104 2105
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2106
			 size, smmu->sid_bits);
2107

2108
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2109 2110
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2120 2121 2122
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2123 2124
	cfg->strtab_base_cfg = reg;

2125
	return arm_smmu_init_l1_strtab(smmu);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2136 2137
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2148 2149
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2170
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

2183
	atomic_set(&smmu->sync_nr, 0);
2184 2185 2186 2187
	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2188
	return arm_smmu_init_strtab(smmu);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2215 2216 2217 2218 2219 2220
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2221 2222
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2237
	doorbell &= MSI_CFG0_ADDR_MASK;
2238 2239 2240

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2241
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

2262 2263 2264 2265 2266
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

2267 2268 2269
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
2270
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2294
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2295
{
2296
	int irq, ret;
2297

2298
	arm_smmu_setup_msis(smmu);
2299

2300
	/* Request interrupt lines */
2301 2302
	irq = smmu->evtq.q.irq;
	if (irq) {
2303
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2304
						arm_smmu_evtq_thread,
2305 2306
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
2307
		if (ret < 0)
2308
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2309 2310
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2311 2312 2313 2314 2315 2316
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
2317
		if (ret < 0)
2318
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2319 2320
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2321 2322 2323 2324 2325
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
2326
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2327
							arm_smmu_priq_thread,
2328 2329
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
2330
							smmu);
2331
			if (ret < 0)
2332 2333
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
2334 2335
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
2336 2337
		}
	}
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
2356 2357
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2371 2372

	/* Enable interrupt generation on the SMMU */
2373
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

2392
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2393 2394 2395 2396 2397 2398 2399
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2400 2401 2402 2403 2404 2405 2406
	if (reg & CR0_SMMUEN) {
		if (is_kdump_kernel()) {
			arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
			arm_smmu_device_disable(smmu);
			return -EBUSY;
		}

2407
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2408
	}
2409 2410 2411 2412 2413 2414

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
2415 2416 2417 2418 2419 2420
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
	writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2449
	arm_smmu_cmdq_issue_sync(smmu);
2450 2451 2452 2453 2454 2455 2456 2457 2458

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2459
	arm_smmu_cmdq_issue_sync(smmu);
2460 2461 2462

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2463 2464 2465 2466
	writel_relaxed(smmu->evtq.q.prod,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
	writel_relaxed(smmu->evtq.q.cons,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
		writel_relaxed(smmu->priq.q.prod,
2481
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2482
		writel_relaxed(smmu->priq.q.cons,
2483
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

2500 2501 2502 2503 2504 2505

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2506
		if (ret)
2507 2508
			return ret;
	}
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

2519
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2520 2521
{
	u32 reg;
2522
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2523 2524 2525 2526 2527

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
2528
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
2539
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
2574
	 * The coherency feature as set by FW is used in preference to the ID
2575 2576 2577
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
2578
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
2579 2580
			 coherent ? "true" : "false");

2581
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
2582
	case IDR0_STALL_MODEL_FORCE:
2583 2584 2585
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		/* Fallthrough */
	case IDR0_STALL_MODEL_STALL:
2586
		smmu->features |= ARM_SMMU_FEAT_STALLS;
2587
	}
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
2601
	switch (FIELD_GET(IDR0_TTF, reg)) {
2602 2603 2604 2605 2606 2607
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		/* Fallthrough */
	case IDR0_TTF_AARCH64:
		break;
	default:
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

	/* Queue sizes, capped at 4k */
2624 2625
	smmu->cmdq.q.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_CMDQS, reg));
2626 2627 2628 2629 2630 2631
	if (!smmu->cmdq.q.max_n_shift) {
		/* Odd alignment restrictions on the base, so ignore for now */
		dev_err(smmu->dev, "unit-length command queue not supported\n");
		return -ENXIO;
	}

2632 2633 2634 2635
	smmu->evtq.q.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_PRIQS, reg));
2636 2637

	/* SID/SSID sizes */
2638 2639
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
2640

2641 2642 2643 2644 2645 2646 2647
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

2648 2649 2650 2651
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
2652
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
2653 2654 2655

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
2656
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2657
	if (reg & IDR5_GRAN16K)
2658
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2659
	if (reg & IDR5_GRAN4K)
2660
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2661

2662 2663 2664 2665
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

2666
	/* Output address size */
2667
	switch (FIELD_GET(IDR5_OAS, reg)) {
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
2683 2684 2685 2686
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
2687 2688 2689 2690
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
2691 2692 2693 2694
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

2695 2696 2697 2698 2699
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

2700 2701 2702 2703 2704
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

2705
	smmu->ias = max(smmu->ias, smmu->oas);
2706 2707 2708 2709 2710 2711

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

2712
#ifdef CONFIG_ACPI
2713 2714
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
2715 2716
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2717
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2718
		break;
2719
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
2720 2721 2722
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
2723 2724 2725 2726

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

2739 2740
	acpi_smmu_get_options(iort_smmu->model, smmu);

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

2754 2755
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
2756 2757
{
	struct device *dev = &pdev->dev;
2758
	u32 cells;
2759
	int ret = -EINVAL;
2760 2761 2762 2763 2764 2765

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

2776 2777 2778 2779 2780 2781 2782 2783
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

2784 2785 2786 2787
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
2788
	resource_size_t ioaddr;
2789 2790 2791
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
2792 2793 2794 2795 2796 2797 2798 2799

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

2811 2812
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2813
	if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2814 2815 2816
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
2817
	ioaddr = res->start;
2818 2819 2820 2821 2822 2823 2824

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */

2825
	irq = platform_get_irq_byname(pdev, "combined");
2826
	if (irq > 0)
2827 2828 2829 2830 2831
		smmu->combined_irq = irq;
	else {
		irq = platform_get_irq_byname(pdev, "eventq");
		if (irq > 0)
			smmu->evtq.q.irq = irq;
2832

2833 2834 2835
		irq = platform_get_irq_byname(pdev, "priq");
		if (irq > 0)
			smmu->priq.q.irq = irq;
2836

2837 2838 2839 2840
		irq = platform_get_irq_byname(pdev, "gerror");
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
2841
	/* Probe the h/w */
2842
	ret = arm_smmu_device_hw_probe(smmu);
2843 2844 2845 2846 2847 2848 2849 2850
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

2851 2852 2853
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

2854
	/* Reset the device */
2855 2856 2857 2858 2859
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
2860 2861
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
2862 2863
	if (ret)
		return ret;
2864 2865 2866 2867 2868

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
2869 2870 2871 2872
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
2873

2874
#ifdef CONFIG_PCI
2875 2876 2877 2878 2879 2880
	if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
		pci_request_acs();
		ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
2881 2882
#endif
#ifdef CONFIG_ARM_AMBA
2883 2884 2885 2886 2887
	if (amba_bustype.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
		if (ret)
			return ret;
	}
2888
#endif
2889 2890 2891 2892 2893 2894
	if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
	return 0;
2895 2896 2897 2898
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2899
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2900 2901

	arm_smmu_device_disable(smmu);
2902

2903 2904 2905
	return 0;
}

2906 2907 2908 2909 2910
static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
}

2911
static const struct of_device_id arm_smmu_of_match[] = {
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	{ .compatible = "arm,smmu-v3", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu-v3",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
2922
	.probe	= arm_smmu_device_probe,
2923
	.remove	= arm_smmu_device_remove,
2924
	.shutdown = arm_smmu_device_shutdown,
2925
};
2926
module_platform_driver(arm_smmu_driver);
2927 2928 2929 2930

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");