userfaultfd.c 48.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  fs/userfaultfd.c
 *
 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
 *  Copyright (C) 2008-2009 Red Hat, Inc.
 *  Copyright (C) 2015  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 *
 *  Some part derived from fs/eventfd.c (anon inode setup) and
 *  mm/ksm.c (mm hashing).
 */

15
#include <linux/list.h>
16
#include <linux/hashtable.h>
17
#include <linux/sched/signal.h>
18
#include <linux/sched/mm.h>
19 20 21 22 23 24 25 26 27 28 29 30
#include <linux/mm.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/file.h>
#include <linux/bug.h>
#include <linux/anon_inodes.h>
#include <linux/syscalls.h>
#include <linux/userfaultfd_k.h>
#include <linux/mempolicy.h>
#include <linux/ioctl.h>
#include <linux/security.h>
31
#include <linux/hugetlb.h>
32

33 34
static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;

35 36 37 38 39
enum userfaultfd_state {
	UFFD_STATE_WAIT_API,
	UFFD_STATE_RUNNING,
};

40 41 42 43
/*
 * Start with fault_pending_wqh and fault_wqh so they're more likely
 * to be in the same cacheline.
 */
44
struct userfaultfd_ctx {
45 46 47
	/* waitqueue head for the pending (i.e. not read) userfaults */
	wait_queue_head_t fault_pending_wqh;
	/* waitqueue head for the userfaults */
48 49 50
	wait_queue_head_t fault_wqh;
	/* waitqueue head for the pseudo fd to wakeup poll/read */
	wait_queue_head_t fd_wqh;
51 52
	/* waitqueue head for events */
	wait_queue_head_t event_wqh;
53 54
	/* a refile sequence protected by fault_pending_wqh lock */
	struct seqcount refile_seq;
55 56
	/* pseudo fd refcounting */
	atomic_t refcount;
57 58
	/* userfaultfd syscall flags */
	unsigned int flags;
59 60
	/* features requested from the userspace */
	unsigned int features;
61 62 63 64 65 66 67 68
	/* state machine */
	enum userfaultfd_state state;
	/* released */
	bool released;
	/* mm with one ore more vmas attached to this userfaultfd_ctx */
	struct mm_struct *mm;
};

69 70 71 72 73 74
struct userfaultfd_fork_ctx {
	struct userfaultfd_ctx *orig;
	struct userfaultfd_ctx *new;
	struct list_head list;
};

75 76 77 78 79 80 81
struct userfaultfd_unmap_ctx {
	struct userfaultfd_ctx *ctx;
	unsigned long start;
	unsigned long end;
	struct list_head list;
};

82
struct userfaultfd_wait_queue {
83
	struct uffd_msg msg;
84
	wait_queue_entry_t wq;
85
	struct userfaultfd_ctx *ctx;
86
	bool waken;
87 88 89 90 91 92 93
};

struct userfaultfd_wake_range {
	unsigned long start;
	unsigned long len;
};

94
static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 96 97 98 99 100 101 102 103 104 105 106
				     int wake_flags, void *key)
{
	struct userfaultfd_wake_range *range = key;
	int ret;
	struct userfaultfd_wait_queue *uwq;
	unsigned long start, len;

	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
	ret = 0;
	/* len == 0 means wake all */
	start = range->start;
	len = range->len;
107 108
	if (len && (start > uwq->msg.arg.pagefault.address ||
		    start + len <= uwq->msg.arg.pagefault.address))
109
		goto out;
110 111
	WRITE_ONCE(uwq->waken, true);
	/*
112 113
	 * The Program-Order guarantees provided by the scheduler
	 * ensure uwq->waken is visible before the task is woken.
114
	 */
115
	ret = wake_up_state(wq->private, mode);
116
	if (ret) {
117 118 119
		/*
		 * Wake only once, autoremove behavior.
		 *
120 121 122 123 124 125 126
		 * After the effect of list_del_init is visible to the other
		 * CPUs, the waitqueue may disappear from under us, see the
		 * !list_empty_careful() in handle_userfault().
		 *
		 * try_to_wake_up() has an implicit smp_mb(), and the
		 * wq->private is read before calling the extern function
		 * "wake_up_state" (which in turns calls try_to_wake_up).
127
		 */
128
		list_del_init(&wq->entry);
129
	}
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
out:
	return ret;
}

/**
 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 * context.
 * @ctx: [in] Pointer to the userfaultfd context.
 */
static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
{
	if (!atomic_inc_not_zero(&ctx->refcount))
		BUG();
}

/**
 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 * context.
 * @ctx: [in] Pointer to userfaultfd context.
 *
 * The userfaultfd context reference must have been previously acquired either
 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 */
static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
{
	if (atomic_dec_and_test(&ctx->refcount)) {
		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 161
		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 163
		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164
		mmdrop(ctx->mm);
165
		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 167 168
	}
}

169
static inline void msg_init(struct uffd_msg *msg)
170
{
171 172 173 174 175 176 177 178 179 180
	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
	/*
	 * Must use memset to zero out the paddings or kernel data is
	 * leaked to userland.
	 */
	memset(msg, 0, sizeof(struct uffd_msg));
}

static inline struct uffd_msg userfault_msg(unsigned long address,
					    unsigned int flags,
181 182
					    unsigned long reason,
					    unsigned int features)
183 184 185 186 187
{
	struct uffd_msg msg;
	msg_init(&msg);
	msg.event = UFFD_EVENT_PAGEFAULT;
	msg.arg.pagefault.address = address;
188 189
	if (flags & FAULT_FLAG_WRITE)
		/*
190
		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 192 193 194
		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
		 * was a read fault, otherwise if set it means it's
		 * a write fault.
195
		 */
196
		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 198
	if (reason & VM_UFFD_WP)
		/*
199 200 201 202 203
		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
		 * a missing fault, otherwise if set it means it's a
		 * write protect fault.
204
		 */
205
		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206
	if (features & UFFD_FEATURE_THREAD_ID)
207
		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208
	return msg;
209 210
}

211 212 213 214 215 216
#ifdef CONFIG_HUGETLB_PAGE
/*
 * Same functionality as userfaultfd_must_wait below with modifications for
 * hugepmd ranges.
 */
static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217
					 struct vm_area_struct *vma,
218 219 220 221 222 223 224 225 226 227
					 unsigned long address,
					 unsigned long flags,
					 unsigned long reason)
{
	struct mm_struct *mm = ctx->mm;
	pte_t *pte;
	bool ret = true;

	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));

228
	pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	if (!pte)
		goto out;

	ret = false;

	/*
	 * Lockless access: we're in a wait_event so it's ok if it
	 * changes under us.
	 */
	if (huge_pte_none(*pte))
		ret = true;
	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
		ret = true;
out:
	return ret;
}
#else
static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247
					 struct vm_area_struct *vma,
248 249 250 251 252 253 254 255
					 unsigned long address,
					 unsigned long flags,
					 unsigned long reason)
{
	return false;	/* should never get here */
}
#endif /* CONFIG_HUGETLB_PAGE */

256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Verify the pagetables are still not ok after having reigstered into
 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 * userfault that has already been resolved, if userfaultfd_read and
 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 * threads.
 */
static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
					 unsigned long address,
					 unsigned long flags,
					 unsigned long reason)
{
	struct mm_struct *mm = ctx->mm;
	pgd_t *pgd;
270
	p4d_t *p4d;
271 272 273 274 275 276 277 278 279 280
	pud_t *pud;
	pmd_t *pmd, _pmd;
	pte_t *pte;
	bool ret = true;

	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));

	pgd = pgd_offset(mm, address);
	if (!pgd_present(*pgd))
		goto out;
281 282 283 284
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		goto out;
	pud = pud_offset(p4d, address);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	if (!pud_present(*pud))
		goto out;
	pmd = pmd_offset(pud, address);
	/*
	 * READ_ONCE must function as a barrier with narrower scope
	 * and it must be equivalent to:
	 *	_pmd = *pmd; barrier();
	 *
	 * This is to deal with the instability (as in
	 * pmd_trans_unstable) of the pmd.
	 */
	_pmd = READ_ONCE(*pmd);
	if (!pmd_present(_pmd))
		goto out;

	ret = false;
	if (pmd_trans_huge(_pmd))
		goto out;

	/*
	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
	 * and use the standard pte_offset_map() instead of parsing _pmd.
	 */
	pte = pte_offset_map(pmd, address);
	/*
	 * Lockless access: we're in a wait_event so it's ok if it
	 * changes under us.
	 */
	if (pte_none(*pte))
		ret = true;
	pte_unmap(pte);

out:
	return ret;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * The locking rules involved in returning VM_FAULT_RETRY depending on
 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 * recommendation in __lock_page_or_retry is not an understatement.
 *
 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 * not set.
 *
 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 * set, VM_FAULT_RETRY can still be returned if and only if there are
 * fatal_signal_pending()s, and the mmap_sem must be released before
 * returning it.
 */
J
Jan Kara 已提交
336
int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337
{
J
Jan Kara 已提交
338
	struct mm_struct *mm = vmf->vma->vm_mm;
339 340
	struct userfaultfd_ctx *ctx;
	struct userfaultfd_wait_queue uwq;
341
	int ret;
342
	bool must_wait, return_to_userland;
343
	long blocking_state;
344

345
	ret = VM_FAULT_SIGBUS;
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	/*
	 * We don't do userfault handling for the final child pid update.
	 *
	 * We also don't do userfault handling during
	 * coredumping. hugetlbfs has the special
	 * follow_hugetlb_page() to skip missing pages in the
	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
	 * the no_page_table() helper in follow_page_mask(), but the
	 * shmem_vm_ops->fault method is invoked even during
	 * coredumping without mmap_sem and it ends up here.
	 */
	if (current->flags & (PF_EXITING|PF_DUMPCORE))
		goto out;

	/*
	 * Coredumping runs without mmap_sem so we can only check that
	 * the mmap_sem is held, if PF_DUMPCORE was not set.
	 */
	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));

J
Jan Kara 已提交
367
	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368
	if (!ctx)
369
		goto out;
370 371 372 373 374 375

	BUG_ON(ctx->mm != mm);

	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));

376 377 378
	if (ctx->features & UFFD_FEATURE_SIGBUS)
		goto out;

379 380 381 382 383
	/*
	 * If it's already released don't get it. This avoids to loop
	 * in __get_user_pages if userfaultfd_release waits on the
	 * caller of handle_userfault to release the mmap_sem.
	 */
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	if (unlikely(ACCESS_ONCE(ctx->released))) {
		/*
		 * Don't return VM_FAULT_SIGBUS in this case, so a non
		 * cooperative manager can close the uffd after the
		 * last UFFDIO_COPY, without risking to trigger an
		 * involuntary SIGBUS if the process was starting the
		 * userfaultfd while the userfaultfd was still armed
		 * (but after the last UFFDIO_COPY). If the uffd
		 * wasn't already closed when the userfault reached
		 * this point, that would normally be solved by
		 * userfaultfd_must_wait returning 'false'.
		 *
		 * If we were to return VM_FAULT_SIGBUS here, the non
		 * cooperative manager would be instead forced to
		 * always call UFFDIO_UNREGISTER before it can safely
		 * close the uffd.
		 */
		ret = VM_FAULT_NOPAGE;
402
		goto out;
403
	}
404 405 406 407 408 409 410 411 412 413 414

	/*
	 * Check that we can return VM_FAULT_RETRY.
	 *
	 * NOTE: it should become possible to return VM_FAULT_RETRY
	 * even if FAULT_FLAG_TRIED is set without leading to gup()
	 * -EBUSY failures, if the userfaultfd is to be extended for
	 * VM_UFFD_WP tracking and we intend to arm the userfault
	 * without first stopping userland access to the memory. For
	 * VM_UFFD_MISSING userfaults this is enough for now.
	 */
J
Jan Kara 已提交
415
	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 417 418 419 420
		/*
		 * Validate the invariant that nowait must allow retry
		 * to be sure not to return SIGBUS erroneously on
		 * nowait invocations.
		 */
J
Jan Kara 已提交
421
		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 423 424
#ifdef CONFIG_DEBUG_VM
		if (printk_ratelimit()) {
			printk(KERN_WARNING
J
Jan Kara 已提交
425 426
			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
			       vmf->flags);
427 428 429
			dump_stack();
		}
#endif
430
		goto out;
431 432 433 434 435 436
	}

	/*
	 * Handle nowait, not much to do other than tell it to retry
	 * and wait.
	 */
437
	ret = VM_FAULT_RETRY;
J
Jan Kara 已提交
438
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439
		goto out;
440 441 442 443 444 445

	/* take the reference before dropping the mmap_sem */
	userfaultfd_ctx_get(ctx);

	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
	uwq.wq.private = current;
446 447
	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
			ctx->features);
448
	uwq.ctx = ctx;
449
	uwq.waken = false;
450

K
Kirill A. Shutemov 已提交
451
	return_to_userland =
J
Jan Kara 已提交
452
		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453
		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 455
	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
			 TASK_KILLABLE;
456

457
	spin_lock(&ctx->fault_pending_wqh.lock);
458 459 460 461
	/*
	 * After the __add_wait_queue the uwq is visible to userland
	 * through poll/read().
	 */
462 463 464 465 466 467
	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
	/*
	 * The smp_mb() after __set_current_state prevents the reads
	 * following the spin_unlock to happen before the list_add in
	 * __add_wait_queue.
	 */
468
	set_current_state(blocking_state);
469
	spin_unlock(&ctx->fault_pending_wqh.lock);
470

471 472 473 474
	if (!is_vm_hugetlb_page(vmf->vma))
		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
						  reason);
	else
475 476
		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
						       vmf->address,
477
						       vmf->flags, reason);
478 479 480
	up_read(&mm->mmap_sem);

	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
481 482
		   (return_to_userland ? !signal_pending(current) :
		    !fatal_signal_pending(current)))) {
483 484
		wake_up_poll(&ctx->fd_wqh, POLLIN);
		schedule();
485
		ret |= VM_FAULT_MAJOR;
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

		/*
		 * False wakeups can orginate even from rwsem before
		 * up_read() however userfaults will wait either for a
		 * targeted wakeup on the specific uwq waitqueue from
		 * wake_userfault() or for signals or for uffd
		 * release.
		 */
		while (!READ_ONCE(uwq.waken)) {
			/*
			 * This needs the full smp_store_mb()
			 * guarantee as the state write must be
			 * visible to other CPUs before reading
			 * uwq.waken from other CPUs.
			 */
			set_current_state(blocking_state);
			if (READ_ONCE(uwq.waken) ||
			    READ_ONCE(ctx->released) ||
			    (return_to_userland ? signal_pending(current) :
			     fatal_signal_pending(current)))
				break;
			schedule();
		}
509
	}
510

511
	__set_current_state(TASK_RUNNING);
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	if (return_to_userland) {
		if (signal_pending(current) &&
		    !fatal_signal_pending(current)) {
			/*
			 * If we got a SIGSTOP or SIGCONT and this is
			 * a normal userland page fault, just let
			 * userland return so the signal will be
			 * handled and gdb debugging works.  The page
			 * fault code immediately after we return from
			 * this function is going to release the
			 * mmap_sem and it's not depending on it
			 * (unlike gup would if we were not to return
			 * VM_FAULT_RETRY).
			 *
			 * If a fatal signal is pending we still take
			 * the streamlined VM_FAULT_RETRY failure path
			 * and there's no need to retake the mmap_sem
			 * in such case.
			 */
			down_read(&mm->mmap_sem);
533
			ret = VM_FAULT_NOPAGE;
534 535 536
		}
	}

537 538 539 540 541 542 543 544 545 546 547 548 549
	/*
	 * Here we race with the list_del; list_add in
	 * userfaultfd_ctx_read(), however because we don't ever run
	 * list_del_init() to refile across the two lists, the prev
	 * and next pointers will never point to self. list_add also
	 * would never let any of the two pointers to point to
	 * self. So list_empty_careful won't risk to see both pointers
	 * pointing to self at any time during the list refile. The
	 * only case where list_del_init() is called is the full
	 * removal in the wake function and there we don't re-list_add
	 * and it's fine not to block on the spinlock. The uwq on this
	 * kernel stack can be released after the list_del_init.
	 */
550
	if (!list_empty_careful(&uwq.wq.entry)) {
551 552 553 554 555
		spin_lock(&ctx->fault_pending_wqh.lock);
		/*
		 * No need of list_del_init(), the uwq on the stack
		 * will be freed shortly anyway.
		 */
556
		list_del(&uwq.wq.entry);
557
		spin_unlock(&ctx->fault_pending_wqh.lock);
558 559 560 561 562 563 564 565
	}

	/*
	 * ctx may go away after this if the userfault pseudo fd is
	 * already released.
	 */
	userfaultfd_ctx_put(ctx);

566 567
out:
	return ret;
568 569
}

570 571
static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
					      struct userfaultfd_wait_queue *ewq)
572
{
573 574
	if (WARN_ON_ONCE(current->flags & PF_EXITING))
		goto out;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

	ewq->ctx = ctx;
	init_waitqueue_entry(&ewq->wq, current);

	spin_lock(&ctx->event_wqh.lock);
	/*
	 * After the __add_wait_queue the uwq is visible to userland
	 * through poll/read().
	 */
	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
	for (;;) {
		set_current_state(TASK_KILLABLE);
		if (ewq->msg.event == 0)
			break;
		if (ACCESS_ONCE(ctx->released) ||
		    fatal_signal_pending(current)) {
			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
592 593 594 595 596 597 598 599 600
			if (ewq->msg.event == UFFD_EVENT_FORK) {
				struct userfaultfd_ctx *new;

				new = (struct userfaultfd_ctx *)
					(unsigned long)
					ewq->msg.arg.reserved.reserved1;

				userfaultfd_ctx_put(new);
			}
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
			break;
		}

		spin_unlock(&ctx->event_wqh.lock);

		wake_up_poll(&ctx->fd_wqh, POLLIN);
		schedule();

		spin_lock(&ctx->event_wqh.lock);
	}
	__set_current_state(TASK_RUNNING);
	spin_unlock(&ctx->event_wqh.lock);

	/*
	 * ctx may go away after this if the userfault pseudo fd is
	 * already released.
	 */
618
out:
619 620 621 622 623 624 625 626 627 628 629
	userfaultfd_ctx_put(ctx);
}

static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
				       struct userfaultfd_wait_queue *ewq)
{
	ewq->msg.event = 0;
	wake_up_locked(&ctx->event_wqh);
	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
{
	struct userfaultfd_ctx *ctx = NULL, *octx;
	struct userfaultfd_fork_ctx *fctx;

	octx = vma->vm_userfaultfd_ctx.ctx;
	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
		return 0;
	}

	list_for_each_entry(fctx, fcs, list)
		if (fctx->orig == octx) {
			ctx = fctx->new;
			break;
		}

	if (!ctx) {
		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
		if (!fctx)
			return -ENOMEM;

		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
		if (!ctx) {
			kfree(fctx);
			return -ENOMEM;
		}

		atomic_set(&ctx->refcount, 1);
		ctx->flags = octx->flags;
		ctx->state = UFFD_STATE_RUNNING;
		ctx->features = octx->features;
		ctx->released = false;
		ctx->mm = vma->vm_mm;
665
		atomic_inc(&ctx->mm->mm_count);
666 667 668 669 670 671 672 673 674 675 676

		userfaultfd_ctx_get(octx);
		fctx->orig = octx;
		fctx->new = ctx;
		list_add_tail(&fctx->list, fcs);
	}

	vma->vm_userfaultfd_ctx.ctx = ctx;
	return 0;
}

677
static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
678 679 680 681 682 683 684 685 686
{
	struct userfaultfd_ctx *ctx = fctx->orig;
	struct userfaultfd_wait_queue ewq;

	msg_init(&ewq.msg);

	ewq.msg.event = UFFD_EVENT_FORK;
	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;

687
	userfaultfd_event_wait_completion(ctx, &ewq);
688 689 690 691 692 693 694
}

void dup_userfaultfd_complete(struct list_head *fcs)
{
	struct userfaultfd_fork_ctx *fctx, *n;

	list_for_each_entry_safe(fctx, n, fcs, list) {
695
		dup_fctx(fctx);
696 697 698 699 700
		list_del(&fctx->list);
		kfree(fctx);
	}
}

701 702 703 704 705 706 707 708 709 710 711 712
void mremap_userfaultfd_prep(struct vm_area_struct *vma,
			     struct vm_userfaultfd_ctx *vm_ctx)
{
	struct userfaultfd_ctx *ctx;

	ctx = vma->vm_userfaultfd_ctx.ctx;
	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
		vm_ctx->ctx = ctx;
		userfaultfd_ctx_get(ctx);
	}
}

713
void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
714 715 716
				 unsigned long from, unsigned long to,
				 unsigned long len)
{
717
	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	struct userfaultfd_wait_queue ewq;

	if (!ctx)
		return;

	if (to & ~PAGE_MASK) {
		userfaultfd_ctx_put(ctx);
		return;
	}

	msg_init(&ewq.msg);

	ewq.msg.event = UFFD_EVENT_REMAP;
	ewq.msg.arg.remap.from = from;
	ewq.msg.arg.remap.to = to;
	ewq.msg.arg.remap.len = len;

	userfaultfd_event_wait_completion(ctx, &ewq);
}

738
bool userfaultfd_remove(struct vm_area_struct *vma,
739
			unsigned long start, unsigned long end)
740 741 742 743 744 745
{
	struct mm_struct *mm = vma->vm_mm;
	struct userfaultfd_ctx *ctx;
	struct userfaultfd_wait_queue ewq;

	ctx = vma->vm_userfaultfd_ctx.ctx;
746
	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
747
		return true;
748 749 750 751 752 753

	userfaultfd_ctx_get(ctx);
	up_read(&mm->mmap_sem);

	msg_init(&ewq.msg);

754 755 756
	ewq.msg.event = UFFD_EVENT_REMOVE;
	ewq.msg.arg.remove.start = start;
	ewq.msg.arg.remove.end = end;
757 758 759

	userfaultfd_event_wait_completion(ctx, &ewq);

760
	return false;
761 762
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
			  unsigned long start, unsigned long end)
{
	struct userfaultfd_unmap_ctx *unmap_ctx;

	list_for_each_entry(unmap_ctx, unmaps, list)
		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
		    unmap_ctx->end == end)
			return true;

	return false;
}

int userfaultfd_unmap_prep(struct vm_area_struct *vma,
			   unsigned long start, unsigned long end,
			   struct list_head *unmaps)
{
	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
		struct userfaultfd_unmap_ctx *unmap_ctx;
		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;

		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
		    has_unmap_ctx(ctx, unmaps, start, end))
			continue;

		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
		if (!unmap_ctx)
			return -ENOMEM;

		userfaultfd_ctx_get(ctx);
		unmap_ctx->ctx = ctx;
		unmap_ctx->start = start;
		unmap_ctx->end = end;
		list_add_tail(&unmap_ctx->list, unmaps);
	}

	return 0;
}

void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
{
	struct userfaultfd_unmap_ctx *ctx, *n;
	struct userfaultfd_wait_queue ewq;

	list_for_each_entry_safe(ctx, n, uf, list) {
		msg_init(&ewq.msg);

		ewq.msg.event = UFFD_EVENT_UNMAP;
		ewq.msg.arg.remove.start = ctx->start;
		ewq.msg.arg.remove.end = ctx->end;

		userfaultfd_event_wait_completion(ctx->ctx, &ewq);

		list_del(&ctx->list);
		kfree(ctx);
	}
}

821 822 823 824 825 826 827 828 829 830 831
static int userfaultfd_release(struct inode *inode, struct file *file)
{
	struct userfaultfd_ctx *ctx = file->private_data;
	struct mm_struct *mm = ctx->mm;
	struct vm_area_struct *vma, *prev;
	/* len == 0 means wake all */
	struct userfaultfd_wake_range range = { .len = 0, };
	unsigned long new_flags;

	ACCESS_ONCE(ctx->released) = true;

832 833 834
	if (!mmget_not_zero(mm))
		goto wakeup;

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * Flush page faults out of all CPUs. NOTE: all page faults
	 * must be retried without returning VM_FAULT_SIGBUS if
	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
	 * changes while handle_userfault released the mmap_sem. So
	 * it's critical that released is set to true (above), before
	 * taking the mmap_sem for writing.
	 */
	down_write(&mm->mmap_sem);
	prev = NULL;
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		cond_resched();
		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
			prev = vma;
			continue;
		}
		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
				 new_flags, vma->anon_vma,
				 vma->vm_file, vma->vm_pgoff,
				 vma_policy(vma),
				 NULL_VM_UFFD_CTX);
		if (prev)
			vma = prev;
		else
			prev = vma;
		vma->vm_flags = new_flags;
		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
	}
	up_write(&mm->mmap_sem);
867 868
	mmput(mm);
wakeup:
869
	/*
870
	 * After no new page faults can wait on this fault_*wqh, flush
871
	 * the last page faults that may have been already waiting on
872
	 * the fault_*wqh.
873
	 */
874
	spin_lock(&ctx->fault_pending_wqh.lock);
875 876
	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
877
	spin_unlock(&ctx->fault_pending_wqh.lock);
878

879 880 881
	/* Flush pending events that may still wait on event_wqh */
	wake_up_all(&ctx->event_wqh);

882 883 884 885 886
	wake_up_poll(&ctx->fd_wqh, POLLHUP);
	userfaultfd_ctx_put(ctx);
	return 0;
}

887
/* fault_pending_wqh.lock must be hold by the caller */
888 889
static inline struct userfaultfd_wait_queue *find_userfault_in(
		wait_queue_head_t *wqh)
890
{
891
	wait_queue_entry_t *wq;
892
	struct userfaultfd_wait_queue *uwq;
893

894
	VM_BUG_ON(!spin_is_locked(&wqh->lock));
895

896
	uwq = NULL;
897
	if (!waitqueue_active(wqh))
898 899
		goto out;
	/* walk in reverse to provide FIFO behavior to read userfaults */
900
	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
901 902 903
	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
out:
	return uwq;
904
}
905 906 907 908 909 910

static inline struct userfaultfd_wait_queue *find_userfault(
		struct userfaultfd_ctx *ctx)
{
	return find_userfault_in(&ctx->fault_pending_wqh);
}
911

912 913 914 915 916 917
static inline struct userfaultfd_wait_queue *find_userfault_evt(
		struct userfaultfd_ctx *ctx)
{
	return find_userfault_in(&ctx->event_wqh);
}

918 919 920 921 922 923 924 925 926 927 928
static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
{
	struct userfaultfd_ctx *ctx = file->private_data;
	unsigned int ret;

	poll_wait(file, &ctx->fd_wqh, wait);

	switch (ctx->state) {
	case UFFD_STATE_WAIT_API:
		return POLLERR;
	case UFFD_STATE_RUNNING:
929 930 931 932 933 934
		/*
		 * poll() never guarantees that read won't block.
		 * userfaults can be waken before they're read().
		 */
		if (unlikely(!(file->f_flags & O_NONBLOCK)))
			return POLLERR;
935 936 937 938 939 940 941 942 943 944 945 946 947 948
		/*
		 * lockless access to see if there are pending faults
		 * __pollwait last action is the add_wait_queue but
		 * the spin_unlock would allow the waitqueue_active to
		 * pass above the actual list_add inside
		 * add_wait_queue critical section. So use a full
		 * memory barrier to serialize the list_add write of
		 * add_wait_queue() with the waitqueue_active read
		 * below.
		 */
		ret = 0;
		smp_mb();
		if (waitqueue_active(&ctx->fault_pending_wqh))
			ret = POLLIN;
949 950 951
		else if (waitqueue_active(&ctx->event_wqh))
			ret = POLLIN;

952 953
		return ret;
	default:
954 955
		WARN_ON_ONCE(1);
		return POLLERR;
956 957 958
	}
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static const struct file_operations userfaultfd_fops;

static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
				  struct userfaultfd_ctx *new,
				  struct uffd_msg *msg)
{
	int fd;
	struct file *file;
	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;

	fd = get_unused_fd_flags(flags);
	if (fd < 0)
		return fd;

	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
				  O_RDWR | flags);
	if (IS_ERR(file)) {
		put_unused_fd(fd);
		return PTR_ERR(file);
	}

	fd_install(fd, file);
	msg->arg.reserved.reserved1 = 0;
	msg->arg.fork.ufd = fd;

	return 0;
}

987
static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
988
				    struct uffd_msg *msg)
989 990 991
{
	ssize_t ret;
	DECLARE_WAITQUEUE(wait, current);
992
	struct userfaultfd_wait_queue *uwq;
993 994 995 996 997 998 999 1000 1001
	/*
	 * Handling fork event requires sleeping operations, so
	 * we drop the event_wqh lock, then do these ops, then
	 * lock it back and wake up the waiter. While the lock is
	 * dropped the ewq may go away so we keep track of it
	 * carefully.
	 */
	LIST_HEAD(fork_event);
	struct userfaultfd_ctx *fork_nctx = NULL;
1002

1003
	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1004 1005 1006 1007
	spin_lock(&ctx->fd_wqh.lock);
	__add_wait_queue(&ctx->fd_wqh, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
1008 1009 1010
		spin_lock(&ctx->fault_pending_wqh.lock);
		uwq = find_userfault(ctx);
		if (uwq) {
1011 1012 1013 1014 1015 1016 1017 1018 1019
			/*
			 * Use a seqcount to repeat the lockless check
			 * in wake_userfault() to avoid missing
			 * wakeups because during the refile both
			 * waitqueue could become empty if this is the
			 * only userfault.
			 */
			write_seqcount_begin(&ctx->refile_seq);

1020
			/*
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			 * The fault_pending_wqh.lock prevents the uwq
			 * to disappear from under us.
			 *
			 * Refile this userfault from
			 * fault_pending_wqh to fault_wqh, it's not
			 * pending anymore after we read it.
			 *
			 * Use list_del() by hand (as
			 * userfaultfd_wake_function also uses
			 * list_del_init() by hand) to be sure nobody
			 * changes __remove_wait_queue() to use
			 * list_del_init() in turn breaking the
			 * !list_empty_careful() check in
1034
			 * handle_userfault(). The uwq->wq.head list
1035 1036 1037 1038 1039
			 * must never be empty at any time during the
			 * refile, or the waitqueue could disappear
			 * from under us. The "wait_queue_head_t"
			 * parameter of __remove_wait_queue() is unused
			 * anyway.
1040
			 */
1041
			list_del(&uwq->wq.entry);
1042 1043
			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);

1044 1045
			write_seqcount_end(&ctx->refile_seq);

1046 1047
			/* careful to always initialize msg if ret == 0 */
			*msg = uwq->msg;
1048
			spin_unlock(&ctx->fault_pending_wqh.lock);
1049 1050 1051
			ret = 0;
			break;
		}
1052
		spin_unlock(&ctx->fault_pending_wqh.lock);
1053 1054 1055 1056 1057 1058

		spin_lock(&ctx->event_wqh.lock);
		uwq = find_userfault_evt(ctx);
		if (uwq) {
			*msg = uwq->msg;

1059 1060 1061 1062
			if (uwq->msg.event == UFFD_EVENT_FORK) {
				fork_nctx = (struct userfaultfd_ctx *)
					(unsigned long)
					uwq->msg.arg.reserved.reserved1;
1063
				list_move(&uwq->wq.entry, &fork_event);
1064 1065 1066 1067 1068
				spin_unlock(&ctx->event_wqh.lock);
				ret = 0;
				break;
			}

1069 1070 1071 1072 1073 1074 1075
			userfaultfd_event_complete(ctx, uwq);
			spin_unlock(&ctx->event_wqh.lock);
			ret = 0;
			break;
		}
		spin_unlock(&ctx->event_wqh.lock);

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		if (signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}
		if (no_wait) {
			ret = -EAGAIN;
			break;
		}
		spin_unlock(&ctx->fd_wqh.lock);
		schedule();
		spin_lock(&ctx->fd_wqh.lock);
	}
	__remove_wait_queue(&ctx->fd_wqh, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock(&ctx->fd_wqh.lock);

1092 1093 1094 1095 1096 1097 1098 1099
	if (!ret && msg->event == UFFD_EVENT_FORK) {
		ret = resolve_userfault_fork(ctx, fork_nctx, msg);

		if (!ret) {
			spin_lock(&ctx->event_wqh.lock);
			if (!list_empty(&fork_event)) {
				uwq = list_first_entry(&fork_event,
						       typeof(*uwq),
1100 1101
						       wq.entry);
				list_del(&uwq->wq.entry);
1102 1103 1104 1105 1106 1107 1108
				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
				userfaultfd_event_complete(ctx, uwq);
			}
			spin_unlock(&ctx->event_wqh.lock);
		}
	}

1109 1110 1111 1112 1113 1114 1115 1116
	return ret;
}

static ssize_t userfaultfd_read(struct file *file, char __user *buf,
				size_t count, loff_t *ppos)
{
	struct userfaultfd_ctx *ctx = file->private_data;
	ssize_t _ret, ret = 0;
1117
	struct uffd_msg msg;
1118 1119 1120 1121 1122 1123
	int no_wait = file->f_flags & O_NONBLOCK;

	if (ctx->state == UFFD_STATE_WAIT_API)
		return -EINVAL;

	for (;;) {
1124
		if (count < sizeof(msg))
1125
			return ret ? ret : -EINVAL;
1126
		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1127 1128
		if (_ret < 0)
			return ret ? ret : _ret;
1129
		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1130
			return ret ? ret : -EFAULT;
1131 1132 1133
		ret += sizeof(msg);
		buf += sizeof(msg);
		count -= sizeof(msg);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		/*
		 * Allow to read more than one fault at time but only
		 * block if waiting for the very first one.
		 */
		no_wait = O_NONBLOCK;
	}
}

static void __wake_userfault(struct userfaultfd_ctx *ctx,
			     struct userfaultfd_wake_range *range)
{
1145
	spin_lock(&ctx->fault_pending_wqh.lock);
1146
	/* wake all in the range and autoremove */
1147
	if (waitqueue_active(&ctx->fault_pending_wqh))
1148
		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1149 1150
				     range);
	if (waitqueue_active(&ctx->fault_wqh))
1151
		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1152
	spin_unlock(&ctx->fault_pending_wqh.lock);
1153 1154 1155 1156 1157
}

static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
					   struct userfaultfd_wake_range *range)
{
1158 1159 1160
	unsigned seq;
	bool need_wakeup;

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * To be sure waitqueue_active() is not reordered by the CPU
	 * before the pagetable update, use an explicit SMP memory
	 * barrier here. PT lock release or up_read(mmap_sem) still
	 * have release semantics that can allow the
	 * waitqueue_active() to be reordered before the pte update.
	 */
	smp_mb();

	/*
	 * Use waitqueue_active because it's very frequent to
	 * change the address space atomically even if there are no
	 * userfaults yet. So we take the spinlock only when we're
	 * sure we've userfaults to wake.
	 */
1176 1177 1178 1179 1180 1181 1182
	do {
		seq = read_seqcount_begin(&ctx->refile_seq);
		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
			waitqueue_active(&ctx->fault_wqh);
		cond_resched();
	} while (read_seqcount_retry(&ctx->refile_seq, seq));
	if (need_wakeup)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		__wake_userfault(ctx, range);
}

static __always_inline int validate_range(struct mm_struct *mm,
					  __u64 start, __u64 len)
{
	__u64 task_size = mm->task_size;

	if (start & ~PAGE_MASK)
		return -EINVAL;
	if (len & ~PAGE_MASK)
		return -EINVAL;
	if (!len)
		return -EINVAL;
	if (start < mmap_min_addr)
		return -EINVAL;
	if (start >= task_size)
		return -EINVAL;
	if (len > task_size - start)
		return -EINVAL;
	return 0;
}

1206 1207
static inline bool vma_can_userfault(struct vm_area_struct *vma)
{
1208 1209
	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
		vma_is_shmem(vma);
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static int userfaultfd_register(struct userfaultfd_ctx *ctx,
				unsigned long arg)
{
	struct mm_struct *mm = ctx->mm;
	struct vm_area_struct *vma, *prev, *cur;
	int ret;
	struct uffdio_register uffdio_register;
	struct uffdio_register __user *user_uffdio_register;
	unsigned long vm_flags, new_flags;
	bool found;
1222
	bool basic_ioctls;
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	unsigned long start, end, vma_end;

	user_uffdio_register = (struct uffdio_register __user *) arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_register, user_uffdio_register,
			   sizeof(uffdio_register)-sizeof(__u64)))
		goto out;

	ret = -EINVAL;
	if (!uffdio_register.mode)
		goto out;
	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
				     UFFDIO_REGISTER_MODE_WP))
		goto out;
	vm_flags = 0;
	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
		vm_flags |= VM_UFFD_MISSING;
	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
		vm_flags |= VM_UFFD_WP;
		/*
		 * FIXME: remove the below error constraint by
		 * implementing the wprotect tracking mode.
		 */
		ret = -EINVAL;
		goto out;
	}

	ret = validate_range(mm, uffdio_register.range.start,
			     uffdio_register.range.len);
	if (ret)
		goto out;

	start = uffdio_register.range.start;
	end = start + uffdio_register.range.len;

1259 1260 1261 1262
	ret = -ENOMEM;
	if (!mmget_not_zero(mm))
		goto out;

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	down_write(&mm->mmap_sem);
	vma = find_vma_prev(mm, start, &prev);
	if (!vma)
		goto out_unlock;

	/* check that there's at least one vma in the range */
	ret = -EINVAL;
	if (vma->vm_start >= end)
		goto out_unlock;

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * If the first vma contains huge pages, make sure start address
	 * is aligned to huge page size.
	 */
	if (is_vm_hugetlb_page(vma)) {
		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);

		if (start & (vma_hpagesize - 1))
			goto out_unlock;
	}

1284 1285 1286 1287
	/*
	 * Search for not compatible vmas.
	 */
	found = false;
1288
	basic_ioctls = false;
1289 1290 1291 1292 1293 1294 1295 1296
	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
		cond_resched();

		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));

		/* check not compatible vmas */
		ret = -EINVAL;
1297
		if (!vma_can_userfault(cur))
1298
			goto out_unlock;
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		/*
		 * If this vma contains ending address, and huge pages
		 * check alignment.
		 */
		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
		    end > cur->vm_start) {
			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);

			ret = -EINVAL;

			if (end & (vma_hpagesize - 1))
				goto out_unlock;
		}
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

		/*
		 * Check that this vma isn't already owned by a
		 * different userfaultfd. We can't allow more than one
		 * userfaultfd to own a single vma simultaneously or we
		 * wouldn't know which one to deliver the userfaults to.
		 */
		ret = -EBUSY;
		if (cur->vm_userfaultfd_ctx.ctx &&
		    cur->vm_userfaultfd_ctx.ctx != ctx)
			goto out_unlock;

1324 1325 1326
		/*
		 * Note vmas containing huge pages
		 */
1327 1328
		if (is_vm_hugetlb_page(cur))
			basic_ioctls = true;
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		found = true;
	}
	BUG_ON(!found);

	if (vma->vm_start < start)
		prev = vma;

	ret = 0;
	do {
		cond_resched();

1341
		BUG_ON(!vma_can_userfault(vma));
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
		       vma->vm_userfaultfd_ctx.ctx != ctx);

		/*
		 * Nothing to do: this vma is already registered into this
		 * userfaultfd and with the right tracking mode too.
		 */
		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
		    (vma->vm_flags & vm_flags) == vm_flags)
			goto skip;

		if (vma->vm_start > start)
			start = vma->vm_start;
		vma_end = min(end, vma->vm_end);

		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
		prev = vma_merge(mm, prev, start, vma_end, new_flags,
				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
				 vma_policy(vma),
				 ((struct vm_userfaultfd_ctx){ ctx }));
		if (prev) {
			vma = prev;
			goto next;
		}
		if (vma->vm_start < start) {
			ret = split_vma(mm, vma, start, 1);
			if (ret)
				break;
		}
		if (vma->vm_end > end) {
			ret = split_vma(mm, vma, end, 0);
			if (ret)
				break;
		}
	next:
		/*
		 * In the vma_merge() successful mprotect-like case 8:
		 * the next vma was merged into the current one and
		 * the current one has not been updated yet.
		 */
		vma->vm_flags = new_flags;
		vma->vm_userfaultfd_ctx.ctx = ctx;

	skip:
		prev = vma;
		start = vma->vm_end;
		vma = vma->vm_next;
	} while (vma && vma->vm_start < end);
out_unlock:
	up_write(&mm->mmap_sem);
1392
	mmput(mm);
1393 1394 1395 1396 1397 1398
	if (!ret) {
		/*
		 * Now that we scanned all vmas we can already tell
		 * userland which ioctls methods are guaranteed to
		 * succeed on this range.
		 */
1399
		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1400
			     UFFD_API_RANGE_IOCTLS,
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
			     &user_uffdio_register->ioctls))
			ret = -EFAULT;
	}
out:
	return ret;
}

static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
				  unsigned long arg)
{
	struct mm_struct *mm = ctx->mm;
	struct vm_area_struct *vma, *prev, *cur;
	int ret;
	struct uffdio_range uffdio_unregister;
	unsigned long new_flags;
	bool found;
	unsigned long start, end, vma_end;
	const void __user *buf = (void __user *)arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
		goto out;

	ret = validate_range(mm, uffdio_unregister.start,
			     uffdio_unregister.len);
	if (ret)
		goto out;

	start = uffdio_unregister.start;
	end = start + uffdio_unregister.len;

1432 1433 1434 1435
	ret = -ENOMEM;
	if (!mmget_not_zero(mm))
		goto out;

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	down_write(&mm->mmap_sem);
	vma = find_vma_prev(mm, start, &prev);
	if (!vma)
		goto out_unlock;

	/* check that there's at least one vma in the range */
	ret = -EINVAL;
	if (vma->vm_start >= end)
		goto out_unlock;

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	/*
	 * If the first vma contains huge pages, make sure start address
	 * is aligned to huge page size.
	 */
	if (is_vm_hugetlb_page(vma)) {
		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);

		if (start & (vma_hpagesize - 1))
			goto out_unlock;
	}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/*
	 * Search for not compatible vmas.
	 */
	found = false;
	ret = -EINVAL;
	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
		cond_resched();

		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));

		/*
		 * Check not compatible vmas, not strictly required
		 * here as not compatible vmas cannot have an
		 * userfaultfd_ctx registered on them, but this
		 * provides for more strict behavior to notice
		 * unregistration errors.
		 */
1475
		if (!vma_can_userfault(cur))
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			goto out_unlock;

		found = true;
	}
	BUG_ON(!found);

	if (vma->vm_start < start)
		prev = vma;

	ret = 0;
	do {
		cond_resched();

1489
		BUG_ON(!vma_can_userfault(vma));
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

		/*
		 * Nothing to do: this vma is already registered into this
		 * userfaultfd and with the right tracking mode too.
		 */
		if (!vma->vm_userfaultfd_ctx.ctx)
			goto skip;

		if (vma->vm_start > start)
			start = vma->vm_start;
		vma_end = min(end, vma->vm_end);

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		if (userfaultfd_missing(vma)) {
			/*
			 * Wake any concurrent pending userfault while
			 * we unregister, so they will not hang
			 * permanently and it avoids userland to call
			 * UFFDIO_WAKE explicitly.
			 */
			struct userfaultfd_wake_range range;
			range.start = start;
			range.len = vma_end - start;
			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
		}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
		prev = vma_merge(mm, prev, start, vma_end, new_flags,
				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
				 vma_policy(vma),
				 NULL_VM_UFFD_CTX);
		if (prev) {
			vma = prev;
			goto next;
		}
		if (vma->vm_start < start) {
			ret = split_vma(mm, vma, start, 1);
			if (ret)
				break;
		}
		if (vma->vm_end > end) {
			ret = split_vma(mm, vma, end, 0);
			if (ret)
				break;
		}
	next:
		/*
		 * In the vma_merge() successful mprotect-like case 8:
		 * the next vma was merged into the current one and
		 * the current one has not been updated yet.
		 */
		vma->vm_flags = new_flags;
		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;

	skip:
		prev = vma;
		start = vma->vm_end;
		vma = vma->vm_next;
	} while (vma && vma->vm_start < end);
out_unlock:
	up_write(&mm->mmap_sem);
1550
	mmput(mm);
1551 1552 1553 1554 1555
out:
	return ret;
}

/*
1556 1557
 * userfaultfd_wake may be used in combination with the
 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
 */
static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
			    unsigned long arg)
{
	int ret;
	struct uffdio_range uffdio_wake;
	struct userfaultfd_wake_range range;
	const void __user *buf = (void __user *)arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
		goto out;

	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
	if (ret)
		goto out;

	range.start = uffdio_wake.start;
	range.len = uffdio_wake.len;

	/*
	 * len == 0 means wake all and we don't want to wake all here,
	 * so check it again to be sure.
	 */
	VM_BUG_ON(!range.len);

	wake_userfault(ctx, &range);
	ret = 0;

out:
	return ret;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
			    unsigned long arg)
{
	__s64 ret;
	struct uffdio_copy uffdio_copy;
	struct uffdio_copy __user *user_uffdio_copy;
	struct userfaultfd_wake_range range;

	user_uffdio_copy = (struct uffdio_copy __user *) arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
			   /* don't copy "copy" last field */
			   sizeof(uffdio_copy)-sizeof(__s64)))
		goto out;

	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
	if (ret)
		goto out;
	/*
	 * double check for wraparound just in case. copy_from_user()
	 * will later check uffdio_copy.src + uffdio_copy.len to fit
	 * in the userland range.
	 */
	ret = -EINVAL;
	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
		goto out;
	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
		goto out;
1620 1621 1622 1623
	if (mmget_not_zero(ctx->mm)) {
		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
				   uffdio_copy.len);
		mmput(ctx->mm);
1624
	} else {
1625
		return -ESRCH;
1626
	}
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
		return -EFAULT;
	if (ret < 0)
		goto out;
	BUG_ON(!ret);
	/* len == 0 would wake all */
	range.len = ret;
	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
		range.start = uffdio_copy.dst;
		wake_userfault(ctx, &range);
	}
	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
out:
	return ret;
}

static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
				unsigned long arg)
{
	__s64 ret;
	struct uffdio_zeropage uffdio_zeropage;
	struct uffdio_zeropage __user *user_uffdio_zeropage;
	struct userfaultfd_wake_range range;

	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
			   /* don't copy "zeropage" last field */
			   sizeof(uffdio_zeropage)-sizeof(__s64)))
		goto out;

	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
			     uffdio_zeropage.range.len);
	if (ret)
		goto out;
	ret = -EINVAL;
	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
		goto out;

1667 1668 1669 1670
	if (mmget_not_zero(ctx->mm)) {
		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
				     uffdio_zeropage.range.len);
		mmput(ctx->mm);
1671
	} else {
1672
		return -ESRCH;
1673
	}
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
		return -EFAULT;
	if (ret < 0)
		goto out;
	/* len == 0 would wake all */
	BUG_ON(!ret);
	range.len = ret;
	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
		range.start = uffdio_zeropage.range.start;
		wake_userfault(ctx, &range);
	}
	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
out:
	return ret;
}

1690 1691 1692 1693 1694 1695 1696 1697
static inline unsigned int uffd_ctx_features(__u64 user_features)
{
	/*
	 * For the current set of features the bits just coincide
	 */
	return (unsigned int)user_features;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
/*
 * userland asks for a certain API version and we return which bits
 * and ioctl commands are implemented in this kernel for such API
 * version or -EINVAL if unknown.
 */
static int userfaultfd_api(struct userfaultfd_ctx *ctx,
			   unsigned long arg)
{
	struct uffdio_api uffdio_api;
	void __user *buf = (void __user *)arg;
	int ret;
1709
	__u64 features;
1710 1711 1712 1713 1714

	ret = -EINVAL;
	if (ctx->state != UFFD_STATE_WAIT_API)
		goto out;
	ret = -EFAULT;
1715
	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1716
		goto out;
1717 1718
	features = uffdio_api.features;
	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1719 1720 1721 1722 1723 1724
		memset(&uffdio_api, 0, sizeof(uffdio_api));
		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
			goto out;
		ret = -EINVAL;
		goto out;
	}
1725 1726
	/* report all available features and ioctls to userland */
	uffdio_api.features = UFFD_API_FEATURES;
1727 1728 1729 1730 1731
	uffdio_api.ioctls = UFFD_API_IOCTLS;
	ret = -EFAULT;
	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
		goto out;
	ctx->state = UFFD_STATE_RUNNING;
1732 1733
	/* only enable the requested features for this uffd context */
	ctx->features = uffd_ctx_features(features);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	ret = 0;
out:
	return ret;
}

static long userfaultfd_ioctl(struct file *file, unsigned cmd,
			      unsigned long arg)
{
	int ret = -EINVAL;
	struct userfaultfd_ctx *ctx = file->private_data;

1745 1746 1747
	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
		return -EINVAL;

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	switch(cmd) {
	case UFFDIO_API:
		ret = userfaultfd_api(ctx, arg);
		break;
	case UFFDIO_REGISTER:
		ret = userfaultfd_register(ctx, arg);
		break;
	case UFFDIO_UNREGISTER:
		ret = userfaultfd_unregister(ctx, arg);
		break;
	case UFFDIO_WAKE:
		ret = userfaultfd_wake(ctx, arg);
		break;
1761 1762 1763 1764 1765 1766
	case UFFDIO_COPY:
		ret = userfaultfd_copy(ctx, arg);
		break;
	case UFFDIO_ZEROPAGE:
		ret = userfaultfd_zeropage(ctx, arg);
		break;
1767 1768 1769 1770 1771 1772 1773 1774
	}
	return ret;
}

#ifdef CONFIG_PROC_FS
static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
{
	struct userfaultfd_ctx *ctx = f->private_data;
1775
	wait_queue_entry_t *wq;
1776 1777 1778
	struct userfaultfd_wait_queue *uwq;
	unsigned long pending = 0, total = 0;

1779
	spin_lock(&ctx->fault_pending_wqh.lock);
1780
	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1781 1782 1783 1784
		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
		pending++;
		total++;
	}
1785
	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1786 1787 1788
		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
		total++;
	}
1789
	spin_unlock(&ctx->fault_pending_wqh.lock);
1790 1791 1792 1793 1794 1795 1796

	/*
	 * If more protocols will be added, there will be all shown
	 * separated by a space. Like this:
	 *	protocols: aa:... bb:...
	 */
	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1797
		   pending, total, UFFD_API, ctx->features,
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
}
#endif

static const struct file_operations userfaultfd_fops = {
#ifdef CONFIG_PROC_FS
	.show_fdinfo	= userfaultfd_show_fdinfo,
#endif
	.release	= userfaultfd_release,
	.poll		= userfaultfd_poll,
	.read		= userfaultfd_read,
	.unlocked_ioctl = userfaultfd_ioctl,
	.compat_ioctl	= userfaultfd_ioctl,
	.llseek		= noop_llseek,
};

1814 1815 1816 1817 1818 1819
static void init_once_userfaultfd_ctx(void *mem)
{
	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;

	init_waitqueue_head(&ctx->fault_pending_wqh);
	init_waitqueue_head(&ctx->fault_wqh);
1820
	init_waitqueue_head(&ctx->event_wqh);
1821
	init_waitqueue_head(&ctx->fd_wqh);
1822
	seqcount_init(&ctx->refile_seq);
1823 1824
}

1825
/**
1826
 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1827 1828
 * @flags: Flags for the userfaultfd file.
 *
1829
 * This function creates a userfaultfd file pointer, w/out installing
1830 1831 1832 1833 1834 1835
 * it into the fd table. This is useful when the userfaultfd file is
 * used during the initialization of data structures that require
 * extra setup after the userfaultfd creation. So the userfaultfd
 * creation is split into the file pointer creation phase, and the
 * file descriptor installation phase.  In this way races with
 * userspace closing the newly installed file descriptor can be
1836
 * avoided.  Returns a userfaultfd file pointer, or a proper error
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
 * pointer.
 */
static struct file *userfaultfd_file_create(int flags)
{
	struct file *file;
	struct userfaultfd_ctx *ctx;

	BUG_ON(!current->mm);

	/* Check the UFFD_* constants for consistency.  */
	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);

	file = ERR_PTR(-EINVAL);
	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
		goto out;

	file = ERR_PTR(-ENOMEM);
1855
	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1856 1857 1858 1859 1860
	if (!ctx)
		goto out;

	atomic_set(&ctx->refcount, 1);
	ctx->flags = flags;
1861
	ctx->features = 0;
1862 1863 1864 1865
	ctx->state = UFFD_STATE_WAIT_API;
	ctx->released = false;
	ctx->mm = current->mm;
	/* prevent the mm struct to be freed */
V
Vegard Nossum 已提交
1866
	mmgrab(ctx->mm);
1867 1868 1869

	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1870
	if (IS_ERR(file)) {
1871
		mmdrop(ctx->mm);
1872
		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1873
	}
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
out:
	return file;
}

SYSCALL_DEFINE1(userfaultfd, int, flags)
{
	int fd, error;
	struct file *file;

	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
	if (error < 0)
		return error;
	fd = error;

	file = userfaultfd_file_create(flags);
	if (IS_ERR(file)) {
		error = PTR_ERR(file);
		goto err_put_unused_fd;
	}
	fd_install(fd, file);

	return fd;

err_put_unused_fd:
	put_unused_fd(fd);

	return error;
}
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

static int __init userfaultfd_init(void)
{
	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
						sizeof(struct userfaultfd_ctx),
						0,
						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
						init_once_userfaultfd_ctx);
	return 0;
}
__initcall(userfaultfd_init);