userfaultfd.c 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  fs/userfaultfd.c
 *
 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
 *  Copyright (C) 2008-2009 Red Hat, Inc.
 *  Copyright (C) 2015  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 *
 *  Some part derived from fs/eventfd.c (anon inode setup) and
 *  mm/ksm.c (mm hashing).
 */

15
#include <linux/list.h>
16
#include <linux/hashtable.h>
17
#include <linux/sched/signal.h>
18
#include <linux/sched/mm.h>
19 20 21 22 23 24 25 26 27 28 29 30
#include <linux/mm.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/file.h>
#include <linux/bug.h>
#include <linux/anon_inodes.h>
#include <linux/syscalls.h>
#include <linux/userfaultfd_k.h>
#include <linux/mempolicy.h>
#include <linux/ioctl.h>
#include <linux/security.h>
31
#include <linux/hugetlb.h>
32

33 34
static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;

35 36 37 38 39
enum userfaultfd_state {
	UFFD_STATE_WAIT_API,
	UFFD_STATE_RUNNING,
};

40 41 42 43
/*
 * Start with fault_pending_wqh and fault_wqh so they're more likely
 * to be in the same cacheline.
 */
44
struct userfaultfd_ctx {
45 46 47
	/* waitqueue head for the pending (i.e. not read) userfaults */
	wait_queue_head_t fault_pending_wqh;
	/* waitqueue head for the userfaults */
48 49 50
	wait_queue_head_t fault_wqh;
	/* waitqueue head for the pseudo fd to wakeup poll/read */
	wait_queue_head_t fd_wqh;
51 52
	/* waitqueue head for events */
	wait_queue_head_t event_wqh;
53 54
	/* a refile sequence protected by fault_pending_wqh lock */
	struct seqcount refile_seq;
55 56
	/* pseudo fd refcounting */
	atomic_t refcount;
57 58
	/* userfaultfd syscall flags */
	unsigned int flags;
59 60
	/* features requested from the userspace */
	unsigned int features;
61 62 63 64 65 66 67 68
	/* state machine */
	enum userfaultfd_state state;
	/* released */
	bool released;
	/* mm with one ore more vmas attached to this userfaultfd_ctx */
	struct mm_struct *mm;
};

69 70 71 72 73 74
struct userfaultfd_fork_ctx {
	struct userfaultfd_ctx *orig;
	struct userfaultfd_ctx *new;
	struct list_head list;
};

75 76 77 78 79 80 81
struct userfaultfd_unmap_ctx {
	struct userfaultfd_ctx *ctx;
	unsigned long start;
	unsigned long end;
	struct list_head list;
};

82
struct userfaultfd_wait_queue {
83
	struct uffd_msg msg;
84 85
	wait_queue_t wq;
	struct userfaultfd_ctx *ctx;
86
	bool waken;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
};

struct userfaultfd_wake_range {
	unsigned long start;
	unsigned long len;
};

static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
				     int wake_flags, void *key)
{
	struct userfaultfd_wake_range *range = key;
	int ret;
	struct userfaultfd_wait_queue *uwq;
	unsigned long start, len;

	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
	ret = 0;
	/* len == 0 means wake all */
	start = range->start;
	len = range->len;
107 108
	if (len && (start > uwq->msg.arg.pagefault.address ||
		    start + len <= uwq->msg.arg.pagefault.address))
109
		goto out;
110 111 112 113 114 115
	WRITE_ONCE(uwq->waken, true);
	/*
	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
	 * renders uwq->waken visible to other CPUs before the task is
	 * waken.
	 */
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	ret = wake_up_state(wq->private, mode);
	if (ret)
		/*
		 * Wake only once, autoremove behavior.
		 *
		 * After the effect of list_del_init is visible to the
		 * other CPUs, the waitqueue may disappear from under
		 * us, see the !list_empty_careful() in
		 * handle_userfault(). try_to_wake_up() has an
		 * implicit smp_mb__before_spinlock, and the
		 * wq->private is read before calling the extern
		 * function "wake_up_state" (which in turns calls
		 * try_to_wake_up). While the spin_lock;spin_unlock;
		 * wouldn't be enough, the smp_mb__before_spinlock is
		 * enough to avoid an explicit smp_mb() here.
		 */
		list_del_init(&wq->task_list);
out:
	return ret;
}

/**
 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 * context.
 * @ctx: [in] Pointer to the userfaultfd context.
 *
 * Returns: In case of success, returns not zero.
 */
static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
{
	if (!atomic_inc_not_zero(&ctx->refcount))
		BUG();
}

/**
 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 * context.
 * @ctx: [in] Pointer to userfaultfd context.
 *
 * The userfaultfd context reference must have been previously acquired either
 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 */
static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
{
	if (atomic_dec_and_test(&ctx->refcount)) {
		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
165 166
		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
167 168
		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
169
		mmdrop(ctx->mm);
170
		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
171 172 173
	}
}

174
static inline void msg_init(struct uffd_msg *msg)
175
{
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
	/*
	 * Must use memset to zero out the paddings or kernel data is
	 * leaked to userland.
	 */
	memset(msg, 0, sizeof(struct uffd_msg));
}

static inline struct uffd_msg userfault_msg(unsigned long address,
					    unsigned int flags,
					    unsigned long reason)
{
	struct uffd_msg msg;
	msg_init(&msg);
	msg.event = UFFD_EVENT_PAGEFAULT;
	msg.arg.pagefault.address = address;
192 193
	if (flags & FAULT_FLAG_WRITE)
		/*
194
		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
195 196 197 198
		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
		 * was a read fault, otherwise if set it means it's
		 * a write fault.
199
		 */
200
		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
201 202
	if (reason & VM_UFFD_WP)
		/*
203 204 205 206 207
		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
		 * a missing fault, otherwise if set it means it's a
		 * write protect fault.
208
		 */
209 210
		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
	return msg;
211 212
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#ifdef CONFIG_HUGETLB_PAGE
/*
 * Same functionality as userfaultfd_must_wait below with modifications for
 * hugepmd ranges.
 */
static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
					 unsigned long address,
					 unsigned long flags,
					 unsigned long reason)
{
	struct mm_struct *mm = ctx->mm;
	pte_t *pte;
	bool ret = true;

	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));

	pte = huge_pte_offset(mm, address);
	if (!pte)
		goto out;

	ret = false;

	/*
	 * Lockless access: we're in a wait_event so it's ok if it
	 * changes under us.
	 */
	if (huge_pte_none(*pte))
		ret = true;
	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
		ret = true;
out:
	return ret;
}
#else
static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
					 unsigned long address,
					 unsigned long flags,
					 unsigned long reason)
{
	return false;	/* should never get here */
}
#endif /* CONFIG_HUGETLB_PAGE */

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * Verify the pagetables are still not ok after having reigstered into
 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 * userfault that has already been resolved, if userfaultfd_read and
 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 * threads.
 */
static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
					 unsigned long address,
					 unsigned long flags,
					 unsigned long reason)
{
	struct mm_struct *mm = ctx->mm;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd, _pmd;
	pte_t *pte;
	bool ret = true;

	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));

	pgd = pgd_offset(mm, address);
	if (!pgd_present(*pgd))
		goto out;
	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		goto out;
	pmd = pmd_offset(pud, address);
	/*
	 * READ_ONCE must function as a barrier with narrower scope
	 * and it must be equivalent to:
	 *	_pmd = *pmd; barrier();
	 *
	 * This is to deal with the instability (as in
	 * pmd_trans_unstable) of the pmd.
	 */
	_pmd = READ_ONCE(*pmd);
	if (!pmd_present(_pmd))
		goto out;

	ret = false;
	if (pmd_trans_huge(_pmd))
		goto out;

	/*
	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
	 * and use the standard pte_offset_map() instead of parsing _pmd.
	 */
	pte = pte_offset_map(pmd, address);
	/*
	 * Lockless access: we're in a wait_event so it's ok if it
	 * changes under us.
	 */
	if (pte_none(*pte))
		ret = true;
	pte_unmap(pte);

out:
	return ret;
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * The locking rules involved in returning VM_FAULT_RETRY depending on
 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 * recommendation in __lock_page_or_retry is not an understatement.
 *
 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 * not set.
 *
 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 * set, VM_FAULT_RETRY can still be returned if and only if there are
 * fatal_signal_pending()s, and the mmap_sem must be released before
 * returning it.
 */
J
Jan Kara 已提交
332
int handle_userfault(struct vm_fault *vmf, unsigned long reason)
333
{
J
Jan Kara 已提交
334
	struct mm_struct *mm = vmf->vma->vm_mm;
335 336
	struct userfaultfd_ctx *ctx;
	struct userfaultfd_wait_queue uwq;
337
	int ret;
338
	bool must_wait, return_to_userland;
339
	long blocking_state;
340 341 342

	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));

343
	ret = VM_FAULT_SIGBUS;
J
Jan Kara 已提交
344
	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
345
	if (!ctx)
346
		goto out;
347 348 349 350 351 352 353 354 355 356 357 358

	BUG_ON(ctx->mm != mm);

	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));

	/*
	 * If it's already released don't get it. This avoids to loop
	 * in __get_user_pages if userfaultfd_release waits on the
	 * caller of handle_userfault to release the mmap_sem.
	 */
	if (unlikely(ACCESS_ONCE(ctx->released)))
359
		goto out;
360

361 362 363 364 365 366
	/*
	 * We don't do userfault handling for the final child pid update.
	 */
	if (current->flags & PF_EXITING)
		goto out;

367 368 369 370 371 372 373 374 375 376
	/*
	 * Check that we can return VM_FAULT_RETRY.
	 *
	 * NOTE: it should become possible to return VM_FAULT_RETRY
	 * even if FAULT_FLAG_TRIED is set without leading to gup()
	 * -EBUSY failures, if the userfaultfd is to be extended for
	 * VM_UFFD_WP tracking and we intend to arm the userfault
	 * without first stopping userland access to the memory. For
	 * VM_UFFD_MISSING userfaults this is enough for now.
	 */
J
Jan Kara 已提交
377
	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
378 379 380 381 382
		/*
		 * Validate the invariant that nowait must allow retry
		 * to be sure not to return SIGBUS erroneously on
		 * nowait invocations.
		 */
J
Jan Kara 已提交
383
		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
384 385 386
#ifdef CONFIG_DEBUG_VM
		if (printk_ratelimit()) {
			printk(KERN_WARNING
J
Jan Kara 已提交
387 388
			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
			       vmf->flags);
389 390 391
			dump_stack();
		}
#endif
392
		goto out;
393 394 395 396 397 398
	}

	/*
	 * Handle nowait, not much to do other than tell it to retry
	 * and wait.
	 */
399
	ret = VM_FAULT_RETRY;
J
Jan Kara 已提交
400
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
401
		goto out;
402 403 404 405 406 407

	/* take the reference before dropping the mmap_sem */
	userfaultfd_ctx_get(ctx);

	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
	uwq.wq.private = current;
J
Jan Kara 已提交
408
	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
409
	uwq.ctx = ctx;
410
	uwq.waken = false;
411

K
Kirill A. Shutemov 已提交
412
	return_to_userland =
J
Jan Kara 已提交
413
		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
414
		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
415 416
	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
			 TASK_KILLABLE;
417

418
	spin_lock(&ctx->fault_pending_wqh.lock);
419 420 421 422
	/*
	 * After the __add_wait_queue the uwq is visible to userland
	 * through poll/read().
	 */
423 424 425 426 427 428
	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
	/*
	 * The smp_mb() after __set_current_state prevents the reads
	 * following the spin_unlock to happen before the list_add in
	 * __add_wait_queue.
	 */
429
	set_current_state(blocking_state);
430
	spin_unlock(&ctx->fault_pending_wqh.lock);
431

432 433 434 435 436 437
	if (!is_vm_hugetlb_page(vmf->vma))
		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
						  reason);
	else
		must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
						       vmf->flags, reason);
438 439 440
	up_read(&mm->mmap_sem);

	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
441 442
		   (return_to_userland ? !signal_pending(current) :
		    !fatal_signal_pending(current)))) {
443 444
		wake_up_poll(&ctx->fd_wqh, POLLIN);
		schedule();
445
		ret |= VM_FAULT_MAJOR;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

		/*
		 * False wakeups can orginate even from rwsem before
		 * up_read() however userfaults will wait either for a
		 * targeted wakeup on the specific uwq waitqueue from
		 * wake_userfault() or for signals or for uffd
		 * release.
		 */
		while (!READ_ONCE(uwq.waken)) {
			/*
			 * This needs the full smp_store_mb()
			 * guarantee as the state write must be
			 * visible to other CPUs before reading
			 * uwq.waken from other CPUs.
			 */
			set_current_state(blocking_state);
			if (READ_ONCE(uwq.waken) ||
			    READ_ONCE(ctx->released) ||
			    (return_to_userland ? signal_pending(current) :
			     fatal_signal_pending(current)))
				break;
			schedule();
		}
469
	}
470

471
	__set_current_state(TASK_RUNNING);
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	if (return_to_userland) {
		if (signal_pending(current) &&
		    !fatal_signal_pending(current)) {
			/*
			 * If we got a SIGSTOP or SIGCONT and this is
			 * a normal userland page fault, just let
			 * userland return so the signal will be
			 * handled and gdb debugging works.  The page
			 * fault code immediately after we return from
			 * this function is going to release the
			 * mmap_sem and it's not depending on it
			 * (unlike gup would if we were not to return
			 * VM_FAULT_RETRY).
			 *
			 * If a fatal signal is pending we still take
			 * the streamlined VM_FAULT_RETRY failure path
			 * and there's no need to retake the mmap_sem
			 * in such case.
			 */
			down_read(&mm->mmap_sem);
493
			ret = VM_FAULT_NOPAGE;
494 495 496
		}
	}

497 498 499 500 501 502 503 504 505 506 507 508 509
	/*
	 * Here we race with the list_del; list_add in
	 * userfaultfd_ctx_read(), however because we don't ever run
	 * list_del_init() to refile across the two lists, the prev
	 * and next pointers will never point to self. list_add also
	 * would never let any of the two pointers to point to
	 * self. So list_empty_careful won't risk to see both pointers
	 * pointing to self at any time during the list refile. The
	 * only case where list_del_init() is called is the full
	 * removal in the wake function and there we don't re-list_add
	 * and it's fine not to block on the spinlock. The uwq on this
	 * kernel stack can be released after the list_del_init.
	 */
510
	if (!list_empty_careful(&uwq.wq.task_list)) {
511 512 513 514 515 516 517
		spin_lock(&ctx->fault_pending_wqh.lock);
		/*
		 * No need of list_del_init(), the uwq on the stack
		 * will be freed shortly anyway.
		 */
		list_del(&uwq.wq.task_list);
		spin_unlock(&ctx->fault_pending_wqh.lock);
518 519 520 521 522 523 524 525
	}

	/*
	 * ctx may go away after this if the userfault pseudo fd is
	 * already released.
	 */
	userfaultfd_ctx_put(ctx);

526 527
out:
	return ret;
528 529
}

530 531
static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
					      struct userfaultfd_wait_queue *ewq)
532
{
533 534
	if (WARN_ON_ONCE(current->flags & PF_EXITING))
		goto out;
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

	ewq->ctx = ctx;
	init_waitqueue_entry(&ewq->wq, current);

	spin_lock(&ctx->event_wqh.lock);
	/*
	 * After the __add_wait_queue the uwq is visible to userland
	 * through poll/read().
	 */
	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
	for (;;) {
		set_current_state(TASK_KILLABLE);
		if (ewq->msg.event == 0)
			break;
		if (ACCESS_ONCE(ctx->released) ||
		    fatal_signal_pending(current)) {
			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
			break;
		}

		spin_unlock(&ctx->event_wqh.lock);

		wake_up_poll(&ctx->fd_wqh, POLLIN);
		schedule();

		spin_lock(&ctx->event_wqh.lock);
	}
	__set_current_state(TASK_RUNNING);
	spin_unlock(&ctx->event_wqh.lock);

	/*
	 * ctx may go away after this if the userfault pseudo fd is
	 * already released.
	 */
569
out:
570 571 572 573 574 575 576 577 578 579 580
	userfaultfd_ctx_put(ctx);
}

static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
				       struct userfaultfd_wait_queue *ewq)
{
	ewq->msg.event = 0;
	wake_up_locked(&ctx->event_wqh);
	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
{
	struct userfaultfd_ctx *ctx = NULL, *octx;
	struct userfaultfd_fork_ctx *fctx;

	octx = vma->vm_userfaultfd_ctx.ctx;
	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
		return 0;
	}

	list_for_each_entry(fctx, fcs, list)
		if (fctx->orig == octx) {
			ctx = fctx->new;
			break;
		}

	if (!ctx) {
		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
		if (!fctx)
			return -ENOMEM;

		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
		if (!ctx) {
			kfree(fctx);
			return -ENOMEM;
		}

		atomic_set(&ctx->refcount, 1);
		ctx->flags = octx->flags;
		ctx->state = UFFD_STATE_RUNNING;
		ctx->features = octx->features;
		ctx->released = false;
		ctx->mm = vma->vm_mm;
616
		atomic_inc(&ctx->mm->mm_count);
617 618 619 620 621 622 623 624 625 626 627

		userfaultfd_ctx_get(octx);
		fctx->orig = octx;
		fctx->new = ctx;
		list_add_tail(&fctx->list, fcs);
	}

	vma->vm_userfaultfd_ctx.ctx = ctx;
	return 0;
}

628
static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
629 630 631 632 633 634 635 636 637
{
	struct userfaultfd_ctx *ctx = fctx->orig;
	struct userfaultfd_wait_queue ewq;

	msg_init(&ewq.msg);

	ewq.msg.event = UFFD_EVENT_FORK;
	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;

638
	userfaultfd_event_wait_completion(ctx, &ewq);
639 640 641 642 643 644 645
}

void dup_userfaultfd_complete(struct list_head *fcs)
{
	struct userfaultfd_fork_ctx *fctx, *n;

	list_for_each_entry_safe(fctx, n, fcs, list) {
646
		dup_fctx(fctx);
647 648 649 650 651
		list_del(&fctx->list);
		kfree(fctx);
	}
}

652 653 654 655 656 657 658 659 660 661 662 663
void mremap_userfaultfd_prep(struct vm_area_struct *vma,
			     struct vm_userfaultfd_ctx *vm_ctx)
{
	struct userfaultfd_ctx *ctx;

	ctx = vma->vm_userfaultfd_ctx.ctx;
	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
		vm_ctx->ctx = ctx;
		userfaultfd_ctx_get(ctx);
	}
}

664
void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
665 666 667
				 unsigned long from, unsigned long to,
				 unsigned long len)
{
668
	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	struct userfaultfd_wait_queue ewq;

	if (!ctx)
		return;

	if (to & ~PAGE_MASK) {
		userfaultfd_ctx_put(ctx);
		return;
	}

	msg_init(&ewq.msg);

	ewq.msg.event = UFFD_EVENT_REMAP;
	ewq.msg.arg.remap.from = from;
	ewq.msg.arg.remap.to = to;
	ewq.msg.arg.remap.len = len;

	userfaultfd_event_wait_completion(ctx, &ewq);
}

689 690 691
void userfaultfd_remove(struct vm_area_struct *vma,
			struct vm_area_struct **prev,
			unsigned long start, unsigned long end)
692 693 694 695 696 697
{
	struct mm_struct *mm = vma->vm_mm;
	struct userfaultfd_ctx *ctx;
	struct userfaultfd_wait_queue ewq;

	ctx = vma->vm_userfaultfd_ctx.ctx;
698
	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
699 700 701 702 703 704 705 706 707
		return;

	userfaultfd_ctx_get(ctx);
	up_read(&mm->mmap_sem);

	*prev = NULL; /* We wait for ACK w/o the mmap semaphore */

	msg_init(&ewq.msg);

708 709 710
	ewq.msg.event = UFFD_EVENT_REMOVE;
	ewq.msg.arg.remove.start = start;
	ewq.msg.arg.remove.end = end;
711 712 713 714 715 716

	userfaultfd_event_wait_completion(ctx, &ewq);

	down_read(&mm->mmap_sem);
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
			  unsigned long start, unsigned long end)
{
	struct userfaultfd_unmap_ctx *unmap_ctx;

	list_for_each_entry(unmap_ctx, unmaps, list)
		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
		    unmap_ctx->end == end)
			return true;

	return false;
}

int userfaultfd_unmap_prep(struct vm_area_struct *vma,
			   unsigned long start, unsigned long end,
			   struct list_head *unmaps)
{
	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
		struct userfaultfd_unmap_ctx *unmap_ctx;
		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;

		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
		    has_unmap_ctx(ctx, unmaps, start, end))
			continue;

		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
		if (!unmap_ctx)
			return -ENOMEM;

		userfaultfd_ctx_get(ctx);
		unmap_ctx->ctx = ctx;
		unmap_ctx->start = start;
		unmap_ctx->end = end;
		list_add_tail(&unmap_ctx->list, unmaps);
	}

	return 0;
}

void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
{
	struct userfaultfd_unmap_ctx *ctx, *n;
	struct userfaultfd_wait_queue ewq;

	list_for_each_entry_safe(ctx, n, uf, list) {
		msg_init(&ewq.msg);

		ewq.msg.event = UFFD_EVENT_UNMAP;
		ewq.msg.arg.remove.start = ctx->start;
		ewq.msg.arg.remove.end = ctx->end;

		userfaultfd_event_wait_completion(ctx->ctx, &ewq);

		list_del(&ctx->list);
		kfree(ctx);
	}
}

775 776 777 778 779 780 781 782 783 784 785
static int userfaultfd_release(struct inode *inode, struct file *file)
{
	struct userfaultfd_ctx *ctx = file->private_data;
	struct mm_struct *mm = ctx->mm;
	struct vm_area_struct *vma, *prev;
	/* len == 0 means wake all */
	struct userfaultfd_wake_range range = { .len = 0, };
	unsigned long new_flags;

	ACCESS_ONCE(ctx->released) = true;

786 787 788
	if (!mmget_not_zero(mm))
		goto wakeup;

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	/*
	 * Flush page faults out of all CPUs. NOTE: all page faults
	 * must be retried without returning VM_FAULT_SIGBUS if
	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
	 * changes while handle_userfault released the mmap_sem. So
	 * it's critical that released is set to true (above), before
	 * taking the mmap_sem for writing.
	 */
	down_write(&mm->mmap_sem);
	prev = NULL;
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		cond_resched();
		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
			prev = vma;
			continue;
		}
		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
				 new_flags, vma->anon_vma,
				 vma->vm_file, vma->vm_pgoff,
				 vma_policy(vma),
				 NULL_VM_UFFD_CTX);
		if (prev)
			vma = prev;
		else
			prev = vma;
		vma->vm_flags = new_flags;
		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
	}
	up_write(&mm->mmap_sem);
821 822
	mmput(mm);
wakeup:
823
	/*
824
	 * After no new page faults can wait on this fault_*wqh, flush
825
	 * the last page faults that may have been already waiting on
826
	 * the fault_*wqh.
827
	 */
828
	spin_lock(&ctx->fault_pending_wqh.lock);
829 830
	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
831
	spin_unlock(&ctx->fault_pending_wqh.lock);
832 833 834 835 836 837

	wake_up_poll(&ctx->fd_wqh, POLLHUP);
	userfaultfd_ctx_put(ctx);
	return 0;
}

838
/* fault_pending_wqh.lock must be hold by the caller */
839 840
static inline struct userfaultfd_wait_queue *find_userfault_in(
		wait_queue_head_t *wqh)
841 842
{
	wait_queue_t *wq;
843
	struct userfaultfd_wait_queue *uwq;
844

845
	VM_BUG_ON(!spin_is_locked(&wqh->lock));
846

847
	uwq = NULL;
848
	if (!waitqueue_active(wqh))
849 850
		goto out;
	/* walk in reverse to provide FIFO behavior to read userfaults */
851
	wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
852 853 854
	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
out:
	return uwq;
855
}
856 857 858 859 860 861

static inline struct userfaultfd_wait_queue *find_userfault(
		struct userfaultfd_ctx *ctx)
{
	return find_userfault_in(&ctx->fault_pending_wqh);
}
862

863 864 865 866 867 868
static inline struct userfaultfd_wait_queue *find_userfault_evt(
		struct userfaultfd_ctx *ctx)
{
	return find_userfault_in(&ctx->event_wqh);
}

869 870 871 872 873 874 875 876 877 878 879
static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
{
	struct userfaultfd_ctx *ctx = file->private_data;
	unsigned int ret;

	poll_wait(file, &ctx->fd_wqh, wait);

	switch (ctx->state) {
	case UFFD_STATE_WAIT_API:
		return POLLERR;
	case UFFD_STATE_RUNNING:
880 881 882 883 884 885
		/*
		 * poll() never guarantees that read won't block.
		 * userfaults can be waken before they're read().
		 */
		if (unlikely(!(file->f_flags & O_NONBLOCK)))
			return POLLERR;
886 887 888 889 890 891 892 893 894 895 896 897 898 899
		/*
		 * lockless access to see if there are pending faults
		 * __pollwait last action is the add_wait_queue but
		 * the spin_unlock would allow the waitqueue_active to
		 * pass above the actual list_add inside
		 * add_wait_queue critical section. So use a full
		 * memory barrier to serialize the list_add write of
		 * add_wait_queue() with the waitqueue_active read
		 * below.
		 */
		ret = 0;
		smp_mb();
		if (waitqueue_active(&ctx->fault_pending_wqh))
			ret = POLLIN;
900 901 902
		else if (waitqueue_active(&ctx->event_wqh))
			ret = POLLIN;

903 904
		return ret;
	default:
905 906
		WARN_ON_ONCE(1);
		return POLLERR;
907 908 909
	}
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
static const struct file_operations userfaultfd_fops;

static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
				  struct userfaultfd_ctx *new,
				  struct uffd_msg *msg)
{
	int fd;
	struct file *file;
	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;

	fd = get_unused_fd_flags(flags);
	if (fd < 0)
		return fd;

	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
				  O_RDWR | flags);
	if (IS_ERR(file)) {
		put_unused_fd(fd);
		return PTR_ERR(file);
	}

	fd_install(fd, file);
	msg->arg.reserved.reserved1 = 0;
	msg->arg.fork.ufd = fd;

	return 0;
}

938
static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
939
				    struct uffd_msg *msg)
940 941 942
{
	ssize_t ret;
	DECLARE_WAITQUEUE(wait, current);
943
	struct userfaultfd_wait_queue *uwq;
944 945 946 947 948 949 950 951 952
	/*
	 * Handling fork event requires sleeping operations, so
	 * we drop the event_wqh lock, then do these ops, then
	 * lock it back and wake up the waiter. While the lock is
	 * dropped the ewq may go away so we keep track of it
	 * carefully.
	 */
	LIST_HEAD(fork_event);
	struct userfaultfd_ctx *fork_nctx = NULL;
953

954
	/* always take the fd_wqh lock before the fault_pending_wqh lock */
955 956 957 958
	spin_lock(&ctx->fd_wqh.lock);
	__add_wait_queue(&ctx->fd_wqh, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
959 960 961
		spin_lock(&ctx->fault_pending_wqh.lock);
		uwq = find_userfault(ctx);
		if (uwq) {
962 963 964 965 966 967 968 969 970
			/*
			 * Use a seqcount to repeat the lockless check
			 * in wake_userfault() to avoid missing
			 * wakeups because during the refile both
			 * waitqueue could become empty if this is the
			 * only userfault.
			 */
			write_seqcount_begin(&ctx->refile_seq);

971
			/*
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
			 * The fault_pending_wqh.lock prevents the uwq
			 * to disappear from under us.
			 *
			 * Refile this userfault from
			 * fault_pending_wqh to fault_wqh, it's not
			 * pending anymore after we read it.
			 *
			 * Use list_del() by hand (as
			 * userfaultfd_wake_function also uses
			 * list_del_init() by hand) to be sure nobody
			 * changes __remove_wait_queue() to use
			 * list_del_init() in turn breaking the
			 * !list_empty_careful() check in
			 * handle_userfault(). The uwq->wq.task_list
			 * must never be empty at any time during the
			 * refile, or the waitqueue could disappear
			 * from under us. The "wait_queue_head_t"
			 * parameter of __remove_wait_queue() is unused
			 * anyway.
991
			 */
992 993 994
			list_del(&uwq->wq.task_list);
			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);

995 996
			write_seqcount_end(&ctx->refile_seq);

997 998
			/* careful to always initialize msg if ret == 0 */
			*msg = uwq->msg;
999
			spin_unlock(&ctx->fault_pending_wqh.lock);
1000 1001 1002
			ret = 0;
			break;
		}
1003
		spin_unlock(&ctx->fault_pending_wqh.lock);
1004 1005 1006 1007 1008 1009

		spin_lock(&ctx->event_wqh.lock);
		uwq = find_userfault_evt(ctx);
		if (uwq) {
			*msg = uwq->msg;

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
			if (uwq->msg.event == UFFD_EVENT_FORK) {
				fork_nctx = (struct userfaultfd_ctx *)
					(unsigned long)
					uwq->msg.arg.reserved.reserved1;
				list_move(&uwq->wq.task_list, &fork_event);
				spin_unlock(&ctx->event_wqh.lock);
				ret = 0;
				break;
			}

1020 1021 1022 1023 1024 1025 1026
			userfaultfd_event_complete(ctx, uwq);
			spin_unlock(&ctx->event_wqh.lock);
			ret = 0;
			break;
		}
		spin_unlock(&ctx->event_wqh.lock);

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		if (signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}
		if (no_wait) {
			ret = -EAGAIN;
			break;
		}
		spin_unlock(&ctx->fd_wqh.lock);
		schedule();
		spin_lock(&ctx->fd_wqh.lock);
	}
	__remove_wait_queue(&ctx->fd_wqh, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock(&ctx->fd_wqh.lock);

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (!ret && msg->event == UFFD_EVENT_FORK) {
		ret = resolve_userfault_fork(ctx, fork_nctx, msg);

		if (!ret) {
			spin_lock(&ctx->event_wqh.lock);
			if (!list_empty(&fork_event)) {
				uwq = list_first_entry(&fork_event,
						       typeof(*uwq),
						       wq.task_list);
				list_del(&uwq->wq.task_list);
				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
				userfaultfd_event_complete(ctx, uwq);
			}
			spin_unlock(&ctx->event_wqh.lock);
		}
	}

1060 1061 1062 1063 1064 1065 1066 1067
	return ret;
}

static ssize_t userfaultfd_read(struct file *file, char __user *buf,
				size_t count, loff_t *ppos)
{
	struct userfaultfd_ctx *ctx = file->private_data;
	ssize_t _ret, ret = 0;
1068
	struct uffd_msg msg;
1069 1070 1071 1072 1073 1074
	int no_wait = file->f_flags & O_NONBLOCK;

	if (ctx->state == UFFD_STATE_WAIT_API)
		return -EINVAL;

	for (;;) {
1075
		if (count < sizeof(msg))
1076
			return ret ? ret : -EINVAL;
1077
		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1078 1079
		if (_ret < 0)
			return ret ? ret : _ret;
1080
		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1081
			return ret ? ret : -EFAULT;
1082 1083 1084
		ret += sizeof(msg);
		buf += sizeof(msg);
		count -= sizeof(msg);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		/*
		 * Allow to read more than one fault at time but only
		 * block if waiting for the very first one.
		 */
		no_wait = O_NONBLOCK;
	}
}

static void __wake_userfault(struct userfaultfd_ctx *ctx,
			     struct userfaultfd_wake_range *range)
{
	unsigned long start, end;

	start = range->start;
	end = range->start + range->len;

1101
	spin_lock(&ctx->fault_pending_wqh.lock);
1102
	/* wake all in the range and autoremove */
1103
	if (waitqueue_active(&ctx->fault_pending_wqh))
1104
		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1105 1106
				     range);
	if (waitqueue_active(&ctx->fault_wqh))
1107
		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1108
	spin_unlock(&ctx->fault_pending_wqh.lock);
1109 1110 1111 1112 1113
}

static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
					   struct userfaultfd_wake_range *range)
{
1114 1115 1116
	unsigned seq;
	bool need_wakeup;

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	/*
	 * To be sure waitqueue_active() is not reordered by the CPU
	 * before the pagetable update, use an explicit SMP memory
	 * barrier here. PT lock release or up_read(mmap_sem) still
	 * have release semantics that can allow the
	 * waitqueue_active() to be reordered before the pte update.
	 */
	smp_mb();

	/*
	 * Use waitqueue_active because it's very frequent to
	 * change the address space atomically even if there are no
	 * userfaults yet. So we take the spinlock only when we're
	 * sure we've userfaults to wake.
	 */
1132 1133 1134 1135 1136 1137 1138
	do {
		seq = read_seqcount_begin(&ctx->refile_seq);
		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
			waitqueue_active(&ctx->fault_wqh);
		cond_resched();
	} while (read_seqcount_retry(&ctx->refile_seq, seq));
	if (need_wakeup)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		__wake_userfault(ctx, range);
}

static __always_inline int validate_range(struct mm_struct *mm,
					  __u64 start, __u64 len)
{
	__u64 task_size = mm->task_size;

	if (start & ~PAGE_MASK)
		return -EINVAL;
	if (len & ~PAGE_MASK)
		return -EINVAL;
	if (!len)
		return -EINVAL;
	if (start < mmap_min_addr)
		return -EINVAL;
	if (start >= task_size)
		return -EINVAL;
	if (len > task_size - start)
		return -EINVAL;
	return 0;
}

1162 1163
static inline bool vma_can_userfault(struct vm_area_struct *vma)
{
1164 1165
	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
		vma_is_shmem(vma);
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static int userfaultfd_register(struct userfaultfd_ctx *ctx,
				unsigned long arg)
{
	struct mm_struct *mm = ctx->mm;
	struct vm_area_struct *vma, *prev, *cur;
	int ret;
	struct uffdio_register uffdio_register;
	struct uffdio_register __user *user_uffdio_register;
	unsigned long vm_flags, new_flags;
	bool found;
1178
	bool non_anon_pages;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	unsigned long start, end, vma_end;

	user_uffdio_register = (struct uffdio_register __user *) arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_register, user_uffdio_register,
			   sizeof(uffdio_register)-sizeof(__u64)))
		goto out;

	ret = -EINVAL;
	if (!uffdio_register.mode)
		goto out;
	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
				     UFFDIO_REGISTER_MODE_WP))
		goto out;
	vm_flags = 0;
	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
		vm_flags |= VM_UFFD_MISSING;
	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
		vm_flags |= VM_UFFD_WP;
		/*
		 * FIXME: remove the below error constraint by
		 * implementing the wprotect tracking mode.
		 */
		ret = -EINVAL;
		goto out;
	}

	ret = validate_range(mm, uffdio_register.range.start,
			     uffdio_register.range.len);
	if (ret)
		goto out;

	start = uffdio_register.range.start;
	end = start + uffdio_register.range.len;

1215 1216 1217 1218
	ret = -ENOMEM;
	if (!mmget_not_zero(mm))
		goto out;

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	down_write(&mm->mmap_sem);
	vma = find_vma_prev(mm, start, &prev);
	if (!vma)
		goto out_unlock;

	/* check that there's at least one vma in the range */
	ret = -EINVAL;
	if (vma->vm_start >= end)
		goto out_unlock;

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	/*
	 * If the first vma contains huge pages, make sure start address
	 * is aligned to huge page size.
	 */
	if (is_vm_hugetlb_page(vma)) {
		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);

		if (start & (vma_hpagesize - 1))
			goto out_unlock;
	}

1240 1241 1242 1243
	/*
	 * Search for not compatible vmas.
	 */
	found = false;
1244
	non_anon_pages = false;
1245 1246 1247 1248 1249 1250 1251 1252
	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
		cond_resched();

		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));

		/* check not compatible vmas */
		ret = -EINVAL;
1253
		if (!vma_can_userfault(cur))
1254
			goto out_unlock;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		/*
		 * If this vma contains ending address, and huge pages
		 * check alignment.
		 */
		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
		    end > cur->vm_start) {
			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);

			ret = -EINVAL;

			if (end & (vma_hpagesize - 1))
				goto out_unlock;
		}
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

		/*
		 * Check that this vma isn't already owned by a
		 * different userfaultfd. We can't allow more than one
		 * userfaultfd to own a single vma simultaneously or we
		 * wouldn't know which one to deliver the userfaults to.
		 */
		ret = -EBUSY;
		if (cur->vm_userfaultfd_ctx.ctx &&
		    cur->vm_userfaultfd_ctx.ctx != ctx)
			goto out_unlock;

1280 1281 1282
		/*
		 * Note vmas containing huge pages
		 */
1283 1284
		if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
			non_anon_pages = true;
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		found = true;
	}
	BUG_ON(!found);

	if (vma->vm_start < start)
		prev = vma;

	ret = 0;
	do {
		cond_resched();

1297
		BUG_ON(!vma_can_userfault(vma));
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
		       vma->vm_userfaultfd_ctx.ctx != ctx);

		/*
		 * Nothing to do: this vma is already registered into this
		 * userfaultfd and with the right tracking mode too.
		 */
		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
		    (vma->vm_flags & vm_flags) == vm_flags)
			goto skip;

		if (vma->vm_start > start)
			start = vma->vm_start;
		vma_end = min(end, vma->vm_end);

		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
		prev = vma_merge(mm, prev, start, vma_end, new_flags,
				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
				 vma_policy(vma),
				 ((struct vm_userfaultfd_ctx){ ctx }));
		if (prev) {
			vma = prev;
			goto next;
		}
		if (vma->vm_start < start) {
			ret = split_vma(mm, vma, start, 1);
			if (ret)
				break;
		}
		if (vma->vm_end > end) {
			ret = split_vma(mm, vma, end, 0);
			if (ret)
				break;
		}
	next:
		/*
		 * In the vma_merge() successful mprotect-like case 8:
		 * the next vma was merged into the current one and
		 * the current one has not been updated yet.
		 */
		vma->vm_flags = new_flags;
		vma->vm_userfaultfd_ctx.ctx = ctx;

	skip:
		prev = vma;
		start = vma->vm_end;
		vma = vma->vm_next;
	} while (vma && vma->vm_start < end);
out_unlock:
	up_write(&mm->mmap_sem);
1348
	mmput(mm);
1349 1350 1351 1352 1353 1354
	if (!ret) {
		/*
		 * Now that we scanned all vmas we can already tell
		 * userland which ioctls methods are guaranteed to
		 * succeed on this range.
		 */
1355
		if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1356
			     UFFD_API_RANGE_IOCTLS,
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
			     &user_uffdio_register->ioctls))
			ret = -EFAULT;
	}
out:
	return ret;
}

static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
				  unsigned long arg)
{
	struct mm_struct *mm = ctx->mm;
	struct vm_area_struct *vma, *prev, *cur;
	int ret;
	struct uffdio_range uffdio_unregister;
	unsigned long new_flags;
	bool found;
	unsigned long start, end, vma_end;
	const void __user *buf = (void __user *)arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
		goto out;

	ret = validate_range(mm, uffdio_unregister.start,
			     uffdio_unregister.len);
	if (ret)
		goto out;

	start = uffdio_unregister.start;
	end = start + uffdio_unregister.len;

1388 1389 1390 1391
	ret = -ENOMEM;
	if (!mmget_not_zero(mm))
		goto out;

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	down_write(&mm->mmap_sem);
	vma = find_vma_prev(mm, start, &prev);
	if (!vma)
		goto out_unlock;

	/* check that there's at least one vma in the range */
	ret = -EINVAL;
	if (vma->vm_start >= end)
		goto out_unlock;

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	/*
	 * If the first vma contains huge pages, make sure start address
	 * is aligned to huge page size.
	 */
	if (is_vm_hugetlb_page(vma)) {
		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);

		if (start & (vma_hpagesize - 1))
			goto out_unlock;
	}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	/*
	 * Search for not compatible vmas.
	 */
	found = false;
	ret = -EINVAL;
	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
		cond_resched();

		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));

		/*
		 * Check not compatible vmas, not strictly required
		 * here as not compatible vmas cannot have an
		 * userfaultfd_ctx registered on them, but this
		 * provides for more strict behavior to notice
		 * unregistration errors.
		 */
1431
		if (!vma_can_userfault(cur))
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			goto out_unlock;

		found = true;
	}
	BUG_ON(!found);

	if (vma->vm_start < start)
		prev = vma;

	ret = 0;
	do {
		cond_resched();

1445
		BUG_ON(!vma_can_userfault(vma));
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		/*
		 * Nothing to do: this vma is already registered into this
		 * userfaultfd and with the right tracking mode too.
		 */
		if (!vma->vm_userfaultfd_ctx.ctx)
			goto skip;

		if (vma->vm_start > start)
			start = vma->vm_start;
		vma_end = min(end, vma->vm_end);

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		if (userfaultfd_missing(vma)) {
			/*
			 * Wake any concurrent pending userfault while
			 * we unregister, so they will not hang
			 * permanently and it avoids userland to call
			 * UFFDIO_WAKE explicitly.
			 */
			struct userfaultfd_wake_range range;
			range.start = start;
			range.len = vma_end - start;
			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
		}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
		prev = vma_merge(mm, prev, start, vma_end, new_flags,
				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
				 vma_policy(vma),
				 NULL_VM_UFFD_CTX);
		if (prev) {
			vma = prev;
			goto next;
		}
		if (vma->vm_start < start) {
			ret = split_vma(mm, vma, start, 1);
			if (ret)
				break;
		}
		if (vma->vm_end > end) {
			ret = split_vma(mm, vma, end, 0);
			if (ret)
				break;
		}
	next:
		/*
		 * In the vma_merge() successful mprotect-like case 8:
		 * the next vma was merged into the current one and
		 * the current one has not been updated yet.
		 */
		vma->vm_flags = new_flags;
		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;

	skip:
		prev = vma;
		start = vma->vm_end;
		vma = vma->vm_next;
	} while (vma && vma->vm_start < end);
out_unlock:
	up_write(&mm->mmap_sem);
1506
	mmput(mm);
1507 1508 1509 1510 1511
out:
	return ret;
}

/*
1512 1513
 * userfaultfd_wake may be used in combination with the
 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
 */
static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
			    unsigned long arg)
{
	int ret;
	struct uffdio_range uffdio_wake;
	struct userfaultfd_wake_range range;
	const void __user *buf = (void __user *)arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
		goto out;

	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
	if (ret)
		goto out;

	range.start = uffdio_wake.start;
	range.len = uffdio_wake.len;

	/*
	 * len == 0 means wake all and we don't want to wake all here,
	 * so check it again to be sure.
	 */
	VM_BUG_ON(!range.len);

	wake_userfault(ctx, &range);
	ret = 0;

out:
	return ret;
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
			    unsigned long arg)
{
	__s64 ret;
	struct uffdio_copy uffdio_copy;
	struct uffdio_copy __user *user_uffdio_copy;
	struct userfaultfd_wake_range range;

	user_uffdio_copy = (struct uffdio_copy __user *) arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
			   /* don't copy "copy" last field */
			   sizeof(uffdio_copy)-sizeof(__s64)))
		goto out;

	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
	if (ret)
		goto out;
	/*
	 * double check for wraparound just in case. copy_from_user()
	 * will later check uffdio_copy.src + uffdio_copy.len to fit
	 * in the userland range.
	 */
	ret = -EINVAL;
	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
		goto out;
	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
		goto out;
1576 1577 1578 1579
	if (mmget_not_zero(ctx->mm)) {
		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
				   uffdio_copy.len);
		mmput(ctx->mm);
1580 1581
	} else {
		return -ENOSPC;
1582
	}
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
		return -EFAULT;
	if (ret < 0)
		goto out;
	BUG_ON(!ret);
	/* len == 0 would wake all */
	range.len = ret;
	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
		range.start = uffdio_copy.dst;
		wake_userfault(ctx, &range);
	}
	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
out:
	return ret;
}

static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
				unsigned long arg)
{
	__s64 ret;
	struct uffdio_zeropage uffdio_zeropage;
	struct uffdio_zeropage __user *user_uffdio_zeropage;
	struct userfaultfd_wake_range range;

	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;

	ret = -EFAULT;
	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
			   /* don't copy "zeropage" last field */
			   sizeof(uffdio_zeropage)-sizeof(__s64)))
		goto out;

	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
			     uffdio_zeropage.range.len);
	if (ret)
		goto out;
	ret = -EINVAL;
	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
		goto out;

1623 1624 1625 1626 1627
	if (mmget_not_zero(ctx->mm)) {
		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
				     uffdio_zeropage.range.len);
		mmput(ctx->mm);
	}
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
		return -EFAULT;
	if (ret < 0)
		goto out;
	/* len == 0 would wake all */
	BUG_ON(!ret);
	range.len = ret;
	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
		range.start = uffdio_zeropage.range.start;
		wake_userfault(ctx, &range);
	}
	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
out:
	return ret;
}

1644 1645 1646 1647 1648 1649 1650 1651
static inline unsigned int uffd_ctx_features(__u64 user_features)
{
	/*
	 * For the current set of features the bits just coincide
	 */
	return (unsigned int)user_features;
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/*
 * userland asks for a certain API version and we return which bits
 * and ioctl commands are implemented in this kernel for such API
 * version or -EINVAL if unknown.
 */
static int userfaultfd_api(struct userfaultfd_ctx *ctx,
			   unsigned long arg)
{
	struct uffdio_api uffdio_api;
	void __user *buf = (void __user *)arg;
	int ret;
1663
	__u64 features;
1664 1665 1666 1667 1668

	ret = -EINVAL;
	if (ctx->state != UFFD_STATE_WAIT_API)
		goto out;
	ret = -EFAULT;
1669
	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1670
		goto out;
1671 1672
	features = uffdio_api.features;
	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1673 1674 1675 1676 1677 1678
		memset(&uffdio_api, 0, sizeof(uffdio_api));
		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
			goto out;
		ret = -EINVAL;
		goto out;
	}
1679 1680
	/* report all available features and ioctls to userland */
	uffdio_api.features = UFFD_API_FEATURES;
1681 1682 1683 1684 1685
	uffdio_api.ioctls = UFFD_API_IOCTLS;
	ret = -EFAULT;
	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
		goto out;
	ctx->state = UFFD_STATE_RUNNING;
1686 1687
	/* only enable the requested features for this uffd context */
	ctx->features = uffd_ctx_features(features);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	ret = 0;
out:
	return ret;
}

static long userfaultfd_ioctl(struct file *file, unsigned cmd,
			      unsigned long arg)
{
	int ret = -EINVAL;
	struct userfaultfd_ctx *ctx = file->private_data;

1699 1700 1701
	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
		return -EINVAL;

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	switch(cmd) {
	case UFFDIO_API:
		ret = userfaultfd_api(ctx, arg);
		break;
	case UFFDIO_REGISTER:
		ret = userfaultfd_register(ctx, arg);
		break;
	case UFFDIO_UNREGISTER:
		ret = userfaultfd_unregister(ctx, arg);
		break;
	case UFFDIO_WAKE:
		ret = userfaultfd_wake(ctx, arg);
		break;
1715 1716 1717 1718 1719 1720
	case UFFDIO_COPY:
		ret = userfaultfd_copy(ctx, arg);
		break;
	case UFFDIO_ZEROPAGE:
		ret = userfaultfd_zeropage(ctx, arg);
		break;
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	}
	return ret;
}

#ifdef CONFIG_PROC_FS
static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
{
	struct userfaultfd_ctx *ctx = f->private_data;
	wait_queue_t *wq;
	struct userfaultfd_wait_queue *uwq;
	unsigned long pending = 0, total = 0;

1733 1734 1735 1736 1737 1738
	spin_lock(&ctx->fault_pending_wqh.lock);
	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
		pending++;
		total++;
	}
1739 1740 1741 1742
	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
		total++;
	}
1743
	spin_unlock(&ctx->fault_pending_wqh.lock);
1744 1745 1746 1747 1748 1749 1750

	/*
	 * If more protocols will be added, there will be all shown
	 * separated by a space. Like this:
	 *	protocols: aa:... bb:...
	 */
	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1751
		   pending, total, UFFD_API, UFFD_API_FEATURES,
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
}
#endif

static const struct file_operations userfaultfd_fops = {
#ifdef CONFIG_PROC_FS
	.show_fdinfo	= userfaultfd_show_fdinfo,
#endif
	.release	= userfaultfd_release,
	.poll		= userfaultfd_poll,
	.read		= userfaultfd_read,
	.unlocked_ioctl = userfaultfd_ioctl,
	.compat_ioctl	= userfaultfd_ioctl,
	.llseek		= noop_llseek,
};

1768 1769 1770 1771 1772 1773
static void init_once_userfaultfd_ctx(void *mem)
{
	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;

	init_waitqueue_head(&ctx->fault_pending_wqh);
	init_waitqueue_head(&ctx->fault_wqh);
1774
	init_waitqueue_head(&ctx->event_wqh);
1775
	init_waitqueue_head(&ctx->fd_wqh);
1776
	seqcount_init(&ctx->refile_seq);
1777 1778
}

1779
/**
1780
 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1781 1782
 * @flags: Flags for the userfaultfd file.
 *
1783
 * This function creates a userfaultfd file pointer, w/out installing
1784 1785 1786 1787 1788 1789
 * it into the fd table. This is useful when the userfaultfd file is
 * used during the initialization of data structures that require
 * extra setup after the userfaultfd creation. So the userfaultfd
 * creation is split into the file pointer creation phase, and the
 * file descriptor installation phase.  In this way races with
 * userspace closing the newly installed file descriptor can be
1790
 * avoided.  Returns a userfaultfd file pointer, or a proper error
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
 * pointer.
 */
static struct file *userfaultfd_file_create(int flags)
{
	struct file *file;
	struct userfaultfd_ctx *ctx;

	BUG_ON(!current->mm);

	/* Check the UFFD_* constants for consistency.  */
	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);

	file = ERR_PTR(-EINVAL);
	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
		goto out;

	file = ERR_PTR(-ENOMEM);
1809
	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1810 1811 1812 1813 1814
	if (!ctx)
		goto out;

	atomic_set(&ctx->refcount, 1);
	ctx->flags = flags;
1815
	ctx->features = 0;
1816 1817 1818 1819
	ctx->state = UFFD_STATE_WAIT_API;
	ctx->released = false;
	ctx->mm = current->mm;
	/* prevent the mm struct to be freed */
V
Vegard Nossum 已提交
1820
	mmgrab(ctx->mm);
1821 1822 1823

	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1824
	if (IS_ERR(file)) {
1825
		mmdrop(ctx->mm);
1826
		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1827
	}
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
out:
	return file;
}

SYSCALL_DEFINE1(userfaultfd, int, flags)
{
	int fd, error;
	struct file *file;

	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
	if (error < 0)
		return error;
	fd = error;

	file = userfaultfd_file_create(flags);
	if (IS_ERR(file)) {
		error = PTR_ERR(file);
		goto err_put_unused_fd;
	}
	fd_install(fd, file);

	return fd;

err_put_unused_fd:
	put_unused_fd(fd);

	return error;
}
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

static int __init userfaultfd_init(void)
{
	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
						sizeof(struct userfaultfd_ctx),
						0,
						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
						init_once_userfaultfd_ctx);
	return 0;
}
__initcall(userfaultfd_init);