vc4_crtc.c 30.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 CRTC module
 *
 * In VC4, the Pixel Valve is what most closely corresponds to the
 * DRM's concept of a CRTC.  The PV generates video timings from the
14
 * encoder's clock plus its configuration.  It pulls scaled pixels from
15 16 17
 * the HVS at that timing, and feeds it to the encoder.
 *
 * However, the DRM CRTC also collects the configuration of all the
18 19 20
 * DRM planes attached to it.  As a result, the CRTC is also
 * responsible for writing the display list for the HVS channel that
 * the CRTC will use.
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 * image domain can feed either HDMI or the SDTV controller.  The
 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 * SDTV, etc.) according to which output type is chosen in the mux.
 *
 * For power management, the pixel valve's registers are all clocked
 * by the AXI clock, while the timings and FIFOs make use of the
 * output-specific clock.  Since the encoders also directly consume
 * the CPRMAN clocks, and know what timings they need, they are the
 * ones that set the clock.
 */

35 36 37 38 39 40 41
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <linux/clk.h>
#include <drm/drm_fb_cma_helper.h>
#include <linux/component.h>
#include <linux/of_device.h>
42 43 44 45 46 47 48 49
#include "vc4_drv.h"
#include "vc4_regs.h"

struct vc4_crtc {
	struct drm_crtc base;
	const struct vc4_crtc_data *data;
	void __iomem *regs;

50 51 52
	/* Timestamp at start of vblank irq - unaffected by lock delays. */
	ktime_t t_vblank;

53 54 55
	/* Which HVS channel we're using for our CRTC. */
	int channel;

56 57 58
	u8 lut_r[256];
	u8 lut_g[256];
	u8 lut_b[256];
59 60
	/* Size in pixels of the COB memory allocated to this CRTC. */
	u32 cob_size;
61

62 63 64
	struct drm_pending_vblank_event *event;
};

65 66 67 68 69 70
struct vc4_crtc_state {
	struct drm_crtc_state base;
	/* Dlist area for this CRTC configuration. */
	struct drm_mm_node mm;
};

71 72 73 74 75 76
static inline struct vc4_crtc *
to_vc4_crtc(struct drm_crtc *crtc)
{
	return (struct vc4_crtc *)crtc;
}

77 78 79 80 81 82
static inline struct vc4_crtc_state *
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
{
	return (struct vc4_crtc_state *)crtc_state;
}

83 84 85 86
struct vc4_crtc_data {
	/* Which channel of the HVS this pixelvalve sources from. */
	int hvs_channel;

87
	enum vc4_encoder_type encoder_types[4];
88 89 90 91 92 93 94 95 96 97 98 99
};

#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))

#define CRTC_REG(reg) { reg, #reg }
static const struct {
	u32 reg;
	const char *name;
} crtc_regs[] = {
	CRTC_REG(PV_CONTROL),
	CRTC_REG(PV_V_CONTROL),
100
	CRTC_REG(PV_VSYNCD_EVEN),
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	CRTC_REG(PV_HORZA),
	CRTC_REG(PV_HORZB),
	CRTC_REG(PV_VERTA),
	CRTC_REG(PV_VERTB),
	CRTC_REG(PV_VERTA_EVEN),
	CRTC_REG(PV_VERTB_EVEN),
	CRTC_REG(PV_INTEN),
	CRTC_REG(PV_INTSTAT),
	CRTC_REG(PV_STAT),
	CRTC_REG(PV_HACT_ACT),
};

static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		DRM_INFO("0x%04x (%s): 0x%08x\n",
			 crtc_regs[i].reg, crtc_regs[i].name,
			 CRTC_READ(crtc_regs[i].reg));
	}
}

#ifdef CONFIG_DEBUG_FS
int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *)m->private;
	struct drm_device *dev = node->minor->dev;
	int crtc_index = (uintptr_t)node->info_ent->data;
	struct drm_crtc *crtc;
	struct vc4_crtc *vc4_crtc;
	int i;

	i = 0;
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		if (i == crtc_index)
			break;
		i++;
	}
	if (!crtc)
		return 0;
	vc4_crtc = to_vc4_crtc(crtc);

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		seq_printf(m, "%s (0x%04x): 0x%08x\n",
			   crtc_regs[i].name, crtc_regs[i].reg,
			   CRTC_READ(crtc_regs[i].reg));
	}

	return 0;
}
#endif

154 155 156 157
bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
			     bool in_vblank_irq, int *vpos, int *hpos,
			     ktime_t *stime, ktime_t *etime,
			     const struct drm_display_mode *mode)
158 159
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 161
	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 163 164
	u32 val;
	int fifo_lines;
	int vblank_lines;
165
	bool ret = false;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */

	/* Get optional system timestamp before query. */
	if (stime)
		*stime = ktime_get();

	/*
	 * Read vertical scanline which is currently composed for our
	 * pixelvalve by the HVS, and also the scaler status.
	 */
	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));

	/* Get optional system timestamp after query. */
	if (etime)
		*etime = ktime_get();

	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */

	/* Vertical position of hvs composed scanline. */
	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 188 189 190
	*hpos = 0;

	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		*vpos /= 2;
191

192 193 194 195
		/* Use hpos to correct for field offset in interlaced mode. */
		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
			*hpos += mode->crtc_htotal / 2;
	}
196 197 198 199 200

	/* This is the offset we need for translating hvs -> pv scanout pos. */
	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;

	if (fifo_lines > 0)
201
		ret = true;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	/* HVS more than fifo_lines into frame for compositing? */
	if (*vpos > fifo_lines) {
		/*
		 * We are in active scanout and can get some meaningful results
		 * from HVS. The actual PV scanout can not trail behind more
		 * than fifo_lines as that is the fifo's capacity. Assume that
		 * in active scanout the HVS and PV work in lockstep wrt. HVS
		 * refilling the fifo and PV consuming from the fifo, ie.
		 * whenever the PV consumes and frees up a scanline in the
		 * fifo, the HVS will immediately refill it, therefore
		 * incrementing vpos. Therefore we choose HVS read position -
		 * fifo size in scanlines as a estimate of the real scanout
		 * position of the PV.
		 */
		*vpos -= fifo_lines + 1;

		return ret;
	}

	/*
	 * Less: This happens when we are in vblank and the HVS, after getting
	 * the VSTART restart signal from the PV, just started refilling its
	 * fifo with new lines from the top-most lines of the new framebuffers.
	 * The PV does not scan out in vblank, so does not remove lines from
	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
	 * We can't get meaningful readings wrt. scanline position of the PV
	 * and need to make things up in a approximative but consistent way.
	 */
231
	vblank_lines = mode->vtotal - mode->vdisplay;
232

233
	if (in_vblank_irq) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		/*
		 * Assume the irq handler got called close to first
		 * line of vblank, so PV has about a full vblank
		 * scanlines to go, and as a base timestamp use the
		 * one taken at entry into vblank irq handler, so it
		 * is not affected by random delays due to lock
		 * contention on event_lock or vblank_time lock in
		 * the core.
		 */
		*vpos = -vblank_lines;

		if (stime)
			*stime = vc4_crtc->t_vblank;
		if (etime)
			*etime = vc4_crtc->t_vblank;

		/*
		 * If the HVS fifo is not yet full then we know for certain
		 * we are at the very beginning of vblank, as the hvs just
		 * started refilling, and the stime and etime timestamps
		 * truly correspond to start of vblank.
255 256 257
		 *
		 * Unfortunately there's no way to report this to upper levels
		 * and make it more useful.
258 259 260 261 262 263 264 265 266 267 268 269 270 271
		 */
	} else {
		/*
		 * No clue where we are inside vblank. Return a vpos of zero,
		 * which will cause calling code to just return the etime
		 * timestamp uncorrected. At least this is no worse than the
		 * standard fallback.
		 */
		*vpos = 0;
	}

	return ret;
}

272 273 274 275 276
static void vc4_crtc_destroy(struct drm_crtc *crtc)
{
	drm_crtc_cleanup(crtc);
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void
vc4_crtc_lut_load(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 i;

	/* The LUT memory is laid out with each HVS channel in order,
	 * each of which takes 256 writes for R, 256 for G, then 256
	 * for B.
	 */
	HVS_WRITE(SCALER_GAMADDR,
		  SCALER_GAMADDR_AUTOINC |
		  (vc4_crtc->channel * 3 * crtc->gamma_size));

	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
}

301
static int
302
vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303 304
		   uint32_t size,
		   struct drm_modeset_acquire_ctx *ctx)
305 306 307 308
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 i;

309
	for (i = 0; i < size; i++) {
310 311 312 313 314 315
		vc4_crtc->lut_r[i] = r[i] >> 8;
		vc4_crtc->lut_g[i] = g[i] >> 8;
		vc4_crtc->lut_b[i] = b[i] >> 8;
	}

	vc4_crtc_lut_load(crtc);
316 317

	return 0;
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
static u32 vc4_get_fifo_full_level(u32 format)
{
	static const u32 fifo_len_bytes = 64;
	static const u32 hvs_latency_pix = 6;

	switch (format) {
	case PV_CONTROL_FORMAT_DSIV_16:
	case PV_CONTROL_FORMAT_DSIC_16:
		return fifo_len_bytes - 2 * hvs_latency_pix;
	case PV_CONTROL_FORMAT_DSIV_18:
		return fifo_len_bytes - 14;
	case PV_CONTROL_FORMAT_24:
	case PV_CONTROL_FORMAT_DSIV_24:
	default:
		return fifo_len_bytes - 3 * hvs_latency_pix;
	}
}

/*
339 340 341 342 343
 * Returns the encoder attached to the CRTC.
 *
 * VC4 can only scan out to one encoder at a time, while the DRM core
 * allows drivers to push pixels to more than one encoder from the
 * same CRTC.
344
 */
345
static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
346 347
{
	struct drm_connector *connector;
348
	struct drm_connector_list_iter conn_iter;
349

350 351
	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
J
Julia Lawall 已提交
352
		if (connector->state->crtc == crtc) {
353
			drm_connector_list_iter_end(&conn_iter);
354
			return connector->encoder;
355 356
		}
	}
357
	drm_connector_list_iter_end(&conn_iter);
358

359
	return NULL;
360 361 362 363
}

static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
364 365
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
366 367
	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
368 369 370 371
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;
	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
372
	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
373 374 375
	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
376 377 378 379 380 381 382 383 384 385 386 387 388
	bool debug_dump_regs = false;

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}

	/* Reset the PV fifo. */
	CRTC_WRITE(PV_CONTROL, 0);
	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
	CRTC_WRITE(PV_CONTROL, 0);

	CRTC_WRITE(PV_HORZA,
389 390
		   VC4_SET_FIELD((mode->htotal -
				  mode->hsync_end) * pixel_rep,
391
				 PV_HORZA_HBP) |
392 393
		   VC4_SET_FIELD((mode->hsync_end -
				  mode->hsync_start) * pixel_rep,
394 395
				 PV_HORZA_HSYNC));
	CRTC_WRITE(PV_HORZB,
396 397
		   VC4_SET_FIELD((mode->hsync_start -
				  mode->hdisplay) * pixel_rep,
398
				 PV_HORZB_HFP) |
399
		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
400

401
	CRTC_WRITE(PV_VERTA,
402
		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
403
				 PV_VERTA_VBP) |
404
		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
405 406
				 PV_VERTA_VSYNC));
	CRTC_WRITE(PV_VERTB,
407
		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
408
				 PV_VERTB_VFP) |
409
		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
410

411 412
	if (interlace) {
		CRTC_WRITE(PV_VERTA_EVEN,
413 414
			   VC4_SET_FIELD(mode->crtc_vtotal -
					 mode->crtc_vsync_end - 1,
415
					 PV_VERTA_VBP) |
416 417
			   VC4_SET_FIELD(mode->crtc_vsync_end -
					 mode->crtc_vsync_start,
418 419
					 PV_VERTA_VSYNC));
		CRTC_WRITE(PV_VERTB_EVEN,
420 421
			   VC4_SET_FIELD(mode->crtc_vsync_start -
					 mode->crtc_vdisplay,
422
					 PV_VERTB_VFP) |
423 424 425 426 427 428 429 430 431
			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));

		/* We set up first field even mode for HDMI.  VEC's
		 * NTSC mode would want first field odd instead, once
		 * we support it (to do so, set ODD_FIRST and put the
		 * delay in VSYNCD_EVEN instead).
		 */
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
432
			   (is_dsi ? PV_VCONTROL_DSI : 0) |
433
			   PV_VCONTROL_INTERLACE |
434
			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
435 436 437
					 PV_VCONTROL_ODD_DELAY));
		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
	} else {
438 439 440
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
			   (is_dsi ? PV_VCONTROL_DSI : 0));
441 442
	}

443
	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
444 445 446 447 448

	CRTC_WRITE(PV_CONTROL,
		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
				 PV_CONTROL_FIFO_LEVEL) |
449
		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
450 451 452
		   PV_CONTROL_CLR_AT_START |
		   PV_CONTROL_TRIGGER_UNDERFLOW |
		   PV_CONTROL_WAIT_HSTART |
453 454
		   VC4_SET_FIELD(vc4_encoder->clock_select,
				 PV_CONTROL_CLK_SELECT) |
455 456 457
		   PV_CONTROL_FIFO_CLR |
		   PV_CONTROL_EN);

458 459
	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
		  SCALER_DISPBKGND_AUTOHS |
460
		  SCALER_DISPBKGND_GAMMA |
461 462
		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));

463 464 465 466 467
	/* Reload the LUT, since the SRAMs would have been disabled if
	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
	 */
	vc4_crtc_lut_load(crtc);

468 469 470 471 472 473 474 475 476 477 478 479 480 481
	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}
}

static void require_hvs_enabled(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
		     SCALER_DISPCTRL_ENABLE);
}

482 483
static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
				    struct drm_crtc_state *old_state)
484 485 486 487 488 489 490 491
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 chan = vc4_crtc->channel;
	int ret;
	require_hvs_enabled(dev);

492 493 494
	/* Disable vblank irq handling before crtc is disabled. */
	drm_crtc_vblank_off(crtc);

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");

	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
	    SCALER_DISPCTRLX_ENABLE) {
		HVS_WRITE(SCALER_DISPCTRLX(chan),
			  SCALER_DISPCTRLX_RESET);

		/* While the docs say that reset is self-clearing, it
		 * seems it doesn't actually.
		 */
		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
	}

	/* Once we leave, the scaler should be disabled and its fifo empty. */

	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);

	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
				   SCALER_DISPSTATX_MODE) !=
		     SCALER_DISPSTATX_MODE_DISABLED);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
		     SCALER_DISPSTATX_EMPTY);
522 523 524 525 526 527 528 529 530 531 532 533 534

	/*
	 * Make sure we issue a vblank event after disabling the CRTC if
	 * someone was waiting it.
	 */
	if (crtc->state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
535 536
}

537 538
static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
				   struct drm_crtc_state *old_state)
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;

	require_hvs_enabled(dev);

	/* Turn on the scaler, which will wait for vstart to start
	 * compositing.
	 */
	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
		  SCALER_DISPCTRLX_ENABLE);

	/* Turn on the pixel valve, which will emit the vstart signal. */
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
559 560 561

	/* Enable vblank irq handling after crtc is started. */
	drm_crtc_vblank_on(crtc);
562 563
}

564 565
static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
						const struct drm_display_mode *mode)
566
{
567
	/* Do not allow doublescan modes from user space */
568
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
569 570
		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
			      crtc->base.id);
571
		return MODE_NO_DBLESCAN;
572 573
	}

574
	return MODE_OK;
575 576
}

577 578 579
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
				 struct drm_crtc_state *state)
{
580
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
581 582 583
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane;
584
	unsigned long flags;
585
	const struct drm_plane_state *plane_state;
586
	u32 dlist_count = 0;
587
	int ret;
588 589 590 591

	/* The pixelvalve can only feed one encoder (and encoders are
	 * 1:1 with connectors.)
	 */
592
	if (hweight32(state->connector_mask) > 1)
593 594
		return -EINVAL;

595
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
596 597 598 599
		dlist_count += vc4_plane_dlist_size(plane_state);

	dlist_count++; /* Account for SCALER_CTL0_END. */

600 601
	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
602
				 dlist_count);
603 604 605
	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
	if (ret)
		return ret;
606 607 608 609 610 611 612 613 614 615

	return 0;
}

static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
				  struct drm_crtc_state *old_state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
616
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
617 618
	struct drm_plane *plane;
	bool debug_dump_regs = false;
619 620
	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
	u32 __iomem *dlist_next = dlist_start;
621 622 623 624 625 626

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
	}

627
	/* Copy all the active planes' dlist contents to the hardware dlist. */
628 629 630 631
	drm_atomic_crtc_for_each_plane(plane, crtc) {
		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
	}

632 633 634 635 636
	writel(SCALER_CTL0_END, dlist_next);
	dlist_next++;

	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);

637 638 639 640 641 642 643 644 645 646
	if (crtc->state->event) {
		unsigned long flags;

		crtc->state->event->pipe = drm_crtc_index(crtc);

		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		vc4_crtc->event = crtc->state->event;
		crtc->state->event = NULL;
647 648 649 650 651 652 653 654 655 656 657 658 659

		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);

		spin_unlock_irqrestore(&dev->event_lock, flags);
	} else {
		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);
	}

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
660 661 662
	}
}

663
static int vc4_enable_vblank(struct drm_crtc *crtc)
664
{
665
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
666 667 668 669 670 671

	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);

	return 0;
}

672
static void vc4_disable_vblank(struct drm_crtc *crtc)
673
{
674
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
675 676 677 678 679 680 681 682

	CRTC_WRITE(PV_INTEN, 0);
}

static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
	struct drm_crtc *crtc = &vc4_crtc->base;
	struct drm_device *dev = crtc->dev;
683 684 685
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
	u32 chan = vc4_crtc->channel;
686 687 688
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
689 690
	if (vc4_crtc->event &&
	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
691 692
		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
		vc4_crtc->event = NULL;
693
		drm_crtc_vblank_put(crtc);
694 695 696 697 698 699 700 701 702 703 704
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
	struct vc4_crtc *vc4_crtc = data;
	u32 stat = CRTC_READ(PV_INTSTAT);
	irqreturn_t ret = IRQ_NONE;

	if (stat & PV_INT_VFP_START) {
705
		vc4_crtc->t_vblank = ktime_get();
706 707 708 709 710 711 712 713 714
		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
		drm_crtc_handle_vblank(&vc4_crtc->base);
		vc4_crtc_handle_page_flip(vc4_crtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
struct vc4_async_flip_state {
	struct drm_crtc *crtc;
	struct drm_framebuffer *fb;
	struct drm_pending_vblank_event *event;

	struct vc4_seqno_cb cb;
};

/* Called when the V3D execution for the BO being flipped to is done, so that
 * we can actually update the plane's address to point to it.
 */
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
	struct vc4_async_flip_state *flip_state =
		container_of(cb, struct vc4_async_flip_state, cb);
	struct drm_crtc *crtc = flip_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;

	vc4_plane_async_set_fb(plane, flip_state->fb);
	if (flip_state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, flip_state->event);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

745
	drm_crtc_vblank_put(crtc);
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	drm_framebuffer_unreference(flip_state->fb);
	kfree(flip_state);

	up(&vc4->async_modeset);
}

/* Implements async (non-vblank-synced) page flips.
 *
 * The page flip ioctl needs to return immediately, so we grab the
 * modeset semaphore on the pipe, and queue the address update for
 * when V3D is done with the BO being flipped to.
 */
static int vc4_async_page_flip(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
			       struct drm_pending_vblank_event *event,
			       uint32_t flags)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;
	int ret = 0;
	struct vc4_async_flip_state *flip_state;
	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);

	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
	if (!flip_state)
		return -ENOMEM;

	drm_framebuffer_reference(fb);
	flip_state->fb = fb;
	flip_state->crtc = crtc;
	flip_state->event = event;

	/* Make sure all other async modesetes have landed. */
	ret = down_interruptible(&vc4->async_modeset);
	if (ret) {
783
		drm_framebuffer_unreference(fb);
784 785 786 787
		kfree(flip_state);
		return ret;
	}

788 789
	WARN_ON(drm_crtc_vblank_get(crtc) != 0);

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	/* Immediately update the plane's legacy fb pointer, so that later
	 * modeset prep sees the state that will be present when the semaphore
	 * is released.
	 */
	drm_atomic_set_fb_for_plane(plane->state, fb);
	plane->fb = fb;

	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
			   vc4_async_page_flip_complete);

	/* Driver takes ownership of state on successful async commit. */
	return 0;
}

static int vc4_page_flip(struct drm_crtc *crtc,
			 struct drm_framebuffer *fb,
			 struct drm_pending_vblank_event *event,
807 808
			 uint32_t flags,
			 struct drm_modeset_acquire_ctx *ctx)
809 810 811 812
{
	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
		return vc4_async_page_flip(crtc, fb, event, flags);
	else
813
		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
814 815
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
	struct vc4_crtc_state *vc4_state;

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
	return &vc4_state->base;
}

static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
				   struct drm_crtc_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);

	if (vc4_state->mm.allocated) {
		unsigned long flags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
		drm_mm_remove_node(&vc4_state->mm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);

	}

843
	drm_atomic_helper_crtc_destroy_state(crtc, state);
844 845
}

846 847 848 849 850 851 852 853 854 855 856
static void
vc4_crtc_reset(struct drm_crtc *crtc)
{
	if (crtc->state)
		__drm_atomic_helper_crtc_destroy_state(crtc->state);

	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
	if (crtc->state)
		crtc->state->crtc = crtc;
}

857 858 859
static const struct drm_crtc_funcs vc4_crtc_funcs = {
	.set_config = drm_atomic_helper_set_config,
	.destroy = vc4_crtc_destroy,
860
	.page_flip = vc4_page_flip,
861 862 863
	.set_property = NULL,
	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
864
	.reset = vc4_crtc_reset,
865 866
	.atomic_duplicate_state = vc4_crtc_duplicate_state,
	.atomic_destroy_state = vc4_crtc_destroy_state,
867
	.gamma_set = vc4_crtc_gamma_set,
868 869
	.enable_vblank = vc4_enable_vblank,
	.disable_vblank = vc4_disable_vblank,
870 871 872 873
};

static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
	.mode_set_nofb = vc4_crtc_mode_set_nofb,
874
	.mode_valid = vc4_crtc_mode_valid,
875 876
	.atomic_check = vc4_crtc_atomic_check,
	.atomic_flush = vc4_crtc_atomic_flush,
877
	.atomic_enable = vc4_crtc_atomic_enable,
878
	.atomic_disable = vc4_crtc_atomic_disable,
879 880 881 882
};

static const struct vc4_crtc_data pv0_data = {
	.hvs_channel = 0,
883 884 885 886
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
	},
887 888 889 890
};

static const struct vc4_crtc_data pv1_data = {
	.hvs_channel = 2,
891 892 893 894
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
	},
895 896 897 898
};

static const struct vc4_crtc_data pv2_data = {
	.hvs_channel = 1,
899 900 901 902
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
	},
903 904 905 906 907 908 909 910 911 912 913 914 915
};

static const struct of_device_id vc4_crtc_dt_match[] = {
	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
	{}
};

static void vc4_set_crtc_possible_masks(struct drm_device *drm,
					struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
916 917
	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
918 919 920 921
	struct drm_encoder *encoder;

	drm_for_each_encoder(encoder, drm) {
		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
922 923 924 925 926 927 928 929
		int i;

		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
			if (vc4_encoder->type == encoder_types[i]) {
				vc4_encoder->clock_select = i;
				encoder->possible_crtcs |= drm_crtc_mask(crtc);
				break;
			}
930 931 932 933
		}
	}
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static void
vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
{
	struct drm_device *drm = vc4_crtc->base.dev;
	struct vc4_dev *vc4 = to_vc4_dev(drm);
	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
	/* Top/base are supposed to be 4-pixel aligned, but the
	 * Raspberry Pi firmware fills the low bits (which are
	 * presumably ignored).
	 */
	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;

	vc4_crtc->cob_size = top - base + 4;
}

950 951 952 953 954 955
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = dev_get_drvdata(master);
	struct vc4_crtc *vc4_crtc;
	struct drm_crtc *crtc;
956
	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
957
	const struct of_device_id *match;
958
	int ret, i;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
	if (!vc4_crtc)
		return -ENOMEM;
	crtc = &vc4_crtc->base;

	match = of_match_device(vc4_crtc_dt_match, dev);
	if (!match)
		return -ENODEV;
	vc4_crtc->data = match->data;

	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
	if (IS_ERR(vc4_crtc->regs))
		return PTR_ERR(vc4_crtc->regs);

	/* For now, we create just the primary and the legacy cursor
	 * planes.  We should be able to stack more planes on easily,
	 * but to do that we would need to compute the bandwidth
	 * requirement of the plane configuration, and reject ones
	 * that will take too much.
	 */
	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
981
	if (IS_ERR(primary_plane)) {
982 983 984 985 986
		dev_err(dev, "failed to construct primary plane\n");
		ret = PTR_ERR(primary_plane);
		goto err;
	}

987
	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
988
				  &vc4_crtc_funcs, NULL);
989 990 991
	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
	primary_plane->crtc = crtc;
	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
992
	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	/* Set up some arbitrary number of planes.  We're not limited
	 * by a set number of physical registers, just the space in
	 * the HVS (16k) and how small an plane can be (28 bytes).
	 * However, each plane we set up takes up some memory, and
	 * increases the cost of looping over planes, which atomic
	 * modesetting does quite a bit.  As a result, we pick a
	 * modest number of planes to expose, that should hopefully
	 * still cover any sane usecase.
	 */
	for (i = 0; i < 8; i++) {
		struct drm_plane *plane =
			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);

		if (IS_ERR(plane))
			continue;

		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
	}

	/* Set up the legacy cursor after overlay initialization,
	 * since we overlay planes on the CRTC in the order they were
	 * initialized.
	 */
	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
	if (!IS_ERR(cursor_plane)) {
		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
		cursor_plane->crtc = crtc;
		crtc->cursor = cursor_plane;
	}

1024 1025
	vc4_crtc_get_cob_allocation(vc4_crtc);

1026 1027 1028 1029 1030
	CRTC_WRITE(PV_INTEN, 0);
	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
	if (ret)
1031
		goto err_destroy_planes;
1032 1033 1034

	vc4_set_crtc_possible_masks(drm, crtc);

1035 1036 1037 1038 1039 1040
	for (i = 0; i < crtc->gamma_size; i++) {
		vc4_crtc->lut_r[i] = i;
		vc4_crtc->lut_g[i] = i;
		vc4_crtc->lut_b[i] = i;
	}

1041 1042 1043 1044
	platform_set_drvdata(pdev, vc4_crtc);

	return 0;

1045 1046 1047 1048 1049 1050
err_destroy_planes:
	list_for_each_entry_safe(destroy_plane, temp,
				 &drm->mode_config.plane_list, head) {
		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
		    destroy_plane->funcs->destroy(destroy_plane);
	}
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
err:
	return ret;
}

static void vc4_crtc_unbind(struct device *dev, struct device *master,
			    void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);

	vc4_crtc_destroy(&vc4_crtc->base);

	CRTC_WRITE(PV_INTEN, 0);

	platform_set_drvdata(pdev, NULL);
}

static const struct component_ops vc4_crtc_ops = {
	.bind   = vc4_crtc_bind,
	.unbind = vc4_crtc_unbind,
};

static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &vc4_crtc_ops);
}

static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &vc4_crtc_ops);
	return 0;
}

struct platform_driver vc4_crtc_driver = {
	.probe = vc4_crtc_dev_probe,
	.remove = vc4_crtc_dev_remove,
	.driver = {
		.name = "vc4_crtc",
		.of_match_table = vc4_crtc_dt_match,
	},
};