gaccess.c 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * guest access functions
 *
 * Copyright IBM Corp. 2014
 *
 */

#include <linux/vmalloc.h>
#include <linux/err.h>
#include <asm/pgtable.h>
#include "kvm-s390.h"
#include "gaccess.h"
13
#include <asm/switch_to.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

union asce {
	unsigned long val;
	struct {
		unsigned long origin : 52; /* Region- or Segment-Table Origin */
		unsigned long	 : 2;
		unsigned long g  : 1; /* Subspace Group Control */
		unsigned long p  : 1; /* Private Space Control */
		unsigned long s  : 1; /* Storage-Alteration-Event Control */
		unsigned long x  : 1; /* Space-Switch-Event Control */
		unsigned long r  : 1; /* Real-Space Control */
		unsigned long	 : 1;
		unsigned long dt : 2; /* Designation-Type Control */
		unsigned long tl : 2; /* Region- or Segment-Table Length */
	};
};

enum {
	ASCE_TYPE_SEGMENT = 0,
	ASCE_TYPE_REGION3 = 1,
	ASCE_TYPE_REGION2 = 2,
	ASCE_TYPE_REGION1 = 3
};

union region1_table_entry {
	unsigned long val;
	struct {
		unsigned long rto: 52;/* Region-Table Origin */
		unsigned long	 : 2;
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long	 : 1;
		unsigned long tf : 2; /* Region-Second-Table Offset */
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long	 : 1;
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long tl : 2; /* Region-Second-Table Length */
	};
};

union region2_table_entry {
	unsigned long val;
	struct {
		unsigned long rto: 52;/* Region-Table Origin */
		unsigned long	 : 2;
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long	 : 1;
		unsigned long tf : 2; /* Region-Third-Table Offset */
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long	 : 1;
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long tl : 2; /* Region-Third-Table Length */
	};
};

struct region3_table_entry_fc0 {
	unsigned long sto: 52;/* Segment-Table Origin */
	unsigned long	 : 1;
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long	 : 1;
	unsigned long tf : 2; /* Segment-Table Offset */
	unsigned long i  : 1; /* Region-Invalid Bit */
	unsigned long cr : 1; /* Common-Region Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long tl : 2; /* Segment-Table Length */
};

struct region3_table_entry_fc1 {
	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
	unsigned long	 : 14;
	unsigned long av : 1; /* ACCF-Validity Control */
	unsigned long acc: 4; /* Access-Control Bits */
	unsigned long f  : 1; /* Fetch-Protection Bit */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long co : 1; /* Change-Recording Override */
	unsigned long	 : 2;
	unsigned long i  : 1; /* Region-Invalid Bit */
	unsigned long cr : 1; /* Common-Region Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

union region3_table_entry {
	unsigned long val;
	struct region3_table_entry_fc0 fc0;
	struct region3_table_entry_fc1 fc1;
	struct {
		unsigned long	 : 53;
		unsigned long fc : 1; /* Format-Control */
		unsigned long	 : 4;
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long cr : 1; /* Common-Region Bit */
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long	 : 2;
	};
};

struct segment_entry_fc0 {
	unsigned long pto: 53;/* Page-Table Origin */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long	 : 3;
	unsigned long i  : 1; /* Segment-Invalid Bit */
	unsigned long cs : 1; /* Common-Segment Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

struct segment_entry_fc1 {
	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
	unsigned long	 : 3;
	unsigned long av : 1; /* ACCF-Validity Control */
	unsigned long acc: 4; /* Access-Control Bits */
	unsigned long f  : 1; /* Fetch-Protection Bit */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long co : 1; /* Change-Recording Override */
	unsigned long	 : 2;
	unsigned long i  : 1; /* Segment-Invalid Bit */
	unsigned long cs : 1; /* Common-Segment Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

union segment_table_entry {
	unsigned long val;
	struct segment_entry_fc0 fc0;
	struct segment_entry_fc1 fc1;
	struct {
		unsigned long	 : 53;
		unsigned long fc : 1; /* Format-Control */
		unsigned long	 : 4;
		unsigned long i  : 1; /* Segment-Invalid Bit */
		unsigned long cs : 1; /* Common-Segment Bit */
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long	 : 2;
	};
};

enum {
	TABLE_TYPE_SEGMENT = 0,
	TABLE_TYPE_REGION3 = 1,
	TABLE_TYPE_REGION2 = 2,
	TABLE_TYPE_REGION1 = 3
};

union page_table_entry {
	unsigned long val;
	struct {
		unsigned long pfra : 52; /* Page-Frame Real Address */
		unsigned long z  : 1; /* Zero Bit */
		unsigned long i  : 1; /* Page-Invalid Bit */
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long co : 1; /* Change-Recording Override */
		unsigned long	 : 8;
	};
};

/*
 * vaddress union in order to easily decode a virtual address into its
 * region first index, region second index etc. parts.
 */
union vaddress {
	unsigned long addr;
	struct {
		unsigned long rfx : 11;
		unsigned long rsx : 11;
		unsigned long rtx : 11;
		unsigned long sx  : 11;
		unsigned long px  : 8;
		unsigned long bx  : 12;
	};
	struct {
		unsigned long rfx01 : 2;
		unsigned long	    : 9;
		unsigned long rsx01 : 2;
		unsigned long	    : 9;
		unsigned long rtx01 : 2;
		unsigned long	    : 9;
		unsigned long sx01  : 2;
		unsigned long	    : 29;
	};
};

/*
 * raddress union which will contain the result (real or absolute address)
 * after a page table walk. The rfaa, sfaa and pfra members are used to
 * simply assign them the value of a region, segment or page table entry.
 */
union raddress {
	unsigned long addr;
	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
	unsigned long pfra : 52; /* Page-Frame Real Address */
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
union alet {
	u32 val;
	struct {
		u32 reserved : 7;
		u32 p        : 1;
		u32 alesn    : 8;
		u32 alen     : 16;
	};
};

union ald {
	u32 val;
	struct {
		u32     : 1;
		u32 alo : 24;
		u32 all : 7;
	};
};

struct ale {
	unsigned long i      : 1; /* ALEN-Invalid Bit */
	unsigned long        : 5;
	unsigned long fo     : 1; /* Fetch-Only Bit */
	unsigned long p      : 1; /* Private Bit */
	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
	unsigned long        : 32;
	unsigned long        : 1;
	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
	unsigned long        : 6;
	unsigned long astesn : 32; /* ASTE Sequence Number */
} __packed;

struct aste {
	unsigned long i      : 1; /* ASX-Invalid Bit */
	unsigned long ato    : 29; /* Authority-Table Origin */
	unsigned long        : 1;
	unsigned long b      : 1; /* Base-Space Bit */
	unsigned long ax     : 16; /* Authorization Index */
	unsigned long atl    : 12; /* Authority-Table Length */
	unsigned long        : 2;
	unsigned long ca     : 1; /* Controlled-ASN Bit */
	unsigned long ra     : 1; /* Reusable-ASN Bit */
	unsigned long asce   : 64; /* Address-Space-Control Element */
	unsigned long ald    : 32;
	unsigned long astesn : 32;
	/* .. more fields there */
} __packed;
259 260 261

int ipte_lock_held(struct kvm_vcpu *vcpu)
{
262 263 264 265 266 267 268 269
	if (vcpu->arch.sie_block->eca & 1) {
		int rc;

		read_lock(&vcpu->kvm->arch.sca_lock);
		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
		read_unlock(&vcpu->kvm->arch.sca_lock);
		return rc;
	}
270
	return vcpu->kvm->arch.ipte_lock_count != 0;
271 272 273 274 275 276
}

static void ipte_lock_simple(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

277 278 279
	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
	vcpu->kvm->arch.ipte_lock_count++;
	if (vcpu->kvm->arch.ipte_lock_count > 1)
280
		goto out;
281 282
retry:
	read_lock(&vcpu->kvm->arch.sca_lock);
283
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
284
	do {
285
		old = READ_ONCE(*ic);
286 287
		if (old.k) {
			read_unlock(&vcpu->kvm->arch.sca_lock);
288
			cond_resched();
289
			goto retry;
290 291 292 293
		}
		new = old;
		new.k = 1;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
294
	read_unlock(&vcpu->kvm->arch.sca_lock);
295
out:
296
	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
297 298 299 300 301 302
}

static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

303 304 305
	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
	vcpu->kvm->arch.ipte_lock_count--;
	if (vcpu->kvm->arch.ipte_lock_count)
306
		goto out;
307
	read_lock(&vcpu->kvm->arch.sca_lock);
308
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
309
	do {
310
		old = READ_ONCE(*ic);
311
		new = old;
312 313
		new.k = 0;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
314
	read_unlock(&vcpu->kvm->arch.sca_lock);
315
	wake_up(&vcpu->kvm->arch.ipte_wq);
316
out:
317
	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
318 319 320 321 322 323
}

static void ipte_lock_siif(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

324 325
retry:
	read_lock(&vcpu->kvm->arch.sca_lock);
326
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
327
	do {
328
		old = READ_ONCE(*ic);
329 330
		if (old.kg) {
			read_unlock(&vcpu->kvm->arch.sca_lock);
331
			cond_resched();
332
			goto retry;
333 334 335 336 337
		}
		new = old;
		new.k = 1;
		new.kh++;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
338
	read_unlock(&vcpu->kvm->arch.sca_lock);
339 340 341 342 343 344
}

static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

345
	read_lock(&vcpu->kvm->arch.sca_lock);
346
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
347
	do {
348
		old = READ_ONCE(*ic);
349
		new = old;
350 351 352 353
		new.kh--;
		if (!new.kh)
			new.k = 0;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
354
	read_unlock(&vcpu->kvm->arch.sca_lock);
355 356 357 358
	if (!new.kh)
		wake_up(&vcpu->kvm->arch.ipte_wq);
}

359
void ipte_lock(struct kvm_vcpu *vcpu)
360 361 362 363 364 365 366
{
	if (vcpu->arch.sie_block->eca & 1)
		ipte_lock_siif(vcpu);
	else
		ipte_lock_simple(vcpu);
}

367
void ipte_unlock(struct kvm_vcpu *vcpu)
368 369 370 371 372 373 374
{
	if (vcpu->arch.sie_block->eca & 1)
		ipte_unlock_siif(vcpu);
	else
		ipte_unlock_simple(vcpu);
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
			  int write)
{
	union alet alet;
	struct ale ale;
	struct aste aste;
	unsigned long ald_addr, authority_table_addr;
	union ald ald;
	int eax, rc;
	u8 authority_table;

	if (ar >= NUM_ACRS)
		return -EINVAL;

	save_access_regs(vcpu->run->s.regs.acrs);
	alet.val = vcpu->run->s.regs.acrs[ar];

	if (ar == 0 || alet.val == 0) {
		asce->val = vcpu->arch.sie_block->gcr[1];
		return 0;
	} else if (alet.val == 1) {
		asce->val = vcpu->arch.sie_block->gcr[7];
		return 0;
	}

	if (alet.reserved)
		return PGM_ALET_SPECIFICATION;

	if (alet.p)
		ald_addr = vcpu->arch.sie_block->gcr[5];
	else
		ald_addr = vcpu->arch.sie_block->gcr[2];
	ald_addr &= 0x7fffffc0;

	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
	if (rc)
		return rc;

	if (alet.alen / 8 > ald.all)
		return PGM_ALEN_TRANSLATION;

	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
		return PGM_ADDRESSING;

	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
			     sizeof(struct ale));
	if (rc)
		return rc;

	if (ale.i == 1)
		return PGM_ALEN_TRANSLATION;
	if (ale.alesn != alet.alesn)
		return PGM_ALE_SEQUENCE;

	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
	if (rc)
		return rc;

	if (aste.i)
		return PGM_ASTE_VALIDITY;
	if (aste.astesn != ale.astesn)
		return PGM_ASTE_SEQUENCE;

	if (ale.p == 1) {
		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
		if (ale.aleax != eax) {
			if (eax / 16 > aste.atl)
				return PGM_EXTENDED_AUTHORITY;

			authority_table_addr = aste.ato * 4 + eax / 4;

			rc = read_guest_real(vcpu, authority_table_addr,
					     &authority_table,
					     sizeof(u8));
			if (rc)
				return rc;

			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
				return PGM_EXTENDED_AUTHORITY;
		}
	}

	if (ale.fo == 1 && write)
		return PGM_PROTECTION;

	asce->val = aste.asce;
	return 0;
}

struct trans_exc_code_bits {
	unsigned long addr : 52; /* Translation-exception Address */
	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
	unsigned long	   : 6;
	unsigned long b60  : 1;
	unsigned long b61  : 1;
	unsigned long as   : 2;  /* ASCE Identifier */
};

enum {
	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
	FSI_STORE   = 1, /* Exception was due to store operation */
	FSI_FETCH   = 2  /* Exception was due to fetch operation */
};

static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
			 ar_t ar, int write)
481
{
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	int rc;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	struct trans_exc_code_bits *tec_bits;

	memset(pgm, 0, sizeof(*pgm));
	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
	tec_bits->fsi = write ? FSI_STORE : FSI_FETCH;
	tec_bits->as = psw_bits(*psw).as;

	if (!psw_bits(*psw).t) {
		asce->val = 0;
		asce->r = 1;
		return 0;
	}

498 499
	switch (psw_bits(vcpu->arch.sie_block->gpsw).as) {
	case PSW_AS_PRIMARY:
500 501
		asce->val = vcpu->arch.sie_block->gcr[1];
		return 0;
502
	case PSW_AS_SECONDARY:
503 504
		asce->val = vcpu->arch.sie_block->gcr[7];
		return 0;
505
	case PSW_AS_HOME:
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		asce->val = vcpu->arch.sie_block->gcr[13];
		return 0;
	case PSW_AS_ACCREG:
		rc = ar_translation(vcpu, asce, ar, write);
		switch (rc) {
		case PGM_ALEN_TRANSLATION:
		case PGM_ALE_SEQUENCE:
		case PGM_ASTE_VALIDITY:
		case PGM_ASTE_SEQUENCE:
		case PGM_EXTENDED_AUTHORITY:
			vcpu->arch.pgm.exc_access_id = ar;
			break;
		case PGM_PROTECTION:
			tec_bits->b60 = 1;
			tec_bits->b61 = 1;
			break;
		}
		if (rc > 0)
			pgm->code = rc;
		return rc;
526 527 528 529 530 531 532 533 534 535 536 537 538 539
	}
	return 0;
}

static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
{
	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
}

/**
 * guest_translate - translate a guest virtual into a guest absolute address
 * @vcpu: virtual cpu
 * @gva: guest virtual address
 * @gpa: points to where guest physical (absolute) address should be stored
540
 * @asce: effective asce
541 542 543
 * @write: indicates if access is a write access
 *
 * Translate a guest virtual address into a guest absolute address by means
544
 * of dynamic address translation as specified by the architecture.
545 546 547 548 549 550 551 552 553 554 555
 * If the resulting absolute address is not available in the configuration
 * an addressing exception is indicated and @gpa will not be changed.
 *
 * Returns: - zero on success; @gpa contains the resulting absolute address
 *	    - a negative value if guest access failed due to e.g. broken
 *	      guest mapping
 *	    - a positve value if an access exception happened. In this case
 *	      the returned value is the program interruption code as defined
 *	      by the architecture
 */
static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
556 557
				     unsigned long *gpa, const union asce asce,
				     int write)
558 559 560 561 562 563 564 565 566 567
{
	union vaddress vaddr = {.addr = gva};
	union raddress raddr = {.addr = gva};
	union page_table_entry pte;
	int dat_protection = 0;
	union ctlreg0 ctlreg0;
	unsigned long ptr;
	int edat1, edat2;

	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
568 569
	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	if (asce.r)
		goto real_address;
	ptr = asce.origin * 4096;
	switch (asce.dt) {
	case ASCE_TYPE_REGION1:
		if (vaddr.rfx01 > asce.tl)
			return PGM_REGION_FIRST_TRANS;
		ptr += vaddr.rfx * 8;
		break;
	case ASCE_TYPE_REGION2:
		if (vaddr.rfx)
			return PGM_ASCE_TYPE;
		if (vaddr.rsx01 > asce.tl)
			return PGM_REGION_SECOND_TRANS;
		ptr += vaddr.rsx * 8;
		break;
	case ASCE_TYPE_REGION3:
		if (vaddr.rfx || vaddr.rsx)
			return PGM_ASCE_TYPE;
		if (vaddr.rtx01 > asce.tl)
			return PGM_REGION_THIRD_TRANS;
		ptr += vaddr.rtx * 8;
		break;
	case ASCE_TYPE_SEGMENT:
		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
			return PGM_ASCE_TYPE;
		if (vaddr.sx01 > asce.tl)
			return PGM_SEGMENT_TRANSLATION;
		ptr += vaddr.sx * 8;
		break;
	}
	switch (asce.dt) {
	case ASCE_TYPE_REGION1:	{
		union region1_table_entry rfte;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rfte.val))
			return -EFAULT;
		if (rfte.i)
			return PGM_REGION_FIRST_TRANS;
		if (rfte.tt != TABLE_TYPE_REGION1)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
			return PGM_REGION_SECOND_TRANS;
		if (edat1)
			dat_protection |= rfte.p;
		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_REGION2: {
		union region2_table_entry rste;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rste.val))
			return -EFAULT;
		if (rste.i)
			return PGM_REGION_SECOND_TRANS;
		if (rste.tt != TABLE_TYPE_REGION2)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
			return PGM_REGION_THIRD_TRANS;
		if (edat1)
			dat_protection |= rste.p;
		ptr = rste.rto * 4096 + vaddr.rtx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_REGION3: {
		union region3_table_entry rtte;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rtte.val))
			return -EFAULT;
		if (rtte.i)
			return PGM_REGION_THIRD_TRANS;
		if (rtte.tt != TABLE_TYPE_REGION3)
			return PGM_TRANSLATION_SPEC;
		if (rtte.cr && asce.p && edat2)
			return PGM_TRANSLATION_SPEC;
		if (rtte.fc && edat2) {
			dat_protection |= rtte.fc1.p;
			raddr.rfaa = rtte.fc1.rfaa;
			goto absolute_address;
		}
		if (vaddr.sx01 < rtte.fc0.tf)
			return PGM_SEGMENT_TRANSLATION;
		if (vaddr.sx01 > rtte.fc0.tl)
			return PGM_SEGMENT_TRANSLATION;
		if (edat1)
			dat_protection |= rtte.fc0.p;
		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_SEGMENT: {
		union segment_table_entry ste;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &ste.val))
			return -EFAULT;
		if (ste.i)
			return PGM_SEGMENT_TRANSLATION;
		if (ste.tt != TABLE_TYPE_SEGMENT)
			return PGM_TRANSLATION_SPEC;
		if (ste.cs && asce.p)
			return PGM_TRANSLATION_SPEC;
		if (ste.fc && edat1) {
			dat_protection |= ste.fc1.p;
			raddr.sfaa = ste.fc1.sfaa;
			goto absolute_address;
		}
		dat_protection |= ste.fc0.p;
		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
	}
	}
	if (kvm_is_error_gpa(vcpu->kvm, ptr))
		return PGM_ADDRESSING;
	if (deref_table(vcpu->kvm, ptr, &pte.val))
		return -EFAULT;
	if (pte.i)
		return PGM_PAGE_TRANSLATION;
	if (pte.z)
		return PGM_TRANSLATION_SPEC;
	if (pte.co && !edat1)
		return PGM_TRANSLATION_SPEC;
	dat_protection |= pte.p;
	raddr.pfra = pte.pfra;
real_address:
	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
absolute_address:
	if (write && dat_protection)
		return PGM_PROTECTION;
	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
		return PGM_ADDRESSING;
	*gpa = raddr.addr;
	return 0;
}

static inline int is_low_address(unsigned long ga)
{
	/* Check for address ranges 0..511 and 4096..4607 */
	return (ga & ~0x11fful) == 0;
}

716 717
static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
					  const union asce asce)
718 719 720 721 722 723 724 725 726 727 728 729 730
{
	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
	psw_t *psw = &vcpu->arch.sie_block->gpsw;

	if (!ctlreg0.lap)
		return 0;
	if (psw_bits(*psw).t && asce.p)
		return 0;
	return 1;
}

static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
			    unsigned long *pages, unsigned long nr_pages,
731
			    const union asce asce, int write)
732 733 734 735 736 737 738
{
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	struct trans_exc_code_bits *tec_bits;
	int lap_enabled, rc;

	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
739
	lap_enabled = low_address_protection_enabled(vcpu, asce);
740 741 742 743 744 745 746 747 748
	while (nr_pages) {
		ga = kvm_s390_logical_to_effective(vcpu, ga);
		tec_bits->addr = ga >> PAGE_SHIFT;
		if (write && lap_enabled && is_low_address(ga)) {
			pgm->code = PGM_PROTECTION;
			return pgm->code;
		}
		ga &= PAGE_MASK;
		if (psw_bits(*psw).t) {
749
			rc = guest_translate(vcpu, ga, pages, asce, write);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
			if (rc < 0)
				return rc;
			if (rc == PGM_PROTECTION)
				tec_bits->b61 = 1;
			if (rc)
				pgm->code = rc;
		} else {
			*pages = kvm_s390_real_to_abs(vcpu, ga);
			if (kvm_is_error_gpa(vcpu->kvm, *pages))
				pgm->code = PGM_ADDRESSING;
		}
		if (pgm->code)
			return pgm->code;
		ga += PAGE_SIZE;
		pages++;
		nr_pages--;
	}
	return 0;
}

770
int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
771 772 773 774 775 776
		 unsigned long len, int write)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	unsigned long _len, nr_pages, gpa, idx;
	unsigned long pages_array[2];
	unsigned long *pages;
777 778
	int need_ipte_lock;
	union asce asce;
779 780 781 782
	int rc;

	if (!len)
		return 0;
783 784 785
	rc = get_vcpu_asce(vcpu, &asce, ar, write);
	if (rc)
		return rc;
786 787 788 789 790 791
	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
	pages = pages_array;
	if (nr_pages > ARRAY_SIZE(pages_array))
		pages = vmalloc(nr_pages * sizeof(unsigned long));
	if (!pages)
		return -ENOMEM;
792 793 794
	need_ipte_lock = psw_bits(*psw).t && !asce.r;
	if (need_ipte_lock)
		ipte_lock(vcpu);
795
	rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, write);
796 797 798 799 800 801 802 803 804 805 806
	for (idx = 0; idx < nr_pages && !rc; idx++) {
		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
		if (write)
			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
		else
			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
		len -= _len;
		ga += _len;
		data += _len;
	}
807 808
	if (need_ipte_lock)
		ipte_unlock(vcpu);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	if (nr_pages > ARRAY_SIZE(pages_array))
		vfree(pages);
	return rc;
}

int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
		      void *data, unsigned long len, int write)
{
	unsigned long _len, gpa;
	int rc = 0;

	while (len && !rc) {
		gpa = kvm_s390_real_to_abs(vcpu, gra);
		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
		if (write)
			rc = write_guest_abs(vcpu, gpa, data, _len);
		else
			rc = read_guest_abs(vcpu, gpa, data, _len);
		len -= _len;
		gra += _len;
		data += _len;
	}
	return rc;
}
833

834 835 836 837 838 839 840 841 842
/**
 * guest_translate_address - translate guest logical into guest absolute address
 *
 * Parameter semantics are the same as the ones from guest_translate.
 * The memory contents at the guest address are not changed.
 *
 * Note: The IPTE lock is not taken during this function, so the caller
 * has to take care of this.
 */
843
int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
844 845 846 847 848 849 850 851 852 853
			    unsigned long *gpa, int write)
{
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	struct trans_exc_code_bits *tec;
	union asce asce;
	int rc;

	gva = kvm_s390_logical_to_effective(vcpu, gva);
	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
854
	rc = get_vcpu_asce(vcpu, &asce, ar, write);
855
	tec->addr = gva >> PAGE_SHIFT;
856 857
	if (rc)
		return rc;
858
	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
859 860 861 862 863 864 865
		if (write) {
			rc = pgm->code = PGM_PROTECTION;
			return rc;
		}
	}

	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
866
		rc = guest_translate(vcpu, gva, gpa, asce, write);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		if (rc > 0) {
			if (rc == PGM_PROTECTION)
				tec->b61 = 1;
			pgm->code = rc;
		}
	} else {
		rc = 0;
		*gpa = kvm_s390_real_to_abs(vcpu, gva);
		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
			rc = pgm->code = PGM_ADDRESSING;
	}

	return rc;
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/**
 * check_gva_range - test a range of guest virtual addresses for accessibility
 */
int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
		    unsigned long length, int is_write)
{
	unsigned long gpa;
	unsigned long currlen;
	int rc = 0;

	ipte_lock(vcpu);
	while (length > 0 && !rc) {
		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
		rc = guest_translate_address(vcpu, gva, ar, &gpa, is_write);
		gva += currlen;
		length -= currlen;
	}
	ipte_unlock(vcpu);

	return rc;
}

904
/**
905 906
 * kvm_s390_check_low_addr_prot_real - check for low-address protection
 * @gra: Guest real address
907 908 909 910 911 912
 *
 * Checks whether an address is subject to low-address protection and set
 * up vcpu->arch.pgm accordingly if necessary.
 *
 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
 */
913
int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
914 915 916 917
{
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	struct trans_exc_code_bits *tec_bits;
918
	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
919

920
	if (!ctlreg0.lap || !is_low_address(gra))
921 922 923 924 925 926
		return 0;

	memset(pgm, 0, sizeof(*pgm));
	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
	tec_bits->fsi = FSI_STORE;
	tec_bits->as = psw_bits(*psw).as;
927
	tec_bits->addr = gra >> PAGE_SHIFT;
928 929 930 931
	pgm->code = PGM_PROTECTION;

	return pgm->code;
}