gaccess.c 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * guest access functions
 *
 * Copyright IBM Corp. 2014
 *
 */

#include <linux/vmalloc.h>
#include <linux/err.h>
#include <asm/pgtable.h>
#include "kvm-s390.h"
#include "gaccess.h"

union asce {
	unsigned long val;
	struct {
		unsigned long origin : 52; /* Region- or Segment-Table Origin */
		unsigned long	 : 2;
		unsigned long g  : 1; /* Subspace Group Control */
		unsigned long p  : 1; /* Private Space Control */
		unsigned long s  : 1; /* Storage-Alteration-Event Control */
		unsigned long x  : 1; /* Space-Switch-Event Control */
		unsigned long r  : 1; /* Real-Space Control */
		unsigned long	 : 1;
		unsigned long dt : 2; /* Designation-Type Control */
		unsigned long tl : 2; /* Region- or Segment-Table Length */
	};
};

enum {
	ASCE_TYPE_SEGMENT = 0,
	ASCE_TYPE_REGION3 = 1,
	ASCE_TYPE_REGION2 = 2,
	ASCE_TYPE_REGION1 = 3
};

union region1_table_entry {
	unsigned long val;
	struct {
		unsigned long rto: 52;/* Region-Table Origin */
		unsigned long	 : 2;
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long	 : 1;
		unsigned long tf : 2; /* Region-Second-Table Offset */
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long	 : 1;
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long tl : 2; /* Region-Second-Table Length */
	};
};

union region2_table_entry {
	unsigned long val;
	struct {
		unsigned long rto: 52;/* Region-Table Origin */
		unsigned long	 : 2;
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long	 : 1;
		unsigned long tf : 2; /* Region-Third-Table Offset */
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long	 : 1;
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long tl : 2; /* Region-Third-Table Length */
	};
};

struct region3_table_entry_fc0 {
	unsigned long sto: 52;/* Segment-Table Origin */
	unsigned long	 : 1;
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long	 : 1;
	unsigned long tf : 2; /* Segment-Table Offset */
	unsigned long i  : 1; /* Region-Invalid Bit */
	unsigned long cr : 1; /* Common-Region Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long tl : 2; /* Segment-Table Length */
};

struct region3_table_entry_fc1 {
	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
	unsigned long	 : 14;
	unsigned long av : 1; /* ACCF-Validity Control */
	unsigned long acc: 4; /* Access-Control Bits */
	unsigned long f  : 1; /* Fetch-Protection Bit */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long co : 1; /* Change-Recording Override */
	unsigned long	 : 2;
	unsigned long i  : 1; /* Region-Invalid Bit */
	unsigned long cr : 1; /* Common-Region Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

union region3_table_entry {
	unsigned long val;
	struct region3_table_entry_fc0 fc0;
	struct region3_table_entry_fc1 fc1;
	struct {
		unsigned long	 : 53;
		unsigned long fc : 1; /* Format-Control */
		unsigned long	 : 4;
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long cr : 1; /* Common-Region Bit */
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long	 : 2;
	};
};

struct segment_entry_fc0 {
	unsigned long pto: 53;/* Page-Table Origin */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long	 : 3;
	unsigned long i  : 1; /* Segment-Invalid Bit */
	unsigned long cs : 1; /* Common-Segment Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

struct segment_entry_fc1 {
	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
	unsigned long	 : 3;
	unsigned long av : 1; /* ACCF-Validity Control */
	unsigned long acc: 4; /* Access-Control Bits */
	unsigned long f  : 1; /* Fetch-Protection Bit */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long co : 1; /* Change-Recording Override */
	unsigned long	 : 2;
	unsigned long i  : 1; /* Segment-Invalid Bit */
	unsigned long cs : 1; /* Common-Segment Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

union segment_table_entry {
	unsigned long val;
	struct segment_entry_fc0 fc0;
	struct segment_entry_fc1 fc1;
	struct {
		unsigned long	 : 53;
		unsigned long fc : 1; /* Format-Control */
		unsigned long	 : 4;
		unsigned long i  : 1; /* Segment-Invalid Bit */
		unsigned long cs : 1; /* Common-Segment Bit */
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long	 : 2;
	};
};

enum {
	TABLE_TYPE_SEGMENT = 0,
	TABLE_TYPE_REGION3 = 1,
	TABLE_TYPE_REGION2 = 2,
	TABLE_TYPE_REGION1 = 3
};

union page_table_entry {
	unsigned long val;
	struct {
		unsigned long pfra : 52; /* Page-Frame Real Address */
		unsigned long z  : 1; /* Zero Bit */
		unsigned long i  : 1; /* Page-Invalid Bit */
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long co : 1; /* Change-Recording Override */
		unsigned long	 : 8;
	};
};

/*
 * vaddress union in order to easily decode a virtual address into its
 * region first index, region second index etc. parts.
 */
union vaddress {
	unsigned long addr;
	struct {
		unsigned long rfx : 11;
		unsigned long rsx : 11;
		unsigned long rtx : 11;
		unsigned long sx  : 11;
		unsigned long px  : 8;
		unsigned long bx  : 12;
	};
	struct {
		unsigned long rfx01 : 2;
		unsigned long	    : 9;
		unsigned long rsx01 : 2;
		unsigned long	    : 9;
		unsigned long rtx01 : 2;
		unsigned long	    : 9;
		unsigned long sx01  : 2;
		unsigned long	    : 29;
	};
};

/*
 * raddress union which will contain the result (real or absolute address)
 * after a page table walk. The rfaa, sfaa and pfra members are used to
 * simply assign them the value of a region, segment or page table entry.
 */
union raddress {
	unsigned long addr;
	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
	unsigned long pfra : 52; /* Page-Frame Real Address */
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int ipte_lock_count;
static DEFINE_MUTEX(ipte_mutex);

int ipte_lock_held(struct kvm_vcpu *vcpu)
{
	union ipte_control *ic = &vcpu->kvm->arch.sca->ipte_control;

	if (vcpu->arch.sie_block->eca & 1)
		return ic->kh != 0;
	return ipte_lock_count != 0;
}

static void ipte_lock_simple(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

	mutex_lock(&ipte_mutex);
	ipte_lock_count++;
	if (ipte_lock_count > 1)
		goto out;
	ic = &vcpu->kvm->arch.sca->ipte_control;
	do {
		old = ACCESS_ONCE(*ic);
		while (old.k) {
			cond_resched();
			old = ACCESS_ONCE(*ic);
		}
		new = old;
		new.k = 1;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
out:
	mutex_unlock(&ipte_mutex);
}

static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

	mutex_lock(&ipte_mutex);
	ipte_lock_count--;
	if (ipte_lock_count)
		goto out;
	ic = &vcpu->kvm->arch.sca->ipte_control;
	do {
		new = old = ACCESS_ONCE(*ic);
		new.k = 0;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
	if (!ipte_lock_count)
		wake_up(&vcpu->kvm->arch.ipte_wq);
out:
	mutex_unlock(&ipte_mutex);
}

static void ipte_lock_siif(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

	ic = &vcpu->kvm->arch.sca->ipte_control;
	do {
		old = ACCESS_ONCE(*ic);
		while (old.kg) {
			cond_resched();
			old = ACCESS_ONCE(*ic);
		}
		new = old;
		new.k = 1;
		new.kh++;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
}

static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

	ic = &vcpu->kvm->arch.sca->ipte_control;
	do {
		new = old = ACCESS_ONCE(*ic);
		new.kh--;
		if (!new.kh)
			new.k = 0;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
	if (!new.kh)
		wake_up(&vcpu->kvm->arch.ipte_wq);
}

static void ipte_lock(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.sie_block->eca & 1)
		ipte_lock_siif(vcpu);
	else
		ipte_lock_simple(vcpu);
}

static void ipte_unlock(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.sie_block->eca & 1)
		ipte_unlock_siif(vcpu);
	else
		ipte_unlock_simple(vcpu);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static unsigned long get_vcpu_asce(struct kvm_vcpu *vcpu)
{
	switch (psw_bits(vcpu->arch.sie_block->gpsw).as) {
	case PSW_AS_PRIMARY:
		return vcpu->arch.sie_block->gcr[1];
	case PSW_AS_SECONDARY:
		return vcpu->arch.sie_block->gcr[7];
	case PSW_AS_HOME:
		return vcpu->arch.sie_block->gcr[13];
	}
	return 0;
}

static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
{
	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
}

/**
 * guest_translate - translate a guest virtual into a guest absolute address
 * @vcpu: virtual cpu
 * @gva: guest virtual address
 * @gpa: points to where guest physical (absolute) address should be stored
 * @write: indicates if access is a write access
 *
 * Translate a guest virtual address into a guest absolute address by means
 * of dynamic address translation as specified by the architecuture.
 * If the resulting absolute address is not available in the configuration
 * an addressing exception is indicated and @gpa will not be changed.
 *
 * Returns: - zero on success; @gpa contains the resulting absolute address
 *	    - a negative value if guest access failed due to e.g. broken
 *	      guest mapping
 *	    - a positve value if an access exception happened. In this case
 *	      the returned value is the program interruption code as defined
 *	      by the architecture
 */
static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
				     unsigned long *gpa, int write)
{
	union vaddress vaddr = {.addr = gva};
	union raddress raddr = {.addr = gva};
	union page_table_entry pte;
	int dat_protection = 0;
	union ctlreg0 ctlreg0;
	unsigned long ptr;
	int edat1, edat2;
	union asce asce;

	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
	edat1 = ctlreg0.edat && test_vfacility(8);
	edat2 = edat1 && test_vfacility(78);
	asce.val = get_vcpu_asce(vcpu);
	if (asce.r)
		goto real_address;
	ptr = asce.origin * 4096;
	switch (asce.dt) {
	case ASCE_TYPE_REGION1:
		if (vaddr.rfx01 > asce.tl)
			return PGM_REGION_FIRST_TRANS;
		ptr += vaddr.rfx * 8;
		break;
	case ASCE_TYPE_REGION2:
		if (vaddr.rfx)
			return PGM_ASCE_TYPE;
		if (vaddr.rsx01 > asce.tl)
			return PGM_REGION_SECOND_TRANS;
		ptr += vaddr.rsx * 8;
		break;
	case ASCE_TYPE_REGION3:
		if (vaddr.rfx || vaddr.rsx)
			return PGM_ASCE_TYPE;
		if (vaddr.rtx01 > asce.tl)
			return PGM_REGION_THIRD_TRANS;
		ptr += vaddr.rtx * 8;
		break;
	case ASCE_TYPE_SEGMENT:
		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
			return PGM_ASCE_TYPE;
		if (vaddr.sx01 > asce.tl)
			return PGM_SEGMENT_TRANSLATION;
		ptr += vaddr.sx * 8;
		break;
	}
	switch (asce.dt) {
	case ASCE_TYPE_REGION1:	{
		union region1_table_entry rfte;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rfte.val))
			return -EFAULT;
		if (rfte.i)
			return PGM_REGION_FIRST_TRANS;
		if (rfte.tt != TABLE_TYPE_REGION1)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
			return PGM_REGION_SECOND_TRANS;
		if (edat1)
			dat_protection |= rfte.p;
		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_REGION2: {
		union region2_table_entry rste;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rste.val))
			return -EFAULT;
		if (rste.i)
			return PGM_REGION_SECOND_TRANS;
		if (rste.tt != TABLE_TYPE_REGION2)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
			return PGM_REGION_THIRD_TRANS;
		if (edat1)
			dat_protection |= rste.p;
		ptr = rste.rto * 4096 + vaddr.rtx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_REGION3: {
		union region3_table_entry rtte;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rtte.val))
			return -EFAULT;
		if (rtte.i)
			return PGM_REGION_THIRD_TRANS;
		if (rtte.tt != TABLE_TYPE_REGION3)
			return PGM_TRANSLATION_SPEC;
		if (rtte.cr && asce.p && edat2)
			return PGM_TRANSLATION_SPEC;
		if (rtte.fc && edat2) {
			dat_protection |= rtte.fc1.p;
			raddr.rfaa = rtte.fc1.rfaa;
			goto absolute_address;
		}
		if (vaddr.sx01 < rtte.fc0.tf)
			return PGM_SEGMENT_TRANSLATION;
		if (vaddr.sx01 > rtte.fc0.tl)
			return PGM_SEGMENT_TRANSLATION;
		if (edat1)
			dat_protection |= rtte.fc0.p;
		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_SEGMENT: {
		union segment_table_entry ste;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &ste.val))
			return -EFAULT;
		if (ste.i)
			return PGM_SEGMENT_TRANSLATION;
		if (ste.tt != TABLE_TYPE_SEGMENT)
			return PGM_TRANSLATION_SPEC;
		if (ste.cs && asce.p)
			return PGM_TRANSLATION_SPEC;
		if (ste.fc && edat1) {
			dat_protection |= ste.fc1.p;
			raddr.sfaa = ste.fc1.sfaa;
			goto absolute_address;
		}
		dat_protection |= ste.fc0.p;
		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
	}
	}
	if (kvm_is_error_gpa(vcpu->kvm, ptr))
		return PGM_ADDRESSING;
	if (deref_table(vcpu->kvm, ptr, &pte.val))
		return -EFAULT;
	if (pte.i)
		return PGM_PAGE_TRANSLATION;
	if (pte.z)
		return PGM_TRANSLATION_SPEC;
	if (pte.co && !edat1)
		return PGM_TRANSLATION_SPEC;
	dat_protection |= pte.p;
	raddr.pfra = pte.pfra;
real_address:
	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
absolute_address:
	if (write && dat_protection)
		return PGM_PROTECTION;
	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
		return PGM_ADDRESSING;
	*gpa = raddr.addr;
	return 0;
}

static inline int is_low_address(unsigned long ga)
{
	/* Check for address ranges 0..511 and 4096..4607 */
	return (ga & ~0x11fful) == 0;
}

static int low_address_protection_enabled(struct kvm_vcpu *vcpu)
{
	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	union asce asce;

	if (!ctlreg0.lap)
		return 0;
	asce.val = get_vcpu_asce(vcpu);
	if (psw_bits(*psw).t && asce.p)
		return 0;
	return 1;
}

struct trans_exc_code_bits {
	unsigned long addr : 52; /* Translation-exception Address */
	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
	unsigned long	   : 7;
	unsigned long b61  : 1;
	unsigned long as   : 2;  /* ASCE Identifier */
};

enum {
	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
	FSI_STORE   = 1, /* Exception was due to store operation */
	FSI_FETCH   = 2  /* Exception was due to fetch operation */
};

static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
			    unsigned long *pages, unsigned long nr_pages,
			    int write)
{
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	struct trans_exc_code_bits *tec_bits;
	int lap_enabled, rc;

	memset(pgm, 0, sizeof(*pgm));
	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
	tec_bits->fsi = write ? FSI_STORE : FSI_FETCH;
	tec_bits->as = psw_bits(*psw).as;
	lap_enabled = low_address_protection_enabled(vcpu);
	while (nr_pages) {
		ga = kvm_s390_logical_to_effective(vcpu, ga);
		tec_bits->addr = ga >> PAGE_SHIFT;
		if (write && lap_enabled && is_low_address(ga)) {
			pgm->code = PGM_PROTECTION;
			return pgm->code;
		}
		ga &= PAGE_MASK;
		if (psw_bits(*psw).t) {
			rc = guest_translate(vcpu, ga, pages, write);
			if (rc < 0)
				return rc;
			if (rc == PGM_PROTECTION)
				tec_bits->b61 = 1;
			if (rc)
				pgm->code = rc;
		} else {
			*pages = kvm_s390_real_to_abs(vcpu, ga);
			if (kvm_is_error_gpa(vcpu->kvm, *pages))
				pgm->code = PGM_ADDRESSING;
		}
		if (pgm->code)
			return pgm->code;
		ga += PAGE_SIZE;
		pages++;
		nr_pages--;
	}
	return 0;
}

int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, void *data,
		 unsigned long len, int write)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	unsigned long _len, nr_pages, gpa, idx;
	unsigned long pages_array[2];
	unsigned long *pages;
589 590
	int need_ipte_lock;
	union asce asce;
591 592 593 594 595 596 597 598 599 600 601 602 603
	int rc;

	if (!len)
		return 0;
	/* Access register mode is not supported yet. */
	if (psw_bits(*psw).t && psw_bits(*psw).as == PSW_AS_ACCREG)
		return -EOPNOTSUPP;
	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
	pages = pages_array;
	if (nr_pages > ARRAY_SIZE(pages_array))
		pages = vmalloc(nr_pages * sizeof(unsigned long));
	if (!pages)
		return -ENOMEM;
604 605 606 607
	asce.val = get_vcpu_asce(vcpu);
	need_ipte_lock = psw_bits(*psw).t && !asce.r;
	if (need_ipte_lock)
		ipte_lock(vcpu);
608 609 610 611 612 613 614 615 616 617 618 619
	rc = guest_page_range(vcpu, ga, pages, nr_pages, write);
	for (idx = 0; idx < nr_pages && !rc; idx++) {
		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
		if (write)
			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
		else
			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
		len -= _len;
		ga += _len;
		data += _len;
	}
620 621
	if (need_ipte_lock)
		ipte_unlock(vcpu);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	if (nr_pages > ARRAY_SIZE(pages_array))
		vfree(pages);
	return rc;
}

int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
		      void *data, unsigned long len, int write)
{
	unsigned long _len, gpa;
	int rc = 0;

	while (len && !rc) {
		gpa = kvm_s390_real_to_abs(vcpu, gra);
		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
		if (write)
			rc = write_guest_abs(vcpu, gpa, data, _len);
		else
			rc = read_guest_abs(vcpu, gpa, data, _len);
		len -= _len;
		gra += _len;
		data += _len;
	}
	return rc;
}
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * guest_translate_address - translate guest logical into guest absolute address
 *
 * Parameter semantics are the same as the ones from guest_translate.
 * The memory contents at the guest address are not changed.
 *
 * Note: The IPTE lock is not taken during this function, so the caller
 * has to take care of this.
 */
int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva,
			    unsigned long *gpa, int write)
{
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	struct trans_exc_code_bits *tec;
	union asce asce;
	int rc;

	/* Access register mode is not supported yet. */
	if (psw_bits(*psw).t && psw_bits(*psw).as == PSW_AS_ACCREG)
		return -EOPNOTSUPP;

	gva = kvm_s390_logical_to_effective(vcpu, gva);
	memset(pgm, 0, sizeof(*pgm));
	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
	tec->as = psw_bits(*psw).as;
	tec->fsi = write ? FSI_STORE : FSI_FETCH;
	tec->addr = gva >> PAGE_SHIFT;
	if (is_low_address(gva) && low_address_protection_enabled(vcpu)) {
		if (write) {
			rc = pgm->code = PGM_PROTECTION;
			return rc;
		}
	}

	asce.val = get_vcpu_asce(vcpu);
	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
		rc = guest_translate(vcpu, gva, gpa, write);
		if (rc > 0) {
			if (rc == PGM_PROTECTION)
				tec->b61 = 1;
			pgm->code = rc;
		}
	} else {
		rc = 0;
		*gpa = kvm_s390_real_to_abs(vcpu, gva);
		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
			rc = pgm->code = PGM_ADDRESSING;
	}

	return rc;
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * kvm_s390_check_low_addr_protection - check for low-address protection
 * @ga: Guest address
 *
 * Checks whether an address is subject to low-address protection and set
 * up vcpu->arch.pgm accordingly if necessary.
 *
 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
 */
int kvm_s390_check_low_addr_protection(struct kvm_vcpu *vcpu, unsigned long ga)
{
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	struct trans_exc_code_bits *tec_bits;

	if (!is_low_address(ga) || !low_address_protection_enabled(vcpu))
		return 0;

	memset(pgm, 0, sizeof(*pgm));
	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
	tec_bits->fsi = FSI_STORE;
	tec_bits->as = psw_bits(*psw).as;
	tec_bits->addr = ga >> PAGE_SHIFT;
	pgm->code = PGM_PROTECTION;

	return pgm->code;
}