tonga_smc.c 108.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 *
 */

24
#include "pp_debug.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "tonga_smc.h"
#include "smu7_dyn_defaults.h"

#include "smu7_hwmgr.h"
#include "hardwaremanager.h"
#include "ppatomctrl.h"
#include "cgs_common.h"
#include "atombios.h"
#include "tonga_smumgr.h"
#include "pppcielanes.h"
#include "pp_endian.h"
#include "smu7_ppsmc.h"

#include "smu72_discrete.h"

#include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h"

#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"

#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"

#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"


#define VOLTAGE_SCALE 4
#define POWERTUNE_DEFAULT_SET_MAX    1
#define VOLTAGE_VID_OFFSET_SCALE1   625
#define VOLTAGE_VID_OFFSET_SCALE2   100
#define MC_CG_ARB_FREQ_F1           0x0b
#define VDDC_VDDCI_DELTA            200


N
Nils Wallménius 已提交
61
static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,  TDC_MAWt,
 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,        BAPM_TEMP_GRADIENT
 */
	{1,               0xF,             0xFD,                0x19,
	 5,               45,                 0,              0xB0000,
	 {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8,
		0xC9, 0xC9, 0x2F, 0x4D, 0x61},
	 {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203,
		0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4}
	},
};

/* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
	{600, 1050, 3, 0},
	{600, 1050, 6, 1}
};

/* [FF, SS] type, [] 4 voltage ranges,
 * and [Floor Freq, Boundary Freq, VID min , VID max]
 */
static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} }
};

/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */
static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
	{0, 1, 3, 2, 4, 5},
	{0, 2, 4, 5, 6, 5}
};

/* PPGen has the gain setting generated in x * 100 unit
 * This function is to convert the unit to x * 4096(0x1000) unit.
 *  This is the unit expected by SMC firmware
 */


static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
	phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
	uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
	uint32_t i = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
			   (struct phm_ppt_v1_information *)(hwmgr->pptable);

	/* clock - voltage dependency table is empty table */
	if (allowed_clock_voltage_table->count == 0)
		return -EINVAL;

	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
		/* find first sclk bigger than request */
		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
			voltage->VddGfx = phm_get_voltage_index(
					pptable_info->vddgfx_lookup_table,
				allowed_clock_voltage_table->entries[i].vddgfx);
			voltage->Vddc = phm_get_voltage_index(
						pptable_info->vddc_lookup_table,
				  allowed_clock_voltage_table->entries[i].vddc);

			if (allowed_clock_voltage_table->entries[i].vddci)
				voltage->Vddci =
					phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci);
			else
				voltage->Vddci =
					phm_get_voltage_id(&data->vddci_voltage_table,
						allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);


			if (allowed_clock_voltage_table->entries[i].mvdd)
				*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;

			voltage->Phases = 1;
			return 0;
		}
	}

	/* sclk is bigger than max sclk in the dependence table */
	voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
		allowed_clock_voltage_table->entries[i-1].vddgfx);
	voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
		allowed_clock_voltage_table->entries[i-1].vddc);

	if (allowed_clock_voltage_table->entries[i-1].vddci)
		voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
			allowed_clock_voltage_table->entries[i-1].vddci);

	if (allowed_clock_voltage_table->entries[i-1].mvdd)
		*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;

	return 0;
}


/**
 * Vddc table preparation for SMC.
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    table     the SMC DPM table structure to be populated
 * @return   always 0
 */
static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
			SMU72_Discrete_DpmTable *table)
{
	unsigned int count;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
		table->VddcLevelCount = data->vddc_voltage_table.count;
		for (count = 0; count < table->VddcLevelCount; count++) {
			table->VddcTable[count] =
				PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
		}
		CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
	}
	return 0;
}

/**
 * VddGfx table preparation for SMC.
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    table     the SMC DPM table structure to be populated
 * @return   always 0
 */
static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
			SMU72_Discrete_DpmTable *table)
{
	unsigned int count;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
		table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
		for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
			table->VddGfxTable[count] =
				PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
		}
		CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
	}
	return 0;
}

/**
 * Vddci table preparation for SMC.
 *
 * @param    *hwmgr The address of the hardware manager.
 * @param    *table The SMC DPM table structure to be populated.
 * @return   0
 */
static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
			SMU72_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t count;

	table->VddciLevelCount = data->vddci_voltage_table.count;
	for (count = 0; count < table->VddciLevelCount; count++) {
		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
			table->VddciTable[count] =
				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
		} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
			table->SmioTable1.Pattern[count].Voltage =
				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
			table->SmioTable1.Pattern[count].Smio =
				(uint8_t) count;
			table->Smio[count] |=
				data->vddci_voltage_table.entries[count].smio_low;
			table->VddciTable[count] =
				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
		}
	}

	table->SmioMask1 = data->vddci_voltage_table.mask_low;
	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);

	return 0;
}

/**
 * Mvdd table preparation for SMC.
 *
 * @param    *hwmgr The address of the hardware manager.
 * @param    *table The SMC DPM table structure to be populated.
 * @return   0
 */
static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
			SMU72_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t count;

	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
		table->MvddLevelCount = data->mvdd_voltage_table.count;
		for (count = 0; count < table->MvddLevelCount; count++) {
			table->SmioTable2.Pattern[count].Voltage =
				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
			table->SmioTable2.Pattern[count].Smio =
				(uint8_t) count;
			table->Smio[count] |=
				data->mvdd_voltage_table.entries[count].smio_low;
		}
		table->SmioMask2 = data->mvdd_voltage_table.mask_low;

		CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
	}

	return 0;
}

/**
 * Preparation of vddc and vddgfx CAC tables for SMC.
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    table     the SMC DPM table structure to be populated
 * @return   always 0
 */
static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
			SMU72_Discrete_DpmTable *table)
{
	uint32_t count;
	uint8_t index = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table =
					   pptable_info->vddgfx_lookup_table;
	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table =
						pptable_info->vddc_lookup_table;

	/* table is already swapped, so in order to use the value from it
	 * we need to swap it back.
	 */
	uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
	uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);

	for (count = 0; count < vddc_level_count; count++) {
		/* We are populating vddc CAC data to BapmVddc table in split and merged mode */
		index = phm_get_voltage_index(vddc_lookup_table,
			data->vddc_voltage_table.entries[count].value);
		table->BapmVddcVidLoSidd[count] =
			convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
		table->BapmVddcVidHiSidd[count] =
			convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
		table->BapmVddcVidHiSidd2[count] =
			convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
	}

	if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) {
		/* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
		for (count = 0; count < vddgfx_level_count; count++) {
			index = phm_get_voltage_index(vddgfx_lookup_table,
				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
			table->BapmVddGfxVidHiSidd2[count] =
				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
		}
	} else {
		for (count = 0; count < vddc_level_count; count++) {
			index = phm_get_voltage_index(vddc_lookup_table,
				data->vddc_voltage_table.entries[count].value);
			table->BapmVddGfxVidLoSidd[count] =
				convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
			table->BapmVddGfxVidHiSidd[count] =
				convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
			table->BapmVddGfxVidHiSidd2[count] =
				convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
		}
	}

	return 0;
}

/**
 * Preparation of voltage tables for SMC.
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    table     the SMC DPM table structure to be populated
 * @return   always 0
 */

static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
	SMU72_Discrete_DpmTable *table)
{
	int result;

	result = tonga_populate_smc_vddc_table(hwmgr, table);
350
	PP_ASSERT_WITH_CODE(!result,
351 352 353 354
			"can not populate VDDC voltage table to SMC",
			return -EINVAL);

	result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
355
	PP_ASSERT_WITH_CODE(!result,
356 357 358 359
			"can not populate VDDCI voltage table to SMC",
			return -EINVAL);

	result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
360
	PP_ASSERT_WITH_CODE(!result,
361 362 363 364
			"can not populate VDDGFX voltage table to SMC",
			return -EINVAL);

	result = tonga_populate_smc_mvdd_table(hwmgr, table);
365
	PP_ASSERT_WITH_CODE(!result,
366 367 368 369
			"can not populate MVDD voltage table to SMC",
			return -EINVAL);

	result = tonga_populate_cac_tables(hwmgr, table);
370
	PP_ASSERT_WITH_CODE(!result,
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
			"can not populate CAC voltage tables to SMC",
			return -EINVAL);

	return 0;
}

static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
		struct SMU72_Discrete_Ulv *state)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	state->CcPwrDynRm = 0;
	state->CcPwrDynRm1 = 0;

	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);

	state->VddcPhase = 1;

	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);

	return 0;
}

static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
		struct SMU72_Discrete_DpmTable *table)
{
	return tonga_populate_ulv_level(hwmgr, &table->Ulv);
}

static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
	uint32_t i;

	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
		table->LinkLevel[i].PcieGenSpeed  =
			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
		table->LinkLevel[i].PcieLaneCount =
			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
		table->LinkLevel[i].EnabledForActivity =
			1;
		table->LinkLevel[i].SPC =
			(uint8_t)(data->pcie_spc_cap & 0xff);
		table->LinkLevel[i].DownThreshold =
			PP_HOST_TO_SMC_UL(5);
		table->LinkLevel[i].UpThreshold =
			PP_HOST_TO_SMC_UL(30);
	}

	smu_data->smc_state_table.LinkLevelCount =
		(uint8_t)dpm_table->pcie_speed_table.count;
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);

	return 0;
}

/**
 * Calculates the SCLK dividers using the provided engine clock
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    engine_clock the engine clock to use to populate the structure
 * @param    sclk        the SMC SCLK structure to be populated
 */
static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
		uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
{
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	pp_atomctrl_clock_dividers_vi dividers;
	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
	uint32_t    reference_clock;
	uint32_t reference_divider;
	uint32_t fbdiv;
	int result;

	/* get the engine clock dividers for this clock value*/
	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);

	PP_ASSERT_WITH_CODE(result == 0,
		"Error retrieving Engine Clock dividers from VBIOS.", return result);

	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
	reference_clock = atomctrl_get_reference_clock(hwmgr);

	reference_divider = 1 + dividers.uc_pll_ref_div;

	/* low 14 bits is fraction and high 12 bits is divider*/
	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;

	/* SPLL_FUNC_CNTL setup*/
	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);

	/* SPLL_FUNC_CNTL_3 setup*/
	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);

	/* set to use fractional accumulation*/
	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
		pp_atomctrl_internal_ss_info ss_info;

		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
			/*
			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
			* ss_info.speed_spectrum_rate -- in unit of khz
			*/
			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);

			/* clkv = 2 * D * fbdiv / NS */
			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);

			cg_spll_spread_spectrum =
				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
			cg_spll_spread_spectrum =
				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
			cg_spll_spread_spectrum_2 =
				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
		}
	}

	sclk->SclkFrequency        = engine_clock;
	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;

	return 0;
}

/**
 * Populates single SMC SCLK structure using the provided engine clock
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    engine_clock the engine clock to use to populate the structure
 * @param    sclk        the SMC SCLK structure to be populated
 */
static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
						uint32_t engine_clock,
				uint16_t sclk_activity_level_threshold,
				SMU72_Discrete_GraphicsLevel *graphic_level)
{
	int result;
	uint32_t mvdd;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
			    (struct phm_ppt_v1_information *)(hwmgr->pptable);

	result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);

	/* populate graphics levels*/
	result = tonga_get_dependecy_volt_by_clk(hwmgr,
		pptable_info->vdd_dep_on_sclk, engine_clock,
		&graphic_level->MinVoltage, &mvdd);
545
	PP_ASSERT_WITH_CODE((!result),
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		"can not find VDDC voltage value for VDDC "
		"engine clock dependency table", return result);

	/* SCLK frequency in units of 10KHz*/
	graphic_level->SclkFrequency = engine_clock;
	/* Indicates maximum activity level for this performance level. 50% for now*/
	graphic_level->ActivityLevel = sclk_activity_level_threshold;

	graphic_level->CcPwrDynRm = 0;
	graphic_level->CcPwrDynRm1 = 0;
	/* this level can be used if activity is high enough.*/
	graphic_level->EnabledForActivity = 0;
	/* this level can be used for throttling.*/
	graphic_level->EnabledForThrottle = 1;
	graphic_level->UpHyst = 0;
	graphic_level->DownHyst = 0;
	graphic_level->VoltageDownHyst = 0;
	graphic_level->PowerThrottle = 0;

	data->display_timing.min_clock_in_sr =
			hwmgr->display_config.min_core_set_clock_in_sr;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep))
		graphic_level->DeepSleepDivId =
				smu7_get_sleep_divider_id_from_clock(engine_clock,
						data->display_timing.min_clock_in_sr);

	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

577
	if (!result) {
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
	}

	return result;
}

/**
 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
 *
 * @param    hwmgr      the address of the hardware manager
 */
int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
	uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
606
	uint32_t level_array_address = smu_data->smu7_data.dpm_table_start +
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
				offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);

	uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
						SMU72_MAX_LEVELS_GRAPHICS;

	SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;

	uint32_t i, max_entry;
	uint8_t highest_pcie_level_enabled = 0;
	uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
	uint8_t count = 0;
	int result = 0;

	memset(levels, 0x00, level_array_size);

	for (i = 0; i < dpm_table->sclk_table.count; i++) {
		result = tonga_populate_single_graphic_level(hwmgr,
					dpm_table->sclk_table.dpm_levels[i].value,
					(uint16_t)smu_data->activity_target[i],
					&(smu_data->smc_state_table.GraphicsLevel[i]));
		if (result != 0)
			return result;

		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
		if (i > 1)
			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
	}

	/* Only enable level 0 for now. */
	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;

	/* set highest level watermark to high */
	if (dpm_table->sclk_table.count > 1)
		smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
			PPSMC_DISPLAY_WATERMARK_HIGH;

	smu_data->smc_state_table.GraphicsDpmLevelCount =
		(uint8_t)dpm_table->sclk_table.count;
	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);

	if (pcie_table != NULL) {
		PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
			"There must be 1 or more PCIE levels defined in PPTable.",
			return -EINVAL);
		max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
		for (i = 0; i < dpm_table->sclk_table.count; i++) {
			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
				(uint8_t) ((i < max_entry) ? i : max_entry);
		}
	} else {
		if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
659
			pr_err("Pcie Dpm Enablemask is 0 !");
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
					(1<<(highest_pcie_level_enabled+1))) != 0)) {
			highest_pcie_level_enabled++;
		}

		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
					(1<<lowest_pcie_level_enabled)) == 0)) {
			lowest_pcie_level_enabled++;
		}

		while ((count < highest_pcie_level_enabled) &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
					(1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
			count++;
		}
		mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
			(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;


		/* set pcieDpmLevel to highest_pcie_level_enabled*/
		for (i = 2; i < dpm_table->sclk_table.count; i++)
			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;

		/* set pcieDpmLevel to lowest_pcie_level_enabled*/
		smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;

		/* set pcieDpmLevel to mid_pcie_level_enabled*/
		smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
	}
	/* level count will send to smc once at init smc table and never change*/
693
	result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_address,
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
				(uint8_t *)levels, (uint32_t)level_array_size,
								SMC_RAM_END);

	return result;
}

/**
 * Populates the SMC MCLK structure using the provided memory clock
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    memory_clock the memory clock to use to populate the structure
 * @param    sclk        the SMC SCLK structure to be populated
 */
static int tonga_calculate_mclk_params(
		struct pp_hwmgr *hwmgr,
		uint32_t memory_clock,
		SMU72_Discrete_MemoryLevel *mclk,
		bool strobe_mode,
		bool dllStateOn
		)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
	uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
	uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
	uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
	uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
	uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
	uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
	uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
	uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;

	pp_atomctrl_memory_clock_param mpll_param;
	int result;

	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
				memory_clock, &mpll_param, strobe_mode);
	PP_ASSERT_WITH_CODE(
733
			!result,
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
			"Error retrieving Memory Clock Parameters from VBIOS.",
			return result);

	/* MPLL_FUNC_CNTL setup*/
	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,
					mpll_param.bw_ctrl);

	/* MPLL_FUNC_CNTL_1 setup*/
	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
					MPLL_FUNC_CNTL_1, CLKF,
					mpll_param.mpll_fb_divider.cl_kf);
	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
					MPLL_FUNC_CNTL_1, CLKFRAC,
					mpll_param.mpll_fb_divider.clk_frac);
	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
						MPLL_FUNC_CNTL_1, VCO_MODE,
						mpll_param.vco_mode);

	/* MPLL_AD_FUNC_CNTL setup*/
	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
					MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,
					mpll_param.mpll_post_divider);

	if (data->is_memory_gddr5) {
		/* MPLL_DQ_FUNC_CNTL setup*/
		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
						MPLL_DQ_FUNC_CNTL, YCLK_SEL,
						mpll_param.yclk_sel);
		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
						MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,
						mpll_param.mpll_post_divider);
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
		/*
		 ************************************
		 Fref = Reference Frequency
		 NF = Feedback divider ratio
		 NR = Reference divider ratio
		 Fnom = Nominal VCO output frequency = Fref * NF / NR
		 Fs = Spreading Rate
		 D = Percentage down-spread / 2
		 Fint = Reference input frequency to PFD = Fref / NR
		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
		 *************************************
		 */
		pp_atomctrl_internal_ss_info ss_info;
		uint32_t freq_nom;
		uint32_t tmp;
		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);

		/* for GDDR5 for all modes and DDR3 */
		if (1 == mpll_param.qdr)
			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
		else
			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);

		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
		tmp = (freq_nom / reference_clock);
		tmp = tmp * tmp;

		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
			/* ss.Info.speed_spectrum_rate -- in unit of khz */
			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
			/*     = reference_clock * 5 / speed_spectrum_rate */
			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;

			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
			uint32_t clkv =
				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);

			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
		}
	}

	/* MCLK_PWRMGT_CNTL setup */
	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);

	/* Save the result data to outpupt memory level structure */
	mclk->MclkFrequency   = memory_clock;
	mclk->MpllFuncCntl    = mpll_func_cntl;
	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
	mclk->DllCntl         = dll_cntl;
	mclk->MpllSs1         = mpll_ss1;
	mclk->MpllSs2         = mpll_ss2;

	return 0;
}

static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
		bool strobe_mode)
{
	uint8_t mc_para_index;

	if (strobe_mode) {
		if (memory_clock < 12500)
			mc_para_index = 0x00;
		else if (memory_clock > 47500)
			mc_para_index = 0x0f;
		else
			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
	} else {
		if (memory_clock < 65000)
			mc_para_index = 0x00;
		else if (memory_clock > 135000)
			mc_para_index = 0x0f;
		else
			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
	}

	return mc_para_index;
}

static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
{
	uint8_t mc_para_index;

	if (memory_clock < 10000)
		mc_para_index = 0;
	else if (memory_clock >= 80000)
		mc_para_index = 0x0f;
	else
		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);

	return mc_para_index;
}


static int tonga_populate_single_memory_level(
		struct pp_hwmgr *hwmgr,
		uint32_t memory_clock,
		SMU72_Discrete_MemoryLevel *memory_level
		)
{
	uint32_t mvdd = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
			  (struct phm_ppt_v1_information *)(hwmgr->pptable);
	int result = 0;
	bool dll_state_on;
	struct cgs_display_info info = {0};
	uint32_t mclk_edc_wr_enable_threshold = 40000;
	uint32_t mclk_stutter_mode_threshold = 30000;
	uint32_t mclk_edc_enable_threshold = 40000;
	uint32_t mclk_strobe_mode_threshold = 40000;

	if (NULL != pptable_info->vdd_dep_on_mclk) {
		result = tonga_get_dependecy_volt_by_clk(hwmgr,
				pptable_info->vdd_dep_on_mclk,
				memory_clock,
				&memory_level->MinVoltage, &mvdd);
		PP_ASSERT_WITH_CODE(
903
			!result,
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
			"can not find MinVddc voltage value from memory VDDC "
			"voltage dependency table",
			return result);
	}

	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
		memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
	else
		memory_level->MinMvdd = mvdd;

	memory_level->EnabledForThrottle = 1;
	memory_level->EnabledForActivity = 0;
	memory_level->UpHyst = 0;
	memory_level->DownHyst = 100;
	memory_level->VoltageDownHyst = 0;

	/* Indicates maximum activity level for this performance level.*/
	memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
	memory_level->StutterEnable = 0;
	memory_level->StrobeEnable = 0;
	memory_level->EdcReadEnable = 0;
	memory_level->EdcWriteEnable = 0;
	memory_level->RttEnable = 0;

	/* default set to low watermark. Highest level will be set to high later.*/
	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	cgs_get_active_displays_info(hwmgr->device, &info);
	data->display_timing.num_existing_displays = info.display_count;

	if ((mclk_stutter_mode_threshold != 0) &&
	    (memory_clock <= mclk_stutter_mode_threshold) &&
	    (!data->is_uvd_enabled)
	    && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
	    && (data->display_timing.num_existing_displays <= 2)
	    && (data->display_timing.num_existing_displays != 0))
		memory_level->StutterEnable = 1;

	/* decide strobe mode*/
	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
		(memory_clock <= mclk_strobe_mode_threshold);

	/* decide EDC mode and memory clock ratio*/
	if (data->is_memory_gddr5) {
		memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
					memory_level->StrobeEnable);

		if ((mclk_edc_enable_threshold != 0) &&
				(memory_clock > mclk_edc_enable_threshold)) {
			memory_level->EdcReadEnable = 1;
		}

		if ((mclk_edc_wr_enable_threshold != 0) &&
				(memory_clock > mclk_edc_wr_enable_threshold)) {
			memory_level->EdcWriteEnable = 1;
		}

		if (memory_level->StrobeEnable) {
			if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
			} else {
				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
			}

		} else {
			dll_state_on = data->dll_default_on;
		}
	} else {
		memory_level->StrobeRatio =
			tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
	}

	result = tonga_calculate_mclk_params(hwmgr,
		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);

	if (!result) {
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
		/* MCLK frequency in units of 10KHz*/
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
		/* Indicates maximum activity level for this performance level.*/
		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
	}

	return result;
}

int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct tonga_smumgr *smu_data =
			(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	int result;

	/* populate MCLK dpm table to SMU7 */
	uint32_t level_array_address =
1011
				smu_data->smu7_data.dpm_table_start +
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
				offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
	uint32_t level_array_size =
				sizeof(SMU72_Discrete_MemoryLevel) *
				SMU72_MAX_LEVELS_MEMORY;
	SMU72_Discrete_MemoryLevel *levels =
				smu_data->smc_state_table.MemoryLevel;
	uint32_t i;

	memset(levels, 0x00, level_array_size);

	for (i = 0; i < dpm_table->mclk_table.count; i++) {
		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
			"can not populate memory level as memory clock is zero",
			return -EINVAL);
		result = tonga_populate_single_memory_level(
				hwmgr,
				dpm_table->mclk_table.dpm_levels[i].value,
				&(smu_data->smc_state_table.MemoryLevel[i]));
		if (result)
			return result;
	}

	/* Only enable level 0 for now.*/
	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;

	/*
	* in order to prevent MC activity from stutter mode to push DPM up.
	* the UVD change complements this by putting the MCLK in a higher state
	* by default such that we are not effected by up threshold or and MCLK DPM latency.
	*/
	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);

	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
	/* set highest level watermark to high*/
	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;

	/* level count will send to smc once at init smc table and never change*/
1051
	result = smu7_copy_bytes_to_smc(hwmgr->smumgr,
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
		SMC_RAM_END);

	return result;
}

static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr,
				uint32_t mclk, SMIO_Pattern *smio_pattern)
{
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i = 0;

	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
		/* find mvdd value which clock is more than request */
		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
				/* Always round to higher voltage. */
				smio_pattern->Voltage =
				      data->mvdd_voltage_table.entries[i].value;
				break;
			}
		}

		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
			"MVDD Voltage is outside the supported range.",
			return -EINVAL);
	} else {
		return -EINVAL;
	}

	return 0;
}


static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
	SMU72_Discrete_DpmTable *table)
{
	int result = 0;
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct pp_atomctrl_clock_dividers_vi dividers;

	SMIO_Pattern voltage_level;
	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;

	/* The ACPI state should not do DPM on DC (or ever).*/
	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;

	table->ACPILevel.MinVoltage =
			smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;

	/* assign zero for now*/
	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);

	/* get the engine clock dividers for this clock value*/
	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
		table->ACPILevel.SclkFrequency,  &dividers);

	PP_ASSERT_WITH_CODE(result == 0,
		"Error retrieving Engine Clock dividers from VBIOS.",
		return result);

	/* divider ID for required SCLK*/
	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
	table->ACPILevel.DeepSleepDivId = 0;

	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
					SPLL_PWRON, 0);
	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
						SPLL_RESET, 1);
	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
						SCLK_MUX_SEL, 4);

	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
	table->ACPILevel.CcPwrDynRm = 0;
	table->ACPILevel.CcPwrDynRm1 = 0;


	/* For various features to be enabled/disabled while this level is active.*/
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
	/* SCLK frequency in units of 10KHz*/
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);

	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
	table->MemoryACPILevel.MinVoltage =
			    smu_data->smc_state_table.MemoryLevel[0].MinVoltage;

	/*  CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/

	if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
		table->MemoryACPILevel.MinMvdd =
			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
	else
		table->MemoryACPILevel.MinMvdd = 0;

	/* Force reset on DLL*/
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);

	/* Disable DLL in ACPIState*/
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);

	/* Enable DLL bypass signal*/
	dll_cntl            = PHM_SET_FIELD(dll_cntl,
		DLL_CNTL, MRDCK0_BYPASS, 0);
	dll_cntl            = PHM_SET_FIELD(dll_cntl,
		DLL_CNTL, MRDCK1_BYPASS, 0);

	table->MemoryACPILevel.DllCntl            =
		PP_HOST_TO_SMC_UL(dll_cntl);
	table->MemoryACPILevel.MclkPwrmgtCntl     =
		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
	table->MemoryACPILevel.MpllAdFuncCntl     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
	table->MemoryACPILevel.MpllDqFuncCntl     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
	table->MemoryACPILevel.MpllFuncCntl       =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
	table->MemoryACPILevel.MpllFuncCntl_1     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
	table->MemoryACPILevel.MpllFuncCntl_2     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
	table->MemoryACPILevel.MpllSs1            =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
	table->MemoryACPILevel.MpllSs2            =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);

	table->MemoryACPILevel.EnabledForThrottle = 0;
	table->MemoryACPILevel.EnabledForActivity = 0;
	table->MemoryACPILevel.UpHyst = 0;
	table->MemoryACPILevel.DownHyst = 100;
	table->MemoryACPILevel.VoltageDownHyst = 0;
	/* Indicates maximum activity level for this performance level.*/
	table->MemoryACPILevel.ActivityLevel =
			PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);

	table->MemoryACPILevel.StutterEnable = 0;
	table->MemoryACPILevel.StrobeEnable = 0;
	table->MemoryACPILevel.EdcReadEnable = 0;
	table->MemoryACPILevel.EdcWriteEnable = 0;
	table->MemoryACPILevel.RttEnable = 0;

	return result;
}

static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
					SMU72_Discrete_DpmTable *table)
{
	int result = 0;

	uint8_t count;
	pp_atomctrl_clock_dividers_vi dividers;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
				(struct phm_ppt_v1_information *)(hwmgr->pptable);
	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
						pptable_info->mm_dep_table;

	table->UvdLevelCount = (uint8_t) (mm_table->count);
	table->UvdBootLevel = 0;

	for (count = 0; count < table->UvdLevelCount; count++) {
		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
		table->UvdLevel[count].MinVoltage.Vddc =
			phm_get_voltage_index(pptable_info->vddc_lookup_table,
						mm_table->entries[count].vddc);
		table->UvdLevel[count].MinVoltage.VddGfx =
			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
						mm_table->entries[count].vddgfx) : 0;
		table->UvdLevel[count].MinVoltage.Vddci =
			phm_get_voltage_id(&data->vddci_voltage_table,
					     mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
		table->UvdLevel[count].MinVoltage.Phases = 1;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(
					hwmgr,
					table->UvdLevel[count].VclkFrequency,
					&dividers);

1259
		PP_ASSERT_WITH_CODE((!result),
1260 1261 1262 1263 1264 1265 1266
				    "can not find divide id for Vclk clock",
					return result);

		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
							  table->UvdLevel[count].DclkFrequency, &dividers);
1267
		PP_ASSERT_WITH_CODE((!result),
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
				    "can not find divide id for Dclk clock",
					return result);

		table->UvdLevel[count].DclkDivider =
					(uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
	}

	return result;

}

static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
		SMU72_Discrete_DpmTable *table)
{
	int result = 0;

	uint8_t count;
	pp_atomctrl_clock_dividers_vi dividers;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
			      (struct phm_ppt_v1_information *)(hwmgr->pptable);
	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
						     pptable_info->mm_dep_table;

	table->VceLevelCount = (uint8_t) (mm_table->count);
	table->VceBootLevel = 0;

	for (count = 0; count < table->VceLevelCount; count++) {
		table->VceLevel[count].Frequency =
			mm_table->entries[count].eclk;
		table->VceLevel[count].MinVoltage.Vddc =
			phm_get_voltage_index(pptable_info->vddc_lookup_table,
				mm_table->entries[count].vddc);
		table->VceLevel[count].MinVoltage.VddGfx =
			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
				mm_table->entries[count].vddgfx) : 0;
		table->VceLevel[count].MinVoltage.Vddci =
			phm_get_voltage_id(&data->vddci_voltage_table,
				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
		table->VceLevel[count].MinVoltage.Phases = 1;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
					table->VceLevel[count].Frequency, &dividers);
1316
		PP_ASSERT_WITH_CODE((!result),
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
				"can not find divide id for VCE engine clock",
				return result);

		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
	}

	return result;
}

static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
		SMU72_Discrete_DpmTable *table)
{
	int result = 0;
	uint8_t count;
	pp_atomctrl_clock_dividers_vi dividers;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
			     (struct phm_ppt_v1_information *)(hwmgr->pptable);
	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
						    pptable_info->mm_dep_table;

	table->AcpLevelCount = (uint8_t) (mm_table->count);
	table->AcpBootLevel = 0;

	for (count = 0; count < table->AcpLevelCount; count++) {
		table->AcpLevel[count].Frequency =
			pptable_info->mm_dep_table->entries[count].aclk;
		table->AcpLevel[count].MinVoltage.Vddc =
			phm_get_voltage_index(pptable_info->vddc_lookup_table,
			mm_table->entries[count].vddc);
		table->AcpLevel[count].MinVoltage.VddGfx =
			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
				mm_table->entries[count].vddgfx) : 0;
		table->AcpLevel[count].MinVoltage.Vddci =
			phm_get_voltage_id(&data->vddci_voltage_table,
				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
		table->AcpLevel[count].MinVoltage.Phases = 1;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
			table->AcpLevel[count].Frequency, &dividers);
1361
		PP_ASSERT_WITH_CODE((!result),
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
			"can not find divide id for engine clock", return result);

		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
	}

	return result;
}

static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
		SMU72_Discrete_DpmTable *table)
{
	int result = 0;
	uint8_t count;
	pp_atomctrl_clock_dividers_vi dividers;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info =
			     (struct phm_ppt_v1_information *)(hwmgr->pptable);
	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
						    pptable_info->mm_dep_table;

	table->SamuBootLevel = 0;
	table->SamuLevelCount = (uint8_t) (mm_table->count);

	for (count = 0; count < table->SamuLevelCount; count++) {
		/* not sure whether we need evclk or not */
		table->SamuLevel[count].Frequency =
			pptable_info->mm_dep_table->entries[count].samclock;
		table->SamuLevel[count].MinVoltage.Vddc =
			phm_get_voltage_index(pptable_info->vddc_lookup_table,
				mm_table->entries[count].vddc);
		table->SamuLevel[count].MinVoltage.VddGfx =
			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
				mm_table->entries[count].vddgfx) : 0;
		table->SamuLevel[count].MinVoltage.Vddci =
			phm_get_voltage_id(&data->vddci_voltage_table,
				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
		table->SamuLevel[count].MinVoltage.Phases = 1;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
					table->SamuLevel[count].Frequency, &dividers);
1406
		PP_ASSERT_WITH_CODE((!result),
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
			"can not find divide id for samu clock", return result);

		table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
	}

	return result;
}

static int tonga_populate_memory_timing_parameters(
		struct pp_hwmgr *hwmgr,
		uint32_t engine_clock,
		uint32_t memory_clock,
		struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
		)
{
	uint32_t dramTiming;
	uint32_t dramTiming2;
	uint32_t burstTime;
	int result;

	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
				engine_clock, memory_clock);

	PP_ASSERT_WITH_CODE(result == 0,
		"Error calling VBIOS to set DRAM_TIMING.", return result);

	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);

	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
	arb_regs->McArbBurstTime = (uint8_t)burstTime;

	return 0;
}

/**
 * Setup parameters for the MC ARB.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 * This function is to be called from the SetPowerState table.
 */
static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	int result = 0;
	SMU72_Discrete_MCArbDramTimingTable  arb_regs;
	uint32_t i, j;

	memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));

	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
			result = tonga_populate_memory_timing_parameters
				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
				 data->dpm_table.mclk_table.dpm_levels[j].value,
				 &arb_regs.entries[i][j]);

			if (result)
				break;
		}
	}

1476 1477
	if (!result) {
		result = smu7_copy_bytes_to_smc(
1478
				hwmgr->smumgr,
1479
				smu_data->smu7_data.arb_table_start,
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
				(uint8_t *)&arb_regs,
				sizeof(SMU72_Discrete_MCArbDramTimingTable),
				SMC_RAM_END
				);
	}

	return result;
}

static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
			SMU72_Discrete_DpmTable *table)
{
	int result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	/* find boot level from dpm table*/
	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
	data->vbios_boot_state.sclk_bootup_value,
	(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));

1504
	if (result != 0) {
1505
		smu_data->smc_state_table.GraphicsBootLevel = 0;
1506
		pr_err("[powerplay] VBIOS did not find boot engine "
1507 1508 1509 1510 1511 1512 1513 1514 1515
				"clock value in dependency table. "
				"Using Graphics DPM level 0 !");
		result = 0;
	}

	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
		data->vbios_boot_state.mclk_bootup_value,
		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));

1516
	if (result != 0) {
1517
		smu_data->smc_state_table.MemoryBootLevel = 0;
1518
		pr_err("[powerplay] VBIOS did not find boot "
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
				"engine clock value in dependency table."
				"Using Memory DPM level 0 !");
		result = 0;
	}

	table->BootVoltage.Vddc =
		phm_get_voltage_id(&(data->vddc_voltage_table),
			data->vbios_boot_state.vddc_bootup_value);
	table->BootVoltage.VddGfx =
		phm_get_voltage_id(&(data->vddgfx_voltage_table),
			data->vbios_boot_state.vddgfx_bootup_value);
	table->BootVoltage.Vddci =
		phm_get_voltage_id(&(data->vddci_voltage_table),
			data->vbios_boot_state.vddci_bootup_value);
	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;

	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);

	return result;
}

static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
			volt_with_cks, value;
	uint16_t clock_freq_u16;
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
			volt_offset = 0;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	uint32_t hw_revision, dev_id;
	struct cgs_system_info sys_info = {0};

	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;

	sys_info.size = sizeof(struct cgs_system_info);

	sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV;
	cgs_query_system_info(hwmgr->device, &sys_info);
	hw_revision = (uint32_t)sys_info.value;

	sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
	cgs_query_system_info(hwmgr->device, &sys_info);
	dev_id = (uint32_t)sys_info.value;

	/* Read SMU_Eefuse to read and calculate RO and determine
	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
	 */
	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixSMU_EFUSE_0 + (146 * 4));
	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixSMU_EFUSE_0 + (148 * 4));
	efuse &= 0xFF000000;
	efuse = efuse >> 24;
	efuse2 &= 0xF;

	if (efuse2 == 1)
		ro = (2300 - 1350) * efuse / 255 + 1350;
	else
		ro = (2500 - 1000) * efuse / 255 + 1000;

	if (ro >= 1660)
		type = 0;
	else
		type = 1;

	/* Populate Stretch amount */
	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;

1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
	for (i = 0; i < sclk_table->count; i++) {
		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
				sclk_table->entries[i].cks_enable << i;
		if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
			volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
				(sclk_table->entries[i].clk/100) / 10000) * 1000 /
				(8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
			volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
				(sclk_table->entries[i].clk/100) / 100000) * 1000 /
				(6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
		} else {
			volt_without_cks = (uint32_t)((14041 *
				(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
				(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
			volt_with_cks = (uint32_t)((13946 *
				(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
				(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
		}
		if (volt_without_cks >= volt_with_cks)
			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
	}

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			STRETCH_ENABLE, 0x0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			masterReset, 0x1);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			staticEnable, 0x1);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			masterReset, 0x0);

	/* Populate CKS Lookup Table */
	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
		stretch_amount2 = 0;
	else if (stretch_amount == 3 || stretch_amount == 4)
		stretch_amount2 = 1;
	else {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ClockStretcher);
		PP_ASSERT_WITH_CODE(false,
				"Stretch Amount in PPTable not supported\n",
				return -EINVAL);
	}

	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixPWR_CKS_CNTL);
	value &= 0xFFC2FF87;
	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
			tonga_clock_stretcher_lookup_table[stretch_amount2][0];
	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
			tonga_clock_stretcher_lookup_table[stretch_amount2][1];
	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
			SclkFrequency) / 100);
	if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
			clock_freq_u16 &&
	    tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
			clock_freq_u16) {
		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
		value |= (tonga_clock_stretch_amount_conversion
				[tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
				 [stretch_amount]) << 3;
	}
	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
			CKS_LOOKUPTableEntry[0].minFreq);
	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
			CKS_LOOKUPTableEntry[0].maxFreq);
	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
			tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
			(tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixPWR_CKS_CNTL, value);

	/* Populate DDT Lookup Table */
	for (i = 0; i < 4; i++) {
		/* Assign the minimum and maximum VID stored
		 * in the last row of Clock Stretcher Voltage Table.
		 */
		smu_data->smc_state_table.ClockStretcherDataTable.
		ClockStretcherDataTableEntry[i].minVID =
				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
		smu_data->smc_state_table.ClockStretcherDataTable.
		ClockStretcherDataTableEntry[i].maxVID =
				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
		/* Loop through each SCLK and check the frequency
		 * to see if it lies within the frequency for clock stretcher.
		 */
		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
			cks_setting = 0;
			clock_freq = PP_SMC_TO_HOST_UL(
					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
			/* Check the allowed frequency against the sclk level[j].
			 *  Sclk's endianness has already been converted,
			 *  and it's in 10Khz unit,
			 *  as opposed to Data table, which is in Mhz unit.
			 */
			if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) {
				cks_setting |= 0x2;
				if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100)
					cks_setting |= 0x1;
			}
			smu_data->smc_state_table.ClockStretcherDataTable.
			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
		}
		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
				ClockStretcherDataTable.
				ClockStretcherDataTableEntry[i].setting);
	}

	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					ixPWR_CKS_CNTL);
	value &= 0xFFFFFFFE;
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					ixPWR_CKS_CNTL, value);

	return 0;
}

/**
 * Populates the SMC VRConfig field in DPM table.
 *
 * @param    hwmgr      the address of the hardware manager
 * @param    table     the SMC DPM table structure to be populated
 * @return   always 0
 */
static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
			SMU72_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint16_t config;

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
		/*  Splitted mode */
		config = VR_SVI2_PLANE_1;
		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);

		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
			config = VR_SVI2_PLANE_2;
			table->VRConfig |= config;
		} else {
1742
			pr_err("VDDC and VDDGFX should "
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
				"be both on SVI2 control in splitted mode !\n");
		}
	} else {
		/* Merged mode  */
		config = VR_MERGED_WITH_VDDC;
		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);

		/* Set Vddc Voltage Controller  */
		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
			config = VR_SVI2_PLANE_1;
			table->VRConfig |= config;
		} else {
1755
			pr_err("VDDC should be on "
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
					"SVI2 control in merged mode !\n");
		}
	}

	/* Set Vddci Voltage Controller  */
	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
		config = VR_SVI2_PLANE_2;  /* only in merged mode */
		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
		config = VR_SMIO_PATTERN_1;
		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
	}

	/* Set Mvdd Voltage Controller */
	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
		config = VR_SMIO_PATTERN_2;
		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
	}

	return 0;
}


/**
 * Initialize the ARB DRAM timing table's index field.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
static int tonga_init_arb_table_index(struct pp_smumgr *smumgr)
{
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
	uint32_t tmp;
	int result;

	/*
	* This is a read-modify-write on the first byte of the ARB table.
	* The first byte in the SMU72_Discrete_MCArbDramTimingTable structure
	* is the field 'current'.
	* This solution is ugly, but we never write the whole table only
	* individual fields in it.
	* In reality this field should not be in that structure
	* but in a soft register.
	*/
1800 1801
	result = smu7_read_smc_sram_dword(smumgr,
				smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1802

1803
	if (result != 0)
1804 1805 1806 1807 1808
		return result;

	tmp &= 0x00FFFFFF;
	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;

1809 1810
	return smu7_write_smc_sram_dword(smumgr,
			smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1811 1812 1813 1814 1815 1816 1817
}


static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
N
Nils Wallménius 已提交
1818
	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1819 1820 1821 1822 1823
	SMU72_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
	int  i, j, k;
N
Nils Wallménius 已提交
1824
	const uint16_t *pdef1, *pdef2;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
			(uint16_t)(cac_dtp_table->usTDP * 256));
	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
			(uint16_t)(cac_dtp_table->usConfigurableTDP * 256));

	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
			"Target Operating Temp is out of Range !",
			);

	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
	dpm_table->GpuTjHyst = 8;

	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;

	dpm_table->BAPM_TEMP_GRADIENT =
				PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient);
	pdef1 = defaults->bapmti_r;
	pdef2 = defaults->bapmti_rc;

	for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
		for (j = 0; j < SMU72_DTE_SOURCES; j++) {
			for (k = 0; k < SMU72_DTE_SINKS; k++) {
				dpm_table->BAPMTI_R[i][j][k] =
						PP_HOST_TO_SMC_US(*pdef1);
				dpm_table->BAPMTI_RC[i][j][k] =
						PP_HOST_TO_SMC_US(*pdef2);
				pdef1++;
				pdef2++;
			}
		}
	}

	return 0;
}

static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
N
Nils Wallménius 已提交
1865
	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;

	return 0;
}

static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
	uint16_t tdc_limit;
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
N
Nils Wallménius 已提交
1880
	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	/* TDC number of fraction bits are changed from 8 to 7
	 * for Fiji as requested by SMC team
	 */
	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
			defaults->tdc_vddc_throttle_release_limit_perc;
	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;

	return 0;
}

static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
	struct tonga_smumgr *smu_data =
			(struct tonga_smumgr *)(hwmgr->smumgr->backend);
N
Nils Wallménius 已提交
1901
	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1902 1903
	uint32_t temp;

1904
	if (smu7_read_smc_sram_dword(hwmgr->smumgr,
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
			fuse_table_offset +
			offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
			(uint32_t *)&temp, SMC_RAM_END))
		PP_ASSERT_WITH_CODE(false,
				"Attempt to read PmFuses.DW6 "
				"(SviLoadLineEn) from SMC Failed !",
				return -EINVAL);
	else
		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;

	return 0;
}

static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
{
	int i;
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);

	/* Currently not used. Set all to zero. */
	for (i = 0; i < 16; i++)
		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;

	return 0;
}

static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);

	if ((hwmgr->thermal_controller.advanceFanControlParameters.
			usFanOutputSensitivity & (1 << 15)) ||
		(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
		hwmgr->thermal_controller.advanceFanControlParameters.
		usFanOutputSensitivity = hwmgr->thermal_controller.
			advanceFanControlParameters.usDefaultFanOutputSensitivity;

	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
					advanceFanControlParameters.usFanOutputSensitivity);
	return 0;
}

static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
{
	int i;
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);

	/* Currently not used. Set all to zero. */
	for (i = 0; i < 16; i++)
		smu_data->power_tune_table.GnbLPML[i] = 0;

	return 0;
}

static int tonga_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
{
	return 0;
}

static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;

	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);

	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);

	return 0;
}

static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	uint32_t pm_fuse_table_offset;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PowerContainment)) {
1995
		if (smu7_read_smc_sram_dword(hwmgr->smumgr,
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
				SMU72_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU72_Firmware_Header, PmFuseTable),
				&pm_fuse_table_offset, SMC_RAM_END))
			PP_ASSERT_WITH_CODE(false,
				"Attempt to get pm_fuse_table_offset Failed !",
				return -EINVAL);

		/* DW6 */
		if (tonga_populate_svi_load_line(hwmgr))
			PP_ASSERT_WITH_CODE(false,
				"Attempt to populate SviLoadLine Failed !",
				return -EINVAL);
		/* DW7 */
		if (tonga_populate_tdc_limit(hwmgr))
			PP_ASSERT_WITH_CODE(false,
					"Attempt to populate TDCLimit Failed !",
					return -EINVAL);
		/* DW8 */
		if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
			PP_ASSERT_WITH_CODE(false,
				"Attempt to populate TdcWaterfallCtl Failed !",
				return -EINVAL);

		/* DW9-DW12 */
		if (tonga_populate_temperature_scaler(hwmgr) != 0)
			PP_ASSERT_WITH_CODE(false,
				"Attempt to populate LPMLTemperatureScaler Failed !",
				return -EINVAL);

		/* DW13-DW14 */
		if (tonga_populate_fuzzy_fan(hwmgr))
			PP_ASSERT_WITH_CODE(false,
				"Attempt to populate Fuzzy Fan "
				"Control parameters Failed !",
				return -EINVAL);

		/* DW15-DW18 */
		if (tonga_populate_gnb_lpml(hwmgr))
			PP_ASSERT_WITH_CODE(false,
				"Attempt to populate GnbLPML Failed !",
				return -EINVAL);

		/* DW19 */
		if (tonga_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
			PP_ASSERT_WITH_CODE(false,
				"Attempt to populate GnbLPML "
				"Min and Max Vid Failed !",
				return -EINVAL);

		/* DW20 */
		if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
			PP_ASSERT_WITH_CODE(
				false,
				"Attempt to populate BapmVddCBaseLeakage "
				"Hi and Lo Sidd Failed !",
				return -EINVAL);

2053
		if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
				(uint8_t *)&smu_data->power_tune_table,
				sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
			PP_ASSERT_WITH_CODE(false,
					"Attempt to download PmFuseTable Failed !",
					return -EINVAL);
	}
	return 0;
}

static int tonga_populate_mc_reg_address(struct pp_smumgr *smumgr,
				 SMU72_Discrete_MCRegisters *mc_reg_table)
{
	const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)smumgr->backend;

	uint32_t i, j;

	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
		if (smu_data->mc_reg_table.validflag & 1<<j) {
			PP_ASSERT_WITH_CODE(
				i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
				"Index of mc_reg_table->address[] array "
				"out of boundary",
				return -EINVAL);
			mc_reg_table->address[i].s0 =
				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
			mc_reg_table->address[i].s1 =
				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
			i++;
		}
	}

	mc_reg_table->last = (uint8_t)i;

	return 0;
}

/*convert register values from driver to SMC format */
static void tonga_convert_mc_registers(
	const struct tonga_mc_reg_entry *entry,
	SMU72_Discrete_MCRegisterSet *data,
	uint32_t num_entries, uint32_t valid_flag)
{
	uint32_t i, j;

	for (i = 0, j = 0; j < num_entries; j++) {
		if (valid_flag & 1<<j) {
			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
			i++;
		}
	}
}

static int tonga_convert_mc_reg_table_entry_to_smc(
		struct pp_smumgr *smumgr,
		const uint32_t memory_clock,
		SMU72_Discrete_MCRegisterSet *mc_reg_table_data
		)
{
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
	uint32_t i = 0;

	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
		if (memory_clock <=
			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
			break;
		}
	}

	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
		--i;

	tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
				mc_reg_table_data, smu_data->mc_reg_table.last,
				smu_data->mc_reg_table.validflag);

	return 0;
}

static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
		SMU72_Discrete_MCRegisters *mc_regs)
{
	int result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	int res;
	uint32_t i;

	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
		res = tonga_convert_mc_reg_table_entry_to_smc(
				hwmgr->smumgr,
				data->dpm_table.mclk_table.dpm_levels[i].value,
				&mc_regs->data[i]
				);

		if (0 != res)
			result = res;
	}

	return result;
}

static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
{
	struct pp_smumgr *smumgr = hwmgr->smumgr;
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t address;
	int32_t result;

	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
		return 0;


	memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));

	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));

	if (result != 0)
		return result;


2174
	address = smu_data->smu7_data.mc_reg_table_start +
2175 2176
			(uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);

2177
	return  smu7_copy_bytes_to_smc(
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
			hwmgr->smumgr, address,
			(uint8_t *)&smu_data->mc_regs.data[0],
			sizeof(SMU72_Discrete_MCRegisterSet) *
			data->dpm_table.mclk_table.count,
			SMC_RAM_END);
}

static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct pp_smumgr *smumgr = hwmgr->smumgr;
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);

	memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
	result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs));
2193
	PP_ASSERT_WITH_CODE(!result,
2194 2195 2196 2197
		"Failed to initialize MCRegTable for the MC register addresses !",
		return result;);

	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
2198
	PP_ASSERT_WITH_CODE(!result,
2199 2200 2201
		"Failed to initialize MCRegTable for driver state !",
		return result;);

2202
	return smu7_copy_bytes_to_smc(smumgr, smu_data->smu7_data.mc_reg_table_start,
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
			(uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
}

static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
	struct  phm_ppt_v1_information *table_info =
			(struct  phm_ppt_v1_information *)(hwmgr->pptable);

	if (table_info &&
			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
			table_info->cac_dtp_table->usPowerTuneDataSetID)
		smu_data->power_tune_defaults =
				&tonga_power_tune_data_set_array
				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
	else
		smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static void tonga_save_default_power_profile(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
	struct SMU72_Discrete_GraphicsLevel *levels =
				data->smc_state_table.GraphicsLevel;
	unsigned min_level = 1;

	hwmgr->default_gfx_power_profile.activity_threshold =
			be16_to_cpu(levels[0].ActivityLevel);
	hwmgr->default_gfx_power_profile.up_hyst = levels[0].UpHyst;
	hwmgr->default_gfx_power_profile.down_hyst = levels[0].DownHyst;
	hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE;

	hwmgr->default_compute_power_profile = hwmgr->default_gfx_power_profile;
	hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE;

	/* Workaround compute SDMA instability: disable lowest SCLK
	 * DPM level. Optimize compute power profile: Use only highest
	 * 2 power levels (if more than 2 are available), Hysteresis:
	 * 0ms up, 5ms down
	 */
	if (data->smc_state_table.GraphicsDpmLevelCount > 2)
		min_level = data->smc_state_table.GraphicsDpmLevelCount - 2;
	else if (data->smc_state_table.GraphicsDpmLevelCount == 2)
		min_level = 1;
	else
		min_level = 0;
	hwmgr->default_compute_power_profile.min_sclk =
			be32_to_cpu(levels[min_level].SclkFrequency);
	hwmgr->default_compute_power_profile.up_hyst = 0;
	hwmgr->default_compute_power_profile.down_hyst = 5;

	hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile;
	hwmgr->compute_power_profile = hwmgr->default_compute_power_profile;
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
/**
 * Initializes the SMC table and uploads it
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @param    pInput  the pointer to input data (PowerState)
 * @return   always 0
 */
int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct tonga_smumgr *smu_data =
			(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	uint8_t i;
	pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;


	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));

	tonga_initialize_power_tune_defaults(hwmgr);

	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
		tonga_populate_smc_voltage_tables(hwmgr, table);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;


	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StepVddc))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;

	if (data->is_memory_gddr5)
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;

	i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);

	if (i == 1 || i == 0)
		table->SystemFlags |= 0x40;

	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
		result = tonga_populate_ulv_state(hwmgr, table);
2305
		PP_ASSERT_WITH_CODE(!result,
2306 2307 2308 2309 2310 2311 2312 2313
			"Failed to initialize ULV state !",
			return result;);

		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_ULV_PARAMETER, 0x40035);
	}

	result = tonga_populate_smc_link_level(hwmgr, table);
2314
	PP_ASSERT_WITH_CODE(!result,
2315 2316 2317
		"Failed to initialize Link Level !", return result);

	result = tonga_populate_all_graphic_levels(hwmgr);
2318
	PP_ASSERT_WITH_CODE(!result,
2319 2320 2321
		"Failed to initialize Graphics Level !", return result);

	result = tonga_populate_all_memory_levels(hwmgr);
2322
	PP_ASSERT_WITH_CODE(!result,
2323 2324 2325
		"Failed to initialize Memory Level !", return result);

	result = tonga_populate_smc_acpi_level(hwmgr, table);
2326
	PP_ASSERT_WITH_CODE(!result,
2327 2328 2329
		"Failed to initialize ACPI Level !", return result);

	result = tonga_populate_smc_vce_level(hwmgr, table);
2330
	PP_ASSERT_WITH_CODE(!result,
2331 2332 2333
		"Failed to initialize VCE Level !", return result);

	result = tonga_populate_smc_acp_level(hwmgr, table);
2334
	PP_ASSERT_WITH_CODE(!result,
2335 2336 2337
		"Failed to initialize ACP Level !", return result);

	result = tonga_populate_smc_samu_level(hwmgr, table);
2338
	PP_ASSERT_WITH_CODE(!result,
2339 2340 2341 2342 2343 2344 2345
		"Failed to initialize SAMU Level !", return result);

	/* Since only the initial state is completely set up at this
	* point (the other states are just copies of the boot state) we only
	* need to populate the  ARB settings for the initial state.
	*/
	result = tonga_program_memory_timing_parameters(hwmgr);
2346
	PP_ASSERT_WITH_CODE(!result,
2347 2348 2349 2350
		"Failed to Write ARB settings for the initial state.",
		return result;);

	result = tonga_populate_smc_uvd_level(hwmgr, table);
2351
	PP_ASSERT_WITH_CODE(!result,
2352 2353 2354
		"Failed to initialize UVD Level !", return result);

	result = tonga_populate_smc_boot_level(hwmgr, table);
2355
	PP_ASSERT_WITH_CODE(!result,
2356 2357 2358
		"Failed to initialize Boot Level !", return result);

	tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
2359
	PP_ASSERT_WITH_CODE(!result,
2360 2361 2362 2363 2364
		"Failed to populate BAPM Parameters !", return result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ClockStretcher)) {
		result = tonga_populate_clock_stretcher_data_table(hwmgr);
2365
		PP_ASSERT_WITH_CODE(!result,
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
			"Failed to populate Clock Stretcher Data Table !",
			return result;);
	}
	table->GraphicsVoltageChangeEnable  = 1;
	table->GraphicsThermThrottleEnable  = 1;
	table->GraphicsInterval = 1;
	table->VoltageInterval  = 1;
	table->ThermalInterval  = 1;
	table->TemperatureLimitHigh =
		table_info->cac_dtp_table->usTargetOperatingTemp *
		SMU7_Q88_FORMAT_CONVERSION_UNIT;
	table->TemperatureLimitLow =
		(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
		SMU7_Q88_FORMAT_CONVERSION_UNIT;
	table->MemoryVoltageChangeEnable  = 1;
	table->MemoryInterval  = 1;
	table->VoltageResponseTime  = 0;
	table->PhaseResponseTime  = 0;
	table->MemoryThermThrottleEnable  = 1;

	/*
	* Cail reads current link status and reports it as cap (we cannot
	* change this due to some previous issues we had)
	* SMC drops the link status to lowest level after enabling
	* DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
	* but this time Cail reads current link status which was set to low by
	* SMC and reports it as cap to powerplay
	* To avoid it, we set PCIeBootLinkLevel to highest dpm level
	*/
	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
			"There must be 1 or more PCIE levels defined in PPTable.",
			return -EINVAL);

	table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);

	table->PCIeGenInterval  = 1;

	result = tonga_populate_vr_config(hwmgr, table);
2404
	PP_ASSERT_WITH_CODE(!result,
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
		"Failed to populate VRConfig setting !", return result);

	table->ThermGpio  = 17;
	table->SclkStepSize = 0x4000;

	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
						&gpio_pin_assignment)) {
		table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot);
	} else {
		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot);
	}

	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
						&gpio_pin_assignment)) {
		table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition);
	} else {
		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition);
	}

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
		PHM_PlatformCaps_Falcon_QuickTransition);

	if (0) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition);
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_Falcon_QuickTransition);
	}

	if (atomctrl_get_pp_assign_pin(hwmgr,
			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalOutGPIO);

		table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;

		table->ThermOutPolarity =
			(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
			(1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0;

		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;

		/* if required, combine VRHot/PCC with thermal out GPIO*/
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot) &&
			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_CombinePCCWithThermalSignal)){
			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
		}
	} else {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalOutGPIO);

		table->ThermOutGpio = 17;
		table->ThermOutPolarity = 1;
		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
	}

	for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++)
		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);

	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);

	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2485
	result = smu7_copy_bytes_to_smc(
2486
			hwmgr->smumgr,
2487
			smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
2488 2489 2490 2491
			(uint8_t *)&(table->SystemFlags),
			sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
			SMC_RAM_END);

2492
	PP_ASSERT_WITH_CODE(!result,
2493 2494 2495
		"Failed to upload dpm data to SMC memory !", return result;);

	result = tonga_init_arb_table_index(hwmgr->smumgr);
2496
	PP_ASSERT_WITH_CODE(!result,
2497 2498 2499
			"Failed to upload arb data to SMC memory !", return result);

	tonga_populate_pm_fuses(hwmgr);
2500
	PP_ASSERT_WITH_CODE((!result),
2501 2502 2503
		"Failed to populate initialize pm fuses !", return result);

	result = tonga_populate_initial_mc_reg_table(hwmgr);
2504
	PP_ASSERT_WITH_CODE((!result),
2505 2506
		"Failed to populate initialize MC Reg table !", return result);

2507 2508
	tonga_save_default_power_profile(hwmgr);

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	return 0;
}

/**
* Set up the fan table to control the fan using the SMC.
* @param    hwmgr  the address of the powerplay hardware manager.
* @param    pInput the pointer to input data
* @param    pOutput the pointer to output data
* @param    pStorage the pointer to temporary storage
* @param    Result the last failure code
* @return   result from set temperature range routine
*/
int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data =
			(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
	uint32_t duty100;
	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
	uint16_t fdo_min, slope1, slope2;
	uint32_t reference_clock;
	int res;
	uint64_t tmp64;

	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_MicrocodeFanControl))
		return 0;

2537 2538 2539 2540 2541 2542
	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

2543
	if (0 == smu_data->smu7_data.fan_table_start) {
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
						CGS_IND_REG__SMC,
						CG_FDO_CTRL1, FMAX_DUTY100);

	if (0 == duty100) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
	do_div(tmp64, 10000);
	fdo_min = (uint16_t)tmp64;

	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
		   hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
		  hwmgr->thermal_controller.advanceFanControlParameters.usTMed;

	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
		    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
		    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;

	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);

	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);

	fan_table.Slope1 = cpu_to_be16(slope1);
	fan_table.Slope2 = cpu_to_be16(slope2);

	fan_table.FdoMin = cpu_to_be16(fdo_min);

	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);

	fan_table.HystUp = cpu_to_be16(1);

	fan_table.HystSlope = cpu_to_be16(1);

	fan_table.TempRespLim = cpu_to_be16(5);

	reference_clock = smu7_get_xclk(hwmgr);

	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);

	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);

	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);

	fan_table.FanControl_GL_Flag = 1;

2603 2604 2605 2606 2607
	res = smu7_copy_bytes_to_smc(hwmgr->smumgr,
					smu_data->smu7_data.fan_table_start,
					(uint8_t *)&fan_table,
					(uint32_t)sizeof(fan_table),
					SMC_RAM_END);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

	return 0;
}


static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
		return tonga_program_memory_timing_parameters(hwmgr);

	return 0;
}

int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct tonga_smumgr *smu_data =
			(struct tonga_smumgr *)(hwmgr->smumgr->backend);

	int result = 0;
	uint32_t low_sclk_interrupt_threshold = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkThrottleLowNotification)
		&& (hwmgr->gfx_arbiter.sclk_threshold !=
				data->low_sclk_interrupt_threshold)) {
		data->low_sclk_interrupt_threshold =
				hwmgr->gfx_arbiter.sclk_threshold;
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);

2644
		result = smu7_copy_bytes_to_smc(
2645
				hwmgr->smumgr,
2646
				smu_data->smu7_data.dpm_table_start +
2647 2648 2649 2650 2651 2652 2653 2654 2655
				offsetof(SMU72_Discrete_DpmTable,
					LowSclkInterruptThreshold),
				(uint8_t *)&low_sclk_interrupt_threshold,
				sizeof(uint32_t),
				SMC_RAM_END);
	}

	result = tonga_update_and_upload_mc_reg_table(hwmgr);

2656
	PP_ASSERT_WITH_CODE((!result),
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
				"Failed to upload MC reg table !",
				return result);

	result = tonga_program_mem_timing_parameters(hwmgr);
	PP_ASSERT_WITH_CODE((result == 0),
			"Failed to program memory timing parameters !",
			);

	return result;
}

uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
{
	switch (type) {
	case SMU_SoftRegisters:
		switch (member) {
		case HandshakeDisables:
			return offsetof(SMU72_SoftRegisters, HandshakeDisables);
		case VoltageChangeTimeout:
			return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
		case AverageGraphicsActivity:
			return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
		case PreVBlankGap:
			return offsetof(SMU72_SoftRegisters, PreVBlankGap);
		case VBlankTimeout:
			return offsetof(SMU72_SoftRegisters, VBlankTimeout);
2683 2684
		case UcodeLoadStatus:
			return offsetof(SMU72_SoftRegisters, UcodeLoadStatus);
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		}
	case SMU_Discrete_DpmTable:
		switch (member) {
		case UvdBootLevel:
			return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
		case VceBootLevel:
			return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
		case SamuBootLevel:
			return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
		case LowSclkInterruptThreshold:
			return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
		}
	}
2698
	pr_warning("can't get the offset of type %x member %x\n", type, member);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	return 0;
}

uint32_t tonga_get_mac_definition(uint32_t value)
{
	switch (value) {
	case SMU_MAX_LEVELS_GRAPHICS:
		return SMU72_MAX_LEVELS_GRAPHICS;
	case SMU_MAX_LEVELS_MEMORY:
		return SMU72_MAX_LEVELS_MEMORY;
	case SMU_MAX_LEVELS_LINK:
		return SMU72_MAX_LEVELS_LINK;
	case SMU_MAX_ENTRIES_SMIO:
		return SMU72_MAX_ENTRIES_SMIO;
	case SMU_MAX_LEVELS_VDDC:
		return SMU72_MAX_LEVELS_VDDC;
	case SMU_MAX_LEVELS_VDDGFX:
		return SMU72_MAX_LEVELS_VDDGFX;
	case SMU_MAX_LEVELS_VDDCI:
		return SMU72_MAX_LEVELS_VDDCI;
	case SMU_MAX_LEVELS_MVDD:
		return SMU72_MAX_LEVELS_MVDD;
	}
2722
	pr_warning("can't get the mac value %x\n", value);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

	return 0;
}


static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	smu_data->smc_state_table.UvdBootLevel = 0;
	if (table_info->mm_dep_table->count > 0)
		smu_data->smc_state_table.UvdBootLevel =
				(uint8_t) (table_info->mm_dep_table->count - 1);
2740
	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
				offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
	mm_boot_level_offset /= 4;
	mm_boot_level_offset *= 4;
	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC, mm_boot_level_offset);
	mm_boot_level_value &= 0x00FFFFFF;
	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
	cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC,
				mm_boot_level_offset, mm_boot_level_value);

	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UVDDPM) ||
		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState))
		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
				PPSMC_MSG_UVDDPM_SetEnabledMask,
				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
	return 0;
}

static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data =
				(struct tonga_smumgr *)(hwmgr->smumgr->backend);
	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);


	smu_data->smc_state_table.VceBootLevel =
		(uint8_t) (table_info->mm_dep_table->count - 1);

2774
	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
					offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
	mm_boot_level_offset /= 4;
	mm_boot_level_offset *= 4;
	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC, mm_boot_level_offset);
	mm_boot_level_value &= 0xFF00FFFF;
	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
	cgs_write_ind_register(hwmgr->device,
			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_StablePState))
		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
				PPSMC_MSG_VCEDPM_SetEnabledMask,
				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
	return 0;
}

static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
	uint32_t mm_boot_level_offset, mm_boot_level_value;

	smu_data->smc_state_table.SamuBootLevel = 0;
2799
	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
				offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);

	mm_boot_level_offset /= 4;
	mm_boot_level_offset *= 4;
	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC, mm_boot_level_offset);
	mm_boot_level_value &= 0xFFFFFF00;
	mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
	cgs_write_ind_register(hwmgr->device,
			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState))
		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
				PPSMC_MSG_SAMUDPM_SetEnabledMask,
				(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
	return 0;
}

int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
	switch (type) {
	case SMU_UVD_TABLE:
		tonga_update_uvd_smc_table(hwmgr);
		break;
	case SMU_VCE_TABLE:
		tonga_update_vce_smc_table(hwmgr);
		break;
	case SMU_SAMU_TABLE:
		tonga_update_samu_smc_table(hwmgr);
		break;
	default:
		break;
	}
	return 0;
}


/**
 * Get the location of various tables inside the FW image.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);

	uint32_t tmp;
	int result;
	bool error = false;

2853
	result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2854 2855 2856 2857
				SMU72_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU72_Firmware_Header, DpmTable),
				&tmp, SMC_RAM_END);

2858 2859
	if (!result)
		smu_data->smu7_data.dpm_table_start = tmp;
2860

2861
	error |= (result != 0);
2862

2863
	result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2864 2865 2866 2867
				SMU72_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU72_Firmware_Header, SoftRegisters),
				&tmp, SMC_RAM_END);

2868
	if (!result) {
2869
		data->soft_regs_start = tmp;
2870
		smu_data->smu7_data.soft_regs_start = tmp;
2871 2872
	}

2873
	error |= (result != 0);
2874 2875


2876
	result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2877 2878 2879 2880
				SMU72_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU72_Firmware_Header, mcRegisterTable),
				&tmp, SMC_RAM_END);

2881 2882
	if (!result)
		smu_data->smu7_data.mc_reg_table_start = tmp;
2883

2884
	result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2885 2886 2887 2888
				SMU72_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU72_Firmware_Header, FanTable),
				&tmp, SMC_RAM_END);

2889 2890
	if (!result)
		smu_data->smu7_data.fan_table_start = tmp;
2891

2892
	error |= (result != 0);
2893

2894
	result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2895 2896 2897 2898
				SMU72_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
				&tmp, SMC_RAM_END);

2899 2900
	if (!result)
		smu_data->smu7_data.arb_table_start = tmp;
2901

2902
	error |= (result != 0);
2903

2904
	result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2905 2906 2907 2908
				SMU72_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU72_Firmware_Header, Version),
				&tmp, SMC_RAM_END);

2909
	if (!result)
2910 2911
		hwmgr->microcode_version_info.SMC = tmp;

2912
	error |= (result != 0);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

	return error ? 1 : 0;
}

/*---------------------------MC----------------------------*/

static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
{
	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
}

static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
{
	bool result = true;

	switch (in_reg) {
	case  mmMC_SEQ_RAS_TIMING:
		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
		break;

	case  mmMC_SEQ_DLL_STBY:
		*out_reg = mmMC_SEQ_DLL_STBY_LP;
		break;

	case  mmMC_SEQ_G5PDX_CMD0:
		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
		break;

	case  mmMC_SEQ_G5PDX_CMD1:
		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
		break;

	case  mmMC_SEQ_G5PDX_CTRL:
		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
		break;

	case mmMC_SEQ_CAS_TIMING:
		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
		break;

	case mmMC_SEQ_MISC_TIMING:
		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
		break;

	case mmMC_SEQ_MISC_TIMING2:
		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
		break;

	case mmMC_SEQ_PMG_DVS_CMD:
		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
		break;

	case mmMC_SEQ_PMG_DVS_CTL:
		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
		break;

	case mmMC_SEQ_RD_CTL_D0:
		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
		break;

	case mmMC_SEQ_RD_CTL_D1:
		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
		break;

	case mmMC_SEQ_WR_CTL_D0:
		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
		break;

	case mmMC_SEQ_WR_CTL_D1:
		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
		break;

	case mmMC_PMG_CMD_EMRS:
		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
		break;

	case mmMC_PMG_CMD_MRS:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
		break;

	case mmMC_PMG_CMD_MRS1:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
		break;

	case mmMC_SEQ_PMG_TIMING:
		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
		break;

	case mmMC_PMG_CMD_MRS2:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
		break;

	case mmMC_SEQ_WR_CTL_2:
		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
		break;

	default:
		result = false;
		break;
	}

	return result;
}

static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
{
	uint32_t i;
	uint16_t address;

	for (i = 0; i < table->last; i++) {
		table->mc_reg_address[i].s0 =
			tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1,
							&address) ?
							address :
						 table->mc_reg_address[i].s1;
	}
	return 0;
}

static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
					struct tonga_mc_reg_table *ni_table)
{
	uint8_t i, j;

	PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
		"Invalid VramInfo table.", return -EINVAL);
	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
		"Invalid VramInfo table.", return -EINVAL);

	for (i = 0; i < table->last; i++)
		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;

	ni_table->last = table->last;

	for (i = 0; i < table->num_entries; i++) {
		ni_table->mc_reg_table_entry[i].mclk_max =
			table->mc_reg_table_entry[i].mclk_max;
		for (j = 0; j < table->last; j++) {
			ni_table->mc_reg_table_entry[i].mc_data[j] =
				table->mc_reg_table_entry[i].mc_data[j];
		}
	}

	ni_table->num_entries = table->num_entries;

	return 0;
}

/**
 * VBIOS omits some information to reduce size, we need to recover them here.
 * 1.   when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to
 *      mmMC_PMG_CMD_EMRS /_LP[15:0]. Bit[15:0] MRS, need to be update
 *      mmMC_PMG_CMD_MRS/_LP[15:0]
 * 2.   when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to
 *      mmMC_PMG_CMD_MRS1/_LP[15:0].
 * 3.   need to set these data for each clock range
 * @param    hwmgr the address of the powerplay hardware manager.
 * @param    table the address of MCRegTable
 * @return   always 0
 */
static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
					struct tonga_mc_reg_table *table)
{
	uint8_t i, j, k;
	uint32_t temp_reg;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	for (i = 0, j = table->last; i < table->last; i++) {
		PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
			"Invalid VramInfo table.", return -EINVAL);

		switch (table->mc_reg_address[i].s1) {

		case mmMC_SEQ_MISC1:
			temp_reg = cgs_read_register(hwmgr->device,
							mmMC_PMG_CMD_EMRS);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					((temp_reg & 0xffff0000)) |
					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
			}
			j++;
			PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
				"Invalid VramInfo table.", return -EINVAL);

			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					(temp_reg & 0xffff0000) |
					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);

				if (!data->is_memory_gddr5)
					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
			}
			j++;
			PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
				"Invalid VramInfo table.", return -EINVAL);

			if (!data->is_memory_gddr5) {
				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
				for (k = 0; k < table->num_entries; k++)
					table->mc_reg_table_entry[k].mc_data[j] =
						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
				j++;
				PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
					"Invalid VramInfo table.", return -EINVAL);
			}

			break;

		case mmMC_SEQ_RESERVE_M:
			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					(temp_reg & 0xffff0000) |
					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
			}
			j++;
			PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
				"Invalid VramInfo table.", return -EINVAL);
			break;

		default:
			break;
		}

	}

	table->last = j;

	return 0;
}

static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
{
	uint8_t i, j;

	for (i = 0; i < table->last; i++) {
		for (j = 1; j < table->num_entries; j++) {
			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
				table->mc_reg_table_entry[j].mc_data[i]) {
				table->validflag |= (1<<i);
				break;
			}
		}
	}

	return 0;
}

int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
	pp_atomctrl_mc_reg_table *table;
	struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
	uint8_t module_index = tonga_get_memory_modile_index(hwmgr);

	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);

3180
	if (table == NULL)
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		return -ENOMEM;

	/* Program additional LP registers that are no longer programmed by VBIOS */
	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,
			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,
			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,
			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,
			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,
			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));

	memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));

	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);

3229
	if (!result)
3230 3231
		result = tonga_copy_vbios_smc_reg_table(table, ni_table);

3232
	if (!result) {
3233 3234 3235 3236
		tonga_set_s0_mc_reg_index(ni_table);
		result = tonga_set_mc_special_registers(hwmgr, ni_table);
	}

3237
	if (!result)
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		tonga_set_valid_flag(ni_table);

	kfree(table);

	return result;
}

bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
{
	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
			? true : false;
}
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275

int tonga_populate_requested_graphic_levels(struct pp_hwmgr *hwmgr,
		struct amd_pp_profile *request)
{
	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)
			(hwmgr->smumgr->backend);
	struct SMU72_Discrete_GraphicsLevel *levels =
			smu_data->smc_state_table.GraphicsLevel;
	uint32_t array = smu_data->smu7_data.dpm_table_start +
			offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
	uint32_t array_size = sizeof(struct SMU72_Discrete_GraphicsLevel) *
			SMU72_MAX_LEVELS_GRAPHICS;
	uint32_t i;

	for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
		levels[i].ActivityLevel =
				cpu_to_be16(request->activity_threshold);
		levels[i].EnabledForActivity = 1;
		levels[i].UpHyst = request->up_hyst;
		levels[i].DownHyst = request->down_hyst;
	}

	return smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
				array_size, SMC_RAM_END);
}