/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * */ #include "pp_debug.h" #include "tonga_smc.h" #include "smu7_dyn_defaults.h" #include "smu7_hwmgr.h" #include "hardwaremanager.h" #include "ppatomctrl.h" #include "cgs_common.h" #include "atombios.h" #include "tonga_smumgr.h" #include "pppcielanes.h" #include "pp_endian.h" #include "smu7_ppsmc.h" #include "smu72_discrete.h" #include "smu/smu_7_1_2_d.h" #include "smu/smu_7_1_2_sh_mask.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "dce/dce_10_0_d.h" #include "dce/dce_10_0_sh_mask.h" #define VOLTAGE_SCALE 4 #define POWERTUNE_DEFAULT_SET_MAX 1 #define VOLTAGE_VID_OFFSET_SCALE1 625 #define VOLTAGE_VID_OFFSET_SCALE2 100 #define MC_CG_ARB_FREQ_F1 0x0b #define VDDC_VDDCI_DELTA 200 static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ {1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} }, }; /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0}, {600, 1050, 6, 1} }; /* [FF, SS] type, [] 4 voltage ranges, * and [Floor Freq, Boundary Freq, VID min , VID max] */ static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; /* PPGen has the gain setting generated in x * 100 unit * This function is to convert the unit to x * 4096(0x1000) unit. * This is the unit expected by SMC firmware */ static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) { uint32_t i = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); /* clock - voltage dependency table is empty table */ if (allowed_clock_voltage_table->count == 0) return -EINVAL; for (i = 0; i < allowed_clock_voltage_table->count; i++) { /* find first sclk bigger than request */ if (allowed_clock_voltage_table->entries[i].clk >= clock) { voltage->VddGfx = phm_get_voltage_index( pptable_info->vddgfx_lookup_table, allowed_clock_voltage_table->entries[i].vddgfx); voltage->Vddc = phm_get_voltage_index( pptable_info->vddc_lookup_table, allowed_clock_voltage_table->entries[i].vddc); if (allowed_clock_voltage_table->entries[i].vddci) voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); else voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA); if (allowed_clock_voltage_table->entries[i].mvdd) *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; voltage->Phases = 1; return 0; } } /* sclk is bigger than max sclk in the dependence table */ voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, allowed_clock_voltage_table->entries[i-1].vddgfx); voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, allowed_clock_voltage_table->entries[i-1].vddc); if (allowed_clock_voltage_table->entries[i-1].vddci) voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i-1].vddci); if (allowed_clock_voltage_table->entries[i-1].mvdd) *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; return 0; } /** * Vddc table preparation for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { unsigned int count; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { table->VddcLevelCount = data->vddc_voltage_table.count; for (count = 0; count < table->VddcLevelCount; count++) { table->VddcTable[count] = PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); } CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); } return 0; } /** * VddGfx table preparation for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { unsigned int count; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { table->VddGfxLevelCount = data->vddgfx_voltage_table.count; for (count = 0; count < data->vddgfx_voltage_table.count; count++) { table->VddGfxTable[count] = PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); } CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); } return 0; } /** * Vddci table preparation for SMC. * * @param *hwmgr The address of the hardware manager. * @param *table The SMC DPM table structure to be populated. * @return 0 */ static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t count; table->VddciLevelCount = data->vddci_voltage_table.count; for (count = 0; count < table->VddciLevelCount; count++) { if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { table->VddciTable[count] = PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { table->SmioTable1.Pattern[count].Voltage = PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ table->SmioTable1.Pattern[count].Smio = (uint8_t) count; table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low; table->VddciTable[count] = PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); } } table->SmioMask1 = data->vddci_voltage_table.mask_low; CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); return 0; } /** * Mvdd table preparation for SMC. * * @param *hwmgr The address of the hardware manager. * @param *table The SMC DPM table structure to be populated. * @return 0 */ static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t count; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { table->MvddLevelCount = data->mvdd_voltage_table.count; for (count = 0; count < table->MvddLevelCount; count++) { table->SmioTable2.Pattern[count].Voltage = PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ table->SmioTable2.Pattern[count].Smio = (uint8_t) count; table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low; } table->SmioMask2 = data->mvdd_voltage_table.mask_low; CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); } return 0; } /** * Preparation of vddc and vddgfx CAC tables for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { uint32_t count; uint8_t index = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table; struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table; /* table is already swapped, so in order to use the value from it * we need to swap it back. */ uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount); uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); for (count = 0; count < vddc_level_count; count++) { /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ index = phm_get_voltage_index(vddc_lookup_table, data->vddc_voltage_table.entries[count].value); table->BapmVddcVidLoSidd[count] = convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); table->BapmVddcVidHiSidd[count] = convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); table->BapmVddcVidHiSidd2[count] = convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); } if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) { /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ for (count = 0; count < vddgfx_level_count; count++) { index = phm_get_voltage_index(vddgfx_lookup_table, convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); table->BapmVddGfxVidHiSidd2[count] = convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); } } else { for (count = 0; count < vddc_level_count; count++) { index = phm_get_voltage_index(vddc_lookup_table, data->vddc_voltage_table.entries[count].value); table->BapmVddGfxVidLoSidd[count] = convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); table->BapmVddGfxVidHiSidd[count] = convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); table->BapmVddGfxVidHiSidd2[count] = convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); } } return 0; } /** * Preparation of voltage tables for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { int result; result = tonga_populate_smc_vddc_table(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "can not populate VDDC voltage table to SMC", return -EINVAL); result = tonga_populate_smc_vdd_ci_table(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "can not populate VDDCI voltage table to SMC", return -EINVAL); result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "can not populate VDDGFX voltage table to SMC", return -EINVAL); result = tonga_populate_smc_mvdd_table(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "can not populate MVDD voltage table to SMC", return -EINVAL); result = tonga_populate_cac_tables(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "can not populate CAC voltage tables to SMC", return -EINVAL); return 0; } static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, struct SMU72_Discrete_Ulv *state) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); state->CcPwrDynRm = 0; state->CcPwrDynRm1 = 0; state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); state->VddcPhase = 1; CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); return 0; } static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, struct SMU72_Discrete_DpmTable *table) { return tonga_populate_ulv_level(hwmgr, &table->Ulv); } static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); uint32_t i; /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); } smu_data->smc_state_table.LinkLevelCount = (uint8_t)dpm_table->pcie_speed_table.count; data->dpm_level_enable_mask.pcie_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); return 0; } /** * Calculates the SCLK dividers using the provided engine clock * * @param hwmgr the address of the hardware manager * @param engine_clock the engine clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); pp_atomctrl_clock_dividers_vi dividers; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; uint32_t reference_clock; uint32_t reference_divider; uint32_t fbdiv; int result; /* get the engine clock dividers for this clock value*/ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ reference_clock = atomctrl_get_reference_clock(hwmgr); reference_divider = 1 + dividers.uc_pll_ref_div; /* low 14 bits is fraction and high 12 bits is divider*/ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; /* SPLL_FUNC_CNTL setup*/ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); /* SPLL_FUNC_CNTL_3 setup*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); /* set to use fractional accumulation*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { pp_atomctrl_internal_ss_info ss_info; uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { /* * ss_info.speed_spectrum_percentage -- in unit of 0.01% * ss_info.speed_spectrum_rate -- in unit of khz */ /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); /* clkv = 2 * D * fbdiv / NS */ uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); } } sclk->SclkFrequency = engine_clock; sclk->CgSpllFuncCntl3 = spll_func_cntl_3; sclk->CgSpllFuncCntl4 = spll_func_cntl_4; sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; sclk->SclkDid = (uint8_t)dividers.pll_post_divider; return 0; } /** * Populates single SMC SCLK structure using the provided engine clock * * @param hwmgr the address of the hardware manager * @param engine_clock the engine clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level) { int result; uint32_t mvdd; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); /* populate graphics levels*/ result = tonga_get_dependecy_volt_by_clk(hwmgr, pptable_info->vdd_dep_on_sclk, engine_clock, &graphic_level->MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((!result), "can not find VDDC voltage value for VDDC " "engine clock dependency table", return result); /* SCLK frequency in units of 10KHz*/ graphic_level->SclkFrequency = engine_clock; /* Indicates maximum activity level for this performance level. 50% for now*/ graphic_level->ActivityLevel = sclk_activity_level_threshold; graphic_level->CcPwrDynRm = 0; graphic_level->CcPwrDynRm1 = 0; /* this level can be used if activity is high enough.*/ graphic_level->EnabledForActivity = 0; /* this level can be used for throttling.*/ graphic_level->EnabledForThrottle = 1; graphic_level->UpHyst = 0; graphic_level->DownHyst = 0; graphic_level->VoltageDownHyst = 0; graphic_level->PowerThrottle = 0; data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) graphic_level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(engine_clock, data->display_timing.min_clock_in_sr); /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; if (!result) { /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); } return result; } /** * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states * * @param hwmgr the address of the hardware manager */ int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct smu7_dpm_table *dpm_table = &data->dpm_table; struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; uint32_t level_array_address = smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * SMU72_MAX_LEVELS_GRAPHICS; SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t i, max_entry; uint8_t highest_pcie_level_enabled = 0; uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; uint8_t count = 0; int result = 0; memset(levels, 0x00, level_array_size); for (i = 0; i < dpm_table->sclk_table.count; i++) { result = tonga_populate_single_graphic_level(hwmgr, dpm_table->sclk_table.dpm_levels[i].value, (uint16_t)smu_data->activity_target[i], &(smu_data->smc_state_table.GraphicsLevel[i])); if (result != 0) return result; /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ if (i > 1) smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; } /* Only enable level 0 for now. */ smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; /* set highest level watermark to high */ if (dpm_table->sclk_table.count > 1) smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; smu_data->smc_state_table.GraphicsDpmLevelCount = (uint8_t)dpm_table->sclk_table.count; data->dpm_level_enable_mask.sclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); if (pcie_table != NULL) { PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ for (i = 0; i < dpm_table->sclk_table.count; i++) { smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = (uint8_t) ((i < max_entry) ? i : max_entry); } } else { if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) pr_err("Pcie Dpm Enablemask is 0 !"); while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1<<(highest_pcie_level_enabled+1))) != 0)) { highest_pcie_level_enabled++; } while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1<dpm_level_enable_mask.pcie_dpm_enable_mask & (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { count++; } mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; /* set pcieDpmLevel to highest_pcie_level_enabled*/ for (i = 2; i < dpm_table->sclk_table.count; i++) smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; /* set pcieDpmLevel to lowest_pcie_level_enabled*/ smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; /* set pcieDpmLevel to mid_pcie_level_enabled*/ smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; } /* level count will send to smc once at init smc table and never change*/ result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, SMC_RAM_END); return result; } /** * Populates the SMC MCLK structure using the provided memory clock * * @param hwmgr the address of the hardware manager * @param memory_clock the memory clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int tonga_calculate_mclk_params( struct pp_hwmgr *hwmgr, uint32_t memory_clock, SMU72_Discrete_MemoryLevel *mclk, bool strobe_mode, bool dllStateOn ) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; pp_atomctrl_memory_clock_param mpll_param; int result; result = atomctrl_get_memory_pll_dividers_si(hwmgr, memory_clock, &mpll_param, strobe_mode); PP_ASSERT_WITH_CODE( !result, "Error retrieving Memory Clock Parameters from VBIOS.", return result); /* MPLL_FUNC_CNTL setup*/ mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); /* MPLL_FUNC_CNTL_1 setup*/ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); /* MPLL_AD_FUNC_CNTL setup*/ mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); if (data->is_memory_gddr5) { /* MPLL_DQ_FUNC_CNTL setup*/ mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { /* ************************************ Fref = Reference Frequency NF = Feedback divider ratio NR = Reference divider ratio Fnom = Nominal VCO output frequency = Fref * NF / NR Fs = Spreading Rate D = Percentage down-spread / 2 Fint = Reference input frequency to PFD = Fref / NR NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) CLKS = NS - 1 = ISS_STEP_NUM[11:0] NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] ************************************* */ pp_atomctrl_internal_ss_info ss_info; uint32_t freq_nom; uint32_t tmp; uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); /* for GDDR5 for all modes and DDR3 */ if (1 == mpll_param.qdr) freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); else freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ tmp = (freq_nom / reference_clock); tmp = tmp * tmp; if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ /* ss.Info.speed_spectrum_rate -- in unit of khz */ /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ /* = reference_clock * 5 / speed_spectrum_rate */ uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ uint32_t clkv = (uint32_t)((((131 * ss_info.speed_spectrum_percentage * ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); } } /* MCLK_PWRMGT_CNTL setup */ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); /* Save the result data to outpupt memory level structure */ mclk->MclkFrequency = memory_clock; mclk->MpllFuncCntl = mpll_func_cntl; mclk->MpllFuncCntl_1 = mpll_func_cntl_1; mclk->MpllFuncCntl_2 = mpll_func_cntl_2; mclk->MpllAdFuncCntl = mpll_ad_func_cntl; mclk->MpllDqFuncCntl = mpll_dq_func_cntl; mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; mclk->DllCntl = dll_cntl; mclk->MpllSs1 = mpll_ss1; mclk->MpllSs2 = mpll_ss2; return 0; } static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, bool strobe_mode) { uint8_t mc_para_index; if (strobe_mode) { if (memory_clock < 12500) mc_para_index = 0x00; else if (memory_clock > 47500) mc_para_index = 0x0f; else mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); } else { if (memory_clock < 65000) mc_para_index = 0x00; else if (memory_clock > 135000) mc_para_index = 0x0f; else mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); } return mc_para_index; } static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) { uint8_t mc_para_index; if (memory_clock < 10000) mc_para_index = 0; else if (memory_clock >= 80000) mc_para_index = 0x0f; else mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); return mc_para_index; } static int tonga_populate_single_memory_level( struct pp_hwmgr *hwmgr, uint32_t memory_clock, SMU72_Discrete_MemoryLevel *memory_level ) { uint32_t mvdd = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); int result = 0; bool dll_state_on; struct cgs_display_info info = {0}; uint32_t mclk_edc_wr_enable_threshold = 40000; uint32_t mclk_stutter_mode_threshold = 30000; uint32_t mclk_edc_enable_threshold = 40000; uint32_t mclk_strobe_mode_threshold = 40000; if (NULL != pptable_info->vdd_dep_on_mclk) { result = tonga_get_dependecy_volt_by_clk(hwmgr, pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &mvdd); PP_ASSERT_WITH_CODE( !result, "can not find MinVddc voltage value from memory VDDC " "voltage dependency table", return result); } if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; else memory_level->MinMvdd = mvdd; memory_level->EnabledForThrottle = 1; memory_level->EnabledForActivity = 0; memory_level->UpHyst = 0; memory_level->DownHyst = 100; memory_level->VoltageDownHyst = 0; /* Indicates maximum activity level for this performance level.*/ memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; memory_level->StutterEnable = 0; memory_level->StrobeEnable = 0; memory_level->EdcReadEnable = 0; memory_level->EdcWriteEnable = 0; memory_level->RttEnable = 0; /* default set to low watermark. Highest level will be set to high later.*/ memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; cgs_get_active_displays_info(hwmgr->device, &info); data->display_timing.num_existing_displays = info.display_count; if ((mclk_stutter_mode_threshold != 0) && (memory_clock <= mclk_stutter_mode_threshold) && (!data->is_uvd_enabled) && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) && (data->display_timing.num_existing_displays <= 2) && (data->display_timing.num_existing_displays != 0)) memory_level->StutterEnable = 1; /* decide strobe mode*/ memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && (memory_clock <= mclk_strobe_mode_threshold); /* decide EDC mode and memory clock ratio*/ if (data->is_memory_gddr5) { memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, memory_level->StrobeEnable); if ((mclk_edc_enable_threshold != 0) && (memory_clock > mclk_edc_enable_threshold)) { memory_level->EdcReadEnable = 1; } if ((mclk_edc_wr_enable_threshold != 0) && (memory_clock > mclk_edc_wr_enable_threshold)) { memory_level->EdcWriteEnable = 1; } if (memory_level->StrobeEnable) { if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; } else { dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; } } else { dll_state_on = data->dll_default_on; } } else { memory_level->StrobeRatio = tonga_get_ddr3_mclk_frequency_ratio(memory_clock); dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; } result = tonga_calculate_mclk_params(hwmgr, memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); if (!result) { CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); /* MCLK frequency in units of 10KHz*/ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); /* Indicates maximum activity level for this performance level.*/ CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); } return result; } int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; int result; /* populate MCLK dpm table to SMU7 */ uint32_t level_array_address = smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel); uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY; SMU72_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; uint32_t i; memset(levels, 0x00, level_array_size); for (i = 0; i < dpm_table->mclk_table.count; i++) { PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), "can not populate memory level as memory clock is zero", return -EINVAL); result = tonga_populate_single_memory_level( hwmgr, dpm_table->mclk_table.dpm_levels[i].value, &(smu_data->smc_state_table.MemoryLevel[i])); if (result) return result; } /* Only enable level 0 for now.*/ smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; /* * in order to prevent MC activity from stutter mode to push DPM up. * the UVD change complements this by putting the MCLK in a higher state * by default such that we are not effected by up threshold or and MCLK DPM latency. */ smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); /* set highest level watermark to high*/ smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; /* level count will send to smc once at init smc table and never change*/ result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, SMC_RAM_END); return result; } static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i = 0; if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { /* find mvdd value which clock is more than request */ for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { /* Always round to higher voltage. */ smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value; break; } } PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, "MVDD Voltage is outside the supported range.", return -EINVAL); } else { return -EINVAL; } return 0; } static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { int result = 0; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct pp_atomctrl_clock_dividers_vi dividers; SMIO_Pattern voltage_level; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; /* The ACPI state should not do DPM on DC (or ever).*/ table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; table->ACPILevel.MinVoltage = smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; /* assign zero for now*/ table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); /* get the engine clock dividers for this clock value*/ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, table->ACPILevel.SclkFrequency, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* divider ID for required SCLK*/ table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; table->ACPILevel.DeepSleepDivId = 0; spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; /* For various features to be enabled/disabled while this level is active.*/ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); /* SCLK frequency in units of 10KHz*/ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ table->MemoryACPILevel.MinVoltage = smu_data->smc_state_table.MemoryLevel[0].MinVoltage; /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); else table->MemoryACPILevel.MinMvdd = 0; /* Force reset on DLL*/ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); /* Disable DLL in ACPIState*/ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); /* Enable DLL bypass signal*/ dll_cntl = PHM_SET_FIELD(dll_cntl, DLL_CNTL, MRDCK0_BYPASS, 0); dll_cntl = PHM_SET_FIELD(dll_cntl, DLL_CNTL, MRDCK1_BYPASS, 0); table->MemoryACPILevel.DllCntl = PP_HOST_TO_SMC_UL(dll_cntl); table->MemoryACPILevel.MclkPwrmgtCntl = PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); table->MemoryACPILevel.MpllAdFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); table->MemoryACPILevel.MpllDqFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); table->MemoryACPILevel.MpllFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); table->MemoryACPILevel.MpllFuncCntl_1 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); table->MemoryACPILevel.MpllFuncCntl_2 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); table->MemoryACPILevel.MpllSs1 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); table->MemoryACPILevel.MpllSs2 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpHyst = 0; table->MemoryACPILevel.DownHyst = 100; table->MemoryACPILevel.VoltageDownHyst = 0; /* Indicates maximum activity level for this performance level.*/ table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); table->MemoryACPILevel.StutterEnable = 0; table->MemoryACPILevel.StrobeEnable = 0; table->MemoryACPILevel.EdcReadEnable = 0; table->MemoryACPILevel.EdcWriteEnable = 0; table->MemoryACPILevel.RttEnable = 0; return result; } static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { int result = 0; uint8_t count; pp_atomctrl_clock_dividers_vi dividers; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; table->UvdLevelCount = (uint8_t) (mm_table->count); table->UvdBootLevel = 0; for (count = 0; count < table->UvdLevelCount; count++) { table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; table->UvdLevel[count].MinVoltage.Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, mm_table->entries[count].vddc); table->UvdLevel[count].MinVoltage.VddGfx = (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? phm_get_voltage_index(pptable_info->vddgfx_lookup_table, mm_table->entries[count].vddgfx) : 0; table->UvdLevel[count].MinVoltage.Vddci = phm_get_voltage_id(&data->vddci_voltage_table, mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); table->UvdLevel[count].MinVoltage.Phases = 1; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi( hwmgr, table->UvdLevel[count].VclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((!result), "can not find divide id for Vclk clock", return result); table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].DclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((!result), "can not find divide id for Dclk clock", return result); table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); } return result; } static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { int result = 0; uint8_t count; pp_atomctrl_clock_dividers_vi dividers; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; table->VceLevelCount = (uint8_t) (mm_table->count); table->VceBootLevel = 0; for (count = 0; count < table->VceLevelCount; count++) { table->VceLevel[count].Frequency = mm_table->entries[count].eclk; table->VceLevel[count].MinVoltage.Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, mm_table->entries[count].vddc); table->VceLevel[count].MinVoltage.VddGfx = (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? phm_get_voltage_index(pptable_info->vddgfx_lookup_table, mm_table->entries[count].vddgfx) : 0; table->VceLevel[count].MinVoltage.Vddci = phm_get_voltage_id(&data->vddci_voltage_table, mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); table->VceLevel[count].MinVoltage.Phases = 1; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->VceLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((!result), "can not find divide id for VCE engine clock", return result); table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); } return result; } static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { int result = 0; uint8_t count; pp_atomctrl_clock_dividers_vi dividers; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; table->AcpLevelCount = (uint8_t) (mm_table->count); table->AcpBootLevel = 0; for (count = 0; count < table->AcpLevelCount; count++) { table->AcpLevel[count].Frequency = pptable_info->mm_dep_table->entries[count].aclk; table->AcpLevel[count].MinVoltage.Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, mm_table->entries[count].vddc); table->AcpLevel[count].MinVoltage.VddGfx = (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? phm_get_voltage_index(pptable_info->vddgfx_lookup_table, mm_table->entries[count].vddgfx) : 0; table->AcpLevel[count].MinVoltage.Vddci = phm_get_voltage_id(&data->vddci_voltage_table, mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); table->AcpLevel[count].MinVoltage.Phases = 1; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->AcpLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((!result), "can not find divide id for engine clock", return result); table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); } return result; } static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { int result = 0; uint8_t count; pp_atomctrl_clock_dividers_vi dividers; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; table->SamuBootLevel = 0; table->SamuLevelCount = (uint8_t) (mm_table->count); for (count = 0; count < table->SamuLevelCount; count++) { /* not sure whether we need evclk or not */ table->SamuLevel[count].Frequency = pptable_info->mm_dep_table->entries[count].samclock; table->SamuLevel[count].MinVoltage.Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, mm_table->entries[count].vddc); table->SamuLevel[count].MinVoltage.VddGfx = (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? phm_get_voltage_index(pptable_info->vddgfx_lookup_table, mm_table->entries[count].vddgfx) : 0; table->SamuLevel[count].MinVoltage.Vddci = phm_get_voltage_id(&data->vddci_voltage_table, mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); table->SamuLevel[count].MinVoltage.Phases = 1; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->SamuLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((!result), "can not find divide id for samu clock", return result); table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); } return result; } static int tonga_populate_memory_timing_parameters( struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t memory_clock, struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs ) { uint32_t dramTiming; uint32_t dramTiming2; uint32_t burstTime; int result; result = atomctrl_set_engine_dram_timings_rv770(hwmgr, engine_clock, memory_clock); PP_ASSERT_WITH_CODE(result == 0, "Error calling VBIOS to set DRAM_TIMING.", return result); dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); arb_regs->McArbBurstTime = (uint8_t)burstTime; return 0; } /** * Setup parameters for the MC ARB. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 * This function is to be called from the SetPowerState table. */ static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); int result = 0; SMU72_Discrete_MCArbDramTimingTable arb_regs; uint32_t i, j; memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); for (i = 0; i < data->dpm_table.sclk_table.count; i++) { for (j = 0; j < data->dpm_table.mclk_table.count; j++) { result = tonga_populate_memory_timing_parameters (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, data->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (result) break; } } if (!result) { result = smu7_copy_bytes_to_smc( hwmgr->smumgr, smu_data->smu7_data.arb_table_start, (uint8_t *)&arb_regs, sizeof(SMU72_Discrete_MCArbDramTimingTable), SMC_RAM_END ); } return result; } static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; /* find boot level from dpm table*/ result = phm_find_boot_level(&(data->dpm_table.sclk_table), data->vbios_boot_state.sclk_bootup_value, (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); if (result != 0) { smu_data->smc_state_table.GraphicsBootLevel = 0; pr_err("[powerplay] VBIOS did not find boot engine " "clock value in dependency table. " "Using Graphics DPM level 0 !"); result = 0; } result = phm_find_boot_level(&(data->dpm_table.mclk_table), data->vbios_boot_state.mclk_bootup_value, (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); if (result != 0) { smu_data->smc_state_table.MemoryBootLevel = 0; pr_err("[powerplay] VBIOS did not find boot " "engine clock value in dependency table." "Using Memory DPM level 0 !"); result = 0; } table->BootVoltage.Vddc = phm_get_voltage_id(&(data->vddc_voltage_table), data->vbios_boot_state.vddc_bootup_value); table->BootVoltage.VddGfx = phm_get_voltage_id(&(data->vddgfx_voltage_table), data->vbios_boot_state.vddgfx_bootup_value); table->BootVoltage.Vddci = phm_get_voltage_id(&(data->vddci_voltage_table), data->vbios_boot_state.vddci_bootup_value); table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); return result; } static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) { uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, volt_with_cks, value; uint16_t clock_freq_u16; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, volt_offset = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; uint32_t hw_revision, dev_id; struct cgs_system_info sys_info = {0}; stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV; cgs_query_system_info(hwmgr->device, &sys_info); hw_revision = (uint32_t)sys_info.value; sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV; cgs_query_system_info(hwmgr->device, &sys_info); dev_id = (uint32_t)sys_info.value; /* Read SMU_Eefuse to read and calculate RO and determine * if the part is SS or FF. if RO >= 1660MHz, part is FF. */ efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (146 * 4)); efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (148 * 4)); efuse &= 0xFF000000; efuse = efuse >> 24; efuse2 &= 0xF; if (efuse2 == 1) ro = (2300 - 1350) * efuse / 255 + 1350; else ro = (2500 - 1000) * efuse / 255 + 1000; if (ro >= 1660) type = 0; else type = 1; /* Populate Stretch amount */ smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ for (i = 0; i < sclk_table->count; i++) { smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= sclk_table->entries[i].cks_enable << i; if (ASICID_IS_TONGA_P(dev_id, hw_revision)) { volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * (sclk_table->entries[i].clk/100) / 10000) * 1000 / (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * (sclk_table->entries[i].clk/100) / 100000) * 1000 / (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); } else { volt_without_cks = (uint32_t)((14041 * (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); volt_with_cks = (uint32_t)((13946 * (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); } if (volt_without_cks >= volt_with_cks) volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; } PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, STRETCH_ENABLE, 0x0); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, masterReset, 0x1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, masterReset, 0x0); /* Populate CKS Lookup Table */ if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) stretch_amount2 = 0; else if (stretch_amount == 3 || stretch_amount == 4) stretch_amount2 = 1; else { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); PP_ASSERT_WITH_CODE(false, "Stretch Amount in PPTable not supported\n", return -EINVAL); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFC2FF87; smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = tonga_clock_stretcher_lookup_table[stretch_amount2][0]; smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = tonga_clock_stretcher_lookup_table[stretch_amount2][1]; clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) / 100); if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16 && tonga_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) { /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ value |= (tonga_clock_stretch_amount_conversion [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] [stretch_amount]) << 3; } CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq); CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq); smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); /* Populate DDT Lookup Table */ for (i = 0; i < 4; i++) { /* Assign the minimum and maximum VID stored * in the last row of Clock Stretcher Voltage Table. */ smu_data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].minVID = (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; smu_data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].maxVID = (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; /* Loop through each SCLK and check the frequency * to see if it lies within the frequency for clock stretcher. */ for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { cks_setting = 0; clock_freq = PP_SMC_TO_HOST_UL( smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); /* Check the allowed frequency against the sclk level[j]. * Sclk's endianness has already been converted, * and it's in 10Khz unit, * as opposed to Data table, which is in Mhz unit. */ if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { cks_setting |= 0x2; if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) cks_setting |= 0x1; } smu_data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); } CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFFFFFFE; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); return 0; } /** * Populates the SMC VRConfig field in DPM table. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint16_t config; if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { /* Splitted mode */ config = VR_SVI2_PLANE_1; table->VRConfig |= (config<voltage_control) { config = VR_SVI2_PLANE_2; table->VRConfig |= config; } else { pr_err("VDDC and VDDGFX should " "be both on SVI2 control in splitted mode !\n"); } } else { /* Merged mode */ config = VR_MERGED_WITH_VDDC; table->VRConfig |= (config<voltage_control) { config = VR_SVI2_PLANE_1; table->VRConfig |= config; } else { pr_err("VDDC should be on " "SVI2 control in merged mode !\n"); } } /* Set Vddci Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { config = VR_SVI2_PLANE_2; /* only in merged mode */ table->VRConfig |= (config<vddci_control) { config = VR_SMIO_PATTERN_1; table->VRConfig |= (config<mvdd_control) { config = VR_SMIO_PATTERN_2; table->VRConfig |= (config<backend); uint32_t tmp; int result; /* * This is a read-modify-write on the first byte of the ARB table. * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure * is the field 'current'. * This solution is ugly, but we never write the whole table only * individual fields in it. * In reality this field should not be in that structure * but in a soft register. */ result = smu7_read_smc_sram_dword(smumgr, smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); if (result != 0) return result; tmp &= 0x00FFFFFF; tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; return smu7_write_smc_sram_dword(smumgr, smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); } static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; int i, j, k; const uint16_t *pdef1, *pdef2; dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( (uint16_t)(cac_dtp_table->usTDP * 256)); dpm_table->TargetTdp = PP_HOST_TO_SMC_US( (uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, "Target Operating Temp is out of Range !", ); dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); dpm_table->GpuTjHyst = 8; dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient); pdef1 = defaults->bapmti_r; pdef2 = defaults->bapmti_rc; for (i = 0; i < SMU72_DTE_ITERATIONS; i++) { for (j = 0; j < SMU72_DTE_SOURCES; j++) { for (k = 0; k < SMU72_DTE_SINKS; k++) { dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1); dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2); pdef1++; pdef2++; } } } return 0; } static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; smu_data->power_tune_table.SviLoadLineTrimVddC = 3; smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; return 0; } static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) { uint16_t tdc_limit; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); /* TDC number of fraction bits are changed from 8 to 7 * for Fiji as requested by SMC team */ tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); smu_data->power_tune_table.TDC_VDDC_PkgLimit = CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = defaults->tdc_vddc_throttle_release_limit_perc; smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; return 0; } static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; uint32_t temp; if (smu7_read_smc_sram_dword(hwmgr->smumgr, fuse_table_offset + offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), (uint32_t *)&temp, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to read PmFuses.DW6 " "(SviLoadLineEn) from SMC Failed !", return -EINVAL); else smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; return 0; } static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) { int i; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; return 0; } static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); if ((hwmgr->thermal_controller.advanceFanControlParameters. usFanOutputSensitivity & (1 << 15)) || (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) hwmgr->thermal_controller.advanceFanControlParameters. usFanOutputSensitivity = hwmgr->thermal_controller. advanceFanControlParameters.usDefaultFanOutputSensitivity; smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity); return 0; } static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) { int i; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.GnbLPML[i] = 0; return 0; } static int tonga_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr) { return 0; } static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); return 0; } static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); uint32_t pm_fuse_table_offset; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment)) { if (smu7_read_smc_sram_dword(hwmgr->smumgr, SMU72_FIRMWARE_HEADER_LOCATION + offsetof(SMU72_Firmware_Header, PmFuseTable), &pm_fuse_table_offset, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to get pm_fuse_table_offset Failed !", return -EINVAL); /* DW6 */ if (tonga_populate_svi_load_line(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate SviLoadLine Failed !", return -EINVAL); /* DW7 */ if (tonga_populate_tdc_limit(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TDCLimit Failed !", return -EINVAL); /* DW8 */ if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TdcWaterfallCtl Failed !", return -EINVAL); /* DW9-DW12 */ if (tonga_populate_temperature_scaler(hwmgr) != 0) PP_ASSERT_WITH_CODE(false, "Attempt to populate LPMLTemperatureScaler Failed !", return -EINVAL); /* DW13-DW14 */ if (tonga_populate_fuzzy_fan(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate Fuzzy Fan " "Control parameters Failed !", return -EINVAL); /* DW15-DW18 */ if (tonga_populate_gnb_lpml(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate GnbLPML Failed !", return -EINVAL); /* DW19 */ if (tonga_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate GnbLPML " "Min and Max Vid Failed !", return -EINVAL); /* DW20 */ if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) PP_ASSERT_WITH_CODE( false, "Attempt to populate BapmVddCBaseLeakage " "Hi and Lo Sidd Failed !", return -EINVAL); if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset, (uint8_t *)&smu_data->power_tune_table, sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to download PmFuseTable Failed !", return -EINVAL); } return 0; } static int tonga_populate_mc_reg_address(struct pp_smumgr *smumgr, SMU72_Discrete_MCRegisters *mc_reg_table) { const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)smumgr->backend; uint32_t i, j; for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { if (smu_data->mc_reg_table.validflag & 1<address[] array " "out of boundary", return -EINVAL); mc_reg_table->address[i].s0 = PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); mc_reg_table->address[i].s1 = PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); i++; } } mc_reg_table->last = (uint8_t)i; return 0; } /*convert register values from driver to SMC format */ static void tonga_convert_mc_registers( const struct tonga_mc_reg_entry *entry, SMU72_Discrete_MCRegisterSet *data, uint32_t num_entries, uint32_t valid_flag) { uint32_t i, j; for (i = 0, j = 0; j < num_entries; j++) { if (valid_flag & 1<value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); i++; } } } static int tonga_convert_mc_reg_table_entry_to_smc( struct pp_smumgr *smumgr, const uint32_t memory_clock, SMU72_Discrete_MCRegisterSet *mc_reg_table_data ) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); uint32_t i = 0; for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { if (memory_clock <= smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { break; } } if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) --i; tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], mc_reg_table_data, smu_data->mc_reg_table.last, smu_data->mc_reg_table.validflag); return 0; } static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_regs) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); int res; uint32_t i; for (i = 0; i < data->dpm_table.mclk_table.count; i++) { res = tonga_convert_mc_reg_table_entry_to_smc( hwmgr->smumgr, data->dpm_table.mclk_table.dpm_levels[i].value, &mc_regs->data[i] ); if (0 != res) result = res; } return result; } static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) { struct pp_smumgr *smumgr = hwmgr->smumgr; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t address; int32_t result; if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) return 0; memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters)); result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); if (result != 0) return result; address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); return smu7_copy_bytes_to_smc( hwmgr->smumgr, address, (uint8_t *)&smu_data->mc_regs.data[0], sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, SMC_RAM_END); } static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) { int result; struct pp_smumgr *smumgr = hwmgr->smumgr; struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters)); result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs)); PP_ASSERT_WITH_CODE(!result, "Failed to initialize MCRegTable for the MC register addresses !", return result;); result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); PP_ASSERT_WITH_CODE(!result, "Failed to initialize MCRegTable for driver state !", return result;); return smu7_copy_bytes_to_smc(smumgr, smu_data->smu7_data.mc_reg_table_start, (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END); } static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (table_info && table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && table_info->cac_dtp_table->usPowerTuneDataSetID) smu_data->power_tune_defaults = &tonga_power_tune_data_set_array [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; else smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; } static void tonga_save_default_power_profile(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); struct SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel; unsigned min_level = 1; hwmgr->default_gfx_power_profile.activity_threshold = be16_to_cpu(levels[0].ActivityLevel); hwmgr->default_gfx_power_profile.up_hyst = levels[0].UpHyst; hwmgr->default_gfx_power_profile.down_hyst = levels[0].DownHyst; hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE; hwmgr->default_compute_power_profile = hwmgr->default_gfx_power_profile; hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE; /* Workaround compute SDMA instability: disable lowest SCLK * DPM level. Optimize compute power profile: Use only highest * 2 power levels (if more than 2 are available), Hysteresis: * 0ms up, 5ms down */ if (data->smc_state_table.GraphicsDpmLevelCount > 2) min_level = data->smc_state_table.GraphicsDpmLevelCount - 2; else if (data->smc_state_table.GraphicsDpmLevelCount == 2) min_level = 1; else min_level = 0; hwmgr->default_compute_power_profile.min_sclk = be32_to_cpu(levels[min_level].SclkFrequency); hwmgr->default_compute_power_profile.up_hyst = 0; hwmgr->default_compute_power_profile.down_hyst = 5; hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile; hwmgr->compute_power_profile = hwmgr->default_compute_power_profile; } /** * Initializes the SMC table and uploads it * * @param hwmgr the address of the powerplay hardware manager. * @param pInput the pointer to input data (PowerState) * @return always 0 */ int tonga_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint8_t i; pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); tonga_initialize_power_tune_defaults(hwmgr); if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) tonga_populate_smc_voltage_tables(hwmgr, table); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StepVddc)) table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (data->is_memory_gddr5) table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); if (i == 1 || i == 0) table->SystemFlags |= 0x40; if (data->ulv_supported && table_info->us_ulv_voltage_offset) { result = tonga_populate_ulv_state(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize ULV state !", return result;); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_ULV_PARAMETER, 0x40035); } result = tonga_populate_smc_link_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Link Level !", return result); result = tonga_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Graphics Level !", return result); result = tonga_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Memory Level !", return result); result = tonga_populate_smc_acpi_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize ACPI Level !", return result); result = tonga_populate_smc_vce_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize VCE Level !", return result); result = tonga_populate_smc_acp_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize ACP Level !", return result); result = tonga_populate_smc_samu_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize SAMU Level !", return result); /* Since only the initial state is completely set up at this * point (the other states are just copies of the boot state) we only * need to populate the ARB settings for the initial state. */ result = tonga_program_memory_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to Write ARB settings for the initial state.", return result;); result = tonga_populate_smc_uvd_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize UVD Level !", return result); result = tonga_populate_smc_boot_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Boot Level !", return result); tonga_populate_bapm_parameters_in_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate BAPM Parameters !", return result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { result = tonga_populate_clock_stretcher_data_table(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate Clock Stretcher Data Table !", return result;); } table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = table_info->cac_dtp_table->usTargetOperatingTemp * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->TemperatureLimitLow = (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; /* * Cail reads current link status and reports it as cap (we cannot * change this due to some previous issues we had) * SMC drops the link status to lowest level after enabling * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again * but this time Cail reads current link status which was set to low by * SMC and reports it as cap to powerplay * To avoid it, we set PCIeBootLinkLevel to highest dpm level */ PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); table->PCIeGenInterval = 1; result = tonga_populate_vr_config(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to populate VRConfig setting !", return result); table->ThermGpio = 17; table->SclkStepSize = 0x4000; if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment)) { table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } else { table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment)) { table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } else { table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Falcon_QuickTransition); if (0) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Falcon_QuickTransition); } if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalOutGPIO); table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; /* if required, combine VRHot/PCC with thermal out GPIO*/ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)){ table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; } } else { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalOutGPIO); table->ThermOutGpio = 17; table->ThermOutPolarity = 1; table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; } for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ result = smu7_copy_bytes_to_smc( hwmgr->smumgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags), (uint8_t *)&(table->SystemFlags), sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), SMC_RAM_END); PP_ASSERT_WITH_CODE(!result, "Failed to upload dpm data to SMC memory !", return result;); result = tonga_init_arb_table_index(hwmgr->smumgr); PP_ASSERT_WITH_CODE(!result, "Failed to upload arb data to SMC memory !", return result); tonga_populate_pm_fuses(hwmgr); PP_ASSERT_WITH_CODE((!result), "Failed to populate initialize pm fuses !", return result); result = tonga_populate_initial_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((!result), "Failed to populate initialize MC Reg table !", return result); tonga_save_default_power_profile(hwmgr); return 0; } /** * Set up the fan table to control the fan using the SMC. * @param hwmgr the address of the powerplay hardware manager. * @param pInput the pointer to input data * @param pOutput the pointer to output data * @param pStorage the pointer to temporary storage * @param Result the last failure code * @return result from set temperature range routine */ int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; uint32_t duty100; uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; uint16_t fdo_min, slope1, slope2; uint32_t reference_clock; int res; uint64_t tmp64; if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) return 0; if (hwmgr->thermal_controller.fanInfo.bNoFan) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } if (0 == smu_data->smu7_data.fan_table_start) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); if (0 == duty100) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; do_div(tmp64, 10000); fdo_min = (uint16_t)tmp64; t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); fan_table.Slope1 = cpu_to_be16(slope1); fan_table.Slope2 = cpu_to_be16(slope2); fan_table.FdoMin = cpu_to_be16(fdo_min); fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); fan_table.HystUp = cpu_to_be16(1); fan_table.HystSlope = cpu_to_be16(1); fan_table.TempRespLim = cpu_to_be16(5); reference_clock = smu7_get_xclk(hwmgr); fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); fan_table.FanControl_GL_Flag = 1; res = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu_data->smu7_data.fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); return 0; } static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) return tonga_program_memory_timing_parameters(hwmgr); return 0; } int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification) && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) { data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold; low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); result = smu7_copy_bytes_to_smc( hwmgr->smumgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold), (uint8_t *)&low_sclk_interrupt_threshold, sizeof(uint32_t), SMC_RAM_END); } result = tonga_update_and_upload_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((!result), "Failed to upload MC reg table !", return result); result = tonga_program_mem_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE((result == 0), "Failed to program memory timing parameters !", ); return result; } uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) { switch (type) { case SMU_SoftRegisters: switch (member) { case HandshakeDisables: return offsetof(SMU72_SoftRegisters, HandshakeDisables); case VoltageChangeTimeout: return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); case AverageGraphicsActivity: return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); case PreVBlankGap: return offsetof(SMU72_SoftRegisters, PreVBlankGap); case VBlankTimeout: return offsetof(SMU72_SoftRegisters, VBlankTimeout); case UcodeLoadStatus: return offsetof(SMU72_SoftRegisters, UcodeLoadStatus); } case SMU_Discrete_DpmTable: switch (member) { case UvdBootLevel: return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); case VceBootLevel: return offsetof(SMU72_Discrete_DpmTable, VceBootLevel); case SamuBootLevel: return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); case LowSclkInterruptThreshold: return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold); } } pr_warning("can't get the offset of type %x member %x\n", type, member); return 0; } uint32_t tonga_get_mac_definition(uint32_t value) { switch (value) { case SMU_MAX_LEVELS_GRAPHICS: return SMU72_MAX_LEVELS_GRAPHICS; case SMU_MAX_LEVELS_MEMORY: return SMU72_MAX_LEVELS_MEMORY; case SMU_MAX_LEVELS_LINK: return SMU72_MAX_LEVELS_LINK; case SMU_MAX_ENTRIES_SMIO: return SMU72_MAX_ENTRIES_SMIO; case SMU_MAX_LEVELS_VDDC: return SMU72_MAX_LEVELS_VDDC; case SMU_MAX_LEVELS_VDDGFX: return SMU72_MAX_LEVELS_VDDGFX; case SMU_MAX_LEVELS_VDDCI: return SMU72_MAX_LEVELS_VDDCI; case SMU_MAX_LEVELS_MVDD: return SMU72_MAX_LEVELS_MVDD; } pr_warning("can't get the mac value %x\n", value); return 0; } static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); smu_data->smc_state_table.UvdBootLevel = 0; if (table_info->mm_dep_table->count > 0) smu_data->smc_state_table.UvdBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0x00FFFFFF; mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_UVDDPM_SetEnabledMask, (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); return 0; } static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); smu_data->smc_state_table.VceBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFF00FFFF; mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_VCEDPM_SetEnabledMask, (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); return 0; } static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); uint32_t mm_boot_level_offset, mm_boot_level_value; smu_data->smc_state_table.SamuBootLevel = 0; mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFFFFFF00; mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SAMUDPM_SetEnabledMask, (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel)); return 0; } int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) { switch (type) { case SMU_UVD_TABLE: tonga_update_uvd_smc_table(hwmgr); break; case SMU_VCE_TABLE: tonga_update_vce_smc_table(hwmgr); break; case SMU_SAMU_TABLE: tonga_update_samu_smc_table(hwmgr); break; default: break; } return 0; } /** * Get the location of various tables inside the FW image. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); uint32_t tmp; int result; bool error = false; result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU72_FIRMWARE_HEADER_LOCATION + offsetof(SMU72_Firmware_Header, DpmTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.dpm_table_start = tmp; error |= (result != 0); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU72_FIRMWARE_HEADER_LOCATION + offsetof(SMU72_Firmware_Header, SoftRegisters), &tmp, SMC_RAM_END); if (!result) { data->soft_regs_start = tmp; smu_data->smu7_data.soft_regs_start = tmp; } error |= (result != 0); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU72_FIRMWARE_HEADER_LOCATION + offsetof(SMU72_Firmware_Header, mcRegisterTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.mc_reg_table_start = tmp; result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU72_FIRMWARE_HEADER_LOCATION + offsetof(SMU72_Firmware_Header, FanTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.fan_table_start = tmp; error |= (result != 0); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU72_FIRMWARE_HEADER_LOCATION + offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.arb_table_start = tmp; error |= (result != 0); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU72_FIRMWARE_HEADER_LOCATION + offsetof(SMU72_Firmware_Header, Version), &tmp, SMC_RAM_END); if (!result) hwmgr->microcode_version_info.SMC = tmp; error |= (result != 0); return error ? 1 : 0; } /*---------------------------MC----------------------------*/ static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) { return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); } static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) { bool result = true; switch (in_reg) { case mmMC_SEQ_RAS_TIMING: *out_reg = mmMC_SEQ_RAS_TIMING_LP; break; case mmMC_SEQ_DLL_STBY: *out_reg = mmMC_SEQ_DLL_STBY_LP; break; case mmMC_SEQ_G5PDX_CMD0: *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; break; case mmMC_SEQ_G5PDX_CMD1: *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; break; case mmMC_SEQ_G5PDX_CTRL: *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; break; case mmMC_SEQ_CAS_TIMING: *out_reg = mmMC_SEQ_CAS_TIMING_LP; break; case mmMC_SEQ_MISC_TIMING: *out_reg = mmMC_SEQ_MISC_TIMING_LP; break; case mmMC_SEQ_MISC_TIMING2: *out_reg = mmMC_SEQ_MISC_TIMING2_LP; break; case mmMC_SEQ_PMG_DVS_CMD: *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; break; case mmMC_SEQ_PMG_DVS_CTL: *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; break; case mmMC_SEQ_RD_CTL_D0: *out_reg = mmMC_SEQ_RD_CTL_D0_LP; break; case mmMC_SEQ_RD_CTL_D1: *out_reg = mmMC_SEQ_RD_CTL_D1_LP; break; case mmMC_SEQ_WR_CTL_D0: *out_reg = mmMC_SEQ_WR_CTL_D0_LP; break; case mmMC_SEQ_WR_CTL_D1: *out_reg = mmMC_SEQ_WR_CTL_D1_LP; break; case mmMC_PMG_CMD_EMRS: *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; break; case mmMC_PMG_CMD_MRS: *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; break; case mmMC_PMG_CMD_MRS1: *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; break; case mmMC_SEQ_PMG_TIMING: *out_reg = mmMC_SEQ_PMG_TIMING_LP; break; case mmMC_PMG_CMD_MRS2: *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; break; case mmMC_SEQ_WR_CTL_2: *out_reg = mmMC_SEQ_WR_CTL_2_LP; break; default: result = false; break; } return result; } static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table) { uint32_t i; uint16_t address; for (i = 0; i < table->last; i++) { table->mc_reg_address[i].s0 = tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ? address : table->mc_reg_address[i].s1; } return 0; } static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, struct tonga_mc_reg_table *ni_table) { uint8_t i, j; PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), "Invalid VramInfo table.", return -EINVAL); for (i = 0; i < table->last; i++) ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; ni_table->last = table->last; for (i = 0; i < table->num_entries; i++) { ni_table->mc_reg_table_entry[i].mclk_max = table->mc_reg_table_entry[i].mclk_max; for (j = 0; j < table->last; j++) { ni_table->mc_reg_table_entry[i].mc_data[j] = table->mc_reg_table_entry[i].mc_data[j]; } } ni_table->num_entries = table->num_entries; return 0; } /** * VBIOS omits some information to reduce size, we need to recover them here. * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to * mmMC_PMG_CMD_EMRS /_LP[15:0]. Bit[15:0] MRS, need to be update * mmMC_PMG_CMD_MRS/_LP[15:0] * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to * mmMC_PMG_CMD_MRS1/_LP[15:0]. * 3. need to set these data for each clock range * @param hwmgr the address of the powerplay hardware manager. * @param table the address of MCRegTable * @return always 0 */ static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, struct tonga_mc_reg_table *table) { uint8_t i, j, k; uint32_t temp_reg; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); for (i = 0, j = table->last; i < table->last; i++) { PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); switch (table->mc_reg_address[i].s1) { case mmMC_SEQ_MISC1: temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = ((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); } j++; PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); if (!data->is_memory_gddr5) table->mc_reg_table_entry[k].mc_data[j] |= 0x100; } j++; PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); if (!data->is_memory_gddr5) { table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; for (k = 0; k < table->num_entries; k++) table->mc_reg_table_entry[k].mc_data[j] = (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; j++; PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); } break; case mmMC_SEQ_RESERVE_M: temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); } j++; PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); break; default: break; } } table->last = j; return 0; } static int tonga_set_valid_flag(struct tonga_mc_reg_table *table) { uint8_t i, j; for (i = 0; i < table->last; i++) { for (j = 1; j < table->num_entries; j++) { if (table->mc_reg_table_entry[j-1].mc_data[i] != table->mc_reg_table_entry[j].mc_data[i]) { table->validflag |= (1<smumgr->backend); pp_atomctrl_mc_reg_table *table; struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table; uint8_t module_index = tonga_get_memory_modile_index(hwmgr); table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); if (table == NULL) return -ENOMEM; /* Program additional LP registers that are no longer programmed by VBIOS */ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); if (!result) result = tonga_copy_vbios_smc_reg_table(table, ni_table); if (!result) { tonga_set_s0_mc_reg_index(ni_table); result = tonga_set_mc_special_registers(hwmgr, ni_table); } if (!result) tonga_set_valid_flag(ni_table); kfree(table); return result; } bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) { return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) ? true : false; } int tonga_populate_requested_graphic_levels(struct pp_hwmgr *hwmgr, struct amd_pp_profile *request) { struct tonga_smumgr *smu_data = (struct tonga_smumgr *) (hwmgr->smumgr->backend); struct SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); uint32_t array_size = sizeof(struct SMU72_Discrete_GraphicsLevel) * SMU72_MAX_LEVELS_GRAPHICS; uint32_t i; for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { levels[i].ActivityLevel = cpu_to_be16(request->activity_threshold); levels[i].EnabledForActivity = 1; levels[i].UpHyst = request->up_hyst; levels[i].DownHyst = request->down_hyst; } return smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, array_size, SMC_RAM_END); }