cpufeature.h 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

12
#include <asm/cpucaps.h>
13
#include <asm/hwcap.h>
14
#include <asm/sysreg.h>
15 16 17 18 19 20 21 22 23 24 25

/*
 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
 * in the kernel and for user space to keep track of which optional features
 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
 * Note that HWCAP_x constants are bit fields so we need to take the log.
 */

#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
#define cpu_feature(x)		ilog2(HWCAP_ ## x)

26
#ifndef __ASSEMBLY__
27

28 29
#include <linux/bug.h>
#include <linux/jump_label.h>
30 31
#include <linux/kernel.h>

32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

46 47 48 49 50 51 52 53 54
enum ftr_type {
	FTR_EXACT,	/* Use a predefined safe value */
	FTR_LOWER_SAFE,	/* Smaller value is safe */
	FTR_HIGHER_SAFE,/* Bigger value is safe */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

55 56 57
#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

58 59 60
#define FTR_VISIBLE	true	/* Feature visible to the user space */
#define FTR_HIDDEN	false	/* Feature is hidden from the user */

61
struct arm64_ftr_bits {
62
	bool		sign;	/* Value is signed ? */
63
	bool		visible;
64
	bool		strict;	/* CPU Sanity check: strict matching required ? */
65 66 67
	enum ftr_type	type;
	u8		shift;
	u8		width;
68
	s64		safe_val; /* safe value for FTR_EXACT features */
69 70 71 72 73 74 75 76
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
77 78
	const char			*name;
	u64				strict_mask;
79
	u64				user_mask;
80
	u64				sys_val;
81
	u64				user_val;
82
	const struct arm64_ftr_bits	*ftr_bits;
83 84
};

85 86
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

87 88 89 90 91 92
/* scope of capability check */
enum {
	SCOPE_SYSTEM,
	SCOPE_LOCAL_CPU,
};

93 94 95
struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
96 97
	int def_scope;			/* default scope */
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
98
	int (*enable)(void *);		/* Called on all active CPUs */
99 100 101 102 103
	union {
		struct {	/* To be used for erratum handling only */
			u32 midr_model;
			u32 midr_range_min, midr_range_max;
		};
104 105

		struct {	/* Feature register checking */
106
			u32 sys_reg;
107 108 109 110
			u8 field_pos;
			u8 min_field_value;
			u8 hwcap_type;
			bool sign;
111
			unsigned long hwcap;
112
		};
113 114 115
	};
};

116
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
117
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
118

119 120
bool this_cpu_has_cap(unsigned int cap);

121 122 123 124 125
static inline bool cpu_have_feature(unsigned int num)
{
	return elf_hwcap & (1UL << num);
}

126 127 128 129 130 131 132 133
/* System capability check for constant caps */
static inline bool cpus_have_const_cap(int num)
{
	if (num >= ARM64_NCAPS)
		return false;
	return static_branch_unlikely(&cpu_hwcap_keys[num]);
}

134 135
static inline bool cpus_have_cap(unsigned int num)
{
136
	if (num >= ARM64_NCAPS)
137
		return false;
138
	return test_bit(num, cpu_hwcaps);
139 140 141 142
}

static inline void cpus_set_cap(unsigned int num)
{
143
	if (num >= ARM64_NCAPS) {
144
		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
145
			num, ARM64_NCAPS);
146
	} else {
147
		__set_bit(num, cpu_hwcaps);
148 149
		static_branch_enable(&cpu_hwcap_keys[num]);
	}
150 151
}

152
static inline int __attribute_const__
153
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
154
{
155 156 157 158
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
159
cpuid_feature_extract_signed_field(u64 features, int field)
160
{
161
	return cpuid_feature_extract_signed_field_width(features, field, 4);
162 163
}

164 165 166 167 168 169 170 171 172 173 174 175
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

176
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
177 178 179 180
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

181 182 183 184 185
static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
	return (reg->user_val | (reg->sys_val & reg->user_mask));
}

186
static inline int __attribute_const__
187
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
188 189
{
	return (sign) ?
190 191 192 193 194 195 196 197
		cpuid_feature_extract_signed_field_width(features, field, width) :
		cpuid_feature_extract_unsigned_field_width(features, field, width);
}

static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return cpuid_feature_extract_field_width(features, field, 4, sign);
198 199
}

200
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
201
{
202
	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
203 204
}

205
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
206
{
207 208
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
209 210
}

211 212 213 214 215 216 217
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);

	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}

218
void __init setup_cpu_features(void);
219

220
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
221
			    const char *info);
222
void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps);
223 224
void check_local_cpu_capabilities(void);

225
void update_cpu_errata_workarounds(void);
226
void __init enable_errata_workarounds(void);
227
void verify_local_cpu_errata_workarounds(void);
228

229 230
u64 read_system_reg(u32 id);

231 232 233 234 235
static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}

236 237
static inline bool system_supports_32bit_el0(void)
{
238
	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
239 240
}

241 242 243 244
static inline bool system_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_system_reg(SYS_ID_AA64MMFR0_EL1));
}
245

246 247 248 249 250
static inline bool system_supports_fpsimd(void)
{
	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}

251 252 253 254 255 256
static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
		!cpus_have_cap(ARM64_HAS_PAN);
}

257 258
#endif /* __ASSEMBLY__ */

259
#endif