bpf_jit_comp.c 42.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3
/*
 * bpf_jit_comp.c: BPF JIT compiler
4
 *
5
 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6
 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 8 9
 */
#include <linux/netdevice.h>
#include <linux/filter.h>
10
#include <linux/if_vlan.h>
11
#include <linux/bpf.h>
12
#include <linux/memory.h>
13
#include <asm/extable.h>
L
Laura Abbott 已提交
14
#include <asm/set_memory.h>
15
#include <asm/nospec-branch.h>
16
#include <asm/text-patching.h>
17

18
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
19 20 21 22 23 24 25 26 27 28 29 30
{
	if (len == 1)
		*ptr = bytes;
	else if (len == 2)
		*(u16 *)ptr = bytes;
	else {
		*(u32 *)ptr = bytes;
		barrier();
	}
	return ptr + len;
}

31 32
#define EMIT(bytes, len) \
	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
33 34 35 36 37

#define EMIT1(b1)		EMIT(b1, 1)
#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
38

39
#define EMIT1_off32(b1, off) \
40
	do { EMIT1(b1); EMIT(off, 4); } while (0)
41
#define EMIT2_off32(b1, b2, off) \
42
	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
43
#define EMIT3_off32(b1, b2, b3, off) \
44
	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
45
#define EMIT4_off32(b1, b2, b3, b4, off) \
46
	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
47

48
static bool is_imm8(int value)
49 50 51 52
{
	return value <= 127 && value >= -128;
}

53
static bool is_simm32(s64 value)
54
{
55 56 57 58 59 60
	return value == (s64)(s32)value;
}

static bool is_uimm32(u64 value)
{
	return value == (u64)(u32)value;
61 62
}

63
/* mov dst, src */
64 65 66 67
#define EMIT_mov(DST, SRC)								 \
	do {										 \
		if (DST != SRC)								 \
			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	} while (0)

static int bpf_size_to_x86_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 4; /* imm32 */
	else
		return 0;
}
83

84 85
/*
 * List of x86 cond jumps opcodes (. + s8)
86 87 88 89 90 91 92 93
 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 */
#define X86_JB  0x72
#define X86_JAE 0x73
#define X86_JE  0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA  0x77
94
#define X86_JL  0x7C
95
#define X86_JGE 0x7D
96
#define X86_JLE 0x7E
97
#define X86_JG  0x7F
98

99
/* Pick a register outside of BPF range for JIT internal work */
100
#define AUX_REG (MAX_BPF_JIT_REG + 1)
A
Alexei Starovoitov 已提交
101
#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
102

103 104
/*
 * The following table maps BPF registers to x86-64 registers.
105
 *
106
 * x86-64 register R12 is unused, since if used as base address
107 108 109
 * register in load/store instructions, it always needs an
 * extra byte of encoding and is callee saved.
 *
A
Alexei Starovoitov 已提交
110 111
 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
 * trampoline. x86-64 register R10 is used for blinding (if enabled).
112 113
 */
static const int reg2hex[] = {
114 115 116 117 118 119 120 121 122 123 124 125 126
	[BPF_REG_0] = 0,  /* RAX */
	[BPF_REG_1] = 7,  /* RDI */
	[BPF_REG_2] = 6,  /* RSI */
	[BPF_REG_3] = 2,  /* RDX */
	[BPF_REG_4] = 1,  /* RCX */
	[BPF_REG_5] = 0,  /* R8  */
	[BPF_REG_6] = 3,  /* RBX callee saved */
	[BPF_REG_7] = 5,  /* R13 callee saved */
	[BPF_REG_8] = 6,  /* R14 callee saved */
	[BPF_REG_9] = 7,  /* R15 callee saved */
	[BPF_REG_FP] = 5, /* RBP readonly */
	[BPF_REG_AX] = 2, /* R10 temp register */
	[AUX_REG] = 3,    /* R11 temp register */
A
Alexei Starovoitov 已提交
127
	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
128 129
};

130 131 132 133 134 135 136 137 138 139 140 141 142
static const int reg2pt_regs[] = {
	[BPF_REG_0] = offsetof(struct pt_regs, ax),
	[BPF_REG_1] = offsetof(struct pt_regs, di),
	[BPF_REG_2] = offsetof(struct pt_regs, si),
	[BPF_REG_3] = offsetof(struct pt_regs, dx),
	[BPF_REG_4] = offsetof(struct pt_regs, cx),
	[BPF_REG_5] = offsetof(struct pt_regs, r8),
	[BPF_REG_6] = offsetof(struct pt_regs, bx),
	[BPF_REG_7] = offsetof(struct pt_regs, r13),
	[BPF_REG_8] = offsetof(struct pt_regs, r14),
	[BPF_REG_9] = offsetof(struct pt_regs, r15),
};

143 144
/*
 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
145 146 147
 * which need extra byte of encoding.
 * rax,rcx,...,rbp have simpler encoding
 */
148
static bool is_ereg(u32 reg)
149
{
150 151 152 153
	return (1 << reg) & (BIT(BPF_REG_5) |
			     BIT(AUX_REG) |
			     BIT(BPF_REG_7) |
			     BIT(BPF_REG_8) |
154
			     BIT(BPF_REG_9) |
A
Alexei Starovoitov 已提交
155
			     BIT(X86_REG_R9) |
156
			     BIT(BPF_REG_AX));
157 158
}

159 160 161 162 163
static bool is_axreg(u32 reg)
{
	return reg == BPF_REG_0;
}

164
/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
165
static u8 add_1mod(u8 byte, u32 reg)
166 167 168 169 170 171
{
	if (is_ereg(reg))
		byte |= 1;
	return byte;
}

172
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
173 174 175 176 177 178 179 180
{
	if (is_ereg(r1))
		byte |= 1;
	if (is_ereg(r2))
		byte |= 4;
	return byte;
}

181
/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
182
static u8 add_1reg(u8 byte, u32 dst_reg)
183
{
184
	return byte + reg2hex[dst_reg];
185 186
}

187
/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
188
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
189
{
190
	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
191 192
}

193 194
static void jit_fill_hole(void *area, unsigned int size)
{
195
	/* Fill whole space with INT3 instructions */
196 197 198
	memset(area, 0xcc, size);
}

199
struct jit_context {
200
	int cleanup_addr; /* Epilogue code offset */
201 202
};

203
/* Maximum number of bytes emitted while JITing one eBPF insn */
204 205
#define BPF_MAX_INSN_SIZE	128
#define BPF_INSN_SAFETY		64
206 207
/* number of bytes emit_call() needs to generate call instruction */
#define X86_CALL_SIZE		5
208

209
#define PROLOGUE_SIZE		25
210

211 212
/*
 * Emit x86-64 prologue code for BPF program and check its size.
213 214
 * bpf_tail_call helper will skip it while jumping into another program
 */
215
static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
216
{
217
	u8 *prog = *pprog;
218
	int cnt = X86_CALL_SIZE;
219

220 221 222 223 224
	/* BPF trampoline can be made to work without these nops,
	 * but let's waste 5 bytes for now and optimize later
	 */
	memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
	prog += cnt;
225 226 227 228 229 230 231 232
	EMIT1(0x55);             /* push rbp */
	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
	/* sub rsp, rounded_stack_depth */
	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
	EMIT1(0x53);             /* push rbx */
	EMIT2(0x41, 0x55);       /* push r13 */
	EMIT2(0x41, 0x56);       /* push r14 */
	EMIT2(0x41, 0x57);       /* push r15 */
233
	if (!ebpf_from_cbpf) {
234 235
		/* zero init tail_call_cnt */
		EMIT2(0x6a, 0x00);
236 237
		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
	}
238 239 240
	*pprog = prog;
}

241 242 243
/*
 * Generate the following code:
 *
244 245 246 247 248
 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 *   if (index >= array->map.max_entries)
 *     goto out;
 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 *     goto out;
249
 *   prog = array->ptrs[index];
250 251 252 253 254 255 256 257 258 259 260
 *   if (prog == NULL)
 *     goto out;
 *   goto *(prog->bpf_func + prologue_size);
 * out:
 */
static void emit_bpf_tail_call(u8 **pprog)
{
	u8 *prog = *pprog;
	int label1, label2, label3;
	int cnt = 0;

261 262
	/*
	 * rdi - pointer to ctx
263 264 265 266
	 * rsi - pointer to bpf_array
	 * rdx - index in bpf_array
	 */

267 268 269
	/*
	 * if (index >= array->map.max_entries)
	 *	goto out;
270
	 */
271 272
	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
273
	      offsetof(struct bpf_array, map.max_entries));
274
#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
275 276 277
	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
	label1 = cnt;

278 279 280
	/*
	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
	 *	goto out;
281
	 */
282
	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
283
	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
284
#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
285 286 287
	EMIT2(X86_JA, OFFSET2);                   /* ja out */
	label2 = cnt;
	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
288
	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
289

290
	/* prog = array->ptrs[index]; */
291
	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
292
		    offsetof(struct bpf_array, ptrs));
293

294 295 296
	/*
	 * if (prog == NULL)
	 *	goto out;
297
	 */
298
	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
299
#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
300 301 302 303 304 305 306 307
	EMIT2(X86_JE, OFFSET3);                   /* je out */
	label3 = cnt;

	/* goto *(prog->bpf_func + prologue_size); */
	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
	      offsetof(struct bpf_prog, bpf_func));
	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */

308 309
	/*
	 * Wow we're ready to jump into next BPF program
310 311 312
	 * rdi == ctx (1st arg)
	 * rax == prog->bpf_func + prologue_size
	 */
313
	RETPOLINE_RAX_BPF_JIT();
314 315 316 317 318 319 320 321

	/* out: */
	BUILD_BUG_ON(cnt - label1 != OFFSET1);
	BUILD_BUG_ON(cnt - label2 != OFFSET2);
	BUILD_BUG_ON(cnt - label3 != OFFSET3);
	*pprog = prog;
}

322 323 324 325 326 327 328
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
			   u32 dst_reg, const u32 imm32)
{
	u8 *prog = *pprog;
	u8 b1, b2, b3;
	int cnt = 0;

329 330
	/*
	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
331 332 333 334 335 336 337 338 339 340 341
	 * (which zero-extends imm32) to save 2 bytes.
	 */
	if (sign_propagate && (s32)imm32 < 0) {
		/* 'mov %rax, imm32' sign extends imm32 */
		b1 = add_1mod(0x48, dst_reg);
		b2 = 0xC7;
		b3 = 0xC0;
		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
		goto done;
	}

342 343
	/*
	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	 * to save 3 bytes.
	 */
	if (imm32 == 0) {
		if (is_ereg(dst_reg))
			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
		b2 = 0x31; /* xor */
		b3 = 0xC0;
		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
		goto done;
	}

	/* mov %eax, imm32 */
	if (is_ereg(dst_reg))
		EMIT1(add_1mod(0x40, dst_reg));
	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
done:
	*pprog = prog;
}

static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
			   const u32 imm32_hi, const u32 imm32_lo)
{
	u8 *prog = *pprog;
	int cnt = 0;

	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
370 371
		/*
		 * For emitting plain u32, where sign bit must not be
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		 * propagated LLVM tends to load imm64 over mov32
		 * directly, so save couple of bytes by just doing
		 * 'mov %eax, imm32' instead.
		 */
		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
	} else {
		/* movabsq %rax, imm64 */
		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
		EMIT(imm32_lo, 4);
		EMIT(imm32_hi, 4);
	}

	*pprog = prog;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
{
	u8 *prog = *pprog;
	int cnt = 0;

	if (is64) {
		/* mov dst, src */
		EMIT_mov(dst_reg, src_reg);
	} else {
		/* mov32 dst, src */
		if (is_ereg(dst_reg) || is_ereg(src_reg))
			EMIT1(add_2mod(0x40, dst_reg, src_reg));
		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
	}

	*pprog = prog;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/* LDX: dst_reg = *(u8*)(src_reg + off) */
static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
{
	u8 *prog = *pprog;
	int cnt = 0;

	switch (size) {
	case BPF_B:
		/* Emit 'movzx rax, byte ptr [rax + off]' */
		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
		break;
	case BPF_H:
		/* Emit 'movzx rax, word ptr [rax + off]' */
		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
		break;
	case BPF_W:
		/* Emit 'mov eax, dword ptr [rax+0x14]' */
		if (is_ereg(dst_reg) || is_ereg(src_reg))
			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
		else
			EMIT1(0x8B);
		break;
	case BPF_DW:
		/* Emit 'mov rax, qword ptr [rax+0x14]' */
		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
		break;
	}
	/*
	 * If insn->off == 0 we can save one extra byte, but
	 * special case of x86 R13 which always needs an offset
	 * is not worth the hassle
	 */
	if (is_imm8(off))
		EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
	else
		EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
	*pprog = prog;
}

/* STX: *(u8*)(dst_reg + off) = src_reg */
static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
{
	u8 *prog = *pprog;
	int cnt = 0;

	switch (size) {
	case BPF_B:
		/* Emit 'mov byte ptr [rax + off], al' */
		if (is_ereg(dst_reg) || is_ereg(src_reg) ||
		    /* We have to add extra byte for x86 SIL, DIL regs */
		    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
		else
			EMIT1(0x88);
		break;
	case BPF_H:
		if (is_ereg(dst_reg) || is_ereg(src_reg))
			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
		else
			EMIT2(0x66, 0x89);
		break;
	case BPF_W:
		if (is_ereg(dst_reg) || is_ereg(src_reg))
			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
		else
			EMIT1(0x89);
		break;
	case BPF_DW:
		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
		break;
	}
	if (is_imm8(off))
		EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
	else
		EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
	*pprog = prog;
}

static int emit_call(u8 **pprog, void *func, void *ip)
{
	u8 *prog = *pprog;
	int cnt = 0;
	s64 offset;

	offset = func - (ip + X86_CALL_SIZE);
	if (!is_simm32(offset)) {
		pr_err("Target call %p is out of range\n", func);
		return -EINVAL;
	}
	EMIT1_off32(0xE8, offset);
	*pprog = prog;
	return 0;
}
498

499 500 501 502 503 504 505 506
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
		       void *old_addr, void *new_addr)
{
	u8 old_insn[X86_CALL_SIZE] = {};
	u8 new_insn[X86_CALL_SIZE] = {};
	u8 *prog;
	int ret;

507 508
	if (!is_kernel_text((long)ip) &&
	    !is_bpf_text_address((long)ip))
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		/* BPF trampoline in modules is not supported */
		return -EINVAL;

	if (old_addr) {
		prog = old_insn;
		ret = emit_call(&prog, old_addr, (void *)ip);
		if (ret)
			return ret;
	}
	if (new_addr) {
		prog = new_insn;
		ret = emit_call(&prog, new_addr, (void *)ip);
		if (ret)
			return ret;
	}
	ret = -EBUSY;
	mutex_lock(&text_mutex);
	switch (t) {
	case BPF_MOD_NOP_TO_CALL:
		if (memcmp(ip, ideal_nops[NOP_ATOMIC5], X86_CALL_SIZE))
			goto out;
		text_poke_bp(ip, new_insn, X86_CALL_SIZE, NULL);
		break;
	case BPF_MOD_CALL_TO_CALL:
		if (memcmp(ip, old_insn, X86_CALL_SIZE))
			goto out;
		text_poke_bp(ip, new_insn, X86_CALL_SIZE, NULL);
		break;
	case BPF_MOD_CALL_TO_NOP:
		if (memcmp(ip, old_insn, X86_CALL_SIZE))
			goto out;
		text_poke_bp(ip, ideal_nops[NOP_ATOMIC5], X86_CALL_SIZE, NULL);
		break;
	}
	ret = 0;
out:
	mutex_unlock(&text_mutex);
	return ret;
}

549 550 551 552 553 554 555 556 557 558 559 560
static bool ex_handler_bpf(const struct exception_table_entry *x,
			   struct pt_regs *regs, int trapnr,
			   unsigned long error_code, unsigned long fault_addr)
{
	u32 reg = x->fixup >> 8;

	/* jump over faulting load and clear dest register */
	*(unsigned long *)((void *)regs + reg) = 0;
	regs->ip += x->fixup & 0xff;
	return true;
}

561 562 563 564 565 566 567
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
		  int oldproglen, struct jit_context *ctx)
{
	struct bpf_insn *insn = bpf_prog->insnsi;
	int insn_cnt = bpf_prog->len;
	bool seen_exit = false;
	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
568
	int i, cnt = 0, excnt = 0;
569 570 571
	int proglen = 0;
	u8 *prog = temp;

572 573
	emit_prologue(&prog, bpf_prog->aux->stack_depth,
		      bpf_prog_was_classic(bpf_prog));
574
	addrs[0] = prog - temp;
575

576
	for (i = 1; i <= insn_cnt; i++, insn++) {
577 578 579
		const s32 imm32 = insn->imm;
		u32 dst_reg = insn->dst_reg;
		u32 src_reg = insn->src_reg;
580
		u8 b2 = 0, b3 = 0;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		s64 jmp_offset;
		u8 jmp_cond;
		int ilen;
		u8 *func;

		switch (insn->code) {
			/* ALU */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU64 | BPF_ADD | BPF_X:
		case BPF_ALU64 | BPF_SUB | BPF_X:
		case BPF_ALU64 | BPF_AND | BPF_X:
		case BPF_ALU64 | BPF_OR | BPF_X:
		case BPF_ALU64 | BPF_XOR | BPF_X:
			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b2 = 0x01; break;
			case BPF_SUB: b2 = 0x29; break;
			case BPF_AND: b2 = 0x21; break;
			case BPF_OR: b2 = 0x09; break;
			case BPF_XOR: b2 = 0x31; break;
604
			}
605
			if (BPF_CLASS(insn->code) == BPF_ALU64)
606 607 608 609
				EMIT1(add_2mod(0x48, dst_reg, src_reg));
			else if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
610
			break;
611

612 613
		case BPF_ALU64 | BPF_MOV | BPF_X:
		case BPF_ALU | BPF_MOV | BPF_X:
614 615 616
			emit_mov_reg(&prog,
				     BPF_CLASS(insn->code) == BPF_ALU64,
				     dst_reg, src_reg);
617
			break;
618

619
			/* neg dst */
620 621 622
		case BPF_ALU | BPF_NEG:
		case BPF_ALU64 | BPF_NEG:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
623 624 625 626
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
627 628 629 630 631 632 633 634 635 636 637 638 639
			break;

		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU64 | BPF_ADD | BPF_K:
		case BPF_ALU64 | BPF_SUB | BPF_K:
		case BPF_ALU64 | BPF_AND | BPF_K:
		case BPF_ALU64 | BPF_OR | BPF_K:
		case BPF_ALU64 | BPF_XOR | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
640 641 642
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
643

644 645
			/*
			 * b3 holds 'normal' opcode, b2 short form only valid
646 647
			 * in case dst is eax/rax.
			 */
648
			switch (BPF_OP(insn->code)) {
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
			case BPF_ADD:
				b3 = 0xC0;
				b2 = 0x05;
				break;
			case BPF_SUB:
				b3 = 0xE8;
				b2 = 0x2D;
				break;
			case BPF_AND:
				b3 = 0xE0;
				b2 = 0x25;
				break;
			case BPF_OR:
				b3 = 0xC8;
				b2 = 0x0D;
				break;
			case BPF_XOR:
				b3 = 0xF0;
				b2 = 0x35;
				break;
669 670
			}

671 672
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
673 674
			else if (is_axreg(dst_reg))
				EMIT1_off32(b2, imm32);
675
			else
676
				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
677 678 679 680
			break;

		case BPF_ALU64 | BPF_MOV | BPF_K:
		case BPF_ALU | BPF_MOV | BPF_K:
681 682
			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
				       dst_reg, imm32);
683 684
			break;

685
		case BPF_LD | BPF_IMM | BPF_DW:
686
			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
687 688 689 690
			insn++;
			i++;
			break;

691
			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
692 693 694 695 696 697 698 699 700 701 702 703
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU64 | BPF_MOD | BPF_X:
		case BPF_ALU64 | BPF_DIV | BPF_X:
		case BPF_ALU64 | BPF_MOD | BPF_K:
		case BPF_ALU64 | BPF_DIV | BPF_K:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

			if (BPF_SRC(insn->code) == BPF_X)
704 705
				/* mov r11, src_reg */
				EMIT_mov(AUX_REG, src_reg);
706
			else
707 708
				/* mov r11, imm32 */
				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
709

710 711
			/* mov rax, dst_reg */
			EMIT_mov(BPF_REG_0, dst_reg);
712

713 714
			/*
			 * xor edx, edx
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
			 * equivalent to 'xor rdx, rdx', but one byte less
			 */
			EMIT2(0x31, 0xd2);

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				/* div r11 */
				EMIT3(0x49, 0xF7, 0xF3);
			else
				/* div r11d */
				EMIT3(0x41, 0xF7, 0xF3);

			if (BPF_OP(insn->code) == BPF_MOD)
				/* mov r11, rdx */
				EMIT3(0x49, 0x89, 0xD3);
			else
				/* mov r11, rax */
				EMIT3(0x49, 0x89, 0xC3);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

736 737
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
738 739 740 741 742 743
			break;

		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU64 | BPF_MUL | BPF_K:
		case BPF_ALU64 | BPF_MUL | BPF_X:
744 745 746
		{
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;

747 748 749 750
			if (dst_reg != BPF_REG_0)
				EMIT1(0x50); /* push rax */
			if (dst_reg != BPF_REG_3)
				EMIT1(0x52); /* push rdx */
751

752 753
			/* mov r11, dst_reg */
			EMIT_mov(AUX_REG, dst_reg);
754 755

			if (BPF_SRC(insn->code) == BPF_X)
756
				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
757
			else
758
				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
759

760
			if (is64)
761 762 763 764 765 766
				EMIT1(add_1mod(0x48, AUX_REG));
			else if (is_ereg(AUX_REG))
				EMIT1(add_1mod(0x40, AUX_REG));
			/* mul(q) r11 */
			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));

767 768 769 770 771 772 773
			if (dst_reg != BPF_REG_3)
				EMIT1(0x5A); /* pop rdx */
			if (dst_reg != BPF_REG_0) {
				/* mov dst_reg, rax */
				EMIT_mov(dst_reg, BPF_REG_0);
				EMIT1(0x58); /* pop rax */
			}
774
			break;
775
		}
776
			/* Shifts */
777 778 779 780 781 782 783
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_ARSH | BPF_K:
		case BPF_ALU64 | BPF_LSH | BPF_K:
		case BPF_ALU64 | BPF_RSH | BPF_K:
		case BPF_ALU64 | BPF_ARSH | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
784 785 786
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
787 788 789 790 791 792

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
793 794 795 796 797

			if (imm32 == 1)
				EMIT2(0xD1, add_1reg(b3, dst_reg));
			else
				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
798 799
			break;

800 801 802 803 804 805 806
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_ARSH | BPF_X:
		case BPF_ALU64 | BPF_LSH | BPF_X:
		case BPF_ALU64 | BPF_RSH | BPF_X:
		case BPF_ALU64 | BPF_ARSH | BPF_X:

807
			/* Check for bad case when dst_reg == rcx */
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			if (dst_reg == BPF_REG_4) {
				/* mov r11, dst_reg */
				EMIT_mov(AUX_REG, dst_reg);
				dst_reg = AUX_REG;
			}

			if (src_reg != BPF_REG_4) { /* common case */
				EMIT1(0x51); /* push rcx */

				/* mov rcx, src_reg */
				EMIT_mov(BPF_REG_4, src_reg);
			}

			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
			EMIT2(0xD3, add_1reg(b3, dst_reg));

			if (src_reg != BPF_REG_4)
				EMIT1(0x59); /* pop rcx */

			if (insn->dst_reg == BPF_REG_4)
				/* mov dst_reg, r11 */
				EMIT_mov(insn->dst_reg, AUX_REG);
			break;

842
		case BPF_ALU | BPF_END | BPF_FROM_BE:
843
			switch (imm32) {
844
			case 16:
845
				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
846
				EMIT1(0x66);
847
				if (is_ereg(dst_reg))
848
					EMIT1(0x41);
849
				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
850

851
				/* Emit 'movzwl eax, ax' */
852 853 854 855 856
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
857 858
				break;
			case 32:
859
				/* Emit 'bswap eax' to swap lower 4 bytes */
860
				if (is_ereg(dst_reg))
861
					EMIT2(0x41, 0x0F);
862
				else
863
					EMIT1(0x0F);
864
				EMIT1(add_1reg(0xC8, dst_reg));
865
				break;
866
			case 64:
867
				/* Emit 'bswap rax' to swap 8 bytes */
868 869
				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
				      add_1reg(0xC8, dst_reg));
870 871
				break;
			}
872 873 874
			break;

		case BPF_ALU | BPF_END | BPF_FROM_LE:
875 876
			switch (imm32) {
			case 16:
877 878
				/*
				 * Emit 'movzwl eax, ax' to zero extend 16-bit
879 880 881 882 883 884 885 886 887
				 * into 64 bit
				 */
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 32:
888
				/* Emit 'mov eax, eax' to clear upper 32-bits */
889 890 891 892 893 894 895 896
				if (is_ereg(dst_reg))
					EMIT1(0x45);
				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 64:
				/* nop */
				break;
			}
897 898
			break;

899
			/* ST: *(u8*)(dst_reg + off) = imm */
900
		case BPF_ST | BPF_MEM | BPF_B:
901
			if (is_ereg(dst_reg))
902 903 904 905 906
				EMIT2(0x41, 0xC6);
			else
				EMIT1(0xC6);
			goto st;
		case BPF_ST | BPF_MEM | BPF_H:
907
			if (is_ereg(dst_reg))
908 909 910 911 912
				EMIT3(0x66, 0x41, 0xC7);
			else
				EMIT2(0x66, 0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_W:
913
			if (is_ereg(dst_reg))
914 915 916 917 918
				EMIT2(0x41, 0xC7);
			else
				EMIT1(0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_DW:
919
			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
920 921

st:			if (is_imm8(insn->off))
922
				EMIT2(add_1reg(0x40, dst_reg), insn->off);
923
			else
924
				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
925

926
			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
927 928
			break;

929
			/* STX: *(u8*)(dst_reg + off) = src_reg */
930 931 932 933
		case BPF_STX | BPF_MEM | BPF_B:
		case BPF_STX | BPF_MEM | BPF_H:
		case BPF_STX | BPF_MEM | BPF_W:
		case BPF_STX | BPF_MEM | BPF_DW:
934
			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
935 936
			break;

937
			/* LDX: dst_reg = *(u8*)(src_reg + off) */
938
		case BPF_LDX | BPF_MEM | BPF_B:
939
		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
940
		case BPF_LDX | BPF_MEM | BPF_H:
941
		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
942
		case BPF_LDX | BPF_MEM | BPF_W:
943
		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
944
		case BPF_LDX | BPF_MEM | BPF_DW:
945
		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
946
			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
				struct exception_table_entry *ex;
				u8 *_insn = image + proglen;
				s64 delta;

				if (!bpf_prog->aux->extable)
					break;

				if (excnt >= bpf_prog->aux->num_exentries) {
					pr_err("ex gen bug\n");
					return -EFAULT;
				}
				ex = &bpf_prog->aux->extable[excnt++];

				delta = _insn - (u8 *)&ex->insn;
				if (!is_simm32(delta)) {
					pr_err("extable->insn doesn't fit into 32-bit\n");
					return -EFAULT;
				}
				ex->insn = delta;

				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
				if (!is_simm32(delta)) {
					pr_err("extable->handler doesn't fit into 32-bit\n");
					return -EFAULT;
				}
				ex->handler = delta;

				if (dst_reg > BPF_REG_9) {
					pr_err("verifier error\n");
					return -EFAULT;
				}
				/*
				 * Compute size of x86 insn and its target dest x86 register.
				 * ex_handler_bpf() will use lower 8 bits to adjust
				 * pt_regs->ip to jump over this x86 instruction
				 * and upper bits to figure out which pt_regs to zero out.
				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
				 * of 4 bytes will be ignored and rbx will be zero inited.
				 */
				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
			}
989 990
			break;

991
			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
992
		case BPF_STX | BPF_XADD | BPF_W:
993
			/* Emit 'lock add dword ptr [rax + off], eax' */
994 995
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
996 997 998 999
			else
				EMIT2(0xF0, 0x01);
			goto xadd;
		case BPF_STX | BPF_XADD | BPF_DW:
1000
			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1001
xadd:			if (is_imm8(insn->off))
1002
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1003
			else
1004
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1005 1006 1007 1008 1009
					    insn->off);
			break;

			/* call */
		case BPF_JMP | BPF_CALL:
1010
			func = (u8 *) __bpf_call_base + imm32;
1011
			if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1012 1013 1014
				return -EINVAL;
			break;

1015
		case BPF_JMP | BPF_TAIL_CALL:
1016 1017 1018
			emit_bpf_tail_call(&prog);
			break;

1019 1020 1021 1022
			/* cond jump */
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JNE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_X:
1023
		case BPF_JMP | BPF_JLT | BPF_X:
1024
		case BPF_JMP | BPF_JGE | BPF_X:
1025
		case BPF_JMP | BPF_JLE | BPF_X:
1026
		case BPF_JMP | BPF_JSGT | BPF_X:
1027
		case BPF_JMP | BPF_JSLT | BPF_X:
1028
		case BPF_JMP | BPF_JSGE | BPF_X:
1029
		case BPF_JMP | BPF_JSLE | BPF_X:
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		case BPF_JMP32 | BPF_JEQ | BPF_X:
		case BPF_JMP32 | BPF_JNE | BPF_X:
		case BPF_JMP32 | BPF_JGT | BPF_X:
		case BPF_JMP32 | BPF_JLT | BPF_X:
		case BPF_JMP32 | BPF_JGE | BPF_X:
		case BPF_JMP32 | BPF_JLE | BPF_X:
		case BPF_JMP32 | BPF_JSGT | BPF_X:
		case BPF_JMP32 | BPF_JSLT | BPF_X:
		case BPF_JMP32 | BPF_JSGE | BPF_X:
		case BPF_JMP32 | BPF_JSLE | BPF_X:
1040
			/* cmp dst_reg, src_reg */
1041 1042 1043 1044 1045
			if (BPF_CLASS(insn->code) == BPF_JMP)
				EMIT1(add_2mod(0x48, dst_reg, src_reg));
			else if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1046 1047 1048
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_X:
1049
		case BPF_JMP32 | BPF_JSET | BPF_X:
1050
			/* test dst_reg, src_reg */
1051 1052 1053 1054 1055
			if (BPF_CLASS(insn->code) == BPF_JMP)
				EMIT1(add_2mod(0x48, dst_reg, src_reg));
			else if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1056 1057 1058
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_K:
1059
		case BPF_JMP32 | BPF_JSET | BPF_K:
1060
			/* test dst_reg, imm32 */
1061 1062 1063 1064
			if (BPF_CLASS(insn->code) == BPF_JMP)
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
1065
			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1066 1067 1068 1069 1070
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JNE | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_K:
1071
		case BPF_JMP | BPF_JLT | BPF_K:
1072
		case BPF_JMP | BPF_JGE | BPF_K:
1073
		case BPF_JMP | BPF_JLE | BPF_K:
1074
		case BPF_JMP | BPF_JSGT | BPF_K:
1075
		case BPF_JMP | BPF_JSLT | BPF_K:
1076
		case BPF_JMP | BPF_JSGE | BPF_K:
1077
		case BPF_JMP | BPF_JSLE | BPF_K:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		case BPF_JMP32 | BPF_JEQ | BPF_K:
		case BPF_JMP32 | BPF_JNE | BPF_K:
		case BPF_JMP32 | BPF_JGT | BPF_K:
		case BPF_JMP32 | BPF_JLT | BPF_K:
		case BPF_JMP32 | BPF_JGE | BPF_K:
		case BPF_JMP32 | BPF_JLE | BPF_K:
		case BPF_JMP32 | BPF_JSGT | BPF_K:
		case BPF_JMP32 | BPF_JSLT | BPF_K:
		case BPF_JMP32 | BPF_JSGE | BPF_K:
		case BPF_JMP32 | BPF_JSLE | BPF_K:
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			/* test dst_reg, dst_reg to save one extra byte */
			if (imm32 == 0) {
				if (BPF_CLASS(insn->code) == BPF_JMP)
					EMIT1(add_2mod(0x48, dst_reg, dst_reg));
				else if (is_ereg(dst_reg))
					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
				goto emit_cond_jmp;
			}

1098
			/* cmp dst_reg, imm8/32 */
1099 1100 1101 1102
			if (BPF_CLASS(insn->code) == BPF_JMP)
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
1103

1104 1105
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1106
			else
1107
				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1108

1109
emit_cond_jmp:		/* Convert BPF opcode to x86 */
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			switch (BPF_OP(insn->code)) {
			case BPF_JEQ:
				jmp_cond = X86_JE;
				break;
			case BPF_JSET:
			case BPF_JNE:
				jmp_cond = X86_JNE;
				break;
			case BPF_JGT:
				/* GT is unsigned '>', JA in x86 */
				jmp_cond = X86_JA;
				break;
1122 1123 1124 1125
			case BPF_JLT:
				/* LT is unsigned '<', JB in x86 */
				jmp_cond = X86_JB;
				break;
1126 1127 1128 1129
			case BPF_JGE:
				/* GE is unsigned '>=', JAE in x86 */
				jmp_cond = X86_JAE;
				break;
1130 1131 1132 1133
			case BPF_JLE:
				/* LE is unsigned '<=', JBE in x86 */
				jmp_cond = X86_JBE;
				break;
1134
			case BPF_JSGT:
1135
				/* Signed '>', GT in x86 */
1136 1137
				jmp_cond = X86_JG;
				break;
1138
			case BPF_JSLT:
1139
				/* Signed '<', LT in x86 */
1140 1141
				jmp_cond = X86_JL;
				break;
1142
			case BPF_JSGE:
1143
				/* Signed '>=', GE in x86 */
1144 1145
				jmp_cond = X86_JGE;
				break;
1146
			case BPF_JSLE:
1147
				/* Signed '<=', LE in x86 */
1148 1149
				jmp_cond = X86_JLE;
				break;
1150
			default: /* to silence GCC warning */
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
				return -EFAULT;
			}
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (is_imm8(jmp_offset)) {
				EMIT2(jmp_cond, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
			} else {
				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}

			break;
1164

1165
		case BPF_JMP | BPF_JA:
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			if (insn->off == -1)
				/* -1 jmp instructions will always jump
				 * backwards two bytes. Explicitly handling
				 * this case avoids wasting too many passes
				 * when there are long sequences of replaced
				 * dead code.
				 */
				jmp_offset = -2;
			else
				jmp_offset = addrs[i + insn->off] - addrs[i];

1177
			if (!jmp_offset)
1178
				/* Optimize out nop jumps */
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
				break;
emit_jmp:
			if (is_imm8(jmp_offset)) {
				EMIT2(0xEB, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT1_off32(0xE9, jmp_offset);
			} else {
				pr_err("jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}
			break;

		case BPF_JMP | BPF_EXIT:
1192
			if (seen_exit) {
1193 1194 1195
				jmp_offset = ctx->cleanup_addr - addrs[i];
				goto emit_jmp;
			}
1196
			seen_exit = true;
1197
			/* Update cleanup_addr */
1198
			ctx->cleanup_addr = proglen;
1199 1200 1201 1202 1203 1204 1205 1206
			if (!bpf_prog_was_classic(bpf_prog))
				EMIT1(0x5B); /* get rid of tail_call_cnt */
			EMIT2(0x41, 0x5F);   /* pop r15 */
			EMIT2(0x41, 0x5E);   /* pop r14 */
			EMIT2(0x41, 0x5D);   /* pop r13 */
			EMIT1(0x5B);         /* pop rbx */
			EMIT1(0xC9);         /* leave */
			EMIT1(0xC3);         /* ret */
1207 1208
			break;

1209
		default:
1210 1211
			/*
			 * By design x86-64 JIT should support all BPF instructions.
1212
			 * This error will be seen if new instruction was added
1213 1214
			 * to the interpreter, but not to the JIT, or if there is
			 * junk in bpf_prog.
1215 1216
			 */
			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1217 1218
			return -EINVAL;
		}
1219

1220
		ilen = prog - temp;
1221
		if (ilen > BPF_MAX_INSN_SIZE) {
1222
			pr_err("bpf_jit: fatal insn size error\n");
1223 1224 1225
			return -EFAULT;
		}

1226 1227
		if (image) {
			if (unlikely(proglen + ilen > oldproglen)) {
1228
				pr_err("bpf_jit: fatal error\n");
1229
				return -EFAULT;
1230
			}
1231
			memcpy(image + proglen, temp, ilen);
1232
		}
1233 1234 1235 1236
		proglen += ilen;
		addrs[i] = proglen;
		prog = temp;
	}
1237 1238 1239 1240 1241

	if (image && excnt != bpf_prog->aux->num_exentries) {
		pr_err("extable is not populated\n");
		return -EFAULT;
	}
1242 1243 1244
	return proglen;
}

A
Alexei Starovoitov 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static void save_regs(struct btf_func_model *m, u8 **prog, int nr_args,
		      int stack_size)
{
	int i;
	/* Store function arguments to stack.
	 * For a function that accepts two pointers the sequence will be:
	 * mov QWORD PTR [rbp-0x10],rdi
	 * mov QWORD PTR [rbp-0x8],rsi
	 */
	for (i = 0; i < min(nr_args, 6); i++)
		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
			 BPF_REG_FP,
			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
			 -(stack_size - i * 8));
}

static void restore_regs(struct btf_func_model *m, u8 **prog, int nr_args,
			 int stack_size)
{
	int i;

	/* Restore function arguments from stack.
	 * For a function that accepts two pointers the sequence will be:
	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
	 */
	for (i = 0; i < min(nr_args, 6); i++)
		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
			 BPF_REG_FP,
			 -(stack_size - i * 8));
}

static int invoke_bpf(struct btf_func_model *m, u8 **pprog,
		      struct bpf_prog **progs, int prog_cnt, int stack_size)
{
	u8 *prog = *pprog;
	int cnt = 0, i;

	for (i = 0; i < prog_cnt; i++) {
		if (emit_call(&prog, __bpf_prog_enter, prog))
			return -EINVAL;
		/* remember prog start time returned by __bpf_prog_enter */
		emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);

		/* arg1: lea rdi, [rbp - stack_size] */
		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
		/* arg2: progs[i]->insnsi for interpreter */
		if (!progs[i]->jited)
			emit_mov_imm64(&prog, BPF_REG_2,
				       (long) progs[i]->insnsi >> 32,
				       (u32) (long) progs[i]->insnsi);
		/* call JITed bpf program or interpreter */
		if (emit_call(&prog, progs[i]->bpf_func, prog))
			return -EINVAL;

		/* arg1: mov rdi, progs[i] */
		emit_mov_imm64(&prog, BPF_REG_1, (long) progs[i] >> 32,
			       (u32) (long) progs[i]);
		/* arg2: mov rsi, rbx <- start time in nsec */
		emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
		if (emit_call(&prog, __bpf_prog_exit, prog))
			return -EINVAL;
	}
	*pprog = prog;
	return 0;
}

/* Example:
 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
 * its 'struct btf_func_model' will be nr_args=2
 * The assembly code when eth_type_trans is executing after trampoline:
 *
 * push rbp
 * mov rbp, rsp
 * sub rsp, 16                     // space for skb and dev
 * push rbx                        // temp regs to pass start time
 * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
 * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
 * mov rbx, rax                    // remember start time in bpf stats are enabled
 * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
 * call addr_of_jited_FENTRY_prog
 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
 * mov rsi, rbx                    // prog start time
 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
 * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
 * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
 * pop rbx
 * leave
 * ret
 *
 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
 * replaced with 'call generated_bpf_trampoline'. When it returns
 * eth_type_trans will continue executing with original skb and dev pointers.
 *
 * The assembly code when eth_type_trans is called from trampoline:
 *
 * push rbp
 * mov rbp, rsp
 * sub rsp, 24                     // space for skb, dev, return value
 * push rbx                        // temp regs to pass start time
 * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
 * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
 * mov rbx, rax                    // remember start time if bpf stats are enabled
 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
 * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
 * mov rsi, rbx                    // prog start time
 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
 * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
 * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
 * call eth_type_trans+5           // execute body of eth_type_trans
 * mov qword ptr [rbp - 8], rax    // save return value
 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
 * mov rbx, rax                    // remember start time in bpf stats are enabled
 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
 * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
 * mov rsi, rbx                    // prog start time
 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
 * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
 * pop rbx
 * leave
 * add rsp, 8                      // skip eth_type_trans's frame
 * ret                             // return to its caller
 */
int arch_prepare_bpf_trampoline(void *image, struct btf_func_model *m, u32 flags,
				struct bpf_prog **fentry_progs, int fentry_cnt,
				struct bpf_prog **fexit_progs, int fexit_cnt,
				void *orig_call)
{
	int cnt = 0, nr_args = m->nr_args;
	int stack_size = nr_args * 8;
	u8 *prog;

	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
	if (nr_args > 6)
		return -ENOTSUPP;

	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
	    (flags & BPF_TRAMP_F_SKIP_FRAME))
		return -EINVAL;

	if (flags & BPF_TRAMP_F_CALL_ORIG)
		stack_size += 8; /* room for return value of orig_call */

	if (flags & BPF_TRAMP_F_SKIP_FRAME)
		/* skip patched call instruction and point orig_call to actual
		 * body of the kernel function.
		 */
		orig_call += X86_CALL_SIZE;

	prog = image;

	EMIT1(0x55);		 /* push rbp */
	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
	EMIT1(0x53);		 /* push rbx */

	save_regs(m, &prog, nr_args, stack_size);

	if (fentry_cnt)
		if (invoke_bpf(m, &prog, fentry_progs, fentry_cnt, stack_size))
			return -EINVAL;

	if (flags & BPF_TRAMP_F_CALL_ORIG) {
		if (fentry_cnt)
			restore_regs(m, &prog, nr_args, stack_size);

		/* call original function */
		if (emit_call(&prog, orig_call, prog))
			return -EINVAL;
		/* remember return value in a stack for bpf prog to access */
		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
	}

	if (fexit_cnt)
		if (invoke_bpf(m, &prog, fexit_progs, fexit_cnt, stack_size))
			return -EINVAL;

	if (flags & BPF_TRAMP_F_RESTORE_REGS)
		restore_regs(m, &prog, nr_args, stack_size);

	if (flags & BPF_TRAMP_F_CALL_ORIG)
		/* restore original return value back into RAX */
		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);

	EMIT1(0x5B); /* pop rbx */
	EMIT1(0xC9); /* leave */
	if (flags & BPF_TRAMP_F_SKIP_FRAME)
		/* skip our return address and return to parent */
		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
	EMIT1(0xC3); /* ret */
	/* One half of the page has active running trampoline.
	 * Another half is an area for next trampoline.
	 * Make sure the trampoline generation logic doesn't overflow.
	 */
	if (WARN_ON_ONCE(prog - (u8 *)image > PAGE_SIZE / 2 - BPF_INSN_SAFETY))
		return -EFAULT;
	return 0;
}

1449 1450 1451 1452 1453 1454 1455 1456
struct x64_jit_data {
	struct bpf_binary_header *header;
	int *addrs;
	u8 *image;
	int proglen;
	struct jit_context ctx;
};

1457
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1458 1459
{
	struct bpf_binary_header *header = NULL;
1460
	struct bpf_prog *tmp, *orig_prog = prog;
1461
	struct x64_jit_data *jit_data;
1462 1463
	int proglen, oldproglen = 0;
	struct jit_context ctx = {};
1464
	bool tmp_blinded = false;
1465
	bool extra_pass = false;
1466 1467 1468 1469 1470
	u8 *image = NULL;
	int *addrs;
	int pass;
	int i;

1471
	if (!prog->jit_requested)
1472 1473 1474
		return orig_prog;

	tmp = bpf_jit_blind_constants(prog);
1475 1476
	/*
	 * If blinding was requested and we failed during blinding,
1477 1478 1479 1480 1481 1482 1483 1484
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	jit_data = prog->aux->jit_data;
	if (!jit_data) {
		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
		if (!jit_data) {
			prog = orig_prog;
			goto out;
		}
		prog->aux->jit_data = jit_data;
	}
	addrs = jit_data->addrs;
	if (addrs) {
		ctx = jit_data->ctx;
		oldproglen = jit_data->proglen;
		image = jit_data->image;
		header = jit_data->header;
		extra_pass = true;
		goto skip_init_addrs;
	}
1504
	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1505 1506
	if (!addrs) {
		prog = orig_prog;
1507
		goto out_addrs;
1508
	}
1509

1510 1511 1512
	/*
	 * Before first pass, make a rough estimation of addrs[]
	 * each BPF instruction is translated to less than 64 bytes
1513
	 */
1514
	for (proglen = 0, i = 0; i <= prog->len; i++) {
1515 1516 1517 1518
		proglen += 64;
		addrs[i] = proglen;
	}
	ctx.cleanup_addr = proglen;
1519
skip_init_addrs:
1520

1521 1522 1523
	/*
	 * JITed image shrinks with every pass and the loop iterates
	 * until the image stops shrinking. Very large BPF programs
1524
	 * may converge on the last pass. In such case do one more
1525
	 * pass to emit the final image.
1526
	 */
1527
	for (pass = 0; pass < 20 || image; pass++) {
1528 1529
		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
		if (proglen <= 0) {
1530
out_image:
1531 1532
			image = NULL;
			if (header)
1533
				bpf_jit_binary_free(header);
1534 1535
			prog = orig_prog;
			goto out_addrs;
1536
		}
1537
		if (image) {
1538
			if (proglen != oldproglen) {
1539 1540
				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
				       proglen, oldproglen);
1541
				goto out_image;
1542
			}
1543 1544 1545
			break;
		}
		if (proglen == oldproglen) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
			/*
			 * The number of entries in extable is the number of BPF_LDX
			 * insns that access kernel memory via "pointer to BTF type".
			 * The verifier changed their opcode from LDX|MEM|size
			 * to LDX|PROBE_MEM|size to make JITing easier.
			 */
			u32 align = __alignof__(struct exception_table_entry);
			u32 extable_size = prog->aux->num_exentries *
				sizeof(struct exception_table_entry);

			/* allocate module memory for x86 insns and extable */
			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
						      &image, align, jit_fill_hole);
1559 1560 1561 1562
			if (!header) {
				prog = orig_prog;
				goto out_addrs;
			}
1563
			prog->aux->extable = (void *) image + roundup(proglen, align);
1564 1565
		}
		oldproglen = proglen;
1566
		cond_resched();
1567
	}
1568

1569
	if (bpf_jit_enable > 1)
1570
		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1571 1572

	if (image) {
1573 1574 1575 1576 1577 1578 1579 1580 1581
		if (!prog->is_func || extra_pass) {
			bpf_jit_binary_lock_ro(header);
		} else {
			jit_data->addrs = addrs;
			jit_data->ctx = ctx;
			jit_data->proglen = proglen;
			jit_data->image = image;
			jit_data->header = header;
		}
1582
		prog->bpf_func = (void *)image;
1583
		prog->jited = 1;
1584
		prog->jited_len = proglen;
1585 1586
	} else {
		prog = orig_prog;
1587
	}
1588

1589
	if (!image || !prog->is_func || extra_pass) {
M
Martin KaFai Lau 已提交
1590
		if (image)
1591
			bpf_prog_fill_jited_linfo(prog, addrs + 1);
1592
out_addrs:
1593 1594 1595 1596
		kfree(addrs);
		kfree(jit_data);
		prog->aux->jit_data = NULL;
	}
1597 1598 1599 1600
out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
1601
	return prog;
1602
}