bpf_jit_comp.c 32.9 KB
Newer Older
1 2
/* bpf_jit_comp.c : BPF JIT compiler
 *
3
 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4
 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */
#include <linux/netdevice.h>
#include <linux/filter.h>
13
#include <linux/if_vlan.h>
14
#include <asm/cacheflush.h>
L
Laura Abbott 已提交
15
#include <asm/set_memory.h>
16
#include <linux/bpf.h>
17 18 19 20

/*
 * assembly code in arch/x86/net/bpf_jit.S
 */
21
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
22
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
23
extern u8 sk_load_byte_positive_offset[];
24
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
25
extern u8 sk_load_byte_negative_offset[];
26

27
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
28 29 30 31 32 33 34 35 36 37 38 39
{
	if (len == 1)
		*ptr = bytes;
	else if (len == 2)
		*(u16 *)ptr = bytes;
	else {
		*(u32 *)ptr = bytes;
		barrier();
	}
	return ptr + len;
}

40 41
#define EMIT(bytes, len) \
	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
42 43 44 45 46

#define EMIT1(b1)		EMIT(b1, 1)
#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
47 48 49 50 51 52 53 54
#define EMIT1_off32(b1, off) \
	do {EMIT1(b1); EMIT(off, 4); } while (0)
#define EMIT2_off32(b1, b2, off) \
	do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
#define EMIT3_off32(b1, b2, b3, off) \
	do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
#define EMIT4_off32(b1, b2, b3, b4, off) \
	do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
55

56
static bool is_imm8(int value)
57 58 59 60
{
	return value <= 127 && value >= -128;
}

61
static bool is_simm32(s64 value)
62
{
63 64 65 66 67 68
	return value == (s64)(s32)value;
}

static bool is_uimm32(u64 value)
{
	return value == (u64)(u32)value;
69 70
}

71 72 73 74
/* mov dst, src */
#define EMIT_mov(DST, SRC) \
	do {if (DST != SRC) \
		EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	} while (0)

static int bpf_size_to_x86_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 4; /* imm32 */
	else
		return 0;
}
90 91 92 93 94 95 96 97 98 99

/* list of x86 cond jumps opcodes (. + s8)
 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 */
#define X86_JB  0x72
#define X86_JAE 0x73
#define X86_JE  0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA  0x77
100
#define X86_JL  0x7C
101
#define X86_JGE 0x7D
102
#define X86_JLE 0x7E
103
#define X86_JG  0x7F
104

105
static void bpf_flush_icache(void *start, void *end)
106 107 108 109 110 111 112 113 114
{
	mm_segment_t old_fs = get_fs();

	set_fs(KERNEL_DS);
	smp_wmb();
	flush_icache_range((unsigned long)start, (unsigned long)end);
	set_fs(old_fs);
}

115 116
#define CHOOSE_LOAD_FUNC(K, func) \
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
117

118
/* pick a register outside of BPF range for JIT internal work */
119
#define AUX_REG (MAX_BPF_JIT_REG + 1)
120

121 122 123 124 125 126 127 128
/* The following table maps BPF registers to x64 registers.
 *
 * x64 register r12 is unused, since if used as base address
 * register in load/store instructions, it always needs an
 * extra byte of encoding and is callee saved.
 *
 *  r9 caches skb->len - skb->data_len
 * r10 caches skb->data, and used for blinding (if enabled)
129 130 131 132 133 134 135 136 137 138 139 140 141
 */
static const int reg2hex[] = {
	[BPF_REG_0] = 0,  /* rax */
	[BPF_REG_1] = 7,  /* rdi */
	[BPF_REG_2] = 6,  /* rsi */
	[BPF_REG_3] = 2,  /* rdx */
	[BPF_REG_4] = 1,  /* rcx */
	[BPF_REG_5] = 0,  /* r8 */
	[BPF_REG_6] = 3,  /* rbx callee saved */
	[BPF_REG_7] = 5,  /* r13 callee saved */
	[BPF_REG_8] = 6,  /* r14 callee saved */
	[BPF_REG_9] = 7,  /* r15 callee saved */
	[BPF_REG_FP] = 5, /* rbp readonly */
142
	[BPF_REG_AX] = 2, /* r10 temp register */
143 144 145 146 147 148 149
	[AUX_REG] = 3,    /* r11 temp register */
};

/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
 * which need extra byte of encoding.
 * rax,rcx,...,rbp have simpler encoding
 */
150
static bool is_ereg(u32 reg)
151
{
152 153 154 155
	return (1 << reg) & (BIT(BPF_REG_5) |
			     BIT(AUX_REG) |
			     BIT(BPF_REG_7) |
			     BIT(BPF_REG_8) |
156 157
			     BIT(BPF_REG_9) |
			     BIT(BPF_REG_AX));
158 159
}

160 161 162 163 164
static bool is_axreg(u32 reg)
{
	return reg == BPF_REG_0;
}

165
/* add modifiers if 'reg' maps to x64 registers r8..r15 */
166
static u8 add_1mod(u8 byte, u32 reg)
167 168 169 170 171 172
{
	if (is_ereg(reg))
		byte |= 1;
	return byte;
}

173
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
174 175 176 177 178 179 180 181
{
	if (is_ereg(r1))
		byte |= 1;
	if (is_ereg(r2))
		byte |= 4;
	return byte;
}

182
/* encode 'dst_reg' register into x64 opcode 'byte' */
183
static u8 add_1reg(u8 byte, u32 dst_reg)
184
{
185
	return byte + reg2hex[dst_reg];
186 187
}

188
/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
189
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
190
{
191
	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
192 193
}

194 195 196 197 198 199
static void jit_fill_hole(void *area, unsigned int size)
{
	/* fill whole space with int3 instructions */
	memset(area, 0xcc, size);
}

200
struct jit_context {
201
	int cleanup_addr; /* epilogue code offset */
202
	bool seen_ld_abs;
203
	bool seen_ax_reg;
204 205
};

206 207 208 209
/* maximum number of bytes emitted while JITing one eBPF insn */
#define BPF_MAX_INSN_SIZE	128
#define BPF_INSN_SAFETY		64

210 211
#define AUX_STACK_SPACE \
	(32 /* space for rbx, r13, r14, r15 */ + \
212 213
	 8 /* space for skb_copy_bits() buffer */)

214
#define PROLOGUE_SIZE 37
215 216 217 218

/* emit x64 prologue code for BPF program and check it's size.
 * bpf_tail_call helper will skip it while jumping into another program
 */
219
static void emit_prologue(u8 **pprog, u32 stack_depth)
220
{
221 222
	u8 *prog = *pprog;
	int cnt = 0;
223

224 225
	EMIT1(0x55); /* push rbp */
	EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
226

227 228 229
	/* sub rsp, rounded_stack_depth + AUX_STACK_SPACE */
	EMIT3_off32(0x48, 0x81, 0xEC,
		    round_up(stack_depth, 8) + AUX_STACK_SPACE);
230 231 232

	/* sub rbp, AUX_STACK_SPACE */
	EMIT4(0x48, 0x83, 0xED, AUX_STACK_SPACE);
233 234 235

	/* all classic BPF filters use R6(rbx) save it */

236 237
	/* mov qword ptr [rbp+0],rbx */
	EMIT4(0x48, 0x89, 0x5D, 0);
238

239
	/* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
240 241 242 243 244 245 246
	 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
	 * R8(r14). R9(r15) spill could be made conditional, but there is only
	 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
	 * The overhead of extra spill is negligible for any filter other
	 * than synthetic ones. Therefore not worth adding complexity.
	 */

247 248 249 250 251 252
	/* mov qword ptr [rbp+8],r13 */
	EMIT4(0x4C, 0x89, 0x6D, 8);
	/* mov qword ptr [rbp+16],r14 */
	EMIT4(0x4C, 0x89, 0x75, 16);
	/* mov qword ptr [rbp+24],r15 */
	EMIT4(0x4C, 0x89, 0x7D, 24);
253

254 255 256 257 258
	/* Clear the tail call counter (tail_call_cnt): for eBPF tail calls
	 * we need to reset the counter to 0. It's done in two instructions,
	 * resetting rax register to 0 (xor on eax gets 0 extended), and
	 * moving it to the counter location.
	 */
259

260 261
	/* xor eax, eax */
	EMIT2(0x31, 0xc0);
262 263
	/* mov qword ptr [rbp+32], rax */
	EMIT4(0x48, 0x89, 0x45, 32);
264 265 266 267 268 269 270 271 272 273 274

	BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
	*pprog = prog;
}

/* generate the following code:
 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 *   if (index >= array->map.max_entries)
 *     goto out;
 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 *     goto out;
275
 *   prog = array->ptrs[index];
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
 *   if (prog == NULL)
 *     goto out;
 *   goto *(prog->bpf_func + prologue_size);
 * out:
 */
static void emit_bpf_tail_call(u8 **pprog)
{
	u8 *prog = *pprog;
	int label1, label2, label3;
	int cnt = 0;

	/* rdi - pointer to ctx
	 * rsi - pointer to bpf_array
	 * rdx - index in bpf_array
	 */

	/* if (index >= array->map.max_entries)
	 *   goto out;
	 */
295 296
	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
297
	      offsetof(struct bpf_array, map.max_entries));
298
#define OFFSET1 43 /* number of bytes to jump */
299 300 301 302 303 304
	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
	label1 = cnt;

	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
	 *   goto out;
	 */
305
	EMIT2_off32(0x8B, 0x85, 36);              /* mov eax, dword ptr [rbp + 36] */
306
	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
307
#define OFFSET2 32
308 309 310
	EMIT2(X86_JA, OFFSET2);                   /* ja out */
	label2 = cnt;
	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
311
	EMIT2_off32(0x89, 0x85, 36);              /* mov dword ptr [rbp + 36], eax */
312

313
	/* prog = array->ptrs[index]; */
314
	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
315
		    offsetof(struct bpf_array, ptrs));
316 317 318 319

	/* if (prog == NULL)
	 *   goto out;
	 */
320
	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#define OFFSET3 10
	EMIT2(X86_JE, OFFSET3);                   /* je out */
	label3 = cnt;

	/* goto *(prog->bpf_func + prologue_size); */
	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
	      offsetof(struct bpf_prog, bpf_func));
	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */

	/* now we're ready to jump into next BPF program
	 * rdi == ctx (1st arg)
	 * rax == prog->bpf_func + prologue_size
	 */
	EMIT2(0xFF, 0xE0);                        /* jmp rax */

	/* out: */
	BUILD_BUG_ON(cnt - label1 != OFFSET1);
	BUILD_BUG_ON(cnt - label2 != OFFSET2);
	BUILD_BUG_ON(cnt - label3 != OFFSET3);
	*pprog = prog;
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

static void emit_load_skb_data_hlen(u8 **pprog)
{
	u8 *prog = *pprog;
	int cnt = 0;

	/* r9d = skb->len - skb->data_len (headlen)
	 * r10 = skb->data
	 */
	/* mov %r9d, off32(%rdi) */
	EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));

	/* sub %r9d, off32(%rdi) */
	EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));

	/* mov %r10, off32(%rdi) */
	EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
	*pprog = prog;
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
			   u32 dst_reg, const u32 imm32)
{
	u8 *prog = *pprog;
	u8 b1, b2, b3;
	int cnt = 0;

	/* optimization: if imm32 is positive, use 'mov %eax, imm32'
	 * (which zero-extends imm32) to save 2 bytes.
	 */
	if (sign_propagate && (s32)imm32 < 0) {
		/* 'mov %rax, imm32' sign extends imm32 */
		b1 = add_1mod(0x48, dst_reg);
		b2 = 0xC7;
		b3 = 0xC0;
		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
		goto done;
	}

	/* optimization: if imm32 is zero, use 'xor %eax, %eax'
	 * to save 3 bytes.
	 */
	if (imm32 == 0) {
		if (is_ereg(dst_reg))
			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
		b2 = 0x31; /* xor */
		b3 = 0xC0;
		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
		goto done;
	}

	/* mov %eax, imm32 */
	if (is_ereg(dst_reg))
		EMIT1(add_1mod(0x40, dst_reg));
	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
done:
	*pprog = prog;
}

static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
			   const u32 imm32_hi, const u32 imm32_lo)
{
	u8 *prog = *pprog;
	int cnt = 0;

	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
		/* For emitting plain u32, where sign bit must not be
		 * propagated LLVM tends to load imm64 over mov32
		 * directly, so save couple of bytes by just doing
		 * 'mov %eax, imm32' instead.
		 */
		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
	} else {
		/* movabsq %rax, imm64 */
		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
		EMIT(imm32_lo, 4);
		EMIT(imm32_hi, 4);
	}

	*pprog = prog;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
{
	u8 *prog = *pprog;
	int cnt = 0;

	if (is64) {
		/* mov dst, src */
		EMIT_mov(dst_reg, src_reg);
	} else {
		/* mov32 dst, src */
		if (is_ereg(dst_reg) || is_ereg(src_reg))
			EMIT1(add_2mod(0x40, dst_reg, src_reg));
		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
	}

	*pprog = prog;
}

443 444 445 446 447 448
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
		  int oldproglen, struct jit_context *ctx)
{
	struct bpf_insn *insn = bpf_prog->insnsi;
	int insn_cnt = bpf_prog->len;
	bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
449
	bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
450 451 452 453 454 455
	bool seen_exit = false;
	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
	int i, cnt = 0;
	int proglen = 0;
	u8 *prog = temp;

456
	emit_prologue(&prog, bpf_prog->aux->stack_depth);
457

458 459
	if (seen_ld_abs)
		emit_load_skb_data_hlen(&prog);
460 461

	for (i = 0; i < insn_cnt; i++, insn++) {
462 463 464
		const s32 imm32 = insn->imm;
		u32 dst_reg = insn->dst_reg;
		u32 src_reg = insn->src_reg;
465
		u8 b2 = 0, b3 = 0;
466 467
		s64 jmp_offset;
		u8 jmp_cond;
468
		bool reload_skb_data;
469 470 471
		int ilen;
		u8 *func;

472 473 474
		if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
			ctx->seen_ax_reg = seen_ax_reg = true;

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
		switch (insn->code) {
			/* ALU */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU64 | BPF_ADD | BPF_X:
		case BPF_ALU64 | BPF_SUB | BPF_X:
		case BPF_ALU64 | BPF_AND | BPF_X:
		case BPF_ALU64 | BPF_OR | BPF_X:
		case BPF_ALU64 | BPF_XOR | BPF_X:
			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b2 = 0x01; break;
			case BPF_SUB: b2 = 0x29; break;
			case BPF_AND: b2 = 0x21; break;
			case BPF_OR: b2 = 0x09; break;
			case BPF_XOR: b2 = 0x31; break;
493
			}
494
			if (BPF_CLASS(insn->code) == BPF_ALU64)
495 496 497 498
				EMIT1(add_2mod(0x48, dst_reg, src_reg));
			else if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
499
			break;
500

501 502
		case BPF_ALU64 | BPF_MOV | BPF_X:
		case BPF_ALU | BPF_MOV | BPF_X:
503 504 505
			emit_mov_reg(&prog,
				     BPF_CLASS(insn->code) == BPF_ALU64,
				     dst_reg, src_reg);
506
			break;
507

508
			/* neg dst */
509 510 511
		case BPF_ALU | BPF_NEG:
		case BPF_ALU64 | BPF_NEG:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
512 513 514 515
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
516 517 518 519 520 521 522 523 524 525 526 527 528
			break;

		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU64 | BPF_ADD | BPF_K:
		case BPF_ALU64 | BPF_SUB | BPF_K:
		case BPF_ALU64 | BPF_AND | BPF_K:
		case BPF_ALU64 | BPF_OR | BPF_K:
		case BPF_ALU64 | BPF_XOR | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
529 530 531
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
532

533 534 535
			/* b3 holds 'normal' opcode, b2 short form only valid
			 * in case dst is eax/rax.
			 */
536
			switch (BPF_OP(insn->code)) {
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
			case BPF_ADD:
				b3 = 0xC0;
				b2 = 0x05;
				break;
			case BPF_SUB:
				b3 = 0xE8;
				b2 = 0x2D;
				break;
			case BPF_AND:
				b3 = 0xE0;
				b2 = 0x25;
				break;
			case BPF_OR:
				b3 = 0xC8;
				b2 = 0x0D;
				break;
			case BPF_XOR:
				b3 = 0xF0;
				b2 = 0x35;
				break;
557 558
			}

559 560
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
561 562
			else if (is_axreg(dst_reg))
				EMIT1_off32(b2, imm32);
563
			else
564
				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
565 566 567 568
			break;

		case BPF_ALU64 | BPF_MOV | BPF_K:
		case BPF_ALU | BPF_MOV | BPF_K:
569 570
			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
				       dst_reg, imm32);
571 572
			break;

573
		case BPF_LD | BPF_IMM | BPF_DW:
574
			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
575 576 577 578
			insn++;
			i++;
			break;

579
			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
580 581 582 583 584 585 586 587 588 589 590 591
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU64 | BPF_MOD | BPF_X:
		case BPF_ALU64 | BPF_DIV | BPF_X:
		case BPF_ALU64 | BPF_MOD | BPF_K:
		case BPF_ALU64 | BPF_DIV | BPF_K:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

			if (BPF_SRC(insn->code) == BPF_X)
592 593
				/* mov r11, src_reg */
				EMIT_mov(AUX_REG, src_reg);
594
			else
595 596
				/* mov r11, imm32 */
				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
597

598 599
			/* mov rax, dst_reg */
			EMIT_mov(BPF_REG_0, dst_reg);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

			/* xor edx, edx
			 * equivalent to 'xor rdx, rdx', but one byte less
			 */
			EMIT2(0x31, 0xd2);

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				/* div r11 */
				EMIT3(0x49, 0xF7, 0xF3);
			else
				/* div r11d */
				EMIT3(0x41, 0xF7, 0xF3);

			if (BPF_OP(insn->code) == BPF_MOD)
				/* mov r11, rdx */
				EMIT3(0x49, 0x89, 0xD3);
			else
				/* mov r11, rax */
				EMIT3(0x49, 0x89, 0xC3);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

623 624
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
625 626 627 628 629 630
			break;

		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU64 | BPF_MUL | BPF_K:
		case BPF_ALU64 | BPF_MUL | BPF_X:
631 632 633
		{
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;

634 635 636 637
			if (dst_reg != BPF_REG_0)
				EMIT1(0x50); /* push rax */
			if (dst_reg != BPF_REG_3)
				EMIT1(0x52); /* push rdx */
638

639 640
			/* mov r11, dst_reg */
			EMIT_mov(AUX_REG, dst_reg);
641 642

			if (BPF_SRC(insn->code) == BPF_X)
643
				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
644
			else
645
				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
646

647
			if (is64)
648 649 650 651 652 653
				EMIT1(add_1mod(0x48, AUX_REG));
			else if (is_ereg(AUX_REG))
				EMIT1(add_1mod(0x40, AUX_REG));
			/* mul(q) r11 */
			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));

654 655 656 657 658 659 660
			if (dst_reg != BPF_REG_3)
				EMIT1(0x5A); /* pop rdx */
			if (dst_reg != BPF_REG_0) {
				/* mov dst_reg, rax */
				EMIT_mov(dst_reg, BPF_REG_0);
				EMIT1(0x58); /* pop rax */
			}
661
			break;
662
		}
663 664 665 666 667 668 669 670
			/* shifts */
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_ARSH | BPF_K:
		case BPF_ALU64 | BPF_LSH | BPF_K:
		case BPF_ALU64 | BPF_RSH | BPF_K:
		case BPF_ALU64 | BPF_ARSH | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
671 672 673
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
674 675 676 677 678 679

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
680 681 682 683 684

			if (imm32 == 1)
				EMIT2(0xD1, add_1reg(b3, dst_reg));
			else
				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
685 686
			break;

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_ARSH | BPF_X:
		case BPF_ALU64 | BPF_LSH | BPF_X:
		case BPF_ALU64 | BPF_RSH | BPF_X:
		case BPF_ALU64 | BPF_ARSH | BPF_X:

			/* check for bad case when dst_reg == rcx */
			if (dst_reg == BPF_REG_4) {
				/* mov r11, dst_reg */
				EMIT_mov(AUX_REG, dst_reg);
				dst_reg = AUX_REG;
			}

			if (src_reg != BPF_REG_4) { /* common case */
				EMIT1(0x51); /* push rcx */

				/* mov rcx, src_reg */
				EMIT_mov(BPF_REG_4, src_reg);
			}

			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
			EMIT2(0xD3, add_1reg(b3, dst_reg));

			if (src_reg != BPF_REG_4)
				EMIT1(0x59); /* pop rcx */

			if (insn->dst_reg == BPF_REG_4)
				/* mov dst_reg, r11 */
				EMIT_mov(insn->dst_reg, AUX_REG);
			break;

729
		case BPF_ALU | BPF_END | BPF_FROM_BE:
730
			switch (imm32) {
731 732 733
			case 16:
				/* emit 'ror %ax, 8' to swap lower 2 bytes */
				EMIT1(0x66);
734
				if (is_ereg(dst_reg))
735
					EMIT1(0x41);
736
				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
737 738 739 740 741 742 743

				/* emit 'movzwl eax, ax' */
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
744 745 746
				break;
			case 32:
				/* emit 'bswap eax' to swap lower 4 bytes */
747
				if (is_ereg(dst_reg))
748
					EMIT2(0x41, 0x0F);
749
				else
750
					EMIT1(0x0F);
751
				EMIT1(add_1reg(0xC8, dst_reg));
752
				break;
753 754
			case 64:
				/* emit 'bswap rax' to swap 8 bytes */
755 756
				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
				      add_1reg(0xC8, dst_reg));
757 758
				break;
			}
759 760 761
			break;

		case BPF_ALU | BPF_END | BPF_FROM_LE:
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
			switch (imm32) {
			case 16:
				/* emit 'movzwl eax, ax' to zero extend 16-bit
				 * into 64 bit
				 */
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 32:
				/* emit 'mov eax, eax' to clear upper 32-bits */
				if (is_ereg(dst_reg))
					EMIT1(0x45);
				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 64:
				/* nop */
				break;
			}
783 784
			break;

785
			/* ST: *(u8*)(dst_reg + off) = imm */
786
		case BPF_ST | BPF_MEM | BPF_B:
787
			if (is_ereg(dst_reg))
788 789 790 791 792
				EMIT2(0x41, 0xC6);
			else
				EMIT1(0xC6);
			goto st;
		case BPF_ST | BPF_MEM | BPF_H:
793
			if (is_ereg(dst_reg))
794 795 796 797 798
				EMIT3(0x66, 0x41, 0xC7);
			else
				EMIT2(0x66, 0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_W:
799
			if (is_ereg(dst_reg))
800 801 802 803 804
				EMIT2(0x41, 0xC7);
			else
				EMIT1(0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_DW:
805
			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
806 807

st:			if (is_imm8(insn->off))
808
				EMIT2(add_1reg(0x40, dst_reg), insn->off);
809
			else
810
				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
811

812
			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
813 814
			break;

815
			/* STX: *(u8*)(dst_reg + off) = src_reg */
816 817
		case BPF_STX | BPF_MEM | BPF_B:
			/* emit 'mov byte ptr [rax + off], al' */
818
			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
819
			    /* have to add extra byte for x86 SIL, DIL regs */
820 821
			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
822 823 824 825
			else
				EMIT1(0x88);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_H:
826 827
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
828 829 830 831
			else
				EMIT2(0x66, 0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_W:
832 833
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
834 835 836 837
			else
				EMIT1(0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_DW:
838
			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
839
stx:			if (is_imm8(insn->off))
840
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
841
			else
842
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
843 844 845
					    insn->off);
			break;

846
			/* LDX: dst_reg = *(u8*)(src_reg + off) */
847 848
		case BPF_LDX | BPF_MEM | BPF_B:
			/* emit 'movzx rax, byte ptr [rax + off]' */
849
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
850 851 852
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_H:
			/* emit 'movzx rax, word ptr [rax + off]' */
853
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
854 855 856
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_W:
			/* emit 'mov eax, dword ptr [rax+0x14]' */
857 858
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
859 860 861 862 863
			else
				EMIT1(0x8B);
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_DW:
			/* emit 'mov rax, qword ptr [rax+0x14]' */
864
			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
865 866 867 868 869
ldx:			/* if insn->off == 0 we can save one extra byte, but
			 * special case of x86 r13 which always needs an offset
			 * is not worth the hassle
			 */
			if (is_imm8(insn->off))
870
				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
871
			else
872
				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
873 874 875
					    insn->off);
			break;

876
			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
877 878
		case BPF_STX | BPF_XADD | BPF_W:
			/* emit 'lock add dword ptr [rax + off], eax' */
879 880
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
881 882 883 884
			else
				EMIT2(0xF0, 0x01);
			goto xadd;
		case BPF_STX | BPF_XADD | BPF_DW:
885
			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
886
xadd:			if (is_imm8(insn->off))
887
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
888
			else
889
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
890 891 892 893 894
					    insn->off);
			break;

			/* call */
		case BPF_JMP | BPF_CALL:
895
			func = (u8 *) __bpf_call_base + imm32;
896
			jmp_offset = func - (image + addrs[i]);
897
			if (seen_ld_abs) {
898
				reload_skb_data = bpf_helper_changes_pkt_data(func);
899 900 901 902 903 904 905 906 907 908 909
				if (reload_skb_data) {
					EMIT1(0x57); /* push %rdi */
					jmp_offset += 22; /* pop, mov, sub, mov */
				} else {
					EMIT2(0x41, 0x52); /* push %r10 */
					EMIT2(0x41, 0x51); /* push %r9 */
					/* need to adjust jmp offset, since
					 * pop %r9, pop %r10 take 4 bytes after call insn
					 */
					jmp_offset += 4;
				}
910
			}
911
			if (!imm32 || !is_simm32(jmp_offset)) {
912
				pr_err("unsupported bpf func %d addr %p image %p\n",
913
				       imm32, func, image);
914 915 916
				return -EINVAL;
			}
			EMIT1_off32(0xE8, jmp_offset);
917
			if (seen_ld_abs) {
918 919 920 921 922 923 924
				if (reload_skb_data) {
					EMIT1(0x5F); /* pop %rdi */
					emit_load_skb_data_hlen(&prog);
				} else {
					EMIT2(0x41, 0x59); /* pop %r9 */
					EMIT2(0x41, 0x5A); /* pop %r10 */
				}
925 926 927
			}
			break;

928
		case BPF_JMP | BPF_TAIL_CALL:
929 930 931
			emit_bpf_tail_call(&prog);
			break;

932 933 934 935
			/* cond jump */
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JNE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_X:
936
		case BPF_JMP | BPF_JLT | BPF_X:
937
		case BPF_JMP | BPF_JGE | BPF_X:
938
		case BPF_JMP | BPF_JLE | BPF_X:
939
		case BPF_JMP | BPF_JSGT | BPF_X:
940
		case BPF_JMP | BPF_JSLT | BPF_X:
941
		case BPF_JMP | BPF_JSGE | BPF_X:
942
		case BPF_JMP | BPF_JSLE | BPF_X:
943 944 945
			/* cmp dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
			      add_2reg(0xC0, dst_reg, src_reg));
946 947 948
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_X:
949 950 951
			/* test dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
			      add_2reg(0xC0, dst_reg, src_reg));
952 953 954
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_K:
955 956 957
			/* test dst_reg, imm32 */
			EMIT1(add_1mod(0x48, dst_reg));
			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
958 959 960 961 962
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JNE | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_K:
963
		case BPF_JMP | BPF_JLT | BPF_K:
964
		case BPF_JMP | BPF_JGE | BPF_K:
965
		case BPF_JMP | BPF_JLE | BPF_K:
966
		case BPF_JMP | BPF_JSGT | BPF_K:
967
		case BPF_JMP | BPF_JSLT | BPF_K:
968
		case BPF_JMP | BPF_JSGE | BPF_K:
969
		case BPF_JMP | BPF_JSLE | BPF_K:
970 971
			/* cmp dst_reg, imm8/32 */
			EMIT1(add_1mod(0x48, dst_reg));
972

973 974
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
975
			else
976
				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
977 978 979 980 981 982 983 984 985 986 987 988 989 990

emit_cond_jmp:		/* convert BPF opcode to x86 */
			switch (BPF_OP(insn->code)) {
			case BPF_JEQ:
				jmp_cond = X86_JE;
				break;
			case BPF_JSET:
			case BPF_JNE:
				jmp_cond = X86_JNE;
				break;
			case BPF_JGT:
				/* GT is unsigned '>', JA in x86 */
				jmp_cond = X86_JA;
				break;
991 992 993 994
			case BPF_JLT:
				/* LT is unsigned '<', JB in x86 */
				jmp_cond = X86_JB;
				break;
995 996 997 998
			case BPF_JGE:
				/* GE is unsigned '>=', JAE in x86 */
				jmp_cond = X86_JAE;
				break;
999 1000 1001 1002
			case BPF_JLE:
				/* LE is unsigned '<=', JBE in x86 */
				jmp_cond = X86_JBE;
				break;
1003 1004 1005 1006
			case BPF_JSGT:
				/* signed '>', GT in x86 */
				jmp_cond = X86_JG;
				break;
1007 1008 1009 1010
			case BPF_JSLT:
				/* signed '<', LT in x86 */
				jmp_cond = X86_JL;
				break;
1011 1012 1013 1014
			case BPF_JSGE:
				/* signed '>=', GE in x86 */
				jmp_cond = X86_JGE;
				break;
1015 1016 1017 1018
			case BPF_JSLE:
				/* signed '<=', LE in x86 */
				jmp_cond = X86_JLE;
				break;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			default: /* to silence gcc warning */
				return -EFAULT;
			}
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (is_imm8(jmp_offset)) {
				EMIT2(jmp_cond, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
			} else {
				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}

			break;
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		case BPF_JMP | BPF_JA:
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (!jmp_offset)
				/* optimize out nop jumps */
				break;
emit_jmp:
			if (is_imm8(jmp_offset)) {
				EMIT2(0xEB, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT1_off32(0xE9, jmp_offset);
			} else {
				pr_err("jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}
			break;

		case BPF_LD | BPF_IND | BPF_W:
			func = sk_load_word;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_W:
1054
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
1055 1056
common_load:
			ctx->seen_ld_abs = seen_ld_abs = true;
1057 1058 1059
			jmp_offset = func - (image + addrs[i]);
			if (!func || !is_simm32(jmp_offset)) {
				pr_err("unsupported bpf func %d addr %p image %p\n",
1060
				       imm32, func, image);
1061 1062 1063 1064
				return -EINVAL;
			}
			if (BPF_MODE(insn->code) == BPF_ABS) {
				/* mov %esi, imm32 */
1065
				EMIT1_off32(0xBE, imm32);
1066
			} else {
1067 1068 1069 1070
				/* mov %rsi, src_reg */
				EMIT_mov(BPF_REG_2, src_reg);
				if (imm32) {
					if (is_imm8(imm32))
1071
						/* add %esi, imm8 */
1072
						EMIT3(0x83, 0xC6, imm32);
1073
					else
1074
						/* add %esi, imm32 */
1075
						EMIT2_off32(0x81, 0xC6, imm32);
1076
				}
1077 1078 1079 1080 1081 1082
			}
			/* skb pointer is in R6 (%rbx), it will be copied into
			 * %rdi if skb_copy_bits() call is necessary.
			 * sk_load_* helpers also use %r10 and %r9d.
			 * See bpf_jit.S
			 */
1083 1084 1085 1086
			if (seen_ax_reg)
				/* r10 = skb->data, mov %r10, off32(%rbx) */
				EMIT3_off32(0x4c, 0x8b, 0x93,
					    offsetof(struct sk_buff, data));
1087 1088 1089 1090 1091 1092 1093
			EMIT1_off32(0xE8, jmp_offset); /* call */
			break;

		case BPF_LD | BPF_IND | BPF_H:
			func = sk_load_half;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_H:
1094
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1095 1096 1097 1098 1099
			goto common_load;
		case BPF_LD | BPF_IND | BPF_B:
			func = sk_load_byte;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_B:
1100
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1101 1102 1103
			goto common_load;

		case BPF_JMP | BPF_EXIT:
1104
			if (seen_exit) {
1105 1106 1107
				jmp_offset = ctx->cleanup_addr - addrs[i];
				goto emit_jmp;
			}
1108
			seen_exit = true;
1109 1110
			/* update cleanup_addr */
			ctx->cleanup_addr = proglen;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			/* mov rbx, qword ptr [rbp+0] */
			EMIT4(0x48, 0x8B, 0x5D, 0);
			/* mov r13, qword ptr [rbp+8] */
			EMIT4(0x4C, 0x8B, 0x6D, 8);
			/* mov r14, qword ptr [rbp+16] */
			EMIT4(0x4C, 0x8B, 0x75, 16);
			/* mov r15, qword ptr [rbp+24] */
			EMIT4(0x4C, 0x8B, 0x7D, 24);

			/* add rbp, AUX_STACK_SPACE */
			EMIT4(0x48, 0x83, 0xC5, AUX_STACK_SPACE);
1122 1123 1124 1125
			EMIT1(0xC9); /* leave */
			EMIT1(0xC3); /* ret */
			break;

1126
		default:
1127 1128 1129
			/* By design x64 JIT should support all BPF instructions
			 * This error will be seen if new instruction was added
			 * to interpreter, but not to JIT
1130
			 * or if there is junk in bpf_prog
1131 1132
			 */
			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1133 1134
			return -EINVAL;
		}
1135

1136
		ilen = prog - temp;
1137
		if (ilen > BPF_MAX_INSN_SIZE) {
1138
			pr_err("bpf_jit: fatal insn size error\n");
1139 1140 1141
			return -EFAULT;
		}

1142 1143
		if (image) {
			if (unlikely(proglen + ilen > oldproglen)) {
1144
				pr_err("bpf_jit: fatal error\n");
1145
				return -EFAULT;
1146
			}
1147
			memcpy(image + proglen, temp, ilen);
1148
		}
1149 1150 1151 1152 1153 1154 1155
		proglen += ilen;
		addrs[i] = proglen;
		prog = temp;
	}
	return proglen;
}

1156 1157 1158 1159 1160 1161 1162 1163
struct x64_jit_data {
	struct bpf_binary_header *header;
	int *addrs;
	u8 *image;
	int proglen;
	struct jit_context ctx;
};

1164
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1165 1166
{
	struct bpf_binary_header *header = NULL;
1167
	struct bpf_prog *tmp, *orig_prog = prog;
1168
	struct x64_jit_data *jit_data;
1169 1170
	int proglen, oldproglen = 0;
	struct jit_context ctx = {};
1171
	bool tmp_blinded = false;
1172
	bool extra_pass = false;
1173 1174 1175 1176 1177
	u8 *image = NULL;
	int *addrs;
	int pass;
	int i;

1178
	if (!prog->jit_requested)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		return orig_prog;

	tmp = bpf_jit_blind_constants(prog);
	/* If blinding was requested and we failed during blinding,
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	jit_data = prog->aux->jit_data;
	if (!jit_data) {
		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
		if (!jit_data) {
			prog = orig_prog;
			goto out;
		}
		prog->aux->jit_data = jit_data;
	}
	addrs = jit_data->addrs;
	if (addrs) {
		ctx = jit_data->ctx;
		oldproglen = jit_data->proglen;
		image = jit_data->image;
		header = jit_data->header;
		extra_pass = true;
		goto skip_init_addrs;
	}
1210
	addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1211 1212
	if (!addrs) {
		prog = orig_prog;
1213
		goto out_addrs;
1214
	}
1215 1216 1217 1218 1219 1220 1221 1222 1223

	/* Before first pass, make a rough estimation of addrs[]
	 * each bpf instruction is translated to less than 64 bytes
	 */
	for (proglen = 0, i = 0; i < prog->len; i++) {
		proglen += 64;
		addrs[i] = proglen;
	}
	ctx.cleanup_addr = proglen;
1224
skip_init_addrs:
1225

1226 1227 1228 1229 1230 1231
	/* JITed image shrinks with every pass and the loop iterates
	 * until the image stops shrinking. Very large bpf programs
	 * may converge on the last pass. In such case do one more
	 * pass to emit the final image
	 */
	for (pass = 0; pass < 10 || image; pass++) {
1232 1233 1234 1235
		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
		if (proglen <= 0) {
			image = NULL;
			if (header)
1236
				bpf_jit_binary_free(header);
1237 1238
			prog = orig_prog;
			goto out_addrs;
1239
		}
1240
		if (image) {
1241
			if (proglen != oldproglen) {
1242 1243
				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
				       proglen, oldproglen);
1244 1245
				prog = orig_prog;
				goto out_addrs;
1246
			}
1247 1248 1249
			break;
		}
		if (proglen == oldproglen) {
1250 1251
			header = bpf_jit_binary_alloc(proglen, &image,
						      1, jit_fill_hole);
1252 1253 1254 1255
			if (!header) {
				prog = orig_prog;
				goto out_addrs;
			}
1256 1257 1258
		}
		oldproglen = proglen;
	}
1259

1260
	if (bpf_jit_enable > 1)
1261
		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1262 1263

	if (image) {
1264
		bpf_flush_icache(header, image + proglen);
1265 1266 1267 1268 1269 1270 1271 1272 1273
		if (!prog->is_func || extra_pass) {
			bpf_jit_binary_lock_ro(header);
		} else {
			jit_data->addrs = addrs;
			jit_data->ctx = ctx;
			jit_data->proglen = proglen;
			jit_data->image = image;
			jit_data->header = header;
		}
1274
		prog->bpf_func = (void *)image;
1275
		prog->jited = 1;
1276
		prog->jited_len = proglen;
1277 1278
	} else {
		prog = orig_prog;
1279
	}
1280

1281
	if (!prog->is_func || extra_pass) {
1282
out_addrs:
1283 1284 1285 1286
		kfree(addrs);
		kfree(jit_data);
		prog->aux->jit_data = NULL;
	}
1287 1288 1289 1290
out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
1291
	return prog;
1292
}