paging_tmpl.h 31.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */

/*
 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
 * so the code in this file is compiled twice, once per pte size.
 */

#if PTTYPE == 64
	#define pt_element_t u64
	#define guest_walker guest_walker64
	#define FNAME(name) paging##64_##name
27
	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
28 29
	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
A
Avi Kivity 已提交
30
	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31
	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 33
	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34
	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35
	#ifdef CONFIG_X86_64
36
	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37
	#define CMPXCHG cmpxchg
38
	#else
39
	#define CMPXCHG cmpxchg64
40 41
	#define PT_MAX_FULL_LEVELS 2
	#endif
A
Avi Kivity 已提交
42 43 44 45 46
#elif PTTYPE == 32
	#define pt_element_t u32
	#define guest_walker guest_walker32
	#define FNAME(name) paging##32_##name
	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 48
	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
A
Avi Kivity 已提交
49
	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50
	#define PT_LEVEL_BITS PT32_LEVEL_BITS
51
	#define PT_MAX_FULL_LEVELS 2
52 53
	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54
	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
55
	#define CMPXCHG cmpxchg
56 57 58 59
#elif PTTYPE == PTTYPE_EPT
	#define pt_element_t u64
	#define guest_walker guest_walkerEPT
	#define FNAME(name) ept_##name
60
	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
61 62 63 64
	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
	#define PT_LEVEL_BITS PT64_LEVEL_BITS
65 66 67
	#define PT_GUEST_DIRTY_SHIFT 9
	#define PT_GUEST_ACCESSED_SHIFT 8
	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68
	#define CMPXCHG cmpxchg64
69
	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
A
Avi Kivity 已提交
70 71 72 73
#else
	#error Invalid PTTYPE value
#endif

74 75 76
#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)

77
#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78
#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
79

A
Avi Kivity 已提交
80 81 82 83 84 85
/*
 * The guest_walker structure emulates the behavior of the hardware page
 * table walker.
 */
struct guest_walker {
	int level;
86
	unsigned max_level;
87
	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88
	pt_element_t ptes[PT_MAX_FULL_LEVELS];
89
	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90
	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91
	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92
	bool pte_writable[PT_MAX_FULL_LEVELS];
93 94
	unsigned int pt_access[PT_MAX_FULL_LEVELS];
	unsigned int pte_access;
95
	gfn_t gfn;
96
	struct x86_exception fault;
A
Avi Kivity 已提交
97 98
};

99
static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
100
{
101
	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
102 103
}

104 105
static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
					     unsigned gpte)
106 107 108
{
	unsigned mask;

109
	/* dirty bit is not supported, so no need to track it */
110
	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
111 112
		return;

113 114 115 116
	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);

	mask = (unsigned)~ACC_WRITE_MASK;
	/* Allow write access to dirty gptes */
117 118
	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
		PT_WRITABLE_MASK;
119 120 121 122 123
	*access &= mask;
}

static inline int FNAME(is_present_gpte)(unsigned long pte)
{
124
#if PTTYPE != PTTYPE_EPT
B
Bandan Das 已提交
125
	return pte & PT_PRESENT_MASK;
126 127 128
#else
	return pte & 7;
#endif
129 130
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
{
#if PTTYPE != PTTYPE_EPT
	return false;
#else
	return __is_bad_mt_xwr(rsvd_check, gpte);
#endif
}

static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
}

146
static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
147 148
			       pt_element_t __user *ptep_user, unsigned index,
			       pt_element_t orig_pte, pt_element_t new_pte)
149
{
150
	int npages;
151 152 153 154
	pt_element_t ret;
	pt_element_t *table;
	struct page *page;

155
	npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
156 157 158 159 160 161 162 163 164 165 166 167
	if (likely(npages == 1)) {
		table = kmap_atomic(page);
		ret = CMPXCHG(&table[index], orig_pte, new_pte);
		kunmap_atomic(table);

		kvm_release_page_dirty(page);
	} else {
		struct vm_area_struct *vma;
		unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
		unsigned long pfn;
		unsigned long paddr;

168
		mmap_read_lock(current->mm);
169 170
		vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
		if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
171
			mmap_read_unlock(current->mm);
172 173 174 175 176 177
			return -EFAULT;
		}
		pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
		paddr = pfn << PAGE_SHIFT;
		table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
		if (!table) {
178
			mmap_read_unlock(current->mm);
179 180 181 182
			return -EFAULT;
		}
		ret = CMPXCHG(&table[index], orig_pte, new_pte);
		memunmap(table);
183
		mmap_read_unlock(current->mm);
184
	}
185 186 187 188

	return (ret != orig_pte);
}

189 190 191 192 193 194 195
static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *spte,
				  u64 gpte)
{
	if (!FNAME(is_present_gpte)(gpte))
		goto no_present;

196
	/* if accessed bit is not supported prefetch non accessed gpte */
197 198
	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
	    !(gpte & PT_GUEST_ACCESSED_MASK))
199 200
		goto no_present;

201
	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
202 203
		goto no_present;

204 205 206 207 208 209 210
	return false;

no_present:
	drop_spte(vcpu->kvm, spte);
	return true;
}

211 212 213 214 215 216
/*
 * For PTTYPE_EPT, a page table can be executable but not readable
 * on supported processors. Therefore, set_spte does not automatically
 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
 * to signify readability since it isn't used in the EPT case
 */
217
static inline unsigned FNAME(gpte_access)(u64 gpte)
218 219
{
	unsigned access;
220 221 222
#if PTTYPE == PTTYPE_EPT
	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
223
		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
224
#else
225 226 227 228 229
	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
	access ^= (gpte >> PT64_NX_SHIFT);
230
#endif
231 232 233 234

	return access;
}

235 236 237
static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
					     struct kvm_mmu *mmu,
					     struct guest_walker *walker,
238
					     gpa_t addr, int write_fault)
239 240 241 242 243 244 245
{
	unsigned level, index;
	pt_element_t pte, orig_pte;
	pt_element_t __user *ptep_user;
	gfn_t table_gfn;
	int ret;

246
	/* dirty/accessed bits are not supported, so no need to update them */
247
	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
248 249
		return 0;

250 251 252 253 254
	for (level = walker->max_level; level >= walker->level; --level) {
		pte = orig_pte = walker->ptes[level - 1];
		table_gfn = walker->table_gfn[level - 1];
		ptep_user = walker->ptep_user[level - 1];
		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
255
		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
256
			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
257
			pte |= PT_GUEST_ACCESSED_MASK;
258
		}
259
		if (level == walker->level && write_fault &&
260
				!(pte & PT_GUEST_DIRTY_MASK)) {
261
			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
262
#if PTTYPE == PTTYPE_EPT
263
			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
264 265
				return -EINVAL;
#endif
266
			pte |= PT_GUEST_DIRTY_MASK;
267 268 269 270
		}
		if (pte == orig_pte)
			continue;

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
		/*
		 * If the slot is read-only, simply do not process the accessed
		 * and dirty bits.  This is the correct thing to do if the slot
		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
		 * are only supported if the accessed and dirty bits are already
		 * set in the ROM (so that MMIO writes are never needed).
		 *
		 * Note that NPT does not allow this at all and faults, since
		 * it always wants nested page table entries for the guest
		 * page tables to be writable.  And EPT works but will simply
		 * overwrite the read-only memory to set the accessed and dirty
		 * bits.
		 */
		if (unlikely(!walker->pte_writable[level - 1]))
			continue;

287 288 289 290
		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
		if (ret)
			return ret;

291
		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
292
		walker->ptes[level - 1] = pte;
293 294 295 296
	}
	return 0;
}

297 298 299 300 301 302 303 304 305 306 307
static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
{
	unsigned pkeys = 0;
#if PTTYPE == 64
	pte_t pte = {.pte = gpte};

	pkeys = pte_flags_pkey(pte_flags(pte));
#endif
	return pkeys;
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
				       unsigned int level, unsigned int gpte)
{
	/*
	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
	 * case, bit 7 being set terminates the walk.
	 */
#if PTTYPE == 32
	/*
	 * 32-bit paging requires special handling because bit 7 is ignored if
	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
	 *
	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
	 * is not reserved and does not indicate a large page at this level,
	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse);
#endif
	/*
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PG_LEVEL_4K - 1;

	return gpte & PT_PAGE_SIZE_MASK;
}
337
/*
338
 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
339
 */
340 341
static int FNAME(walk_addr_generic)(struct guest_walker *walker,
				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
342
				    gpa_t addr, u64 access)
A
Avi Kivity 已提交
343
{
344
	int ret;
345
	pt_element_t pte;
346
	pt_element_t __user *ptep_user;
347
	gfn_t table_gfn;
348 349
	u64 pt_access, pte_access;
	unsigned index, accessed_dirty, pte_pkey;
350
	u64 nested_access;
351
	gpa_t pte_gpa;
352
	bool have_ad;
353
	int offset;
354
	u64 walk_nx_mask = 0;
355 356 357 358
	const int write_fault = access & PFERR_WRITE_MASK;
	const int user_fault  = access & PFERR_USER_MASK;
	const int fetch_fault = access & PFERR_FETCH_MASK;
	u16 errcode = 0;
359 360
	gpa_t real_gpa;
	gfn_t gfn;
A
Avi Kivity 已提交
361

362
	trace_kvm_mmu_pagetable_walk(addr, access);
363
retry_walk:
364
	walker->level = mmu->root_level;
365
	pte           = mmu->get_guest_pgd(vcpu);
366
	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
367

368
#if PTTYPE == 64
369
	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
370
	if (walker->level == PT32E_ROOT_LEVEL) {
371
		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
372
		trace_kvm_mmu_paging_element(pte, walker->level);
373
		if (!FNAME(is_present_gpte)(pte))
374
			goto error;
375 376 377
		--walker->level;
	}
#endif
378
	walker->max_level = walker->level;
379
	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
A
Avi Kivity 已提交
380

381 382 383 384 385 386 387
	/*
	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
	 * by the MOV to CR instruction are treated as reads and do not cause the
	 * processor to set the dirty flag in any EPT paging-structure entry.
	 */
	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;

388
	pte_access = ~0;
389
	++walker->level;
390

391
	do {
392 393
		unsigned long host_addr;

394
		pt_access = pte_access;
395 396
		--walker->level;

397
		index = PT_INDEX(addr, walker->level);
398
		table_gfn = gpte_to_gfn(pte);
399 400
		offset    = index * sizeof(pt_element_t);
		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
401 402

		BUG_ON(walker->level < 1);
403
		walker->table_gfn[walker->level - 1] = table_gfn;
404
		walker->pte_gpa[walker->level - 1] = pte_gpa;
405

406 407
		real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
					     nested_access, &walker->fault);
408 409 410 411 412 413 414 415 416 417 418

		/*
		 * FIXME: This can happen if emulation (for of an INS/OUTS
		 * instruction) triggers a nested page fault.  The exit
		 * qualification / exit info field will incorrectly have
		 * "guest page access" as the nested page fault's cause,
		 * instead of "guest page structure access".  To fix this,
		 * the x86_exception struct should be augmented with enough
		 * information to fix the exit_qualification or exit_info_1
		 * fields.
		 */
419
		if (unlikely(real_gpa == UNMAPPED_GVA))
420
			return 0;
421

422
		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
423
					    &walker->pte_writable[walker->level - 1]);
424 425
		if (unlikely(kvm_is_error_hva(host_addr)))
			goto error;
426 427

		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
428
		if (unlikely(__get_user(pte, ptep_user)))
429
			goto error;
430
		walker->ptep_user[walker->level - 1] = ptep_user;
431

432
		trace_kvm_mmu_paging_element(pte, walker->level);
433

434 435 436 437 438 439
		/*
		 * Inverting the NX it lets us AND it like other
		 * permission bits.
		 */
		pte_access = pt_access & (pte ^ walk_nx_mask);

440
		if (unlikely(!FNAME(is_present_gpte)(pte)))
441
			goto error;
442

443
		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
444
			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
445
			goto error;
446
		}
447

448
		walker->ptes[walker->level - 1] = pte;
449 450 451

		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
452
	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
453

454
	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
455 456 457
	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;

	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
458
	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
459
	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
460
	if (unlikely(errcode))
461 462
		goto error;

463 464 465
	gfn = gpte_to_gfn_lvl(pte, walker->level);
	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;

466
	if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
467 468
		gfn += pse36_gfn_delta(pte);

469
	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
470 471 472 473 474
	if (real_gpa == UNMAPPED_GVA)
		return 0;

	walker->gfn = real_gpa >> PAGE_SHIFT;

475
	if (!write_fault)
476
		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
477 478
	else
		/*
479 480 481
		 * On a write fault, fold the dirty bit into accessed_dirty.
		 * For modes without A/D bits support accessed_dirty will be
		 * always clear.
482
		 */
483 484
		accessed_dirty &= pte >>
			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
485 486

	if (unlikely(!accessed_dirty)) {
487 488
		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
							addr, write_fault);
489 490 491 492 493
		if (unlikely(ret < 0))
			goto error;
		else if (ret)
			goto retry_walk;
	}
494

495
	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
496 497
		 __func__, (u64)pte, walker->pte_access,
		 walker->pt_access[walker->level - 1]);
498 499
	return 1;

500
error:
501
	errcode |= write_fault | user_fault;
502
	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
503
		errcode |= PFERR_FETCH_MASK;
504

505 506 507
	walker->fault.vector = PF_VECTOR;
	walker->fault.error_code_valid = true;
	walker->fault.error_code = errcode;
508 509 510 511 512 513 514 515

#if PTTYPE == PTTYPE_EPT
	/*
	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
	 * misconfiguration requires to be injected. The detection is
	 * done by is_rsvd_bits_set() above.
	 *
	 * We set up the value of exit_qualification to inject:
516 517
	 * [2:0] - Derive from the access bits. The exit_qualification might be
	 *         out of date if it is serving an EPT misconfiguration.
518 519 520 521 522 523
	 * [5:3] - Calculated by the page walk of the guest EPT page tables
	 * [7:8] - Derived from [7:8] of real exit_qualification
	 *
	 * The other bits are set to 0.
	 */
	if (!(errcode & PFERR_RSVD_MASK)) {
524 525 526 527 528 529 530
		vcpu->arch.exit_qualification &= 0x180;
		if (write_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
		if (user_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
		if (fetch_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
531
		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
532 533
	}
#endif
534 535
	walker->fault.address = addr;
	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
536
	walker->fault.async_page_fault = false;
537

538
	trace_kvm_mmu_walker_error(walker->fault.error_code);
539
	return 0;
A
Avi Kivity 已提交
540 541
}

542
static int FNAME(walk_addr)(struct guest_walker *walker,
543
			    struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
544
{
545
	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
546
					access);
547 548
}

549 550 551
static bool
FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
552
{
553
	struct kvm_memory_slot *slot;
554
	unsigned pte_access;
555
	gfn_t gfn;
D
Dan Williams 已提交
556
	kvm_pfn_t pfn;
557

558
	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
559
		return false;
560

561
	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
562 563

	gfn = gpte_to_gfn(gpte);
564
	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
565
	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
566 567

	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
568
			no_dirty_log && (pte_access & ACC_WRITE_MASK));
569 570 571 572
	if (!slot)
		return false;

	pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
573
	if (is_error_pfn(pfn))
574
		return false;
575

576
	mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
577
	kvm_release_pfn_clean(pfn);
578 579 580
	return true;
}

A
Avi Kivity 已提交
581 582 583 584
static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
				struct guest_walker *gw, int level)
{
	pt_element_t curr_pte;
585 586 587 588
	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
	u64 mask;
	int r, index;

589
	if (level == PG_LEVEL_4K) {
590 591 592 593
		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
		base_gpa = pte_gpa & ~mask;
		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);

594
		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
595 596 597
				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
		curr_pte = gw->prefetch_ptes[index];
	} else
598
		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
A
Avi Kivity 已提交
599
				  &curr_pte, sizeof(curr_pte));
600

A
Avi Kivity 已提交
601 602 603
	return r || curr_pte != gw->ptes[level - 1];
}

604 605
static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
				u64 *sptep)
606 607
{
	struct kvm_mmu_page *sp;
608
	pt_element_t *gptep = gw->prefetch_ptes;
609
	u64 *spte;
610
	int i;
611

612
	sp = sptep_to_sp(sptep);
613

614
	if (sp->role.level > PG_LEVEL_4K)
615 616
		return;

617 618 619 620 621 622 623
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

624 625 626 627 628 629 630 631 632 633
	if (sp->role.direct)
		return __direct_pte_prefetch(vcpu, sp, sptep);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
		if (spte == sptep)
			continue;

634
		if (is_shadow_present_pte(*spte))
635 636
			continue;

637
		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
638 639 640 641
			break;
	}
}

A
Avi Kivity 已提交
642 643
/*
 * Fetch a shadow pte for a specific level in the paging hierarchy.
644 645
 * If the guest tries to write a write-protected page, we need to
 * emulate this operation, return 1 to indicate this case.
A
Avi Kivity 已提交
646
 */
647 648
static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
			 struct guest_walker *gw)
A
Avi Kivity 已提交
649
{
650
	struct kvm_mmu_page *sp = NULL;
651
	struct kvm_shadow_walk_iterator it;
652
	unsigned int direct_access, access;
653
	int top_level, ret;
654
	gfn_t base_gfn = fault->gfn;
655

656
	WARN_ON_ONCE(gw->gfn != base_gfn);
657
	direct_access = gw->pte_access;
658

659
	top_level = vcpu->arch.mmu->root_level;
660 661 662 663 664 665 666 667 668 669 670
	if (top_level == PT32E_ROOT_LEVEL)
		top_level = PT32_ROOT_LEVEL;
	/*
	 * Verify that the top-level gpte is still there.  Since the page
	 * is a root page, it is either write protected (and cannot be
	 * changed from now on) or it is invalid (in which case, we don't
	 * really care if it changes underneath us after this point).
	 */
	if (FNAME(gpte_changed)(vcpu, gw, top_level))
		goto out_gpte_changed;

671
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
672 673
		goto out_gpte_changed;

674
	for (shadow_walk_init(&it, vcpu, fault->addr);
675 676
	     shadow_walk_okay(&it) && it.level > gw->level;
	     shadow_walk_next(&it)) {
677 678
		gfn_t table_gfn;

679
		clear_sp_write_flooding_count(it.sptep);
680
		drop_large_spte(vcpu, it.sptep);
681

682
		sp = NULL;
683 684
		if (!is_shadow_present_pte(*it.sptep)) {
			table_gfn = gw->table_gfn[it.level - 2];
685
			access = gw->pt_access[it.level - 2];
686
			sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr,
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
					      it.level-1, false, access);
			/*
			 * We must synchronize the pagetable before linking it
			 * because the guest doesn't need to flush tlb when
			 * the gpte is changed from non-present to present.
			 * Otherwise, the guest may use the wrong mapping.
			 *
			 * For PG_LEVEL_4K, kvm_mmu_get_page() has already
			 * synchronized it transiently via kvm_sync_page().
			 *
			 * For higher level pagetable, we synchronize it via
			 * the slower mmu_sync_children().  If it needs to
			 * break, some progress has been made; return
			 * RET_PF_RETRY and retry on the next #PF.
			 * KVM_REQ_MMU_SYNC is not necessary but it
			 * expedites the process.
			 */
			if (sp->unsync_children &&
			    mmu_sync_children(vcpu, sp, false))
				return RET_PF_RETRY;
707
		}
708 709 710 711 712

		/*
		 * Verify that the gpte in the page we've just write
		 * protected is still there.
		 */
713
		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
714
			goto out_gpte_changed;
715

716
		if (sp)
717
			link_shadow_page(vcpu, it.sptep, sp);
718
	}
A
Avi Kivity 已提交
719

720
	kvm_mmu_hugepage_adjust(vcpu, fault);
721

722
	trace_kvm_mmu_spte_requested(fault);
723

724
	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
725
		clear_sp_write_flooding_count(it.sptep);
P
Paolo Bonzini 已提交
726 727 728 729 730

		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
731
		if (fault->nx_huge_page_workaround_enabled)
732
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
733

734
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
735
		if (it.level == fault->goal_level)
736 737
			break;

738
		validate_direct_spte(vcpu, it.sptep, direct_access);
739

740
		drop_large_spte(vcpu, it.sptep);
741

742
		if (!is_shadow_present_pte(*it.sptep)) {
743
			sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr,
744 745
					      it.level - 1, true, direct_access);
			link_shadow_page(vcpu, it.sptep, sp);
746 747
			if (fault->huge_page_disallowed &&
			    fault->req_level >= it.level)
P
Paolo Bonzini 已提交
748
				account_huge_nx_page(vcpu->kvm, sp);
749
		}
750 751
	}

752 753 754
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

755
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
756
			   base_gfn, fault->pfn, fault);
757 758 759
	if (ret == RET_PF_SPURIOUS)
		return ret;

760
	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
761
	++vcpu->stat.pf_fixed;
762
	return ret;
763 764

out_gpte_changed:
765
	return RET_PF_RETRY;
A
Avi Kivity 已提交
766 767
}

768 769 770 771 772 773 774 775 776 777
 /*
 * To see whether the mapped gfn can write its page table in the current
 * mapping.
 *
 * It is the helper function of FNAME(page_fault). When guest uses large page
 * size to map the writable gfn which is used as current page table, we should
 * force kvm to use small page size to map it because new shadow page will be
 * created when kvm establishes shadow page table that stop kvm using large
 * page size. Do it early can avoid unnecessary #PF and emulation.
 *
778 779 780
 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 * currently used as its page table.
 *
781 782 783 784 785 786
 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 * since the PDPT is always shadowed, that means, we can not use large page
 * size to map the gfn which is used as PDPT.
 */
static bool
FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
787
			      struct guest_walker *walker, bool user_fault,
788
			      bool *write_fault_to_shadow_pgtable)
789 790 791
{
	int level;
	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
792
	bool self_changed = false;
793 794

	if (!(walker->pte_access & ACC_WRITE_MASK ||
795
	    (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
796 797
		return false;

798 799 800 801 802 803
	for (level = walker->level; level <= walker->max_level; level++) {
		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];

		self_changed |= !(gfn & mask);
		*write_fault_to_shadow_pgtable |= !gfn;
	}
804

805
	return self_changed;
806 807
}

A
Avi Kivity 已提交
808 809 810 811 812 813 814 815 816 817 818
/*
 * Page fault handler.  There are several causes for a page fault:
 *   - there is no shadow pte for the guest pte
 *   - write access through a shadow pte marked read only so that we can set
 *     the dirty bit
 *   - write access to a shadow pte marked read only so we can update the page
 *     dirty bitmap, when userspace requests it
 *   - mmio access; in this case we will never install a present shadow pte
 *   - normal guest page fault due to the guest pte marked not present, not
 *     writable, or not executable
 *
819 820
 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 *           a negative value on error.
A
Avi Kivity 已提交
821
 */
822
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
823 824
{
	struct guest_walker walker;
825
	int r;
826
	unsigned long mmu_seq;
827
	bool is_self_change_mapping;
A
Avi Kivity 已提交
828

829
	pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
830
	WARN_ON_ONCE(fault->is_tdp);
831

832
	/*
833
	 * Look up the guest pte for the faulting address.
834 835 836
	 * If PFEC.RSVD is set, this is a shadow page fault.
	 * The bit needs to be cleared before walking guest page tables.
	 */
837 838
	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
			     fault->error_code & ~PFERR_RSVD_MASK);
A
Avi Kivity 已提交
839 840 841 842

	/*
	 * The page is not mapped by the guest.  Let the guest handle it.
	 */
843
	if (!r) {
844
		pgprintk("%s: guest page fault\n", __func__);
845
		if (!fault->prefetch)
846
			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
847

848
		return RET_PF_RETRY;
A
Avi Kivity 已提交
849 850
	}

851
	fault->gfn = walker.gfn;
852 853
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

854
	if (page_fault_handle_page_track(vcpu, fault)) {
855
		shadow_page_table_clear_flood(vcpu, fault->addr);
856
		return RET_PF_EMULATE;
857
	}
858

859
	r = mmu_topup_memory_caches(vcpu, true);
860 861 862
	if (r)
		return r;

863 864 865
	vcpu->arch.write_fault_to_shadow_pgtable = false;

	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
866
	      &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
867

868
	if (is_self_change_mapping)
869
		fault->max_level = PG_LEVEL_4K;
870
	else
871
		fault->max_level = walker.level;
872

873
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
874
	smp_rmb();
875

876
	if (kvm_faultin_pfn(vcpu, fault, &r))
877
		return r;
878

879
	if (handle_abnormal_pfn(vcpu, fault, walker.pte_access, &r))
880 881
		return r;

882 883 884 885
	/*
	 * Do not change pte_access if the pfn is a mmio page, otherwise
	 * we will cache the incorrect access into mmio spte.
	 */
886
	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
887
	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
888 889 890 891 892 893 894 895 896
		walker.pte_access |= ACC_WRITE_MASK;
		walker.pte_access &= ~ACC_USER_MASK;

		/*
		 * If we converted a user page to a kernel page,
		 * so that the kernel can write to it when cr0.wp=0,
		 * then we should prevent the kernel from executing it
		 * if SMEP is enabled.
		 */
897
		if (is_cr4_smep(vcpu->arch.mmu))
898 899 900
			walker.pte_access &= ~ACC_EXEC_MASK;
	}

901
	r = RET_PF_RETRY;
902
	write_lock(&vcpu->kvm->mmu_lock);
903 904

	if (is_page_fault_stale(vcpu, fault, mmu_seq))
905
		goto out_unlock;
906

907 908
	r = make_mmu_pages_available(vcpu);
	if (r)
909
		goto out_unlock;
910
	r = FNAME(fetch)(vcpu, fault, &walker);
911 912

out_unlock:
913
	write_unlock(&vcpu->kvm->mmu_lock);
914
	kvm_release_pfn_clean(fault->pfn);
915
	return r;
A
Avi Kivity 已提交
916 917
}

X
Xiao Guangrong 已提交
918 919 920 921
static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
{
	int offset = 0;

922
	WARN_ON(sp->role.level != PG_LEVEL_4K);
X
Xiao Guangrong 已提交
923 924 925 926 927 928 929

	if (PTTYPE == 32)
		offset = sp->role.quadrant << PT64_LEVEL_BITS;

	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
}

930
static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
931
{
932
	struct kvm_shadow_walk_iterator iterator;
933
	struct kvm_mmu_page *sp;
934
	u64 old_spte;
935 936 937
	int level;
	u64 *sptep;

938 939
	vcpu_clear_mmio_info(vcpu, gva);

940 941 942 943
	/*
	 * No need to check return value here, rmap_can_add() can
	 * help us to skip pte prefetch later.
	 */
944
	mmu_topup_memory_caches(vcpu, true);
M
Marcelo Tosatti 已提交
945

946
	if (!VALID_PAGE(root_hpa)) {
947 948 949 950
		WARN_ON(1);
		return;
	}

951
	write_lock(&vcpu->kvm->mmu_lock);
952
	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
953 954
		level = iterator.level;
		sptep = iterator.sptep;
955

956
		sp = sptep_to_sp(sptep);
957 958
		old_spte = *sptep;
		if (is_last_spte(old_spte, level)) {
959 960 961
			pt_element_t gpte;
			gpa_t pte_gpa;

962 963 964
			if (!sp->unsync)
				break;

X
Xiao Guangrong 已提交
965
			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
966
			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
967

968
			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
969
			if (is_shadow_present_pte(old_spte))
970 971
				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
972 973 974 975

			if (!rmap_can_add(vcpu))
				break;

976 977
			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
						       sizeof(pt_element_t)))
978 979
				break;

980
			FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
981
		}
M
Marcelo Tosatti 已提交
982

983
		if (!sp->unsync_children)
984 985
			break;
	}
986
	write_unlock(&vcpu->kvm->mmu_lock);
M
Marcelo Tosatti 已提交
987 988
}

989
/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
990
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
991
			       gpa_t addr, u64 access,
992
			       struct x86_exception *exception)
A
Avi Kivity 已提交
993 994
{
	struct guest_walker walker;
A
Avi Kivity 已提交
995 996
	gpa_t gpa = UNMAPPED_GVA;
	int r;
A
Avi Kivity 已提交
997

998 999
#ifndef CONFIG_X86_64
	/* A 64-bit GVA should be impossible on 32-bit KVM. */
1000
	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
1001 1002
#endif

1003
	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
1004 1005 1006

	if (r) {
		gpa = gfn_to_gpa(walker.gfn);
1007
		gpa |= addr & ~PAGE_MASK;
1008 1009
	} else if (exception)
		*exception = walker.fault;
1010 1011 1012 1013

	return gpa;
}

1014 1015 1016 1017
/*
 * Using the cached information from sp->gfns is safe because:
 * - The spte has a reference to the struct page, so the pfn for a given gfn
 *   can't change unless all sptes pointing to it are nuked first.
1018 1019 1020 1021 1022
 *
 * Returns
 * < 0: the sp should be zapped
 *   0: the sp is synced and no tlb flushing is required
 * > 0: the sp is synced and tlb flushing is required
1023
 */
1024
static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1025
{
1026
	union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base;
1027
	int i;
1028
	bool host_writable;
1029
	gpa_t first_pte_gpa;
1030
	bool flush = false;
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	/*
	 * Ignore various flags when verifying that it's safe to sync a shadow
	 * page using the current MMU context.
	 *
	 *  - level: not part of the overall MMU role and will never match as the MMU's
	 *           level tracks the root level
	 *  - access: updated based on the new guest PTE
	 *  - quadrant: not part of the overall MMU role (similar to level)
	 */
	const union kvm_mmu_page_role sync_role_ign = {
		.level = 0xf,
		.access = 0x7,
		.quadrant = 0x3,
	};

	/*
	 * Direct pages can never be unsync, and KVM should never attempt to
	 * sync a shadow page for a different MMU context, e.g. if the role
	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
	 * reserved bits checks will be wrong, etc...
	 */
	if (WARN_ON_ONCE(sp->role.direct ||
			 (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word))
1055
		return -1;
1056

X
Xiao Guangrong 已提交
1057
	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1058

1059
	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1060
		u64 *sptep, spte;
1061
		struct kvm_memory_slot *slot;
1062 1063 1064
		unsigned pte_access;
		pt_element_t gpte;
		gpa_t pte_gpa;
1065
		gfn_t gfn;
1066

1067
		if (!sp->spt[i])
1068 1069
			continue;

1070
		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1071

1072 1073
		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
					       sizeof(pt_element_t)))
1074
			return -1;
1075

1076
		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1077
			flush = true;
1078 1079 1080
			continue;
		}

1081 1082
		gfn = gpte_to_gfn(gpte);
		pte_access = sp->role.access;
1083
		pte_access &= FNAME(gpte_access)(gpte);
1084
		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1085

1086
		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
1087 1088
			continue;

1089
		if (gfn != sp->gfns[i]) {
1090
			drop_spte(vcpu->kvm, &sp->spt[i]);
1091
			flush = true;
1092 1093 1094
			continue;
		}

1095 1096 1097
		sptep = &sp->spt[i];
		spte = *sptep;
		host_writable = spte & shadow_host_writable_mask;
1098 1099
		slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
		make_spte(vcpu, sp, slot, pte_access, gfn,
1100
			  spte_to_pfn(spte), spte, true, false,
1101
			  host_writable, &spte);
1102

1103
		flush |= mmu_spte_update(sptep, spte);
1104 1105
	}

1106
	return flush;
1107 1108
}

A
Avi Kivity 已提交
1109 1110 1111 1112 1113
#undef pt_element_t
#undef guest_walker
#undef FNAME
#undef PT_BASE_ADDR_MASK
#undef PT_INDEX
1114 1115
#undef PT_LVL_ADDR_MASK
#undef PT_LVL_OFFSET_MASK
1116
#undef PT_LEVEL_BITS
1117
#undef PT_MAX_FULL_LEVELS
1118
#undef gpte_to_gfn
1119
#undef gpte_to_gfn_lvl
1120
#undef CMPXCHG
1121 1122 1123 1124
#undef PT_GUEST_ACCESSED_MASK
#undef PT_GUEST_DIRTY_MASK
#undef PT_GUEST_DIRTY_SHIFT
#undef PT_GUEST_ACCESSED_SHIFT
1125
#undef PT_HAVE_ACCESSED_DIRTY