paging_tmpl.h 31.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */

/*
 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
 * so the code in this file is compiled twice, once per pte size.
 */

#if PTTYPE == 64
	#define pt_element_t u64
	#define guest_walker guest_walker64
	#define FNAME(name) paging##64_##name
27
	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
28 29
	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
A
Avi Kivity 已提交
30
	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31
	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 33
	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34
	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35
	#ifdef CONFIG_X86_64
36
	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37
	#define CMPXCHG cmpxchg
38
	#else
39
	#define CMPXCHG cmpxchg64
40 41
	#define PT_MAX_FULL_LEVELS 2
	#endif
A
Avi Kivity 已提交
42 43 44 45 46
#elif PTTYPE == 32
	#define pt_element_t u32
	#define guest_walker guest_walker32
	#define FNAME(name) paging##32_##name
	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 48
	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
A
Avi Kivity 已提交
49
	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50
	#define PT_LEVEL_BITS PT32_LEVEL_BITS
51
	#define PT_MAX_FULL_LEVELS 2
52 53
	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54
	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
55
	#define CMPXCHG cmpxchg
56 57 58 59
#elif PTTYPE == PTTYPE_EPT
	#define pt_element_t u64
	#define guest_walker guest_walkerEPT
	#define FNAME(name) ept_##name
60
	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
61 62 63 64
	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
	#define PT_LEVEL_BITS PT64_LEVEL_BITS
65 66 67
	#define PT_GUEST_DIRTY_SHIFT 9
	#define PT_GUEST_ACCESSED_SHIFT 8
	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68
	#define CMPXCHG cmpxchg64
69
	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
A
Avi Kivity 已提交
70 71 72 73
#else
	#error Invalid PTTYPE value
#endif

74 75 76
#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)

77
#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78
#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
79

A
Avi Kivity 已提交
80 81 82 83 84 85
/*
 * The guest_walker structure emulates the behavior of the hardware page
 * table walker.
 */
struct guest_walker {
	int level;
86
	unsigned max_level;
87
	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88
	pt_element_t ptes[PT_MAX_FULL_LEVELS];
89
	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90
	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91
	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92
	bool pte_writable[PT_MAX_FULL_LEVELS];
93 94
	unsigned int pt_access[PT_MAX_FULL_LEVELS];
	unsigned int pte_access;
95
	gfn_t gfn;
96
	struct x86_exception fault;
A
Avi Kivity 已提交
97 98
};

99
static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
100
{
101
	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
102 103
}

104 105
static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
					     unsigned gpte)
106 107 108
{
	unsigned mask;

109
	/* dirty bit is not supported, so no need to track it */
110
	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
111 112
		return;

113 114 115 116
	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);

	mask = (unsigned)~ACC_WRITE_MASK;
	/* Allow write access to dirty gptes */
117 118
	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
		PT_WRITABLE_MASK;
119 120 121 122 123
	*access &= mask;
}

static inline int FNAME(is_present_gpte)(unsigned long pte)
{
124
#if PTTYPE != PTTYPE_EPT
B
Bandan Das 已提交
125
	return pte & PT_PRESENT_MASK;
126 127 128
#else
	return pte & 7;
#endif
129 130
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
{
#if PTTYPE != PTTYPE_EPT
	return false;
#else
	return __is_bad_mt_xwr(rsvd_check, gpte);
#endif
}

static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
}

146
static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
147 148
			       pt_element_t __user *ptep_user, unsigned index,
			       pt_element_t orig_pte, pt_element_t new_pte)
149
{
150
	int npages;
151 152 153 154
	pt_element_t ret;
	pt_element_t *table;
	struct page *page;

155
	npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
156 157 158 159 160 161 162 163 164 165 166 167
	if (likely(npages == 1)) {
		table = kmap_atomic(page);
		ret = CMPXCHG(&table[index], orig_pte, new_pte);
		kunmap_atomic(table);

		kvm_release_page_dirty(page);
	} else {
		struct vm_area_struct *vma;
		unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
		unsigned long pfn;
		unsigned long paddr;

168
		mmap_read_lock(current->mm);
169 170
		vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
		if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
171
			mmap_read_unlock(current->mm);
172 173 174 175 176 177
			return -EFAULT;
		}
		pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
		paddr = pfn << PAGE_SHIFT;
		table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
		if (!table) {
178
			mmap_read_unlock(current->mm);
179 180 181 182
			return -EFAULT;
		}
		ret = CMPXCHG(&table[index], orig_pte, new_pte);
		memunmap(table);
183
		mmap_read_unlock(current->mm);
184
	}
185 186 187 188

	return (ret != orig_pte);
}

189 190 191 192 193 194 195
static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *spte,
				  u64 gpte)
{
	if (!FNAME(is_present_gpte)(gpte))
		goto no_present;

196
	/* if accessed bit is not supported prefetch non accessed gpte */
197 198
	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
	    !(gpte & PT_GUEST_ACCESSED_MASK))
199 200
		goto no_present;

201
	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
202 203
		goto no_present;

204 205 206 207 208 209 210
	return false;

no_present:
	drop_spte(vcpu->kvm, spte);
	return true;
}

211 212 213 214 215 216
/*
 * For PTTYPE_EPT, a page table can be executable but not readable
 * on supported processors. Therefore, set_spte does not automatically
 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
 * to signify readability since it isn't used in the EPT case
 */
217
static inline unsigned FNAME(gpte_access)(u64 gpte)
218 219
{
	unsigned access;
220 221 222
#if PTTYPE == PTTYPE_EPT
	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
223
		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
224
#else
225 226 227 228 229
	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
	access ^= (gpte >> PT64_NX_SHIFT);
230
#endif
231 232 233 234

	return access;
}

235 236 237
static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
					     struct kvm_mmu *mmu,
					     struct guest_walker *walker,
238
					     gpa_t addr, int write_fault)
239 240 241 242 243 244 245
{
	unsigned level, index;
	pt_element_t pte, orig_pte;
	pt_element_t __user *ptep_user;
	gfn_t table_gfn;
	int ret;

246
	/* dirty/accessed bits are not supported, so no need to update them */
247
	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
248 249
		return 0;

250 251 252 253 254
	for (level = walker->max_level; level >= walker->level; --level) {
		pte = orig_pte = walker->ptes[level - 1];
		table_gfn = walker->table_gfn[level - 1];
		ptep_user = walker->ptep_user[level - 1];
		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
255
		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
256
			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
257
			pte |= PT_GUEST_ACCESSED_MASK;
258
		}
259
		if (level == walker->level && write_fault &&
260
				!(pte & PT_GUEST_DIRTY_MASK)) {
261
			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
262
#if PTTYPE == PTTYPE_EPT
263
			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
264 265
				return -EINVAL;
#endif
266
			pte |= PT_GUEST_DIRTY_MASK;
267 268 269 270
		}
		if (pte == orig_pte)
			continue;

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
		/*
		 * If the slot is read-only, simply do not process the accessed
		 * and dirty bits.  This is the correct thing to do if the slot
		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
		 * are only supported if the accessed and dirty bits are already
		 * set in the ROM (so that MMIO writes are never needed).
		 *
		 * Note that NPT does not allow this at all and faults, since
		 * it always wants nested page table entries for the guest
		 * page tables to be writable.  And EPT works but will simply
		 * overwrite the read-only memory to set the accessed and dirty
		 * bits.
		 */
		if (unlikely(!walker->pte_writable[level - 1]))
			continue;

287 288 289 290
		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
		if (ret)
			return ret;

291
		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
292
		walker->ptes[level - 1] = pte;
293 294 295 296
	}
	return 0;
}

297 298 299 300 301 302 303 304 305 306 307
static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
{
	unsigned pkeys = 0;
#if PTTYPE == 64
	pte_t pte = {.pte = gpte};

	pkeys = pte_flags_pkey(pte_flags(pte));
#endif
	return pkeys;
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
				       unsigned int level, unsigned int gpte)
{
	/*
	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
	 * case, bit 7 being set terminates the walk.
	 */
#if PTTYPE == 32
	/*
	 * 32-bit paging requires special handling because bit 7 is ignored if
	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
	 *
	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
	 * is not reserved and does not indicate a large page at this level,
	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse);
#endif
	/*
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PG_LEVEL_4K - 1;

	return gpte & PT_PAGE_SIZE_MASK;
}
337
/*
338
 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
339
 */
340 341
static int FNAME(walk_addr_generic)(struct guest_walker *walker,
				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
342
				    gpa_t addr, u32 access)
A
Avi Kivity 已提交
343
{
344
	int ret;
345
	pt_element_t pte;
346
	pt_element_t __user *ptep_user;
347
	gfn_t table_gfn;
348 349
	u64 pt_access, pte_access;
	unsigned index, accessed_dirty, pte_pkey;
350
	unsigned nested_access;
351
	gpa_t pte_gpa;
352
	bool have_ad;
353
	int offset;
354
	u64 walk_nx_mask = 0;
355 356 357 358
	const int write_fault = access & PFERR_WRITE_MASK;
	const int user_fault  = access & PFERR_USER_MASK;
	const int fetch_fault = access & PFERR_FETCH_MASK;
	u16 errcode = 0;
359 360
	gpa_t real_gpa;
	gfn_t gfn;
A
Avi Kivity 已提交
361

362
	trace_kvm_mmu_pagetable_walk(addr, access);
363
retry_walk:
364
	walker->level = mmu->root_level;
365
	pte           = mmu->get_guest_pgd(vcpu);
366
	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
367

368
#if PTTYPE == 64
369
	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
370
	if (walker->level == PT32E_ROOT_LEVEL) {
371
		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
372
		trace_kvm_mmu_paging_element(pte, walker->level);
373
		if (!FNAME(is_present_gpte)(pte))
374
			goto error;
375 376 377
		--walker->level;
	}
#endif
378
	walker->max_level = walker->level;
379
	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
A
Avi Kivity 已提交
380

381 382 383 384 385 386 387
	/*
	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
	 * by the MOV to CR instruction are treated as reads and do not cause the
	 * processor to set the dirty flag in any EPT paging-structure entry.
	 */
	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;

388
	pte_access = ~0;
389
	++walker->level;
390

391
	do {
392 393
		unsigned long host_addr;

394
		pt_access = pte_access;
395 396
		--walker->level;

397
		index = PT_INDEX(addr, walker->level);
398
		table_gfn = gpte_to_gfn(pte);
399 400
		offset    = index * sizeof(pt_element_t);
		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
401 402

		BUG_ON(walker->level < 1);
403
		walker->table_gfn[walker->level - 1] = table_gfn;
404
		walker->pte_gpa[walker->level - 1] = pte_gpa;
405

406
		real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
407
					      nested_access,
408
					      &walker->fault);
409 410 411 412 413 414 415 416 417 418 419

		/*
		 * FIXME: This can happen if emulation (for of an INS/OUTS
		 * instruction) triggers a nested page fault.  The exit
		 * qualification / exit info field will incorrectly have
		 * "guest page access" as the nested page fault's cause,
		 * instead of "guest page structure access".  To fix this,
		 * the x86_exception struct should be augmented with enough
		 * information to fix the exit_qualification or exit_info_1
		 * fields.
		 */
420
		if (unlikely(real_gpa == UNMAPPED_GVA))
421
			return 0;
422

423
		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
424
					    &walker->pte_writable[walker->level - 1]);
425 426
		if (unlikely(kvm_is_error_hva(host_addr)))
			goto error;
427 428

		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
429
		if (unlikely(__get_user(pte, ptep_user)))
430
			goto error;
431
		walker->ptep_user[walker->level - 1] = ptep_user;
432

433
		trace_kvm_mmu_paging_element(pte, walker->level);
434

435 436 437 438 439 440
		/*
		 * Inverting the NX it lets us AND it like other
		 * permission bits.
		 */
		pte_access = pt_access & (pte ^ walk_nx_mask);

441
		if (unlikely(!FNAME(is_present_gpte)(pte)))
442
			goto error;
443

444
		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
445
			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
446
			goto error;
447
		}
448

449
		walker->ptes[walker->level - 1] = pte;
450 451 452

		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
453
	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
454

455
	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
456 457 458
	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;

	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
459
	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
460
	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
461
	if (unlikely(errcode))
462 463
		goto error;

464 465 466
	gfn = gpte_to_gfn_lvl(pte, walker->level);
	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;

467
	if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
468 469
		gfn += pse36_gfn_delta(pte);

470
	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
471 472 473 474 475
	if (real_gpa == UNMAPPED_GVA)
		return 0;

	walker->gfn = real_gpa >> PAGE_SHIFT;

476
	if (!write_fault)
477
		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
478 479
	else
		/*
480 481 482
		 * On a write fault, fold the dirty bit into accessed_dirty.
		 * For modes without A/D bits support accessed_dirty will be
		 * always clear.
483
		 */
484 485
		accessed_dirty &= pte >>
			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
486 487

	if (unlikely(!accessed_dirty)) {
488 489
		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
							addr, write_fault);
490 491 492 493 494
		if (unlikely(ret < 0))
			goto error;
		else if (ret)
			goto retry_walk;
	}
495

496
	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
497 498
		 __func__, (u64)pte, walker->pte_access,
		 walker->pt_access[walker->level - 1]);
499 500
	return 1;

501
error:
502
	errcode |= write_fault | user_fault;
503
	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
504
		errcode |= PFERR_FETCH_MASK;
505

506 507 508
	walker->fault.vector = PF_VECTOR;
	walker->fault.error_code_valid = true;
	walker->fault.error_code = errcode;
509 510 511 512 513 514 515 516

#if PTTYPE == PTTYPE_EPT
	/*
	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
	 * misconfiguration requires to be injected. The detection is
	 * done by is_rsvd_bits_set() above.
	 *
	 * We set up the value of exit_qualification to inject:
517 518
	 * [2:0] - Derive from the access bits. The exit_qualification might be
	 *         out of date if it is serving an EPT misconfiguration.
519 520 521 522 523 524
	 * [5:3] - Calculated by the page walk of the guest EPT page tables
	 * [7:8] - Derived from [7:8] of real exit_qualification
	 *
	 * The other bits are set to 0.
	 */
	if (!(errcode & PFERR_RSVD_MASK)) {
525 526 527 528 529 530 531
		vcpu->arch.exit_qualification &= 0x180;
		if (write_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
		if (user_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
		if (fetch_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
532
		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
533 534
	}
#endif
535 536
	walker->fault.address = addr;
	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
537
	walker->fault.async_page_fault = false;
538

539
	trace_kvm_mmu_walker_error(walker->fault.error_code);
540
	return 0;
A
Avi Kivity 已提交
541 542
}

543
static int FNAME(walk_addr)(struct guest_walker *walker,
544
			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
545
{
546
	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
547
					access);
548 549
}

550 551 552
static bool
FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
553
{
554
	struct kvm_memory_slot *slot;
555
	unsigned pte_access;
556
	gfn_t gfn;
D
Dan Williams 已提交
557
	kvm_pfn_t pfn;
558

559
	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
560
		return false;
561

562
	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
563 564

	gfn = gpte_to_gfn(gpte);
565
	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
566
	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
567 568

	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
569
			no_dirty_log && (pte_access & ACC_WRITE_MASK));
570 571 572 573
	if (!slot)
		return false;

	pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
574
	if (is_error_pfn(pfn))
575
		return false;
576

577
	mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
578
	kvm_release_pfn_clean(pfn);
579 580 581
	return true;
}

A
Avi Kivity 已提交
582 583 584 585
static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
				struct guest_walker *gw, int level)
{
	pt_element_t curr_pte;
586 587 588 589
	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
	u64 mask;
	int r, index;

590
	if (level == PG_LEVEL_4K) {
591 592 593 594
		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
		base_gpa = pte_gpa & ~mask;
		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);

595
		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
596 597 598
				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
		curr_pte = gw->prefetch_ptes[index];
	} else
599
		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
A
Avi Kivity 已提交
600
				  &curr_pte, sizeof(curr_pte));
601

A
Avi Kivity 已提交
602 603 604
	return r || curr_pte != gw->ptes[level - 1];
}

605 606
static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
				u64 *sptep)
607 608
{
	struct kvm_mmu_page *sp;
609
	pt_element_t *gptep = gw->prefetch_ptes;
610
	u64 *spte;
611
	int i;
612

613
	sp = sptep_to_sp(sptep);
614

615
	if (sp->role.level > PG_LEVEL_4K)
616 617
		return;

618 619 620 621 622 623 624
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

625 626 627 628 629 630 631 632 633 634
	if (sp->role.direct)
		return __direct_pte_prefetch(vcpu, sp, sptep);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
		if (spte == sptep)
			continue;

635
		if (is_shadow_present_pte(*spte))
636 637
			continue;

638
		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
639 640 641 642
			break;
	}
}

A
Avi Kivity 已提交
643 644
/*
 * Fetch a shadow pte for a specific level in the paging hierarchy.
645 646
 * If the guest tries to write a write-protected page, we need to
 * emulate this operation, return 1 to indicate this case.
A
Avi Kivity 已提交
647
 */
648 649
static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
			 struct guest_walker *gw)
A
Avi Kivity 已提交
650
{
651
	struct kvm_mmu_page *sp = NULL;
652
	struct kvm_shadow_walk_iterator it;
653
	unsigned int direct_access, access;
654
	int top_level, ret;
655
	gfn_t base_gfn = fault->gfn;
656

657
	WARN_ON_ONCE(gw->gfn != base_gfn);
658
	direct_access = gw->pte_access;
659

660
	top_level = vcpu->arch.mmu->root_level;
661 662 663 664 665 666 667 668 669 670 671
	if (top_level == PT32E_ROOT_LEVEL)
		top_level = PT32_ROOT_LEVEL;
	/*
	 * Verify that the top-level gpte is still there.  Since the page
	 * is a root page, it is either write protected (and cannot be
	 * changed from now on) or it is invalid (in which case, we don't
	 * really care if it changes underneath us after this point).
	 */
	if (FNAME(gpte_changed)(vcpu, gw, top_level))
		goto out_gpte_changed;

672
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
673 674
		goto out_gpte_changed;

675
	for (shadow_walk_init(&it, vcpu, fault->addr);
676 677
	     shadow_walk_okay(&it) && it.level > gw->level;
	     shadow_walk_next(&it)) {
678 679
		gfn_t table_gfn;

680
		clear_sp_write_flooding_count(it.sptep);
681
		drop_large_spte(vcpu, it.sptep);
682

683
		sp = NULL;
684 685
		if (!is_shadow_present_pte(*it.sptep)) {
			table_gfn = gw->table_gfn[it.level - 2];
686
			access = gw->pt_access[it.level - 2];
687
			sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr,
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
					      it.level-1, false, access);
			/*
			 * We must synchronize the pagetable before linking it
			 * because the guest doesn't need to flush tlb when
			 * the gpte is changed from non-present to present.
			 * Otherwise, the guest may use the wrong mapping.
			 *
			 * For PG_LEVEL_4K, kvm_mmu_get_page() has already
			 * synchronized it transiently via kvm_sync_page().
			 *
			 * For higher level pagetable, we synchronize it via
			 * the slower mmu_sync_children().  If it needs to
			 * break, some progress has been made; return
			 * RET_PF_RETRY and retry on the next #PF.
			 * KVM_REQ_MMU_SYNC is not necessary but it
			 * expedites the process.
			 */
			if (sp->unsync_children &&
			    mmu_sync_children(vcpu, sp, false))
				return RET_PF_RETRY;
708
		}
709 710 711 712 713

		/*
		 * Verify that the gpte in the page we've just write
		 * protected is still there.
		 */
714
		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
715
			goto out_gpte_changed;
716

717
		if (sp)
718
			link_shadow_page(vcpu, it.sptep, sp);
719
	}
A
Avi Kivity 已提交
720

721
	kvm_mmu_hugepage_adjust(vcpu, fault);
722

723
	trace_kvm_mmu_spte_requested(fault);
724

725
	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
726
		clear_sp_write_flooding_count(it.sptep);
P
Paolo Bonzini 已提交
727 728 729 730 731

		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
732
		if (fault->nx_huge_page_workaround_enabled)
733
			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
P
Paolo Bonzini 已提交
734

735
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
736
		if (it.level == fault->goal_level)
737 738
			break;

739
		validate_direct_spte(vcpu, it.sptep, direct_access);
740

741
		drop_large_spte(vcpu, it.sptep);
742

743
		if (!is_shadow_present_pte(*it.sptep)) {
744
			sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr,
745 746
					      it.level - 1, true, direct_access);
			link_shadow_page(vcpu, it.sptep, sp);
747 748
			if (fault->huge_page_disallowed &&
			    fault->req_level >= it.level)
P
Paolo Bonzini 已提交
749
				account_huge_nx_page(vcpu->kvm, sp);
750
		}
751 752
	}

753 754 755
	if (WARN_ON_ONCE(it.level != fault->goal_level))
		return -EFAULT;

756
	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
757
			   base_gfn, fault->pfn, fault);
758 759 760
	if (ret == RET_PF_SPURIOUS)
		return ret;

761
	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
762
	++vcpu->stat.pf_fixed;
763
	return ret;
764 765

out_gpte_changed:
766
	return RET_PF_RETRY;
A
Avi Kivity 已提交
767 768
}

769 770 771 772 773 774 775 776 777 778
 /*
 * To see whether the mapped gfn can write its page table in the current
 * mapping.
 *
 * It is the helper function of FNAME(page_fault). When guest uses large page
 * size to map the writable gfn which is used as current page table, we should
 * force kvm to use small page size to map it because new shadow page will be
 * created when kvm establishes shadow page table that stop kvm using large
 * page size. Do it early can avoid unnecessary #PF and emulation.
 *
779 780 781
 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 * currently used as its page table.
 *
782 783 784 785 786 787
 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 * since the PDPT is always shadowed, that means, we can not use large page
 * size to map the gfn which is used as PDPT.
 */
static bool
FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
788
			      struct guest_walker *walker, bool user_fault,
789
			      bool *write_fault_to_shadow_pgtable)
790 791 792
{
	int level;
	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
793
	bool self_changed = false;
794 795

	if (!(walker->pte_access & ACC_WRITE_MASK ||
796
	    (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
797 798
		return false;

799 800 801 802 803 804
	for (level = walker->level; level <= walker->max_level; level++) {
		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];

		self_changed |= !(gfn & mask);
		*write_fault_to_shadow_pgtable |= !gfn;
	}
805

806
	return self_changed;
807 808
}

A
Avi Kivity 已提交
809 810 811 812 813 814 815 816 817 818 819
/*
 * Page fault handler.  There are several causes for a page fault:
 *   - there is no shadow pte for the guest pte
 *   - write access through a shadow pte marked read only so that we can set
 *     the dirty bit
 *   - write access to a shadow pte marked read only so we can update the page
 *     dirty bitmap, when userspace requests it
 *   - mmio access; in this case we will never install a present shadow pte
 *   - normal guest page fault due to the guest pte marked not present, not
 *     writable, or not executable
 *
820 821
 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 *           a negative value on error.
A
Avi Kivity 已提交
822
 */
823
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
824 825
{
	struct guest_walker walker;
826
	int r;
827
	unsigned long mmu_seq;
828
	bool is_self_change_mapping;
A
Avi Kivity 已提交
829

830
	pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
831
	WARN_ON_ONCE(fault->is_tdp);
832

833
	/*
834
	 * Look up the guest pte for the faulting address.
835 836 837
	 * If PFEC.RSVD is set, this is a shadow page fault.
	 * The bit needs to be cleared before walking guest page tables.
	 */
838 839
	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
			     fault->error_code & ~PFERR_RSVD_MASK);
A
Avi Kivity 已提交
840 841 842 843

	/*
	 * The page is not mapped by the guest.  Let the guest handle it.
	 */
844
	if (!r) {
845
		pgprintk("%s: guest page fault\n", __func__);
846
		if (!fault->prefetch)
847
			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
848

849
		return RET_PF_RETRY;
A
Avi Kivity 已提交
850 851
	}

852
	fault->gfn = walker.gfn;
853 854
	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);

855
	if (page_fault_handle_page_track(vcpu, fault)) {
856
		shadow_page_table_clear_flood(vcpu, fault->addr);
857
		return RET_PF_EMULATE;
858
	}
859

860
	r = mmu_topup_memory_caches(vcpu, true);
861 862 863
	if (r)
		return r;

864 865 866
	vcpu->arch.write_fault_to_shadow_pgtable = false;

	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
867
	      &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
868

869
	if (is_self_change_mapping)
870
		fault->max_level = PG_LEVEL_4K;
871
	else
872
		fault->max_level = walker.level;
873

874
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
875
	smp_rmb();
876

877
	if (kvm_faultin_pfn(vcpu, fault, &r))
878
		return r;
879

880
	if (handle_abnormal_pfn(vcpu, fault, walker.pte_access, &r))
881 882
		return r;

883 884 885 886
	/*
	 * Do not change pte_access if the pfn is a mmio page, otherwise
	 * we will cache the incorrect access into mmio spte.
	 */
887
	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
888
	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
889 890 891 892 893 894 895 896 897
		walker.pte_access |= ACC_WRITE_MASK;
		walker.pte_access &= ~ACC_USER_MASK;

		/*
		 * If we converted a user page to a kernel page,
		 * so that the kernel can write to it when cr0.wp=0,
		 * then we should prevent the kernel from executing it
		 * if SMEP is enabled.
		 */
898
		if (is_cr4_smep(vcpu->arch.mmu))
899 900 901
			walker.pte_access &= ~ACC_EXEC_MASK;
	}

902
	r = RET_PF_RETRY;
903
	write_lock(&vcpu->kvm->mmu_lock);
904 905

	if (is_page_fault_stale(vcpu, fault, mmu_seq))
906
		goto out_unlock;
907

908
	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
909 910
	r = make_mmu_pages_available(vcpu);
	if (r)
911
		goto out_unlock;
912
	r = FNAME(fetch)(vcpu, fault, &walker);
913
	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
914 915

out_unlock:
916
	write_unlock(&vcpu->kvm->mmu_lock);
917
	kvm_release_pfn_clean(fault->pfn);
918
	return r;
A
Avi Kivity 已提交
919 920
}

X
Xiao Guangrong 已提交
921 922 923 924
static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
{
	int offset = 0;

925
	WARN_ON(sp->role.level != PG_LEVEL_4K);
X
Xiao Guangrong 已提交
926 927 928 929 930 931 932

	if (PTTYPE == 32)
		offset = sp->role.quadrant << PT64_LEVEL_BITS;

	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
}

933
static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
934
{
935
	struct kvm_shadow_walk_iterator iterator;
936
	struct kvm_mmu_page *sp;
937
	u64 old_spte;
938 939 940
	int level;
	u64 *sptep;

941 942
	vcpu_clear_mmio_info(vcpu, gva);

943 944 945 946
	/*
	 * No need to check return value here, rmap_can_add() can
	 * help us to skip pte prefetch later.
	 */
947
	mmu_topup_memory_caches(vcpu, true);
M
Marcelo Tosatti 已提交
948

949
	if (!VALID_PAGE(root_hpa)) {
950 951 952 953
		WARN_ON(1);
		return;
	}

954
	write_lock(&vcpu->kvm->mmu_lock);
955
	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
956 957
		level = iterator.level;
		sptep = iterator.sptep;
958

959
		sp = sptep_to_sp(sptep);
960 961
		old_spte = *sptep;
		if (is_last_spte(old_spte, level)) {
962 963 964
			pt_element_t gpte;
			gpa_t pte_gpa;

965 966 967
			if (!sp->unsync)
				break;

X
Xiao Guangrong 已提交
968
			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
969
			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
970

971
			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
972
			if (is_shadow_present_pte(old_spte))
973 974
				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
975 976 977 978

			if (!rmap_can_add(vcpu))
				break;

979 980
			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
						       sizeof(pt_element_t)))
981 982
				break;

983
			FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
984
		}
M
Marcelo Tosatti 已提交
985

986
		if (!sp->unsync_children)
987 988
			break;
	}
989
	write_unlock(&vcpu->kvm->mmu_lock);
M
Marcelo Tosatti 已提交
990 991
}

992
/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
993 994
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			       gpa_t addr, u32 access,
995
			       struct x86_exception *exception)
A
Avi Kivity 已提交
996 997
{
	struct guest_walker walker;
A
Avi Kivity 已提交
998 999
	gpa_t gpa = UNMAPPED_GVA;
	int r;
A
Avi Kivity 已提交
1000

1001 1002
#ifndef CONFIG_X86_64
	/* A 64-bit GVA should be impossible on 32-bit KVM. */
1003
	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
1004 1005
#endif

1006
	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
1007 1008 1009

	if (r) {
		gpa = gfn_to_gpa(walker.gfn);
1010
		gpa |= addr & ~PAGE_MASK;
1011 1012
	} else if (exception)
		*exception = walker.fault;
1013 1014 1015 1016

	return gpa;
}

1017 1018 1019 1020
/*
 * Using the cached information from sp->gfns is safe because:
 * - The spte has a reference to the struct page, so the pfn for a given gfn
 *   can't change unless all sptes pointing to it are nuked first.
1021 1022 1023 1024 1025
 *
 * Returns
 * < 0: the sp should be zapped
 *   0: the sp is synced and no tlb flushing is required
 * > 0: the sp is synced and tlb flushing is required
1026
 */
1027
static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1028
{
1029
	union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base;
1030
	int i;
1031
	bool host_writable;
1032
	gpa_t first_pte_gpa;
1033
	bool flush = false;
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * Ignore various flags when verifying that it's safe to sync a shadow
	 * page using the current MMU context.
	 *
	 *  - level: not part of the overall MMU role and will never match as the MMU's
	 *           level tracks the root level
	 *  - access: updated based on the new guest PTE
	 *  - quadrant: not part of the overall MMU role (similar to level)
	 */
	const union kvm_mmu_page_role sync_role_ign = {
		.level = 0xf,
		.access = 0x7,
		.quadrant = 0x3,
	};

	/*
	 * Direct pages can never be unsync, and KVM should never attempt to
	 * sync a shadow page for a different MMU context, e.g. if the role
	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
	 * reserved bits checks will be wrong, etc...
	 */
	if (WARN_ON_ONCE(sp->role.direct ||
			 (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word))
1058
		return -1;
1059

X
Xiao Guangrong 已提交
1060
	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1061

1062
	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1063
		u64 *sptep, spte;
1064
		struct kvm_memory_slot *slot;
1065 1066 1067
		unsigned pte_access;
		pt_element_t gpte;
		gpa_t pte_gpa;
1068
		gfn_t gfn;
1069

1070
		if (!sp->spt[i])
1071 1072
			continue;

1073
		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1074

1075 1076
		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
					       sizeof(pt_element_t)))
1077
			return -1;
1078

1079
		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1080
			flush = true;
1081 1082 1083
			continue;
		}

1084 1085
		gfn = gpte_to_gfn(gpte);
		pte_access = sp->role.access;
1086
		pte_access &= FNAME(gpte_access)(gpte);
1087
		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1088

1089
		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
1090 1091
			continue;

1092
		if (gfn != sp->gfns[i]) {
1093
			drop_spte(vcpu->kvm, &sp->spt[i]);
1094
			flush = true;
1095 1096 1097
			continue;
		}

1098 1099 1100
		sptep = &sp->spt[i];
		spte = *sptep;
		host_writable = spte & shadow_host_writable_mask;
1101 1102
		slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
		make_spte(vcpu, sp, slot, pte_access, gfn,
1103
			  spte_to_pfn(spte), spte, true, false,
1104
			  host_writable, &spte);
1105

1106
		flush |= mmu_spte_update(sptep, spte);
1107 1108
	}

1109
	return flush;
1110 1111
}

A
Avi Kivity 已提交
1112 1113 1114 1115 1116
#undef pt_element_t
#undef guest_walker
#undef FNAME
#undef PT_BASE_ADDR_MASK
#undef PT_INDEX
1117 1118
#undef PT_LVL_ADDR_MASK
#undef PT_LVL_OFFSET_MASK
1119
#undef PT_LEVEL_BITS
1120
#undef PT_MAX_FULL_LEVELS
1121
#undef gpte_to_gfn
1122
#undef gpte_to_gfn_lvl
1123
#undef CMPXCHG
1124 1125 1126 1127
#undef PT_GUEST_ACCESSED_MASK
#undef PT_GUEST_DIRTY_MASK
#undef PT_GUEST_DIRTY_SHIFT
#undef PT_GUEST_ACCESSED_SHIFT
1128
#undef PT_HAVE_ACCESSED_DIRTY