blk-mq.c 53.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44
	for (i = 0; i < hctx->ctx_map.size; i++)
45
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79
}

80
static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90
		if (!(gfp & __GFP_WAIT))
			return -EBUSY;

91
		ret = wait_event_interruptible(q->mq_freeze_wq,
92 93
				!atomic_read(&q->mq_freeze_depth) ||
				blk_queue_dying(q));
94 95 96 97 98
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
99 100 101 102
}

static void blk_mq_queue_exit(struct request_queue *q)
{
103 104 105 106 107 108 109 110 111
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
112 113
}

114
void blk_mq_freeze_queue_start(struct request_queue *q)
115
{
116
	int freeze_depth;
117

118 119
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
120
		percpu_ref_kill(&q->mq_usage_counter);
121
		blk_mq_run_hw_queues(q, false);
122
	}
123
}
124
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 126 127

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
128
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 130
}

131 132 133 134 135 136 137 138 139
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
140
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141

142
void blk_mq_unfreeze_queue(struct request_queue *q)
143
{
144
	int freeze_depth;
145

146 147 148
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
149
		percpu_ref_reinit(&q->mq_usage_counter);
150
		wake_up_all(&q->mq_freeze_wq);
151
	}
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154

155 156 157 158 159 160 161 162
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
163 164 165 166 167 168 169

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
170 171
}

172 173 174 175 176 177
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

178 179
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
180
{
181 182 183
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

184 185 186
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
187
	rq->mq_ctx = ctx;
188
	rq->cmd_flags |= rw_flags;
189 190 191 192 193 194
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
195
	rq->start_time = jiffies;
196 197
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
198
	set_start_time_ns(rq);
199 200 201 202 203 204 205 206 207 208
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

209 210
	rq->cmd = rq->__cmd;

211 212 213 214 215 216
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
217 218
	rq->timeout = 0;

219 220 221 222
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

223 224 225
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

226
static struct request *
227
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 229 230 231
{
	struct request *rq;
	unsigned int tag;

232
	tag = blk_mq_get_tag(data);
233
	if (tag != BLK_MQ_TAG_FAIL) {
234
		rq = data->hctx->tags->rqs[tag];
235

236
		if (blk_mq_tag_busy(data->hctx)) {
237
			rq->cmd_flags = REQ_MQ_INFLIGHT;
238
			atomic_inc(&data->hctx->nr_active);
239 240 241
		}

		rq->tag = tag;
242
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 244 245 246 247 248
		return rq;
	}

	return NULL;
}

249 250
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
251
{
252 253
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
254
	struct request *rq;
255
	struct blk_mq_alloc_data alloc_data;
256
	int ret;
257

258
	ret = blk_mq_queue_enter(q, gfp);
259 260
	if (ret)
		return ERR_PTR(ret);
261

262 263
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 265
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
266

267
	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 269 270 271 272 273
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 275 276 277
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
278 279
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
280 281
	if (!rq) {
		blk_mq_queue_exit(q);
282
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
283
	}
284 285
	return rq;
}
286
EXPORT_SYMBOL(blk_mq_alloc_request);
287 288 289 290 291 292 293

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

294 295
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
296
	rq->cmd_flags = 0;
297

298
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 301 302
	blk_mq_queue_exit(q);
}

303
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 305 306 307 308
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
309 310 311 312 313 314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
320
}
J
Jens Axboe 已提交
321
EXPORT_SYMBOL_GPL(blk_mq_free_request);
322

323
inline void __blk_mq_end_request(struct request *rq, int error)
324
{
M
Ming Lei 已提交
325 326
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
327
	if (rq->end_io) {
328
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
329 330 331
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
332
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
333
	}
334
}
335
EXPORT_SYMBOL(__blk_mq_end_request);
336

337
void blk_mq_end_request(struct request *rq, int error)
338 339 340
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
341
	__blk_mq_end_request(rq, error);
342
}
343
EXPORT_SYMBOL(blk_mq_end_request);
344

345
static void __blk_mq_complete_request_remote(void *data)
346
{
347
	struct request *rq = data;
348

349
	rq->q->softirq_done_fn(rq);
350 351
}

352
static void blk_mq_ipi_complete_request(struct request *rq)
353 354
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
355
	bool shared = false;
356 357
	int cpu;

C
Christoph Hellwig 已提交
358
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 360 361
		rq->q->softirq_done_fn(rq);
		return;
	}
362 363

	cpu = get_cpu();
C
Christoph Hellwig 已提交
364 365 366 367
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368
		rq->csd.func = __blk_mq_complete_request_remote;
369 370
		rq->csd.info = rq;
		rq->csd.flags = 0;
371
		smp_call_function_single_async(ctx->cpu, &rq->csd);
372
	} else {
373
		rq->q->softirq_done_fn(rq);
374
	}
375 376
	put_cpu();
}
377

378 379 380 381 382
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
383
		blk_mq_end_request(rq, rq->errors);
384 385 386 387
	else
		blk_mq_ipi_complete_request(rq);
}

388 389 390 391 392 393 394 395 396 397
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
398 399 400
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
401
		return;
402 403
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
404 405
}
EXPORT_SYMBOL(blk_mq_complete_request);
406

407 408 409 410 411 412
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

413
void blk_mq_start_request(struct request *rq)
414 415 416 417 418
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
419
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
420 421
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
422

423
	blk_add_timer(rq);
424

425 426 427 428 429 430
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

431 432 433 434 435 436
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
437 438 439 440
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441 442 443 444 445 446 447 448 449

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
450
}
451
EXPORT_SYMBOL(blk_mq_start_request);
452

453
static void __blk_mq_requeue_request(struct request *rq)
454 455 456 457
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
458

459 460 461 462
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
463 464
}

465 466 467 468 469
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
470
	blk_mq_add_to_requeue_list(rq, true);
471 472 473
}
EXPORT_SYMBOL(blk_mq_requeue_request);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

501 502 503 504 505
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

530 531 532 533 534 535
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

536 537 538 539 540 541
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

562 563
static inline bool is_flush_request(struct request *rq,
		struct blk_flush_queue *fq, unsigned int tag)
564
{
565
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566
			fq->flush_rq->tag == tag);
567 568 569 570 571
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
572 573
	/* mq_ctx of flush rq is always cloned from the corresponding req */
	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
574

575
	if (!is_flush_request(rq, fq, tag))
576
		return rq;
577

578
	return fq->flush_rq;
579 580 581
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

582
struct blk_mq_timeout_data {
583 584
	unsigned long next;
	unsigned int next_set;
585 586
};

587
void blk_mq_rq_timed_out(struct request *req, bool reserved)
588
{
589 590
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
591 592 593 594 595 596 597 598 599 600

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
601 602
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
603

604
	if (ops->timeout)
605
		ret = ops->timeout(req, reserved);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
621
}
622

623 624 625 626
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
627

628 629 630 631 632 633 634 635 636
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_complete_request(rq);
		}
637
		return;
638
	}
639 640
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
641

642 643
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
644
			blk_mq_rq_timed_out(rq, reserved);
645 646 647 648
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
649 650
}

651
static void blk_mq_rq_timer(unsigned long priv)
652
{
653 654 655 656 657
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
658
	struct blk_mq_hw_ctx *hctx;
659
	int i;
660

661 662 663 664 665
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
666
		if (!blk_mq_hw_queue_mapped(hctx))
667 668
			continue;

669
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
670
	}
671

672 673 674
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
675
	} else {
676 677 678 679 680
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
681
	}
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

723 724 725 726 727 728 729 730 731
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

732
	for (i = 0; i < hctx->ctx_map.size; i++) {
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

757 758 759 760 761 762 763 764 765 766 767
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
768 769
	LIST_HEAD(driver_list);
	struct list_head *dptr;
770
	int queued;
771

772
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
773

774
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
775 776 777 778 779 780 781
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
782
	flush_busy_ctxs(hctx, &rq_list);
783 784 785 786 787 788 789 790 791 792 793 794

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

795 796 797 798 799 800
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

801 802 803
	/*
	 * Now process all the entries, sending them to the driver.
	 */
804
	queued = 0;
805
	while (!list_empty(&rq_list)) {
806
		struct blk_mq_queue_data bd;
807 808 809 810 811
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

812 813 814 815 816
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
817 818 819 820 821 822
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
823
			__blk_mq_requeue_request(rq);
824 825 826 827
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
828
			rq->errors = -EIO;
829
			blk_mq_end_request(rq, rq->errors);
830 831 832 833 834
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
835 836 837 838 839 840 841

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
857 858 859 860 861 862 863 864 865 866
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
867 868 869
	}
}

870 871 872 873 874 875 876 877
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
878 879
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
880 881

	if (--hctx->next_cpu_batch <= 0) {
882
		int cpu = hctx->next_cpu, next_cpu;
883 884 885 886 887 888 889

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
890 891

		return cpu;
892 893
	}

894
	return hctx->next_cpu;
895 896
}

897 898
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
899 900
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
901 902
		return;

903
	if (!async) {
904 905
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
906
			__blk_mq_run_hw_queue(hctx);
907
			put_cpu();
908 909
			return;
		}
910

911
		put_cpu();
912
	}
913

914 915
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
916 917
}

918
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
919 920 921 922 923 924 925
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
926
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
927 928
			continue;

929
		blk_mq_run_hw_queue(hctx, async);
930 931
	}
}
932
EXPORT_SYMBOL(blk_mq_run_hw_queues);
933 934 935

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
936 937
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
938 939 940 941
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

942 943 944 945 946 947 948 949 950 951
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

952 953 954
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
955

956
	blk_mq_run_hw_queue(hctx, false);
957 958 959
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

960 961 962 963 964 965 966 967 968 969
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

970
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
971 972 973 974 975 976 977 978 979
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
980
		blk_mq_run_hw_queue(hctx, async);
981 982 983 984
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

985
static void blk_mq_run_work_fn(struct work_struct *work)
986 987 988
{
	struct blk_mq_hw_ctx *hctx;

989
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
990

991 992 993
	__blk_mq_run_hw_queue(hctx);
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1006 1007
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1008

1009 1010
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1011 1012 1013
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1014
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1015
				    struct request *rq, bool at_head)
1016 1017 1018
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1019 1020
	trace_block_rq_insert(hctx->queue, rq);

1021 1022 1023 1024
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1025

1026 1027 1028
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1029 1030
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1031
{
1032
	struct request_queue *q = rq->q;
1033
	struct blk_mq_hw_ctx *hctx;
1034 1035 1036 1037 1038
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1039 1040 1041

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1042 1043 1044
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1045 1046 1047

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1048 1049

	blk_mq_put_ctx(current_ctx);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1081
		__blk_mq_insert_request(hctx, rq, false);
1082 1083 1084 1085
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1086
	blk_mq_put_ctx(current_ctx);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1149

1150
	if (blk_do_io_stat(rq))
1151
		blk_account_io_start(rq, 1);
1152 1153
}

1154 1155 1156 1157 1158 1159
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1160 1161 1162
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1163
{
1164
	if (!hctx_allow_merges(hctx)) {
1165 1166 1167 1168 1169 1170 1171
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1172 1173
		struct request_queue *q = hctx->queue;

1174 1175 1176 1177 1178
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1179

1180 1181 1182
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1183
	}
1184
}
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1199
	struct blk_mq_alloc_data alloc_data;
1200

1201
	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1202
		bio_io_error(bio);
1203
		return NULL;
1204 1205 1206 1207 1208
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1209
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1210
		rw |= REQ_SYNC;
1211

1212
	trace_block_getrq(q, bio, rw);
1213 1214 1215
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1216
	if (unlikely(!rq)) {
1217
		__blk_mq_run_hw_queue(hctx);
1218 1219
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1220 1221

		ctx = blk_mq_get_ctx(q);
1222
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1223 1224 1225 1226 1227
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1228 1229 1230
	}

	hctx->queued++;
1231 1232 1233 1234 1235
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static int blk_mq_direct_issue_request(struct request *rq)
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	if (ret == BLK_MQ_RQ_QUEUE_OK)
		return 0;
	else {
		__blk_mq_requeue_request(rq);

		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
			return 0;
		}
		return -1;
	}
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1279 1280
	unsigned int request_count = 0;
	struct blk_plug *plug;
1281
	struct request *same_queue_rq = NULL;
1282 1283 1284 1285

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1286
		bio_io_error(bio);
1287 1288 1289
		return;
	}

1290 1291
	blk_queue_split(q, &bio, q->bio_split);

1292
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1293
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1294 1295
		return;

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1306
	plug = current->plug;
1307 1308 1309 1310 1311
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1312 1313 1314
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1315 1316 1317 1318

		blk_mq_bio_to_request(rq, bio);

		/*
1319 1320 1321
		 * we do limited pluging. If bio can be merged, do merge.
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1322
		 */
1323
		if (plug) {
1324 1325 1326 1327 1328 1329
			/*
			 * The plug list might get flushed before this. If that
			 * happens, same_queue_rq is invalid and plug list is empty
			 **/
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1330
				list_del_init(&old_rq->queuelist);
1331
			}
1332 1333 1334 1335 1336
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1337
			return;
1338 1339 1340 1341
		if (!blk_mq_direct_issue_request(old_rq))
			return;
		blk_mq_insert_request(old_rq, false, true, true);
		return;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1365 1366
	struct blk_plug *plug;
	unsigned int request_count = 0;
1367 1368 1369 1370 1371 1372
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1373
		bio_io_error(bio);
1374 1375 1376
		return;
	}

1377 1378
	blk_queue_split(q, &bio, q->bio_split);

1379
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1380
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1381 1382 1383
		return;

	rq = blk_mq_map_request(q, bio, &data);
1384 1385
	if (unlikely(!rq))
		return;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1398 1399 1400 1401 1402 1403 1404 1405
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
		if (list_empty(&plug->mq_list))
			trace_block_plug(q);
		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1406
		}
1407 1408 1409
		list_add_tail(&rq->queuelist, &plug->mq_list);
		blk_mq_put_ctx(data.ctx);
		return;
1410 1411
	}

1412 1413 1414 1415 1416 1417 1418 1419 1420
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1421 1422
	}

1423
	blk_mq_put_ctx(data.ctx);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1435 1436
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1437
{
1438
	struct page *page;
1439

1440
	if (tags->rqs && set->ops->exit_request) {
1441
		int i;
1442

1443 1444
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1445
				continue;
1446 1447
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1448
			tags->rqs[i] = NULL;
1449
		}
1450 1451
	}

1452 1453
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1454
		list_del_init(&page->lru);
1455 1456 1457
		__free_pages(page, page->private);
	}

1458
	kfree(tags->rqs);
1459

1460
	blk_mq_free_tags(tags);
1461 1462 1463 1464
}

static size_t order_to_size(unsigned int order)
{
1465
	return (size_t)PAGE_SIZE << order;
1466 1467
}

1468 1469
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1470
{
1471
	struct blk_mq_tags *tags;
1472 1473 1474
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1475
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1476 1477
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1478 1479
	if (!tags)
		return NULL;
1480

1481 1482
	INIT_LIST_HEAD(&tags->page_list);

1483 1484 1485
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1486 1487 1488 1489
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1490 1491 1492 1493 1494

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1495
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1496
				cache_line_size());
1497
	left = rq_size * set->queue_depth;
1498

1499
	for (i = 0; i < set->queue_depth; ) {
1500 1501 1502 1503 1504 1505 1506 1507 1508
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1509
			page = alloc_pages_node(set->numa_node,
1510
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1511
				this_order);
1512 1513 1514 1515 1516 1517 1518 1519 1520
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1521
			goto fail;
1522 1523

		page->private = this_order;
1524
		list_add_tail(&page->lru, &tags->page_list);
1525 1526 1527

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1528
		to_do = min(entries_per_page, set->queue_depth - i);
1529 1530
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1531 1532 1533 1534
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1535 1536
						set->numa_node)) {
					tags->rqs[i] = NULL;
1537
					goto fail;
1538
				}
1539 1540
			}

1541 1542 1543 1544
			p += rq_size;
			i++;
		}
	}
1545
	return tags;
1546

1547 1548 1549
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1627 1628 1629 1630 1631

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1632 1633 1634 1635

	return NOTIFY_OK;
}

1636
/* hctx->ctxs will be freed in queue's release handler */
1637 1638 1639 1640
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1641 1642
	unsigned flush_start_tag = set->queue_depth;

1643 1644
	blk_mq_tag_idle(hctx);

1645 1646 1647 1648 1649
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1650 1651 1652 1653
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1654
	blk_free_flush_queue(hctx->fq);
1655 1656 1657
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1667
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1677
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1678 1679 1680
		free_cpumask_var(hctx->cpumask);
}

1681 1682 1683
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1684
{
1685
	int node;
1686
	unsigned flush_start_tag = set->queue_depth;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1705 1706

	/*
1707 1708
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1709
	 */
1710 1711 1712 1713
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1714

1715 1716
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1717

1718
	hctx->nr_ctx = 0;
1719

1720 1721 1722
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1723

1724 1725 1726
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1727

1728 1729 1730 1731 1732
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1733

1734
	return 0;
1735

1736 1737 1738 1739 1740
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1741 1742 1743 1744 1745 1746
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1747

1748 1749
	return -1;
}
1750

1751 1752 1753 1754 1755
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1756

1757 1758 1759 1760 1761
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1762 1763 1764 1765 1766 1767 1768 1769 1770
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1771
	blk_mq_exit_hw_queues(q, set, i);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1795 1796
		hctx = q->mq_ops->map_queue(q, i);

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1811
	struct blk_mq_tag_set *set = q->tag_set;
1812 1813

	queue_for_each_hw_ctx(q, hctx, i) {
1814
		cpumask_clear(hctx->cpumask);
1815 1816 1817 1818 1819 1820 1821 1822
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1823 1824 1825
		if (!cpu_online(i))
			continue;

1826
		hctx = q->mq_ops->map_queue(q, i);
1827
		cpumask_set_cpu(i, hctx->cpumask);
K
Keith Busch 已提交
1828
		cpumask_set_cpu(i, hctx->tags->cpumask);
1829 1830 1831
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1832 1833

	queue_for_each_hw_ctx(q, hctx, i) {
1834 1835
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1836
		/*
1837 1838
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1839 1840 1841 1842 1843 1844
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1845
			hctx->tags = NULL;
1846 1847 1848
			continue;
		}

M
Ming Lei 已提交
1849 1850 1851 1852 1853 1854
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1855 1856 1857 1858 1859
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1860
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1861

1862 1863 1864
		/*
		 * Initialize batch roundrobin counts
		 */
1865 1866 1867
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1868 1869
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1928 1929 1930 1931
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1932
		kfree(hctx);
1933
	}
1934 1935 1936 1937 1938 1939 1940

	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1941
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1959 1960
{
	struct blk_mq_hw_ctx **hctxs;
1961
	struct blk_mq_ctx __percpu *ctx;
1962
	unsigned int *map;
1963 1964 1965 1966 1967 1968
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1969 1970
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1971 1972 1973 1974

	if (!hctxs)
		goto err_percpu;

1975 1976 1977 1978
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1979
	for (i = 0; i < set->nr_hw_queues; i++) {
1980 1981
		int node = blk_mq_hw_queue_to_node(map, i);

1982 1983
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1984 1985 1986
		if (!hctxs[i])
			goto err_hctxs;

1987 1988
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1989 1990
			goto err_hctxs;

1991
		atomic_set(&hctxs[i]->nr_active, 0);
1992
		hctxs[i]->numa_node = node;
1993 1994 1995
		hctxs[i]->queue_num = i;
	}

1996 1997 1998 1999
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
2000
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
2001
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
2002
		goto err_hctxs;
2003

2004
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2005
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2006 2007

	q->nr_queues = nr_cpu_ids;
2008
	q->nr_hw_queues = set->nr_hw_queues;
2009
	q->mq_map = map;
2010 2011 2012 2013

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2014
	q->mq_ops = set->ops;
2015
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2016

2017 2018 2019
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2020 2021
	q->sg_reserved_size = INT_MAX;

2022 2023 2024 2025
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2026 2027 2028 2029 2030
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2031 2032 2033 2034 2035
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2036 2037
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2038

2039
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2040

2041
	if (blk_mq_init_hw_queues(q, set))
2042
		goto err_hctxs;
2043

2044 2045 2046 2047
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

2048 2049
	blk_mq_add_queue_tag_set(set, q);

2050 2051
	blk_mq_map_swqueue(q);

2052
	return q;
2053

2054
err_hctxs:
2055
	kfree(map);
2056
	for (i = 0; i < set->nr_hw_queues; i++) {
2057 2058
		if (!hctxs[i])
			break;
2059
		free_cpumask_var(hctxs[i]->cpumask);
2060
		kfree(hctxs[i]);
2061
	}
2062
err_map:
2063 2064 2065 2066 2067
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2068
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2069 2070 2071

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2072
	struct blk_mq_tag_set	*set = q->tag_set;
2073

2074 2075
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2076 2077
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2078

2079
	percpu_ref_exit(&q->mq_usage_counter);
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	kfree(q->mq_map);

	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
2091
static void blk_mq_queue_reinit(struct request_queue *q)
2092
{
2093
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2094

2095 2096
	blk_mq_sysfs_unregister(q);

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

2107
	blk_mq_sysfs_register(q);
2108 2109
}

2110 2111
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2112 2113 2114 2115
{
	struct request_queue *q;

	/*
2116 2117 2118 2119
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
2120 2121 2122 2123 2124 2125
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2136
	list_for_each_entry(q, &all_q_list, all_q_node) {
2137 2138
		blk_mq_freeze_queue_wait(q);

2139 2140 2141 2142 2143 2144 2145
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2146 2147
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
2148 2149 2150 2151

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2152 2153 2154 2155
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2210 2211 2212 2213 2214 2215
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2216 2217 2218 2219 2220 2221
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2222 2223
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2224 2225
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2226 2227
	if (!set->nr_hw_queues)
		return -EINVAL;
2228
	if (!set->queue_depth)
2229 2230 2231 2232
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2233
	if (!set->ops->queue_rq || !set->ops->map_queue)
2234 2235
		return -EINVAL;

2236 2237 2238 2239 2240
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2241

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2252 2253
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2254 2255
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2256
		return -ENOMEM;
2257

2258 2259
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2260

2261 2262 2263
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2264
	return 0;
2265
enomem:
2266 2267
	kfree(set->tags);
	set->tags = NULL;
2268 2269 2270 2271 2272 2273 2274 2275
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2276
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2277
		if (set->tags[i]) {
2278
			blk_mq_free_rq_map(set, set->tags[i], i);
K
Keith Busch 已提交
2279 2280
			free_cpumask_var(set->tags[i]->cpumask);
		}
2281 2282
	}

M
Ming Lei 已提交
2283
	kfree(set->tags);
2284
	set->tags = NULL;
2285 2286 2287
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2320 2321 2322 2323
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2324
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2325 2326 2327 2328

	return 0;
}
subsys_initcall(blk_mq_init);