hw-me.c 30.4 KB
Newer Older
O
Oren Weil 已提交
1 2 3
/*
 *
 * Intel Management Engine Interface (Intel MEI) Linux driver
4
 * Copyright (c) 2003-2012, Intel Corporation.
O
Oren Weil 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

#include <linux/pci.h>
18 19 20

#include <linux/kthread.h>
#include <linux/interrupt.h>
21 22

#include "mei_dev.h"
23 24
#include "hbm.h"

25 26
#include "hw-me.h"
#include "hw-me-regs.h"
27

T
Tomas Winkler 已提交
28 29
#include "mei-trace.h"

30
/**
31
 * mei_me_reg_read - Reads 32bit data from the mei device
32
 *
33
 * @hw: the me hardware structure
34 35
 * @offset: offset from which to read the data
 *
36
 * Return: register value (u32)
37
 */
38
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
39 40
			       unsigned long offset)
{
41
	return ioread32(hw->mem_addr + offset);
42 43 44 45
}


/**
46
 * mei_me_reg_write - Writes 32bit data to the mei device
47
 *
48
 * @hw: the me hardware structure
49 50 51
 * @offset: offset from which to write the data
 * @value: register value to write (u32)
 */
52
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
53 54
				 unsigned long offset, u32 value)
{
55
	iowrite32(value, hw->mem_addr + offset);
56
}
O
Oren Weil 已提交
57

58
/**
59
 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
T
Tomas Winkler 已提交
60
 *  read window register
61 62 63
 *
 * @dev: the device structure
 *
64
 * Return: ME_CB_RW register value (u32)
65
 */
66
static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
67
{
68
	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
69
}
70 71 72 73 74 75 76 77 78 79 80 81

/**
 * mei_me_hcbww_write - write 32bit data to the host circular buffer
 *
 * @dev: the device structure
 * @data: 32bit data to be written to the host circular buffer
 */
static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
{
	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
}

82
/**
83
 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
84
 *
85
 * @dev: the device structure
86
 *
87
 * Return: ME_CSR_HA register value (u32)
88
 */
89
static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
90
{
T
Tomas Winkler 已提交
91 92 93 94 95 96
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);

	return reg;
97
}
O
Oren Weil 已提交
98 99

/**
T
Tomas Winkler 已提交
100 101
 * mei_hcsr_read - Reads 32bit data from the host CSR
 *
102
 * @dev: the device structure
T
Tomas Winkler 已提交
103
 *
104
 * Return: H_CSR register value (u32)
T
Tomas Winkler 已提交
105
 */
106
static inline u32 mei_hcsr_read(const struct mei_device *dev)
T
Tomas Winkler 已提交
107
{
T
Tomas Winkler 已提交
108 109 110 111 112 113
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);

	return reg;
114 115 116 117 118 119 120 121 122 123
}

/**
 * mei_hcsr_write - writes H_CSR register to the mei device
 *
 * @dev: the device structure
 * @reg: new register value
 */
static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
{
T
Tomas Winkler 已提交
124
	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
125
	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
T
Tomas Winkler 已提交
126 127 128 129
}

/**
 * mei_hcsr_set - writes H_CSR register to the mei device,
O
Oren Weil 已提交
130 131
 * and ignores the H_IS bit for it is write-one-to-zero.
 *
132 133
 * @dev: the device structure
 * @reg: new register value
O
Oren Weil 已提交
134
 */
135
static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
O
Oren Weil 已提交
136
{
137
	reg &= ~H_CSR_IS_MASK;
138
	mei_hcsr_write(dev, reg);
O
Oren Weil 已提交
139 140
}

141 142 143 144 145 146 147 148 149 150 151 152
/**
 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 *
 * @dev: the device structure
 *
 * Return: H_D0I3C register value (u32)
 */
static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
{
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
153
	trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
154 155 156 157 158 159 160 161 162 163 164 165

	return reg;
}

/**
 * mei_me_d0i3c_write - writes H_D0I3C register to device
 *
 * @dev: the device structure
 * @reg: new register value
 */
static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
{
166
	trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
167 168 169
	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
}

170 171 172 173 174
/**
 * mei_me_fw_status - read fw status register from pci config space
 *
 * @dev: mei device
 * @fw_status: fw status register values
A
Alexander Usyskin 已提交
175 176
 *
 * Return: 0 on success, error otherwise
177 178 179 180 181
 */
static int mei_me_fw_status(struct mei_device *dev,
			    struct mei_fw_status *fw_status)
{
	struct pci_dev *pdev = to_pci_dev(dev->dev);
182 183
	struct mei_me_hw *hw = to_me_hw(dev);
	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
184 185 186 187 188 189 190 191
	int ret;
	int i;

	if (!fw_status)
		return -EINVAL;

	fw_status->count = fw_src->count;
	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
192 193 194 195 196
		ret = pci_read_config_dword(pdev, fw_src->status[i],
					    &fw_status->status[i]);
		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
				       fw_src->status[i],
				       fw_status->status[i]);
197 198 199 200 201 202
		if (ret)
			return ret;
	}

	return 0;
}
203 204

/**
205
 * mei_me_hw_config - configure hw dependent settings
206 207 208
 *
 * @dev: mei device
 */
209
static void mei_me_hw_config(struct mei_device *dev)
210
{
211
	struct pci_dev *pdev = to_pci_dev(dev->dev);
212
	struct mei_me_hw *hw = to_me_hw(dev);
213 214
	u32 hcsr, reg;

215
	/* Doesn't change in runtime */
216
	hcsr = mei_hcsr_read(dev);
217
	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
218

219 220
	reg = 0;
	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
221
	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
222 223
	hw->d0i3_supported =
		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
224 225 226 227 228 229 230

	hw->pg_state = MEI_PG_OFF;
	if (hw->d0i3_supported) {
		reg = mei_me_d0i3c_read(dev);
		if (reg & H_D0I3C_I3)
			hw->pg_state = MEI_PG_ON;
	}
231
}
232 233 234 235 236

/**
 * mei_me_pg_state  - translate internal pg state
 *   to the mei power gating state
 *
A
Alexander Usyskin 已提交
237 238 239
 * @dev:  mei device
 *
 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
240 241 242
 */
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
{
243
	struct mei_me_hw *hw = to_me_hw(dev);
244

245
	return hw->pg_state;
246 247
}

O
Oren Weil 已提交
248
/**
A
Alexander Usyskin 已提交
249
 * mei_me_intr_clear - clear and stop interrupts
250 251 252
 *
 * @dev: the device structure
 */
253
static void mei_me_intr_clear(struct mei_device *dev)
254
{
255
	u32 hcsr = mei_hcsr_read(dev);
256

257
	if (hcsr & H_CSR_IS_MASK)
258
		mei_hcsr_write(dev, hcsr);
259 260
}
/**
261
 * mei_me_intr_enable - enables mei device interrupts
O
Oren Weil 已提交
262 263 264
 *
 * @dev: the device structure
 */
265
static void mei_me_intr_enable(struct mei_device *dev)
O
Oren Weil 已提交
266
{
267
	u32 hcsr = mei_hcsr_read(dev);
268

269
	hcsr |= H_CSR_IE_MASK;
270
	mei_hcsr_set(dev, hcsr);
O
Oren Weil 已提交
271 272 273
}

/**
A
Alexander Usyskin 已提交
274
 * mei_me_intr_disable - disables mei device interrupts
O
Oren Weil 已提交
275 276 277
 *
 * @dev: the device structure
 */
278
static void mei_me_intr_disable(struct mei_device *dev)
O
Oren Weil 已提交
279
{
280
	u32 hcsr = mei_hcsr_read(dev);
281

282
	hcsr  &= ~H_CSR_IE_MASK;
283
	mei_hcsr_set(dev, hcsr);
O
Oren Weil 已提交
284 285
}

286 287 288 289 290 291 292
/**
 * mei_me_hw_reset_release - release device from the reset
 *
 * @dev: the device structure
 */
static void mei_me_hw_reset_release(struct mei_device *dev)
{
293
	u32 hcsr = mei_hcsr_read(dev);
294 295 296

	hcsr |= H_IG;
	hcsr &= ~H_RST;
297
	mei_hcsr_set(dev, hcsr);
T
Tomas Winkler 已提交
298 299 300

	/* complete this write before we set host ready on another CPU */
	mmiowb();
301
}
302

303
/**
304
 * mei_me_host_set_ready - enable device
305
 *
A
Alexander Usyskin 已提交
306
 * @dev: mei device
307
 */
308
static void mei_me_host_set_ready(struct mei_device *dev)
309
{
310
	u32 hcsr = mei_hcsr_read(dev);
311

312
	hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
313
	mei_hcsr_set(dev, hcsr);
314
}
A
Alexander Usyskin 已提交
315

316
/**
317
 * mei_me_host_is_ready - check whether the host has turned ready
318
 *
319 320
 * @dev: mei device
 * Return: bool
321
 */
322
static bool mei_me_host_is_ready(struct mei_device *dev)
323
{
324
	u32 hcsr = mei_hcsr_read(dev);
325

326
	return (hcsr & H_RDY) == H_RDY;
327 328 329
}

/**
330
 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
331
 *
332 333
 * @dev: mei device
 * Return: bool
334
 */
335
static bool mei_me_hw_is_ready(struct mei_device *dev)
336
{
337
	u32 mecsr = mei_me_mecsr_read(dev);
338

339
	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
340
}
341

A
Alexander Usyskin 已提交
342 343 344 345 346 347 348
/**
 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 *  or timeout is reached
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
T
Tomas Winkler 已提交
349 350 351
static int mei_me_hw_ready_wait(struct mei_device *dev)
{
	mutex_unlock(&dev->device_lock);
352
	wait_event_timeout(dev->wait_hw_ready,
353
			dev->recvd_hw_ready,
354
			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
T
Tomas Winkler 已提交
355
	mutex_lock(&dev->device_lock);
356
	if (!dev->recvd_hw_ready) {
357
		dev_err(dev->dev, "wait hw ready failed\n");
358
		return -ETIME;
T
Tomas Winkler 已提交
359 360
	}

361
	mei_me_hw_reset_release(dev);
T
Tomas Winkler 已提交
362 363 364 365
	dev->recvd_hw_ready = false;
	return 0;
}

A
Alexander Usyskin 已提交
366 367 368 369 370 371
/**
 * mei_me_hw_start - hw start routine
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
T
Tomas Winkler 已提交
372 373 374
static int mei_me_hw_start(struct mei_device *dev)
{
	int ret = mei_me_hw_ready_wait(dev);
375

T
Tomas Winkler 已提交
376 377
	if (ret)
		return ret;
378
	dev_dbg(dev->dev, "hw is ready\n");
T
Tomas Winkler 已提交
379 380 381 382 383 384

	mei_me_host_set_ready(dev);
	return ret;
}


O
Oren Weil 已提交
385
/**
386
 * mei_hbuf_filled_slots - gets number of device filled buffer slots
O
Oren Weil 已提交
387
 *
388
 * @dev: the device structure
O
Oren Weil 已提交
389
 *
390
 * Return: number of filled slots
O
Oren Weil 已提交
391
 */
392
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
O
Oren Weil 已提交
393
{
394
	u32 hcsr;
O
Oren Weil 已提交
395 396
	char read_ptr, write_ptr;

397
	hcsr = mei_hcsr_read(dev);
398

399 400
	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
O
Oren Weil 已提交
401 402 403 404 405

	return (unsigned char) (write_ptr - read_ptr);
}

/**
406
 * mei_me_hbuf_is_empty - checks if host buffer is empty.
O
Oren Weil 已提交
407 408 409
 *
 * @dev: the device structure
 *
410
 * Return: true if empty, false - otherwise.
O
Oren Weil 已提交
411
 */
412
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
O
Oren Weil 已提交
413
{
414
	return mei_hbuf_filled_slots(dev) == 0;
O
Oren Weil 已提交
415 416 417
}

/**
418
 * mei_me_hbuf_empty_slots - counts write empty slots.
O
Oren Weil 已提交
419 420 421
 *
 * @dev: the device structure
 *
422
 * Return: -EOVERFLOW if overflow, otherwise empty slots count
O
Oren Weil 已提交
423
 */
424
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
O
Oren Weil 已提交
425
{
426
	unsigned char filled_slots, empty_slots;
O
Oren Weil 已提交
427

428
	filled_slots = mei_hbuf_filled_slots(dev);
429
	empty_slots = dev->hbuf_depth - filled_slots;
O
Oren Weil 已提交
430 431

	/* check for overflow */
432
	if (filled_slots > dev->hbuf_depth)
O
Oren Weil 已提交
433 434 435 436 437
		return -EOVERFLOW;

	return empty_slots;
}

A
Alexander Usyskin 已提交
438 439 440 441 442 443 444
/**
 * mei_me_hbuf_max_len - returns size of hw buffer.
 *
 * @dev: the device structure
 *
 * Return: size of hw buffer in bytes
 */
445 446 447 448 449 450
static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
{
	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
}


O
Oren Weil 已提交
451
/**
452
 * mei_me_write_message - writes a message to mei device.
O
Oren Weil 已提交
453 454
 *
 * @dev: the device structure
455
 * @header: mei HECI header of message
456
 * @buf: message payload will be written
O
Oren Weil 已提交
457
 *
458
 * Return: -EIO if write has failed
O
Oren Weil 已提交
459
 */
460 461 462
static int mei_me_write_message(struct mei_device *dev,
			struct mei_msg_hdr *header,
			unsigned char *buf)
O
Oren Weil 已提交
463
{
T
Tomas Winkler 已提交
464
	unsigned long rem;
465
	unsigned long length = header->length;
466
	u32 *reg_buf = (u32 *)buf;
467
	u32 hcsr;
T
Tomas Winkler 已提交
468
	u32 dw_cnt;
469 470
	int i;
	int empty_slots;
O
Oren Weil 已提交
471

472
	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
O
Oren Weil 已提交
473

474
	empty_slots = mei_hbuf_empty_slots(dev);
475
	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
O
Oren Weil 已提交
476

477
	dw_cnt = mei_data2slots(length);
478
	if (empty_slots < 0 || dw_cnt > empty_slots)
479
		return -EMSGSIZE;
O
Oren Weil 已提交
480

481
	mei_me_hcbww_write(dev, *((u32 *) header));
O
Oren Weil 已提交
482

483
	for (i = 0; i < length / 4; i++)
484
		mei_me_hcbww_write(dev, reg_buf[i]);
O
Oren Weil 已提交
485

486 487 488
	rem = length & 0x3;
	if (rem > 0) {
		u32 reg = 0;
489

490
		memcpy(&reg, &buf[length - rem], rem);
491
		mei_me_hcbww_write(dev, reg);
O
Oren Weil 已提交
492 493
	}

494 495
	hcsr = mei_hcsr_read(dev) | H_IG;
	mei_hcsr_set(dev, hcsr);
496
	if (!mei_me_hw_is_ready(dev))
497
		return -EIO;
O
Oren Weil 已提交
498

499
	return 0;
O
Oren Weil 已提交
500 501 502
}

/**
503
 * mei_me_count_full_read_slots - counts read full slots.
O
Oren Weil 已提交
504 505 506
 *
 * @dev: the device structure
 *
507
 * Return: -EOVERFLOW if overflow, otherwise filled slots count
O
Oren Weil 已提交
508
 */
509
static int mei_me_count_full_read_slots(struct mei_device *dev)
O
Oren Weil 已提交
510
{
511
	u32 me_csr;
O
Oren Weil 已提交
512 513 514
	char read_ptr, write_ptr;
	unsigned char buffer_depth, filled_slots;

515
	me_csr = mei_me_mecsr_read(dev);
516 517 518
	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
O
Oren Weil 已提交
519 520 521 522 523 524
	filled_slots = (unsigned char) (write_ptr - read_ptr);

	/* check for overflow */
	if (filled_slots > buffer_depth)
		return -EOVERFLOW;

525
	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
O
Oren Weil 已提交
526 527 528 529
	return (int)filled_slots;
}

/**
530
 * mei_me_read_slots - reads a message from mei device.
O
Oren Weil 已提交
531 532 533 534
 *
 * @dev: the device structure
 * @buffer: message buffer will be written
 * @buffer_length: message size will be read
A
Alexander Usyskin 已提交
535 536
 *
 * Return: always 0
O
Oren Weil 已提交
537
 */
538
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
539
		    unsigned long buffer_length)
O
Oren Weil 已提交
540
{
541
	u32 *reg_buf = (u32 *)buffer;
542
	u32 hcsr;
O
Oren Weil 已提交
543

544
	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
545
		*reg_buf++ = mei_me_mecbrw_read(dev);
O
Oren Weil 已提交
546 547

	if (buffer_length > 0) {
548
		u32 reg = mei_me_mecbrw_read(dev);
549

550
		memcpy(reg_buf, &reg, buffer_length);
O
Oren Weil 已提交
551 552
	}

553 554
	hcsr = mei_hcsr_read(dev) | H_IG;
	mei_hcsr_set(dev, hcsr);
555
	return 0;
O
Oren Weil 已提交
556 557
}

558
/**
559
 * mei_me_pg_set - write pg enter register
560 561 562
 *
 * @dev: the device structure
 */
563
static void mei_me_pg_set(struct mei_device *dev)
564 565
{
	struct mei_me_hw *hw = to_me_hw(dev);
T
Tomas Winkler 已提交
566 567 568 569
	u32 reg;

	reg = mei_me_reg_read(hw, H_HPG_CSR);
	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
570

571
	reg |= H_HPG_CSR_PGI;
T
Tomas Winkler 已提交
572 573

	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
574 575 576 577
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

/**
578
 * mei_me_pg_unset - write pg exit register
579 580 581
 *
 * @dev: the device structure
 */
582
static void mei_me_pg_unset(struct mei_device *dev)
583 584
{
	struct mei_me_hw *hw = to_me_hw(dev);
T
Tomas Winkler 已提交
585 586 587 588
	u32 reg;

	reg = mei_me_reg_read(hw, H_HPG_CSR);
	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
589 590 591 592

	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");

	reg |= H_HPG_CSR_PGIHEXR;
T
Tomas Winkler 已提交
593 594

	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
595 596 597
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

598
/**
599
 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
600 601 602
 *
 * @dev: the device structure
 *
603
 * Return: 0 on success an error code otherwise
604
 */
605
static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	dev->pg_event = MEI_PG_EVENT_WAIT;

	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
	if (ret)
		return ret;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
623
		mei_me_pg_set(dev);
624 625 626 627 628 629 630 631 632 633 634 635
		ret = 0;
	} else {
		ret = -ETIME;
	}

	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_ON;

	return ret;
}

/**
636
 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
637 638 639
 *
 * @dev: the device structure
 *
640
 * Return: 0 on success an error code otherwise
641
 */
642
static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
643 644 645 646 647 648 649 650 651 652
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
		goto reply;

	dev->pg_event = MEI_PG_EVENT_WAIT;

653
	mei_me_pg_unset(dev);
654 655 656 657 658 659 660

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

reply:
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
		ret = -ETIME;
		goto out;
	}

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
	if (ret)
		return ret;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
		ret = 0;
678 679 680
	else
		ret = -ETIME;

681
out:
682 683 684 685 686 687
	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_OFF;

	return ret;
}

688 689 690 691 692 693 694 695 696 697 698 699 700
/**
 * mei_me_pg_in_transition - is device now in pg transition
 *
 * @dev: the device structure
 *
 * Return: true if in pg transition, false otherwise
 */
static bool mei_me_pg_in_transition(struct mei_device *dev)
{
	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
}

701 702 703 704 705
/**
 * mei_me_pg_is_enabled - detect if PG is supported by HW
 *
 * @dev: the device structure
 *
706
 * Return: true is pg supported, false otherwise
707 708 709
 */
static bool mei_me_pg_is_enabled(struct mei_device *dev)
{
710
	struct mei_me_hw *hw = to_me_hw(dev);
711
	u32 reg = mei_me_mecsr_read(dev);
712

713 714 715
	if (hw->d0i3_supported)
		return true;

716 717 718
	if ((reg & ME_PGIC_HRA) == 0)
		goto notsupported;

719
	if (!dev->hbm_f_pg_supported)
720 721 722 723 724
		goto notsupported;

	return true;

notsupported:
725 726
	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
		hw->d0i3_supported,
727 728 729 730 731 732 733 734 735
		!!(reg & ME_PGIC_HRA),
		dev->version.major_version,
		dev->version.minor_version,
		HBM_MAJOR_VERSION_PGI,
		HBM_MINOR_VERSION_PGI);

	return false;
}

736
/**
737
 * mei_me_d0i3_set - write d0i3 register bit on mei device.
738 739
 *
 * @dev: the device structure
740 741 742
 * @intr: ask for interrupt
 *
 * Return: D0I3C register value
743
 */
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
{
	u32 reg = mei_me_d0i3c_read(dev);

	reg |= H_D0I3C_I3;
	if (intr)
		reg |= H_D0I3C_IR;
	else
		reg &= ~H_D0I3C_IR;
	mei_me_d0i3c_write(dev, reg);
	/* read it to ensure HW consistency */
	reg = mei_me_d0i3c_read(dev);
	return reg;
}

/**
 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 *
 * @dev: the device structure
 *
 * Return: D0I3C register value
 */
static u32 mei_me_d0i3_unset(struct mei_device *dev)
{
	u32 reg = mei_me_d0i3c_read(dev);

	reg &= ~H_D0I3C_I3;
	reg |= H_D0I3C_IR;
	mei_me_d0i3c_write(dev, reg);
	/* read it to ensure HW consistency */
	reg = mei_me_d0i3c_read(dev);
	return reg;
}

/**
 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_enter_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
	unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;
	u32 reg;

	reg = mei_me_d0i3c_read(dev);
	if (reg & H_D0I3C_I3) {
		/* we are in d0i3, nothing to do */
		dev_dbg(dev->dev, "d0i3 set not needed\n");
		ret = 0;
		goto on;
	}

	/* PGI entry procedure */
	dev->pg_event = MEI_PG_EVENT_WAIT;

	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
	if (ret)
		/* FIXME: should we reset here? */
		goto out;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
		ret = -ETIME;
		goto out;
	}
	/* end PGI entry procedure */

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;

	reg = mei_me_d0i3_set(dev, true);
	if (!(reg & H_D0I3C_CIP)) {
		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
		ret = 0;
		goto on;
	}

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
		reg = mei_me_d0i3c_read(dev);
		if (!(reg & H_D0I3C_I3)) {
			ret = -ETIME;
			goto out;
		}
	}

	ret = 0;
on:
	hw->pg_state = MEI_PG_ON;
out:
	dev->pg_event = MEI_PG_EVENT_IDLE;
	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
	return ret;
}

/**
 * mei_me_d0i3_enter - perform d0i3 entry procedure
 *   no hbm PG handshake
 *   no waiting for confirmation; runs with interrupts
 *   disabled
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_enter(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 reg;

	reg = mei_me_d0i3c_read(dev);
	if (reg & H_D0I3C_I3) {
		/* we are in d0i3, nothing to do */
		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
		goto on;
	}

	mei_me_d0i3_set(dev, false);
on:
	hw->pg_state = MEI_PG_ON;
	dev->pg_event = MEI_PG_EVENT_IDLE;
	dev_dbg(dev->dev, "d0i3 enter\n");
	return 0;
}

/**
 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_exit_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
	int ret;
	u32 reg;

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;

	reg = mei_me_d0i3c_read(dev);
	if (!(reg & H_D0I3C_I3)) {
		/* we are not in d0i3, nothing to do */
		dev_dbg(dev->dev, "d0i3 exit not needed\n");
		ret = 0;
		goto off;
	}

	reg = mei_me_d0i3_unset(dev);
	if (!(reg & H_D0I3C_CIP)) {
		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
		ret = 0;
		goto off;
	}

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
		reg = mei_me_d0i3c_read(dev);
		if (reg & H_D0I3C_I3) {
			ret = -ETIME;
			goto out;
		}
	}

	ret = 0;
off:
	hw->pg_state = MEI_PG_OFF;
out:
	dev->pg_event = MEI_PG_EVENT_IDLE;

	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
	return ret;
}

/**
 * mei_me_pg_legacy_intr - perform legacy pg processing
 *			   in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_pg_legacy_intr(struct mei_device *dev)
942 943 944 945 946 947 948 949 950 951 952 953
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
		return;

	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
	hw->pg_state = MEI_PG_OFF;
	if (waitqueue_active(&dev->wait_pg))
		wake_up(&dev->wait_pg);
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/**
 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_d0i3_intr(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
	    (hw->intr_source & H_D0I3C_IS)) {
		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
		if (hw->pg_state == MEI_PG_ON) {
			hw->pg_state = MEI_PG_OFF;
			if (dev->hbm_state != MEI_HBM_IDLE) {
				/*
				 * force H_RDY because it could be
				 * wiped off during PG
				 */
				dev_dbg(dev->dev, "d0i3 set host ready\n");
				mei_me_host_set_ready(dev);
			}
		} else {
			hw->pg_state = MEI_PG_ON;
		}

		wake_up(&dev->wait_pg);
	}

	if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
		/*
		 * HW sent some data and we are in D0i3, so
		 * we got here because of HW initiated exit from D0i3.
		 * Start runtime pm resume sequence to exit low power state.
		 */
		dev_dbg(dev->dev, "d0i3 want resume\n");
		mei_hbm_pg_resume(dev);
	}
}

/**
 * mei_me_pg_intr - perform pg processing in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_pg_intr(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		mei_me_d0i3_intr(dev);
	else
		mei_me_pg_legacy_intr(dev);
}

/**
 * mei_me_pg_enter_sync - perform runtime pm entry procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_enter_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		return mei_me_d0i3_enter_sync(dev);
	else
		return mei_me_pg_legacy_enter_sync(dev);
}

/**
 * mei_me_pg_exit_sync - perform runtime pm exit procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_exit_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		return mei_me_d0i3_exit_sync(dev);
	else
		return mei_me_pg_legacy_exit_sync(dev);
}

1043 1044 1045 1046 1047 1048
/**
 * mei_me_hw_reset - resets fw via mei csr register.
 *
 * @dev: the device structure
 * @intr_enable: if interrupt should be enabled after reset.
 *
1049
 * Return: 0 on success an error code otherwise
1050 1051 1052
 */
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
{
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	struct mei_me_hw *hw = to_me_hw(dev);
	int ret;
	u32 hcsr;

	if (intr_enable) {
		mei_me_intr_enable(dev);
		if (hw->d0i3_supported) {
			ret = mei_me_d0i3_exit_sync(dev);
			if (ret)
				return ret;
		}
	}
1065

1066
	hcsr = mei_hcsr_read(dev);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	/* H_RST may be found lit before reset is started,
	 * for example if preceding reset flow hasn't completed.
	 * In that case asserting H_RST will be ignored, therefore
	 * we need to clean H_RST bit to start a successful reset sequence.
	 */
	if ((hcsr & H_RST) == H_RST) {
		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
		hcsr &= ~H_RST;
		mei_hcsr_set(dev, hcsr);
		hcsr = mei_hcsr_read(dev);
	}

	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;

1081
	if (!intr_enable)
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		hcsr &= ~H_CSR_IE_MASK;

	dev->recvd_hw_ready = false;
	mei_hcsr_write(dev, hcsr);

	/*
	 * Host reads the H_CSR once to ensure that the
	 * posted write to H_CSR completes.
	 */
	hcsr = mei_hcsr_read(dev);

	if ((hcsr & H_RST) == 0)
		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);

	if ((hcsr & H_RDY) == H_RDY)
		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);

1099
	if (!intr_enable) {
1100
		mei_me_hw_reset_release(dev);
1101 1102 1103 1104 1105 1106
		if (hw->d0i3_supported) {
			ret = mei_me_d0i3_enter(dev);
			if (ret)
				return ret;
		}
	}
1107 1108 1109
	return 0;
}

1110 1111 1112 1113 1114 1115
/**
 * mei_me_irq_quick_handler - The ISR of the MEI device
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
1116
 * Return: irqreturn_t
1117 1118 1119
 */
irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
{
1120 1121 1122
	struct mei_device *dev = (struct mei_device *)dev_id;
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr;
1123

1124 1125
	hcsr = mei_hcsr_read(dev);
	if (!(hcsr & H_CSR_IS_MASK))
1126 1127
		return IRQ_NONE;

1128 1129 1130 1131
	hw->intr_source = hcsr & H_CSR_IS_MASK;
	dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);

	/* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1132
	mei_hcsr_write(dev, hcsr);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

	return IRQ_WAKE_THREAD;
}

/**
 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
 * processing.
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
1144
 * Return: irqreturn_t
1145 1146 1147 1148 1149 1150 1151
 *
 */
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
{
	struct mei_device *dev = (struct mei_device *) dev_id;
	struct mei_cl_cb complete_list;
	s32 slots;
1152
	int rets = 0;
1153

1154
	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1155 1156 1157 1158 1159
	/* initialize our complete list */
	mutex_lock(&dev->device_lock);
	mei_io_list_init(&complete_list);

	/* check if ME wants a reset */
1160
	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1161
		dev_warn(dev->dev, "FW not ready: resetting.\n");
1162 1163
		schedule_work(&dev->reset_work);
		goto end;
1164 1165
	}

1166 1167
	mei_me_pg_intr(dev);

1168 1169 1170
	/*  check if we need to start the dev */
	if (!mei_host_is_ready(dev)) {
		if (mei_hw_is_ready(dev)) {
1171
			dev_dbg(dev->dev, "we need to start the dev.\n");
T
Tomas Winkler 已提交
1172
			dev->recvd_hw_ready = true;
1173
			wake_up(&dev->wait_hw_ready);
1174
		} else {
1175
			dev_dbg(dev->dev, "Spurious Interrupt\n");
1176
		}
1177
		goto end;
1178 1179 1180 1181
	}
	/* check slots available for reading */
	slots = mei_count_full_read_slots(dev);
	while (slots > 0) {
1182
		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1183
		rets = mei_irq_read_handler(dev, &complete_list, &slots);
1184 1185 1186 1187 1188 1189 1190
		/* There is a race between ME write and interrupt delivery:
		 * Not all data is always available immediately after the
		 * interrupt, so try to read again on the next interrupt.
		 */
		if (rets == -ENODATA)
			break;

1191
		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1192
			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1193
						rets);
1194
			schedule_work(&dev->reset_work);
1195
			goto end;
1196
		}
1197
	}
1198

1199 1200
	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);

1201 1202 1203
	/*
	 * During PG handshake only allowed write is the replay to the
	 * PG exit message, so block calling write function
1204
	 * if the pg event is in PG handshake
1205
	 */
1206 1207
	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1208 1209 1210
		rets = mei_irq_write_handler(dev, &complete_list);
		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
	}
1211

1212
	mei_irq_compl_handler(dev, &complete_list);
1213

1214
end:
1215
	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1216
	mutex_unlock(&dev->device_lock);
1217 1218
	return IRQ_HANDLED;
}
1219

1220 1221
static const struct mei_hw_ops mei_me_hw_ops = {

1222
	.fw_status = mei_me_fw_status,
1223 1224
	.pg_state  = mei_me_pg_state,

1225 1226 1227 1228
	.host_is_ready = mei_me_host_is_ready,

	.hw_is_ready = mei_me_hw_is_ready,
	.hw_reset = mei_me_hw_reset,
T
Tomas Winkler 已提交
1229 1230
	.hw_config = mei_me_hw_config,
	.hw_start = mei_me_hw_start,
1231

1232
	.pg_in_transition = mei_me_pg_in_transition,
1233 1234
	.pg_is_enabled = mei_me_pg_is_enabled,

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	.intr_clear = mei_me_intr_clear,
	.intr_enable = mei_me_intr_enable,
	.intr_disable = mei_me_intr_disable,

	.hbuf_free_slots = mei_me_hbuf_empty_slots,
	.hbuf_is_ready = mei_me_hbuf_is_empty,
	.hbuf_max_len = mei_me_hbuf_max_len,

	.write = mei_me_write_message,

	.rdbuf_full_slots = mei_me_count_full_read_slots,
	.read_hdr = mei_me_mecbrw_read,
	.read = mei_me_read_slots
};

1250 1251 1252
static bool mei_me_fw_type_nm(struct pci_dev *pdev)
{
	u32 reg;
1253

1254
	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1255
	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
	return (reg & 0x600) == 0x200;
}

#define MEI_CFG_FW_NM                           \
	.quirk_probe = mei_me_fw_type_nm

static bool mei_me_fw_type_sps(struct pci_dev *pdev)
{
	u32 reg;
1266 1267 1268 1269 1270 1271 1272 1273
	unsigned int devfn;

	/*
	 * Read ME FW Status register to check for SPS Firmware
	 * The SPS FW is only signaled in pci function 0
	 */
	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1274
	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1275 1276 1277 1278 1279 1280 1281 1282
	/* if bits [19:16] = 15, running SPS Firmware */
	return (reg & 0xf0000) == 0xf0000;
}

#define MEI_CFG_FW_SPS                           \
	.quirk_probe = mei_me_fw_type_sps


1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
#define MEI_CFG_LEGACY_HFS                      \
	.fw_status.count = 0

#define MEI_CFG_ICH_HFS                        \
	.fw_status.count = 1,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1

#define MEI_CFG_PCH_HFS                         \
	.fw_status.count = 2,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2

1295 1296 1297 1298 1299 1300 1301 1302
#define MEI_CFG_PCH8_HFS                        \
	.fw_status.count = 6,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2,   \
	.fw_status.status[2] = PCI_CFG_HFS_3,   \
	.fw_status.status[3] = PCI_CFG_HFS_4,   \
	.fw_status.status[4] = PCI_CFG_HFS_5,   \
	.fw_status.status[5] = PCI_CFG_HFS_6
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

/* ICH Legacy devices */
const struct mei_cfg mei_me_legacy_cfg = {
	MEI_CFG_LEGACY_HFS,
};

/* ICH devices */
const struct mei_cfg mei_me_ich_cfg = {
	MEI_CFG_ICH_HFS,
};

/* PCH devices */
const struct mei_cfg mei_me_pch_cfg = {
	MEI_CFG_PCH_HFS,
};

1319 1320 1321 1322 1323 1324 1325

/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
	MEI_CFG_PCH_HFS,
	MEI_CFG_FW_NM,
};

1326 1327 1328 1329 1330 1331 1332 1333
/* PCH8 Lynx Point and newer devices */
const struct mei_cfg mei_me_pch8_cfg = {
	MEI_CFG_PCH8_HFS,
};

/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
const struct mei_cfg mei_me_pch8_sps_cfg = {
	MEI_CFG_PCH8_HFS,
1334 1335 1336
	MEI_CFG_FW_SPS,
};

1337
/**
1338
 * mei_me_dev_init - allocates and initializes the mei device structure
1339 1340
 *
 * @pdev: The pci device structure
1341
 * @cfg: per device generation config
1342
 *
1343
 * Return: The mei_device_device pointer on success, NULL on failure.
1344
 */
1345 1346
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
				   const struct mei_cfg *cfg)
1347 1348
{
	struct mei_device *dev;
1349
	struct mei_me_hw *hw;
1350 1351 1352 1353 1354

	dev = kzalloc(sizeof(struct mei_device) +
			 sizeof(struct mei_me_hw), GFP_KERNEL);
	if (!dev)
		return NULL;
1355
	hw = to_me_hw(dev);
1356

1357
	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1358
	hw->cfg = cfg;
1359 1360
	return dev;
}
1361