book3s_64_mmu_radix.c 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>

#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
20
#include <asm/pte-walk.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

/*
 * Supported radix tree geometry.
 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
 * for a page size of 64k or 4k.
 */
static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };

int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
			   struct kvmppc_pte *gpte, bool data, bool iswrite)
{
	struct kvm *kvm = vcpu->kvm;
	u32 pid;
	int ret, level, ps;
	__be64 prte, rpte;
36
	unsigned long ptbl;
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
	unsigned long root, pte, index;
	unsigned long rts, bits, offset;
	unsigned long gpa;
	unsigned long proc_tbl_size;

	/* Work out effective PID */
	switch (eaddr >> 62) {
	case 0:
		pid = vcpu->arch.pid;
		break;
	case 3:
		pid = 0;
		break;
	default:
		return -EINVAL;
	}
	proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
	if (pid * 16 >= proc_tbl_size)
		return -EINVAL;

	/* Read partition table to find root of tree for effective PID */
58 59
	ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
	ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	root = be64_to_cpu(prte);
	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
		((root & RTS2_MASK) >> RTS2_SHIFT);
	bits = root & RPDS_MASK;
	root = root & RPDB_MASK;

	/* P9 DD1 interprets RTS (radix tree size) differently */
	offset = rts + 31;
	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
		offset -= 3;

	/* current implementations only support 52-bit space */
	if (offset != 52)
		return -EINVAL;

	for (level = 3; level >= 0; --level) {
		if (level && bits != p9_supported_radix_bits[level])
			return -EINVAL;
		if (level == 0 && !(bits == 5 || bits == 9))
			return -EINVAL;
		offset -= bits;
		index = (eaddr >> offset) & ((1UL << bits) - 1);
		/* check that low bits of page table base are zero */
		if (root & ((1UL << (bits + 3)) - 1))
			return -EINVAL;
		ret = kvm_read_guest(kvm, root + index * 8,
				     &rpte, sizeof(rpte));
		if (ret)
			return ret;
		pte = __be64_to_cpu(rpte);
		if (!(pte & _PAGE_PRESENT))
			return -ENOENT;
		if (pte & _PAGE_PTE)
			break;
		bits = pte & 0x1f;
		root = pte & 0x0fffffffffffff00ul;
	}
	/* need a leaf at lowest level; 512GB pages not supported */
	if (level < 0 || level == 3)
		return -EINVAL;

	/* offset is now log base 2 of the page size */
	gpa = pte & 0x01fffffffffff000ul;
	if (gpa & ((1ul << offset) - 1))
		return -EINVAL;
	gpa += eaddr & ((1ul << offset) - 1);
	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
		if (offset == mmu_psize_defs[ps].shift)
			break;
	gpte->page_size = ps;

	gpte->eaddr = eaddr;
	gpte->raddr = gpa;

	/* Work out permissions */
	gpte->may_read = !!(pte & _PAGE_READ);
	gpte->may_write = !!(pte & _PAGE_WRITE);
	gpte->may_execute = !!(pte & _PAGE_EXEC);
	if (kvmppc_get_msr(vcpu) & MSR_PR) {
		if (pte & _PAGE_PRIVILEGED) {
			gpte->may_read = 0;
			gpte->may_write = 0;
			gpte->may_execute = 0;
		}
	} else {
		if (!(pte & _PAGE_PRIVILEGED)) {
			/* Check AMR/IAMR to see if strict mode is in force */
			if (vcpu->arch.amr & (1ul << 62))
				gpte->may_read = 0;
			if (vcpu->arch.amr & (1ul << 63))
				gpte->may_write = 0;
			if (vcpu->arch.iamr & (1ul << 62))
				gpte->may_execute = 0;
		}
	}

	return 0;
}

142 143 144 145 146 147 148 149 150 151 152
#ifdef CONFIG_PPC_64K_PAGES
#define MMU_BASE_PSIZE	MMU_PAGE_64K
#else
#define MMU_BASE_PSIZE	MMU_PAGE_4K
#endif

static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
				    unsigned int pshift)
{
	int psize = MMU_BASE_PSIZE;

153 154 155
	if (pshift >= PUD_SHIFT)
		psize = MMU_PAGE_1G;
	else if (pshift >= PMD_SHIFT)
156 157 158 159 160 161 162 163 164
		psize = MMU_PAGE_2M;
	addr &= ~0xfffUL;
	addr |= mmu_psize_defs[psize].ap << 5;
	asm volatile("ptesync": : :"memory");
	asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
		     : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
	asm volatile("ptesync": : :"memory");
}

165 166 167 168 169 170 171 172 173 174 175
static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned long addr)
{
	unsigned long rb = 0x2 << PPC_BITLSHIFT(53); /* IS = 2 */

	asm volatile("ptesync": : :"memory");
	/* RIC=1 PRS=0 R=1 IS=2 */
	asm volatile(PPC_TLBIE_5(%0, %1, 1, 0, 1)
		     : : "r" (rb), "r" (kvm->arch.lpid) : "memory");
	asm volatile("ptesync": : :"memory");
}

176 177 178
unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
				      unsigned long clr, unsigned long set,
				      unsigned long addr, unsigned int shift)
179
{
180 181
	unsigned long old = 0;

182 183 184
	if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
	    pte_present(*ptep)) {
		/* have to invalidate it first */
185
		old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
186 187
		kvmppc_radix_tlbie_page(kvm, addr, shift);
		set |= _PAGE_PRESENT;
188
		old &= _PAGE_PRESENT;
189
	}
190
	return __radix_pte_update(ptep, clr, set) | old;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
}

void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
			     pte_t *ptep, pte_t pte)
{
	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
}

static struct kmem_cache *kvm_pte_cache;

static pte_t *kvmppc_pte_alloc(void)
{
	return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
}

static void kvmppc_pte_free(pte_t *ptep)
{
	kmem_cache_free(kvm_pte_cache, ptep);
}

211 212 213 214 215 216
/* Like pmd_huge() and pmd_large(), but works regardless of config options */
static inline int pmd_is_leaf(pmd_t pmd)
{
	return !!(pmd_val(pmd) & _PAGE_PTE);
}

217 218 219 220 221 222 223
static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
			     unsigned int level, unsigned long mmu_seq)
{
	pgd_t *pgd;
	pud_t *pud, *new_pud = NULL;
	pmd_t *pmd, *new_pmd = NULL;
	pte_t *ptep, *new_ptep = NULL;
224
	unsigned long old;
225 226 227 228 229 230 231 232 233 234 235
	int ret;

	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
	pgd = kvm->arch.pgtable + pgd_index(gpa);
	pud = NULL;
	if (pgd_present(*pgd))
		pud = pud_offset(pgd, gpa);
	else
		new_pud = pud_alloc_one(kvm->mm, gpa);

	pmd = NULL;
236
	if (pud && pud_present(*pud) && !pud_huge(*pud))
237
		pmd = pmd_offset(pud, gpa);
238
	else if (level <= 1)
239 240
		new_pmd = pmd_alloc_one(kvm->mm, gpa);

241
	if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
		new_ptep = kvmppc_pte_alloc();

	/* Check if we might have been invalidated; let the guest retry if so */
	spin_lock(&kvm->mmu_lock);
	ret = -EAGAIN;
	if (mmu_notifier_retry(kvm, mmu_seq))
		goto out_unlock;

	/* Now traverse again under the lock and change the tree */
	ret = -ENOMEM;
	if (pgd_none(*pgd)) {
		if (!new_pud)
			goto out_unlock;
		pgd_populate(kvm->mm, pgd, new_pud);
		new_pud = NULL;
	}
	pud = pud_offset(pgd, gpa);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	if (pud_huge(*pud)) {
		unsigned long hgpa = gpa & PUD_MASK;

		/*
		 * If we raced with another CPU which has just put
		 * a 1GB pte in after we saw a pmd page, try again.
		 */
		if (level <= 1 && !new_pmd) {
			ret = -EAGAIN;
			goto out_unlock;
		}
		/* Check if we raced and someone else has set the same thing */
		if (level == 2 && pud_raw(*pud) == pte_raw(pte)) {
			ret = 0;
			goto out_unlock;
		}
		/* Valid 1GB page here already, remove it */
		old = kvmppc_radix_update_pte(kvm, (pte_t *)pud,
					      ~0UL, 0, hgpa, PUD_SHIFT);
		kvmppc_radix_tlbie_page(kvm, hgpa, PUD_SHIFT);
		if (old & _PAGE_DIRTY) {
			unsigned long gfn = hgpa >> PAGE_SHIFT;
			struct kvm_memory_slot *memslot;
			memslot = gfn_to_memslot(kvm, gfn);
			if (memslot && memslot->dirty_bitmap)
				kvmppc_update_dirty_map(memslot,
							gfn, PUD_SIZE);
		}
	}
	if (level == 2) {
		if (!pud_none(*pud)) {
			/*
			 * There's a page table page here, but we wanted to
			 * install a large page, so remove and free the page
			 * table page.  new_pmd will be NULL since level == 2.
			 */
			new_pmd = pmd_offset(pud, 0);
			pud_clear(pud);
			kvmppc_radix_flush_pwc(kvm, gpa);
		}
		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
		ret = 0;
		goto out_unlock;
	}
303 304 305 306 307 308 309
	if (pud_none(*pud)) {
		if (!new_pmd)
			goto out_unlock;
		pud_populate(kvm->mm, pud, new_pmd);
		new_pmd = NULL;
	}
	pmd = pmd_offset(pud, gpa);
310 311 312 313 314 315 316 317 318 319 320
	if (pmd_is_leaf(*pmd)) {
		unsigned long lgpa = gpa & PMD_MASK;

		/*
		 * If we raced with another CPU which has just put
		 * a 2MB pte in after we saw a pte page, try again.
		 */
		if (level == 0 && !new_ptep) {
			ret = -EAGAIN;
			goto out_unlock;
		}
321 322 323 324 325
		/* Check if we raced and someone else has set the same thing */
		if (level == 1 && pmd_raw(*pmd) == pte_raw(pte)) {
			ret = 0;
			goto out_unlock;
		}
326 327 328 329 330 331 332 333 334 335 336 337
		/* Valid 2MB page here already, remove it */
		old = kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
					      ~0UL, 0, lgpa, PMD_SHIFT);
		kvmppc_radix_tlbie_page(kvm, lgpa, PMD_SHIFT);
		if (old & _PAGE_DIRTY) {
			unsigned long gfn = lgpa >> PAGE_SHIFT;
			struct kvm_memory_slot *memslot;
			memslot = gfn_to_memslot(kvm, gfn);
			if (memslot && memslot->dirty_bitmap)
				kvmppc_update_dirty_map(memslot,
							gfn, PMD_SIZE);
		}
338
	}
339 340 341 342 343 344 345 346 347 348
	if (level == 1) {
		if (!pmd_none(*pmd)) {
			/*
			 * There's a page table page here, but we wanted to
			 * install a large page, so remove and free the page
			 * table page.  new_ptep will be NULL since level == 1.
			 */
			new_ptep = pte_offset_kernel(pmd, 0);
			pmd_clear(pmd);
			kvmppc_radix_flush_pwc(kvm, gpa);
349 350
		}
		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		ret = 0;
		goto out_unlock;
	}
	if (pmd_none(*pmd)) {
		if (!new_ptep)
			goto out_unlock;
		pmd_populate(kvm->mm, pmd, new_ptep);
		new_ptep = NULL;
	}
	ptep = pte_offset_kernel(pmd, gpa);
	if (pte_present(*ptep)) {
		/* Check if someone else set the same thing */
		if (pte_raw(*ptep) == pte_raw(pte)) {
			ret = 0;
			goto out_unlock;
		}
		/* PTE was previously valid, so invalidate it */
		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
					      0, gpa, 0);
		kvmppc_radix_tlbie_page(kvm, gpa, 0);
		if (old & _PAGE_DIRTY)
			mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
373
	}
374
	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	ret = 0;

 out_unlock:
	spin_unlock(&kvm->mmu_lock);
	if (new_pud)
		pud_free(kvm->mm, new_pud);
	if (new_pmd)
		pmd_free(kvm->mm, new_pmd);
	if (new_ptep)
		kvmppc_pte_free(new_ptep);
	return ret;
}

int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				   unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long mmu_seq, pte_size;
	unsigned long gpa, gfn, hva, pfn;
	struct kvm_memory_slot *memslot;
	struct page *page = NULL, *pages[1];
396
	long ret, npages;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	unsigned int writing;
	struct vm_area_struct *vma;
	unsigned long flags;
	pte_t pte, *ptep;
	unsigned long pgflags;
	unsigned int shift, level;

	/* Check for unusual errors */
	if (dsisr & DSISR_UNSUPP_MMU) {
		pr_err("KVM: Got unsupported MMU fault\n");
		return -EFAULT;
	}
	if (dsisr & DSISR_BADACCESS) {
		/* Reflect to the guest as DSI */
		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
		return RESUME_GUEST;
	}

	/* Translate the logical address and get the page */
	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
	gpa &= ~0xF000000000000000ul;
	gfn = gpa >> PAGE_SHIFT;
420
	if (!(dsisr & DSISR_PRTABLE_FAULT))
421 422 423 424 425
		gpa |= ea & 0xfff;
	memslot = gfn_to_memslot(kvm, gfn);

	/* No memslot means it's an emulated MMIO region */
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
426
		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
			     DSISR_SET_RC)) {
			/*
			 * Bad address in guest page table tree, or other
			 * unusual error - reflect it to the guest as DSI.
			 */
			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
			return RESUME_GUEST;
		}
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
					      dsisr & DSISR_ISSTORE);
	}

	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

	writing = (dsisr & DSISR_ISSTORE) != 0;
	hva = gfn_to_hva_memslot(memslot, gfn);
	if (dsisr & DSISR_SET_RC) {
		/*
		 * Need to set an R or C bit in the 2nd-level tables;
448 449
		 * since we are just helping out the hardware here,
		 * it is sufficient to do what the hardware does.
450 451 452 453
		 */
		pgflags = _PAGE_ACCESSED;
		if (writing)
			pgflags |= _PAGE_DIRTY;
454 455 456 457 458 459 460 461 462 463 464 465
		/*
		 * We are walking the secondary page table here. We can do this
		 * without disabling irq.
		 */
		spin_lock(&kvm->mmu_lock);
		ptep = __find_linux_pte(kvm->arch.pgtable,
					gpa, NULL, &shift);
		if (ptep && pte_present(*ptep) &&
		    (!writing || pte_write(*ptep))) {
			kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
						gpa, shift);
			dsisr &= ~DSISR_SET_RC;
466
		}
467 468 469 470
		spin_unlock(&kvm->mmu_lock);
		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
			       DSISR_PROTFAULT | DSISR_SET_RC)))
			return RESUME_GUEST;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	}

	ret = -EFAULT;
	pfn = 0;
	pte_size = PAGE_SIZE;
	pgflags = _PAGE_READ | _PAGE_EXEC;
	level = 0;
	npages = get_user_pages_fast(hva, 1, writing, pages);
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pgflags = pgprot_val(vma->vm_page_prot);
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
			return -EFAULT;
	} else {
		page = pages[0];
		pfn = page_to_pfn(page);
495 496
		if (PageCompound(page)) {
			pte_size <<= compound_order(compound_head(page));
497 498 499 500 501 502 503
			/* See if we can insert a 1GB or 2MB large PTE here */
			if (pte_size >= PUD_SIZE &&
			    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
			    (hva & (PUD_SIZE - PAGE_SIZE))) {
				level = 2;
				pfn &= ~((PUD_SIZE >> PAGE_SHIFT) - 1);
			} else if (pte_size >= PMD_SIZE &&
504 505
			    (gpa & (PMD_SIZE - PAGE_SIZE)) ==
			    (hva & (PMD_SIZE - PAGE_SIZE))) {
506 507 508 509 510 511 512 513 514
				level = 1;
				pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
			}
		}
		/* See if we can provide write access */
		if (writing) {
			pgflags |= _PAGE_WRITE;
		} else {
			local_irq_save(flags);
515 516
			ptep = find_current_mm_pte(current->mm->pgd,
						   hva, NULL, NULL);
517
			if (ptep && pte_write(*ptep))
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
				pgflags |= _PAGE_WRITE;
			local_irq_restore(flags);
		}
	}

	/*
	 * Compute the PTE value that we need to insert.
	 */
	pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
	if (pgflags & _PAGE_WRITE)
		pgflags |= _PAGE_DIRTY;
	pte = pfn_pte(pfn, __pgprot(pgflags));

	/* Allocate space in the tree and write the PTE */
	ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);

	if (page) {
535 536 537
		if (!ret && (pgflags & _PAGE_WRITE))
			set_page_dirty_lock(page);
		put_page(page);
538
	}
539 540 541

	if (ret == 0 || ret == -EAGAIN)
		ret = RESUME_GUEST;
542 543 544
	return ret;
}

545 546 547 548 549 550 551
/* Called with kvm->lock held */
int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
		    unsigned long gfn)
{
	pte_t *ptep;
	unsigned long gpa = gfn << PAGE_SHIFT;
	unsigned int shift;
552
	unsigned long old;
553

554
	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
555
	if (ptep && pte_present(*ptep)) {
556 557
		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
					      gpa, shift);
558
		kvmppc_radix_tlbie_page(kvm, gpa, shift);
559 560 561 562 563
		if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
			unsigned long npages = 1;
			if (shift)
				npages = 1ul << (shift - PAGE_SHIFT);
			kvmppc_update_dirty_map(memslot, gfn, npages);
564
		}
565 566 567 568 569 570 571 572 573 574 575 576 577
	}
	return 0;				
}

/* Called with kvm->lock held */
int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  unsigned long gfn)
{
	pte_t *ptep;
	unsigned long gpa = gfn << PAGE_SHIFT;
	unsigned int shift;
	int ref = 0;

578
	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
		kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
					gpa, shift);
		/* XXX need to flush tlb here? */
		ref = 1;
	}
	return ref;
}

/* Called with kvm->lock held */
int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
		       unsigned long gfn)
{
	pte_t *ptep;
	unsigned long gpa = gfn << PAGE_SHIFT;
	unsigned int shift;
	int ref = 0;

597
	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
598 599 600 601 602
	if (ptep && pte_present(*ptep) && pte_young(*ptep))
		ref = 1;
	return ref;
}

603 604 605 606 607 608 609 610 611 612
/* Returns the number of PAGE_SIZE pages that are dirty */
static int kvm_radix_test_clear_dirty(struct kvm *kvm,
				struct kvm_memory_slot *memslot, int pagenum)
{
	unsigned long gfn = memslot->base_gfn + pagenum;
	unsigned long gpa = gfn << PAGE_SHIFT;
	pte_t *ptep;
	unsigned int shift;
	int ret = 0;

613
	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
		ret = 1;
		if (shift)
			ret = 1 << (shift - PAGE_SHIFT);
		kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
					gpa, shift);
		kvmppc_radix_tlbie_page(kvm, gpa, shift);
	}
	return ret;
}

long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
			struct kvm_memory_slot *memslot, unsigned long *map)
{
	unsigned long i, j;
	int npages;

	for (i = 0; i < memslot->npages; i = j) {
		npages = kvm_radix_test_clear_dirty(kvm, memslot, i);

		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since huge pages are only used to back the guest at guest
		 * real addresses that are a multiple of their size.
		 * Since we have at most one PTE covering any given guest
		 * real address, if npages > 1 we can skip to i + npages.
		 */
		j = i + 1;
642 643
		if (npages) {
			set_dirty_bits(map, i, npages);
644
			j = i + npages;
645
		}
646 647 648 649
	}
	return 0;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
				 int psize, int *indexp)
{
	if (!mmu_psize_defs[psize].shift)
		return;
	info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
		(mmu_psize_defs[psize].ap << 29);
	++(*indexp);
}

int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
{
	int i;

	if (!radix_enabled())
		return -EINVAL;
	memset(info, 0, sizeof(*info));

	/* 4k page size */
	info->geometries[0].page_shift = 12;
	info->geometries[0].level_bits[0] = 9;
	for (i = 1; i < 4; ++i)
		info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
	/* 64k page size */
	info->geometries[1].page_shift = 16;
	for (i = 0; i < 4; ++i)
		info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];

	i = 0;
	add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
	add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
	add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
	add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);

	return 0;
}

int kvmppc_init_vm_radix(struct kvm *kvm)
{
	kvm->arch.pgtable = pgd_alloc(kvm->mm);
	if (!kvm->arch.pgtable)
		return -ENOMEM;
	return 0;
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
void kvmppc_free_radix(struct kvm *kvm)
{
	unsigned long ig, iu, im;
	pte_t *pte;
	pmd_t *pmd;
	pud_t *pud;
	pgd_t *pgd;

	if (!kvm->arch.pgtable)
		return;
	pgd = kvm->arch.pgtable;
	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
		if (!pgd_present(*pgd))
			continue;
		pud = pud_offset(pgd, 0);
		for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
			if (!pud_present(*pud))
				continue;
713 714 715 716
			if (pud_huge(*pud)) {
				pud_clear(pud);
				continue;
			}
717 718
			pmd = pmd_offset(pud, 0);
			for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
719
				if (pmd_is_leaf(*pmd)) {
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
					pmd_clear(pmd);
					continue;
				}
				if (!pmd_present(*pmd))
					continue;
				pte = pte_offset_map(pmd, 0);
				memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
				kvmppc_pte_free(pte);
				pmd_clear(pmd);
			}
			pmd_free(kvm->mm, pmd_offset(pud, 0));
			pud_clear(pud);
		}
		pud_free(kvm->mm, pud_offset(pgd, 0));
		pgd_clear(pgd);
	}
	pgd_free(kvm->mm, kvm->arch.pgtable);
737
	kvm->arch.pgtable = NULL;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
}

static void pte_ctor(void *addr)
{
	memset(addr, 0, PTE_TABLE_SIZE);
}

int kvmppc_radix_init(void)
{
	unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;

	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
	if (!kvm_pte_cache)
		return -ENOMEM;
	return 0;
}

void kvmppc_radix_exit(void)
{
	kmem_cache_destroy(kvm_pte_cache);
}