book3s_64_mmu_radix.c 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>

#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>

/*
 * Supported radix tree geometry.
 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
 * for a page size of 64k or 4k.
 */
static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };

int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
			   struct kvmppc_pte *gpte, bool data, bool iswrite)
{
	struct kvm *kvm = vcpu->kvm;
	u32 pid;
	int ret, level, ps;
	__be64 prte, rpte;
	unsigned long root, pte, index;
	unsigned long rts, bits, offset;
	unsigned long gpa;
	unsigned long proc_tbl_size;

	/* Work out effective PID */
	switch (eaddr >> 62) {
	case 0:
		pid = vcpu->arch.pid;
		break;
	case 3:
		pid = 0;
		break;
	default:
		return -EINVAL;
	}
	proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
	if (pid * 16 >= proc_tbl_size)
		return -EINVAL;

	/* Read partition table to find root of tree for effective PID */
	ret = kvm_read_guest(kvm, kvm->arch.process_table + pid * 16,
			     &prte, sizeof(prte));
	if (ret)
		return ret;

	root = be64_to_cpu(prte);
	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
		((root & RTS2_MASK) >> RTS2_SHIFT);
	bits = root & RPDS_MASK;
	root = root & RPDB_MASK;

	/* P9 DD1 interprets RTS (radix tree size) differently */
	offset = rts + 31;
	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
		offset -= 3;

	/* current implementations only support 52-bit space */
	if (offset != 52)
		return -EINVAL;

	for (level = 3; level >= 0; --level) {
		if (level && bits != p9_supported_radix_bits[level])
			return -EINVAL;
		if (level == 0 && !(bits == 5 || bits == 9))
			return -EINVAL;
		offset -= bits;
		index = (eaddr >> offset) & ((1UL << bits) - 1);
		/* check that low bits of page table base are zero */
		if (root & ((1UL << (bits + 3)) - 1))
			return -EINVAL;
		ret = kvm_read_guest(kvm, root + index * 8,
				     &rpte, sizeof(rpte));
		if (ret)
			return ret;
		pte = __be64_to_cpu(rpte);
		if (!(pte & _PAGE_PRESENT))
			return -ENOENT;
		if (pte & _PAGE_PTE)
			break;
		bits = pte & 0x1f;
		root = pte & 0x0fffffffffffff00ul;
	}
	/* need a leaf at lowest level; 512GB pages not supported */
	if (level < 0 || level == 3)
		return -EINVAL;

	/* offset is now log base 2 of the page size */
	gpa = pte & 0x01fffffffffff000ul;
	if (gpa & ((1ul << offset) - 1))
		return -EINVAL;
	gpa += eaddr & ((1ul << offset) - 1);
	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
		if (offset == mmu_psize_defs[ps].shift)
			break;
	gpte->page_size = ps;

	gpte->eaddr = eaddr;
	gpte->raddr = gpa;

	/* Work out permissions */
	gpte->may_read = !!(pte & _PAGE_READ);
	gpte->may_write = !!(pte & _PAGE_WRITE);
	gpte->may_execute = !!(pte & _PAGE_EXEC);
	if (kvmppc_get_msr(vcpu) & MSR_PR) {
		if (pte & _PAGE_PRIVILEGED) {
			gpte->may_read = 0;
			gpte->may_write = 0;
			gpte->may_execute = 0;
		}
	} else {
		if (!(pte & _PAGE_PRIVILEGED)) {
			/* Check AMR/IAMR to see if strict mode is in force */
			if (vcpu->arch.amr & (1ul << 62))
				gpte->may_read = 0;
			if (vcpu->arch.amr & (1ul << 63))
				gpte->may_write = 0;
			if (vcpu->arch.iamr & (1ul << 62))
				gpte->may_execute = 0;
		}
	}

	return 0;
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
#ifdef CONFIG_PPC_64K_PAGES
#define MMU_BASE_PSIZE	MMU_PAGE_64K
#else
#define MMU_BASE_PSIZE	MMU_PAGE_4K
#endif

static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
				    unsigned int pshift)
{
	int psize = MMU_BASE_PSIZE;

	if (pshift >= PMD_SHIFT)
		psize = MMU_PAGE_2M;
	addr &= ~0xfffUL;
	addr |= mmu_psize_defs[psize].ap << 5;
	asm volatile("ptesync": : :"memory");
	asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
		     : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
	asm volatile("ptesync": : :"memory");
}

void kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, unsigned long clr,
			     unsigned long set, unsigned long addr,
			     unsigned int shift)
{
	if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
	    pte_present(*ptep)) {
		/* have to invalidate it first */
		__radix_pte_update(ptep, _PAGE_PRESENT, 0);
		kvmppc_radix_tlbie_page(kvm, addr, shift);
		set |= _PAGE_PRESENT;
	}
	__radix_pte_update(ptep, clr, set);
}

void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
			     pte_t *ptep, pte_t pte)
{
	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
}

static struct kmem_cache *kvm_pte_cache;

static pte_t *kvmppc_pte_alloc(void)
{
	return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
}

static void kvmppc_pte_free(pte_t *ptep)
{
	kmem_cache_free(kvm_pte_cache, ptep);
}

static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
			     unsigned int level, unsigned long mmu_seq)
{
	pgd_t *pgd;
	pud_t *pud, *new_pud = NULL;
	pmd_t *pmd, *new_pmd = NULL;
	pte_t *ptep, *new_ptep = NULL;
	int ret;

	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
	pgd = kvm->arch.pgtable + pgd_index(gpa);
	pud = NULL;
	if (pgd_present(*pgd))
		pud = pud_offset(pgd, gpa);
	else
		new_pud = pud_alloc_one(kvm->mm, gpa);

	pmd = NULL;
	if (pud && pud_present(*pud))
		pmd = pmd_offset(pud, gpa);
	else
		new_pmd = pmd_alloc_one(kvm->mm, gpa);

	if (level == 0 && !(pmd && pmd_present(*pmd)))
		new_ptep = kvmppc_pte_alloc();

	/* Check if we might have been invalidated; let the guest retry if so */
	spin_lock(&kvm->mmu_lock);
	ret = -EAGAIN;
	if (mmu_notifier_retry(kvm, mmu_seq))
		goto out_unlock;

	/* Now traverse again under the lock and change the tree */
	ret = -ENOMEM;
	if (pgd_none(*pgd)) {
		if (!new_pud)
			goto out_unlock;
		pgd_populate(kvm->mm, pgd, new_pud);
		new_pud = NULL;
	}
	pud = pud_offset(pgd, gpa);
	if (pud_none(*pud)) {
		if (!new_pmd)
			goto out_unlock;
		pud_populate(kvm->mm, pud, new_pmd);
		new_pmd = NULL;
	}
	pmd = pmd_offset(pud, gpa);
	if (pmd_large(*pmd)) {
		/* Someone else has instantiated a large page here; retry */
		ret = -EAGAIN;
		goto out_unlock;
	}
	if (level == 1 && !pmd_none(*pmd)) {
		/*
		 * There's a page table page here, but we wanted
		 * to install a large page.  Tell the caller and let
		 * it try installing a normal page if it wants.
		 */
		ret = -EBUSY;
		goto out_unlock;
	}
	if (level == 0) {
		if (pmd_none(*pmd)) {
			if (!new_ptep)
				goto out_unlock;
			pmd_populate(kvm->mm, pmd, new_ptep);
			new_ptep = NULL;
		}
		ptep = pte_offset_kernel(pmd, gpa);
		if (pte_present(*ptep)) {
			/* PTE was previously valid, so invalidate it */
			kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
						0, gpa, 0);
			kvmppc_radix_tlbie_page(kvm, gpa, 0);
		}
		kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
	} else {
		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
	}
	ret = 0;

 out_unlock:
	spin_unlock(&kvm->mmu_lock);
	if (new_pud)
		pud_free(kvm->mm, new_pud);
	if (new_pmd)
		pmd_free(kvm->mm, new_pmd);
	if (new_ptep)
		kvmppc_pte_free(new_ptep);
	return ret;
}

int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				   unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long mmu_seq, pte_size;
	unsigned long gpa, gfn, hva, pfn;
	struct kvm_memory_slot *memslot;
	struct page *page = NULL, *pages[1];
	long ret, npages, ok;
	unsigned int writing;
	struct vm_area_struct *vma;
	unsigned long flags;
	pte_t pte, *ptep;
	unsigned long pgflags;
	unsigned int shift, level;

	/* Check for unusual errors */
	if (dsisr & DSISR_UNSUPP_MMU) {
		pr_err("KVM: Got unsupported MMU fault\n");
		return -EFAULT;
	}
	if (dsisr & DSISR_BADACCESS) {
		/* Reflect to the guest as DSI */
		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
		return RESUME_GUEST;
	}

	/* Translate the logical address and get the page */
	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
	gpa &= ~0xF000000000000000ul;
	gfn = gpa >> PAGE_SHIFT;
	if (!(dsisr & DSISR_PGDIRFAULT))
		gpa |= ea & 0xfff;
	memslot = gfn_to_memslot(kvm, gfn);

	/* No memslot means it's an emulated MMIO region */
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
		if (dsisr & (DSISR_PGDIRFAULT | DSISR_BADACCESS |
			     DSISR_SET_RC)) {
			/*
			 * Bad address in guest page table tree, or other
			 * unusual error - reflect it to the guest as DSI.
			 */
			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
			return RESUME_GUEST;
		}
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
					      dsisr & DSISR_ISSTORE);
	}

	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

	writing = (dsisr & DSISR_ISSTORE) != 0;
	hva = gfn_to_hva_memslot(memslot, gfn);
	if (dsisr & DSISR_SET_RC) {
		/*
		 * Need to set an R or C bit in the 2nd-level tables;
		 * if the relevant bits aren't already set in the linux
		 * page tables, fall through to do the gup_fast to
		 * set them in the linux page tables too.
		 */
		ok = 0;
		pgflags = _PAGE_ACCESSED;
		if (writing)
			pgflags |= _PAGE_DIRTY;
		local_irq_save(flags);
		ptep = __find_linux_pte_or_hugepte(current->mm->pgd, hva,
						   NULL, NULL);
		if (ptep) {
			pte = READ_ONCE(*ptep);
			if (pte_present(pte) &&
			    (pte_val(pte) & pgflags) == pgflags)
				ok = 1;
		}
		local_irq_restore(flags);
		if (ok) {
			spin_lock(&kvm->mmu_lock);
			if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
				spin_unlock(&kvm->mmu_lock);
				return RESUME_GUEST;
			}
			ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable,
							gpa, NULL, &shift);
			if (ptep && pte_present(*ptep)) {
				kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
							gpa, shift);
				spin_unlock(&kvm->mmu_lock);
				return RESUME_GUEST;
			}
			spin_unlock(&kvm->mmu_lock);
		}
	}

	ret = -EFAULT;
	pfn = 0;
	pte_size = PAGE_SIZE;
	pgflags = _PAGE_READ | _PAGE_EXEC;
	level = 0;
	npages = get_user_pages_fast(hva, 1, writing, pages);
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pgflags = pgprot_val(vma->vm_page_prot);
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
			return -EFAULT;
	} else {
		page = pages[0];
		pfn = page_to_pfn(page);
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
			/* See if we can insert a 2MB large-page PTE here */
			if (pte_size >= PMD_SIZE &&
			    (gpa & PMD_MASK & PAGE_MASK) ==
			    (hva & PMD_MASK & PAGE_MASK)) {
				level = 1;
				pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
			}
		}
		/* See if we can provide write access */
		if (writing) {
			/*
			 * We assume gup_fast has set dirty on the host PTE.
			 */
			pgflags |= _PAGE_WRITE;
		} else {
			local_irq_save(flags);
			ptep = __find_linux_pte_or_hugepte(current->mm->pgd,
							hva, NULL, NULL);
			if (ptep && pte_write(*ptep) && pte_dirty(*ptep))
				pgflags |= _PAGE_WRITE;
			local_irq_restore(flags);
		}
	}

	/*
	 * Compute the PTE value that we need to insert.
	 */
	pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
	if (pgflags & _PAGE_WRITE)
		pgflags |= _PAGE_DIRTY;
	pte = pfn_pte(pfn, __pgprot(pgflags));

	/* Allocate space in the tree and write the PTE */
	ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
	if (ret == -EBUSY) {
		/*
		 * There's already a PMD where wanted to install a large page;
		 * for now, fall back to installing a small page.
		 */
		level = 0;
		pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
		pte = pfn_pte(pfn, __pgprot(pgflags));
		ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
	}
	if (ret == 0 || ret == -EAGAIN)
		ret = RESUME_GUEST;

	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
	return ret;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/* Called with kvm->lock held */
int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
		    unsigned long gfn)
{
	pte_t *ptep;
	unsigned long gpa = gfn << PAGE_SHIFT;
	unsigned int shift;

	ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
					   NULL, &shift);
	if (ptep && pte_present(*ptep)) {
		kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
					gpa, shift);
		kvmppc_radix_tlbie_page(kvm, gpa, shift);
	}
	return 0;				
}

/* Called with kvm->lock held */
int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  unsigned long gfn)
{
	pte_t *ptep;
	unsigned long gpa = gfn << PAGE_SHIFT;
	unsigned int shift;
	int ref = 0;

	ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
					   NULL, &shift);
	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
		kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
					gpa, shift);
		/* XXX need to flush tlb here? */
		ref = 1;
	}
	return ref;
}

/* Called with kvm->lock held */
int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
		       unsigned long gfn)
{
	pte_t *ptep;
	unsigned long gpa = gfn << PAGE_SHIFT;
	unsigned int shift;
	int ref = 0;

	ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
					   NULL, &shift);
	if (ptep && pte_present(*ptep) && pte_young(*ptep))
		ref = 1;
	return ref;
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
void kvmppc_free_radix(struct kvm *kvm)
{
	unsigned long ig, iu, im;
	pte_t *pte;
	pmd_t *pmd;
	pud_t *pud;
	pgd_t *pgd;

	if (!kvm->arch.pgtable)
		return;
	pgd = kvm->arch.pgtable;
	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
		if (!pgd_present(*pgd))
			continue;
		pud = pud_offset(pgd, 0);
		for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
			if (!pud_present(*pud))
				continue;
			pmd = pmd_offset(pud, 0);
			for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
				if (pmd_huge(*pmd)) {
					pmd_clear(pmd);
					continue;
				}
				if (!pmd_present(*pmd))
					continue;
				pte = pte_offset_map(pmd, 0);
				memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
				kvmppc_pte_free(pte);
				pmd_clear(pmd);
			}
			pmd_free(kvm->mm, pmd_offset(pud, 0));
			pud_clear(pud);
		}
		pud_free(kvm->mm, pud_offset(pgd, 0));
		pgd_clear(pgd);
	}
	pgd_free(kvm->mm, kvm->arch.pgtable);
}

static void pte_ctor(void *addr)
{
	memset(addr, 0, PTE_TABLE_SIZE);
}

int kvmppc_radix_init(void)
{
	unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;

	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
	if (!kvm_pte_cache)
		return -ENOMEM;
	return 0;
}

void kvmppc_radix_exit(void)
{
	kmem_cache_destroy(kvm_pte_cache);
}