hash.c 33.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 * Author: Arnaud Ebalard <arno@natisbad.org>
 *
 * This work is based on an initial version written by
 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 */

15
#include <crypto/md5.h>
16 17 18 19
#include <crypto/sha.h>

#include "cesa.h"

20 21 22 23 24 25 26 27 28 29
struct mv_cesa_ahash_dma_iter {
	struct mv_cesa_dma_iter base;
	struct mv_cesa_sg_dma_iter src;
};

static inline void
mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
			    struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
30
	unsigned int len = req->nbytes + creq->cache_ptr;
31 32

	if (!creq->last_req)
33
		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
34 35 36 37 38 39 40 41 42 43 44 45 46 47

	mv_cesa_req_dma_iter_init(&iter->base, len);
	mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
	iter->src.op_offset = creq->cache_ptr;
}

static inline bool
mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
{
	iter->src.op_offset = 0;

	return mv_cesa_req_dma_iter_next_op(&iter->base);
}

48 49
static inline int
mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
50
{
51 52 53
	req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
				    &req->cache_dma);
	if (!req->cache)
54 55 56 57 58
		return -ENOMEM;

	return 0;
}

59 60
static inline void
mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
61
{
62
	if (!req->cache)
63 64
		return;

65 66
	dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
		      req->cache_dma);
67 68
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
					   gfp_t flags)
{
	if (req->padding)
		return 0;

	req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
				      &req->padding_dma);
	if (!req->padding)
		return -ENOMEM;

	return 0;
}

static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
{
	if (!req->padding)
		return;

	dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
		      req->padding_dma);
	req->padding = NULL;
}

static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	mv_cesa_ahash_dma_free_padding(&creq->req.dma);
}

static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
105
	mv_cesa_ahash_dma_free_cache(&creq->req.dma);
106
	mv_cesa_dma_cleanup(&creq->base);
107 108 109 110 111 112
}

static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

113
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
114 115 116
		mv_cesa_ahash_dma_cleanup(req);
}

117 118 119 120
static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

121
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
122
		mv_cesa_ahash_dma_last_cleanup(req);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
}

static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
{
	unsigned int index, padlen;

	index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
	padlen = (index < 56) ? (56 - index) : (64 + 56 - index);

	return padlen;
}

static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
{
	unsigned int index, padlen;

	buf[0] = 0x80;
	/* Pad out to 56 mod 64 */
	index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
	padlen = mv_cesa_ahash_pad_len(creq);
	memset(buf + 1, 0, padlen - 1);
144 145 146 147 148 149 150 151

	if (creq->algo_le) {
		__le64 bits = cpu_to_le64(creq->len << 3);
		memcpy(buf + padlen, &bits, sizeof(bits));
	} else {
		__be64 bits = cpu_to_be64(creq->len << 3);
		memcpy(buf + padlen, &bits, sizeof(bits));
	}
152 153 154 155 156 157 158 159

	return padlen + 8;
}

static void mv_cesa_ahash_std_step(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
160
	struct mv_cesa_engine *engine = creq->base.engine;
161 162 163 164
	struct mv_cesa_op_ctx *op;
	unsigned int new_cache_ptr = 0;
	u32 frag_mode;
	size_t  len;
165 166 167 168 169 170 171 172 173
	unsigned int digsize;
	int i;

	mv_cesa_adjust_op(engine, &creq->op_tmpl);
	memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));

	digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
	for (i = 0; i < digsize / 4; i++)
		writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
174

175 176 177
	mv_cesa_adjust_op(engine, &creq->op_tmpl);
	memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));

178
	if (creq->cache_ptr)
179 180
		memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
			    creq->cache, creq->cache_ptr);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

	len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
		    CESA_SA_SRAM_PAYLOAD_SIZE);

	if (!creq->last_req) {
		new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
	}

	if (len - creq->cache_ptr)
		sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
						   engine->sram +
						   CESA_SA_DATA_SRAM_OFFSET +
						   creq->cache_ptr,
						   len - creq->cache_ptr,
						   sreq->offset);

	op = &creq->op_tmpl;

	frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;

	if (creq->last_req && sreq->offset == req->nbytes &&
	    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
		if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
			frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
		else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
			frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
	}

	if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
	    frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
		if (len &&
		    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
			mv_cesa_set_mac_op_total_len(op, creq->len);
		} else {
			int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;

			if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
				len &= CESA_HASH_BLOCK_SIZE_MSK;
				new_cache_ptr = 64 - trailerlen;
221 222 223 224
				memcpy_fromio(creq->cache,
					      engine->sram +
					      CESA_SA_DATA_SRAM_OFFSET + len,
					      new_cache_ptr);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
			} else {
				len += mv_cesa_ahash_pad_req(creq,
						engine->sram + len +
						CESA_SA_DATA_SRAM_OFFSET);
			}

			if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
				frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
			else
				frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
		}
	}

	mv_cesa_set_mac_op_frag_len(op, len);
	mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);

	/* FIXME: only update enc_len field */
242
	memcpy_toio(engine->sram, op, sizeof(*op));
243 244 245 246 247 248 249 250

	if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
		mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);

	creq->cache_ptr = new_cache_ptr;

	mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
251
	writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
252 253
	BUG_ON(readl(engine->regs + CESA_SA_CMD) &
	       CESA_SA_CMD_EN_CESA_SA_ACCL0);
254 255 256 257 258 259 260 261 262 263 264 265 266 267
	writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
}

static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;

	if (sreq->offset < (req->nbytes - creq->cache_ptr))
		return -EINPROGRESS;

	return 0;
}

268 269 270
static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
271
	struct mv_cesa_req *basereq = &creq->base;
272

273
	mv_cesa_dma_prepare(basereq, basereq->engine);
274 275
}

276 277 278 279 280 281 282 283 284 285 286
static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;

	sreq->offset = 0;
}

static void mv_cesa_ahash_step(struct crypto_async_request *req)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
287
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
288

289 290
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
		mv_cesa_dma_step(&creq->base);
291 292
	else
		mv_cesa_ahash_std_step(ahashreq);
293 294 295 296 297 298 299
}

static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);

300
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
301
		return mv_cesa_dma_process(&creq->base, status);
302

303 304 305 306 307 308 309 310 311 312
	return mv_cesa_ahash_std_process(ahashreq, status);
}

static void mv_cesa_ahash_complete(struct crypto_async_request *req)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
	struct mv_cesa_engine *engine = creq->base.engine;
	unsigned int digsize;
	int i;
313 314 315

	digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
	for (i = 0; i < digsize / 4; i++)
316
		creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i));
317 318

	if (creq->last_req) {
319 320 321 322
		/*
		 * Hardware's MD5 digest is in little endian format, but
		 * SHA in big endian format
		 */
323
		if (creq->algo_le) {
324 325 326 327 328 329
			__le32 *result = (void *)ahashreq->result;

			for (i = 0; i < digsize / 4; i++)
				result[i] = cpu_to_le32(creq->state[i]);
		} else {
			__be32 *result = (void *)ahashreq->result;
330

331 332 333
			for (i = 0; i < digsize / 4; i++)
				result[i] = cpu_to_be32(creq->state[i]);
		}
334
	}
335 336

	atomic_sub(ahashreq->nbytes, &engine->load);
337 338 339 340 341 342 343 344
}

static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
				  struct mv_cesa_engine *engine)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);

345
	creq->base.engine = engine;
346

347
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
348 349 350
		mv_cesa_ahash_dma_prepare(ahashreq);
	else
		mv_cesa_ahash_std_prepare(ahashreq);
351 352 353 354 355 356 357 358 359
}

static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);

	if (creq->last_req)
		mv_cesa_ahash_last_cleanup(ahashreq);
360 361

	mv_cesa_ahash_cleanup(ahashreq);
362 363 364 365 366 367

	if (creq->cache_ptr)
		sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
				   creq->cache,
				   creq->cache_ptr,
				   ahashreq->nbytes - creq->cache_ptr);
368 369 370 371 372 373
}

static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
	.step = mv_cesa_ahash_step,
	.process = mv_cesa_ahash_process,
	.cleanup = mv_cesa_ahash_req_cleanup,
374
	.complete = mv_cesa_ahash_complete,
375 376
};

377
static void mv_cesa_ahash_init(struct ahash_request *req,
378
			      struct mv_cesa_op_ctx *tmpl, bool algo_le)
379 380 381 382 383 384 385 386 387 388 389 390 391
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	memset(creq, 0, sizeof(*creq));
	mv_cesa_update_op_cfg(tmpl,
			      CESA_SA_DESC_CFG_OP_MAC_ONLY |
			      CESA_SA_DESC_CFG_FIRST_FRAG,
			      CESA_SA_DESC_CFG_OP_MSK |
			      CESA_SA_DESC_CFG_FRAG_MSK);
	mv_cesa_set_mac_op_total_len(tmpl, 0);
	mv_cesa_set_mac_op_frag_len(tmpl, 0);
	creq->op_tmpl = *tmpl;
	creq->len = 0;
392
	creq->algo_le = algo_le;
393 394 395 396 397 398 399 400 401 402 403 404 405
}

static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
{
	struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);

	ctx->base.ops = &mv_cesa_ahash_req_ops;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mv_cesa_ahash_req));
	return 0;
}

406
static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
407 408
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
409
	bool cached = false;
410 411

	if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
412
		cached = true;
413 414

		if (!req->nbytes)
415
			return cached;
416 417 418 419 420 421 422 423

		sg_pcopy_to_buffer(req->src, creq->src_nents,
				   creq->cache + creq->cache_ptr,
				   req->nbytes, 0);

		creq->cache_ptr += req->nbytes;
	}

424
	return cached;
425 426
}

427
static struct mv_cesa_op_ctx *
428 429 430
mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
		     struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
		     gfp_t flags)
431
{
432
	struct mv_cesa_op_ctx *op;
433 434
	int ret;

435 436 437
	op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
	if (IS_ERR(op))
		return op;
438

439 440 441 442 443
	/* Set the operation block fragment length. */
	mv_cesa_set_mac_op_frag_len(op, frag_len);

	/* Append dummy desc to launch operation */
	ret = mv_cesa_dma_add_dummy_launch(chain, flags);
444 445 446
	if (ret)
		return ERR_PTR(ret);

447 448 449 450
	if (mv_cesa_mac_op_is_first_frag(tmpl))
		mv_cesa_update_op_cfg(tmpl,
				      CESA_SA_DESC_CFG_MID_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);
451 452 453 454

	return op;
}

455
static int
456 457 458 459 460
mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
			    struct mv_cesa_ahash_req *creq,
			    gfp_t flags)
{
	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
461
	int ret;
462 463

	if (!creq->cache_ptr)
464
		return 0;
465

466 467 468 469 470 471
	ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
	if (ret)
		return ret;

	memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);

472 473 474 475 476 477
	return mv_cesa_dma_add_data_transfer(chain,
					     CESA_SA_DATA_SRAM_OFFSET,
					     ahashdreq->cache_dma,
					     creq->cache_ptr,
					     CESA_TDMA_DST_IN_SRAM,
					     flags);
478 479 480 481 482 483
}

static struct mv_cesa_op_ctx *
mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
			   struct mv_cesa_ahash_dma_iter *dma_iter,
			   struct mv_cesa_ahash_req *creq,
484
			   unsigned int frag_len, gfp_t flags)
485 486 487
{
	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
	unsigned int len, trailerlen, padoff = 0;
488
	struct mv_cesa_op_ctx *op;
489 490
	int ret;

491 492 493 494 495
	/*
	 * If the transfer is smaller than our maximum length, and we have
	 * some data outstanding, we can ask the engine to finish the hash.
	 */
	if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
496 497 498 499
		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
					  flags);
		if (IS_ERR(op))
			return op;
500

501 502 503 504 505
		mv_cesa_set_mac_op_total_len(op, creq->len);
		mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
						CESA_SA_DESC_CFG_NOT_FRAG :
						CESA_SA_DESC_CFG_LAST_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);
506 507 508 509

		return op;
	}

510 511 512 513 514
	/*
	 * The request is longer than the engine can handle, or we have
	 * no data outstanding. Manually generate the padding, adding it
	 * as a "mid" fragment.
	 */
515 516 517 518 519 520
	ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
	if (ret)
		return ERR_PTR(ret);

	trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);

521 522 523
	len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
	if (len) {
		ret = mv_cesa_dma_add_data_transfer(chain,
524
						CESA_SA_DATA_SRAM_OFFSET +
525
						frag_len,
526 527 528
						ahashdreq->padding_dma,
						len, CESA_TDMA_DST_IN_SRAM,
						flags);
529 530
		if (ret)
			return ERR_PTR(ret);
531

532 533 534 535
		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
					  flags);
		if (IS_ERR(op))
			return op;
536

537 538
		if (len == trailerlen)
			return op;
539

540 541
		padoff += len;
	}
542 543 544 545 546 547 548 549 550 551 552

	ret = mv_cesa_dma_add_data_transfer(chain,
					    CESA_SA_DATA_SRAM_OFFSET,
					    ahashdreq->padding_dma +
					    padoff,
					    trailerlen - padoff,
					    CESA_TDMA_DST_IN_SRAM,
					    flags);
	if (ret)
		return ERR_PTR(ret);

553 554
	return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
				    flags);
555 556 557 558 559 560 561
}

static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
		      GFP_KERNEL : GFP_ATOMIC;
562
	struct mv_cesa_req *basereq = &creq->base;
563 564
	struct mv_cesa_ahash_dma_iter iter;
	struct mv_cesa_op_ctx *op = NULL;
565
	unsigned int frag_len;
566 567
	int ret;

568 569
	basereq->chain.first = NULL;
	basereq->chain.last = NULL;
570 571 572 573 574 575 576 577 578 579

	if (creq->src_nents) {
		ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
				 DMA_TO_DEVICE);
		if (!ret) {
			ret = -ENOMEM;
			goto err;
		}
	}

580
	mv_cesa_tdma_desc_iter_init(&basereq->chain);
581 582
	mv_cesa_ahash_req_iter_init(&iter, req);

583 584 585 586
	/*
	 * Add the cache (left-over data from a previous block) first.
	 * This will never overflow the SRAM size.
	 */
587
	ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
588
	if (ret)
589 590
		goto err_free_tdma;

591 592 593 594
	if (iter.src.sg) {
		/*
		 * Add all the new data, inserting an operation block and
		 * launch command between each full SRAM block-worth of
595
		 * data. We intentionally do not add the final op block.
596
		 */
597
		while (true) {
598
			ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
599
							   &iter.base,
600 601 602 603
							   &iter.src, flags);
			if (ret)
				goto err_free_tdma;

604
			frag_len = iter.base.op_len;
605

606 607 608
			if (!mv_cesa_ahash_req_iter_next_op(&iter))
				break;

609
			op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
610
						  frag_len, flags);
611 612 613 614
			if (IS_ERR(op)) {
				ret = PTR_ERR(op);
				goto err_free_tdma;
			}
615
		}
616
	} else {
617
		/* Account for the data that was in the cache. */
618 619 620
		frag_len = iter.base.op_len;
	}

621 622 623 624 625 626
	/*
	 * At this point, frag_len indicates whether we have any data
	 * outstanding which needs an operation.  Queue up the final
	 * operation, which depends whether this is the final request.
	 */
	if (creq->last_req)
627
		op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
628
						frag_len, flags);
629
	else if (frag_len)
630
		op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
631
					  frag_len, flags);
632 633 634 635 636 637 638 639

	if (IS_ERR(op)) {
		ret = PTR_ERR(op);
		goto err_free_tdma;
	}

	if (op) {
		/* Add dummy desc to wait for crypto operation end */
640
		ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
641 642 643 644 645 646 647 648 649 650
		if (ret)
			goto err_free_tdma;
	}

	if (!creq->last_req)
		creq->cache_ptr = req->nbytes + creq->cache_ptr -
				  iter.base.len;
	else
		creq->cache_ptr = 0;

651 652 653
	basereq->chain.last->flags |= (CESA_TDMA_END_OF_REQ |
				       CESA_TDMA_BREAK_CHAIN);

654 655 656
	return 0;

err_free_tdma:
657
	mv_cesa_dma_cleanup(basereq);
658 659 660 661 662 663 664 665
	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);

err:
	mv_cesa_ahash_last_cleanup(req);

	return ret;
}

666 667 668
static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
669

670
	creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
671 672 673 674
	if (creq->src_nents < 0) {
		dev_err(cesa_dev->dev, "Invalid number of src SG");
		return creq->src_nents;
	}
675

676
	*cached = mv_cesa_ahash_cache_req(req);
677 678 679 680

	if (*cached)
		return 0;

681
	if (cesa_dev->caps->has_tdma)
682 683 684
		return mv_cesa_ahash_dma_req_init(req);
	else
		return 0;
685 686
}

687
static int mv_cesa_ahash_queue_req(struct ahash_request *req)
688 689
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
690
	struct mv_cesa_engine *engine;
691 692 693 694 695 696 697 698 699 700
	bool cached = false;
	int ret;

	ret = mv_cesa_ahash_req_init(req, &cached);
	if (ret)
		return ret;

	if (cached)
		return 0;

701 702 703
	engine = mv_cesa_select_engine(req->nbytes);
	mv_cesa_ahash_prepare(&req->base, engine);

704
	ret = mv_cesa_queue_req(&req->base, &creq->base);
705

706
	if (mv_cesa_req_needs_cleanup(&req->base, ret))
707 708 709
		mv_cesa_ahash_cleanup(req);

	return ret;
710 711
}

712 713 714 715 716 717 718 719 720
static int mv_cesa_ahash_update(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	creq->len += req->nbytes;

	return mv_cesa_ahash_queue_req(req);
}

721 722 723 724 725 726 727 728 729
static int mv_cesa_ahash_final(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;

	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
	creq->last_req = true;
	req->nbytes = 0;

730
	return mv_cesa_ahash_queue_req(req);
731 732 733 734 735 736 737 738 739 740 741
}

static int mv_cesa_ahash_finup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;

	creq->len += req->nbytes;
	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
	creq->last_req = true;

742
	return mv_cesa_ahash_queue_req(req);
743 744
}

745 746
static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
				u64 *len, void *cache)
747 748 749 750
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	unsigned int digsize = crypto_ahash_digestsize(ahash);
751
	unsigned int blocksize;
752

753
	blocksize = crypto_ahash_blocksize(ahash);
754

755 756 757
	*len = creq->len;
	memcpy(hash, creq->state, digsize);
	memset(cache, 0, blocksize);
758
	memcpy(cache, creq->cache, creq->cache_ptr);
759 760 761 762

	return 0;
}

763 764
static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
				u64 len, const void *cache)
765 766 767 768
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	unsigned int digsize = crypto_ahash_digestsize(ahash);
769
	unsigned int blocksize;
770 771 772
	unsigned int cache_ptr;
	int ret;

773 774 775 776
	ret = crypto_ahash_init(req);
	if (ret)
		return ret;

777
	blocksize = crypto_ahash_blocksize(ahash);
778
	if (len >= blocksize)
779 780 781 782
		mv_cesa_update_op_cfg(&creq->op_tmpl,
				      CESA_SA_DESC_CFG_MID_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);

783 784
	creq->len = len;
	memcpy(creq->state, hash, digsize);
785 786
	creq->cache_ptr = 0;

787
	cache_ptr = do_div(len, blocksize);
788 789 790
	if (!cache_ptr)
		return 0;

791
	memcpy(creq->cache, cache, cache_ptr);
792 793 794 795 796
	creq->cache_ptr = cache_ptr;

	return 0;
}

797 798
static int mv_cesa_md5_init(struct ahash_request *req)
{
799
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
800
	struct mv_cesa_op_ctx tmpl = { };
801 802

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
803 804 805

	mv_cesa_ahash_init(req, &tmpl, true);

806 807 808 809
	creq->state[0] = MD5_H0;
	creq->state[1] = MD5_H1;
	creq->state[2] = MD5_H2;
	creq->state[3] = MD5_H3;
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

	return 0;
}

static int mv_cesa_md5_export(struct ahash_request *req, void *out)
{
	struct md5_state *out_state = out;

	return mv_cesa_ahash_export(req, out_state->hash,
				    &out_state->byte_count, out_state->block);
}

static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
{
	const struct md5_state *in_state = in;

	return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
				    in_state->block);
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static int mv_cesa_md5_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_md5_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_md5_alg = {
	.init = mv_cesa_md5_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_md5_digest,
	.export = mv_cesa_md5_export,
	.import = mv_cesa_md5_import,
	.halg = {
		.digestsize = MD5_DIGEST_SIZE,
851
		.statesize = sizeof(struct md5_state),
852 853 854 855 856 857 858 859 860 861 862 863 864 865
		.base = {
			.cra_name = "md5",
			.cra_driver_name = "mv-md5",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
			.cra_init = mv_cesa_ahash_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

866 867
static int mv_cesa_sha1_init(struct ahash_request *req)
{
868
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
869
	struct mv_cesa_op_ctx tmpl = { };
870 871

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
872 873 874

	mv_cesa_ahash_init(req, &tmpl, false);

875 876 877 878 879
	creq->state[0] = SHA1_H0;
	creq->state[1] = SHA1_H1;
	creq->state[2] = SHA1_H2;
	creq->state[3] = SHA1_H3;
	creq->state[4] = SHA1_H4;
880 881 882 883 884 885 886 887

	return 0;
}

static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
{
	struct sha1_state *out_state = out;

888 889
	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
				    out_state->buffer);
890 891 892 893 894 895
}

static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
{
	const struct sha1_state *in_state = in;

896 897
	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
				    in_state->buffer);
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
}

static int mv_cesa_sha1_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_sha1_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_sha1_alg = {
	.init = mv_cesa_sha1_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_sha1_digest,
	.export = mv_cesa_sha1_export,
	.import = mv_cesa_sha1_import,
	.halg = {
		.digestsize = SHA1_DIGEST_SIZE,
921
		.statesize = sizeof(struct sha1_state),
922 923 924 925 926 927 928 929 930 931 932 933 934 935
		.base = {
			.cra_name = "sha1",
			.cra_driver_name = "mv-sha1",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA1_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
			.cra_init = mv_cesa_ahash_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

936 937
static int mv_cesa_sha256_init(struct ahash_request *req)
{
938
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
939
	struct mv_cesa_op_ctx tmpl = { };
940 941

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
942 943 944

	mv_cesa_ahash_init(req, &tmpl, false);

945 946 947 948 949 950 951 952
	creq->state[0] = SHA256_H0;
	creq->state[1] = SHA256_H1;
	creq->state[2] = SHA256_H2;
	creq->state[3] = SHA256_H3;
	creq->state[4] = SHA256_H4;
	creq->state[5] = SHA256_H5;
	creq->state[6] = SHA256_H6;
	creq->state[7] = SHA256_H7;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

	return 0;
}

static int mv_cesa_sha256_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_sha256_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
{
	struct sha256_state *out_state = out;

972 973
	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
				    out_state->buf);
974 975 976 977 978 979
}

static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
{
	const struct sha256_state *in_state = in;

980 981
	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
				    in_state->buf);
982 983 984 985 986 987 988 989 990 991 992 993
}

struct ahash_alg mv_sha256_alg = {
	.init = mv_cesa_sha256_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_sha256_digest,
	.export = mv_cesa_sha256_export,
	.import = mv_cesa_sha256_import,
	.halg = {
		.digestsize = SHA256_DIGEST_SIZE,
994
		.statesize = sizeof(struct sha256_state),
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		.base = {
			.cra_name = "sha256",
			.cra_driver_name = "mv-sha256",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA256_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
			.cra_init = mv_cesa_ahash_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
struct mv_cesa_ahash_result {
	struct completion completion;
	int error;
};

static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
					int error)
{
	struct mv_cesa_ahash_result *result = req->data;

	if (error == -EINPROGRESS)
		return;

	result->error = error;
	complete(&result->completion);
}

static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
				       void *state, unsigned int blocksize)
{
	struct mv_cesa_ahash_result result;
	struct scatterlist sg;
	int ret;

	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				   mv_cesa_hmac_ahash_complete, &result);
	sg_init_one(&sg, pad, blocksize);
	ahash_request_set_crypt(req, &sg, pad, blocksize);
	init_completion(&result.completion);

	ret = crypto_ahash_init(req);
	if (ret)
		return ret;

	ret = crypto_ahash_update(req);
	if (ret && ret != -EINPROGRESS)
		return ret;

	wait_for_completion_interruptible(&result.completion);
	if (result.error)
		return result.error;

	ret = crypto_ahash_export(req, state);
	if (ret)
		return ret;

	return 0;
}

static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
				  const u8 *key, unsigned int keylen,
				  u8 *ipad, u8 *opad,
				  unsigned int blocksize)
{
	struct mv_cesa_ahash_result result;
	struct scatterlist sg;
	int ret;
	int i;

	if (keylen <= blocksize) {
		memcpy(ipad, key, keylen);
	} else {
		u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);

		if (!keydup)
			return -ENOMEM;

		ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
					   mv_cesa_hmac_ahash_complete,
					   &result);
		sg_init_one(&sg, keydup, keylen);
		ahash_request_set_crypt(req, &sg, ipad, keylen);
		init_completion(&result.completion);

		ret = crypto_ahash_digest(req);
		if (ret == -EINPROGRESS) {
			wait_for_completion_interruptible(&result.completion);
			ret = result.error;
		}

		/* Set the memory region to 0 to avoid any leak. */
		memset(keydup, 0, keylen);
		kfree(keydup);

		if (ret)
			return ret;

		keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
	}

	memset(ipad + keylen, 0, blocksize - keylen);
	memcpy(opad, ipad, blocksize);

	for (i = 0; i < blocksize; i++) {
		ipad[i] ^= 0x36;
		opad[i] ^= 0x5c;
	}

	return 0;
}

static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
				const u8 *key, unsigned int keylen,
				void *istate, void *ostate)
{
	struct ahash_request *req;
	struct crypto_ahash *tfm;
	unsigned int blocksize;
	u8 *ipad = NULL;
	u8 *opad;
	int ret;

	tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
				 CRYPTO_ALG_TYPE_AHASH_MASK);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto free_ahash;
	}

	crypto_ahash_clear_flags(tfm, ~0);

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));

	ipad = kzalloc(2 * blocksize, GFP_KERNEL);
	if (!ipad) {
		ret = -ENOMEM;
		goto free_req;
	}

	opad = ipad + blocksize;

	ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
	if (ret)
		goto free_ipad;

	ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
	if (ret)
		goto free_ipad;

	ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);

free_ipad:
	kfree(ipad);
free_req:
	ahash_request_free(req);
free_ahash:
	crypto_free_ahash(tfm);

	return ret;
}

static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);

	ctx->base.ops = &mv_cesa_ahash_req_ops;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mv_cesa_ahash_req));
	return 0;
}

1175 1176 1177
static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1178
	struct mv_cesa_op_ctx tmpl = { };
1179 1180 1181 1182

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));

1183
	mv_cesa_ahash_init(req, &tmpl, true);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

	return 0;
}

static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
				    unsigned int keylen)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct md5_state istate, ostate;
	int ret, i;

	ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
	if (ret)
		return ret;

	for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
		ctx->iv[i] = be32_to_cpu(istate.hash[i]);

	for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
		ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);

	return 0;
}

static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_ahmac_md5_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_ahmac_md5_alg = {
	.init = mv_cesa_ahmac_md5_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_ahmac_md5_digest,
	.setkey = mv_cesa_ahmac_md5_setkey,
	.export = mv_cesa_md5_export,
	.import = mv_cesa_md5_import,
	.halg = {
		.digestsize = MD5_DIGEST_SIZE,
		.statesize = sizeof(struct md5_state),
		.base = {
			.cra_name = "hmac(md5)",
			.cra_driver_name = "mv-hmac-md5",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
			.cra_init = mv_cesa_ahmac_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

1245 1246 1247
static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1248
	struct mv_cesa_op_ctx tmpl = { };
1249 1250 1251 1252

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));

1253
	mv_cesa_ahash_init(req, &tmpl, false);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

	return 0;
}

static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
				     unsigned int keylen)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct sha1_state istate, ostate;
	int ret, i;

	ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
	if (ret)
		return ret;

	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
		ctx->iv[i] = be32_to_cpu(istate.state[i]);

	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
		ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);

	return 0;
}

static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_ahmac_sha1_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_ahmac_sha1_alg = {
	.init = mv_cesa_ahmac_sha1_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_ahmac_sha1_digest,
	.setkey = mv_cesa_ahmac_sha1_setkey,
	.export = mv_cesa_sha1_export,
	.import = mv_cesa_sha1_import,
	.halg = {
		.digestsize = SHA1_DIGEST_SIZE,
		.statesize = sizeof(struct sha1_state),
		.base = {
			.cra_name = "hmac(sha1)",
			.cra_driver_name = "mv-hmac-sha1",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA1_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
			.cra_init = mv_cesa_ahmac_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
				       unsigned int keylen)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct sha256_state istate, ostate;
	int ret, i;

	ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
	if (ret)
		return ret;

	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
		ctx->iv[i] = be32_to_cpu(istate.state[i]);

	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
		ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);

	return 0;
}

static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1338
	struct mv_cesa_op_ctx tmpl = { };
1339 1340 1341 1342

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));

1343
	mv_cesa_ahash_init(req, &tmpl, false);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	return 0;
}

static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_ahmac_sha256_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_ahmac_sha256_alg = {
	.init = mv_cesa_ahmac_sha256_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_ahmac_sha256_digest,
	.setkey = mv_cesa_ahmac_sha256_setkey,
	.export = mv_cesa_sha256_export,
	.import = mv_cesa_sha256_import,
	.halg = {
		.digestsize = SHA256_DIGEST_SIZE,
		.statesize = sizeof(struct sha256_state),
		.base = {
			.cra_name = "hmac(sha256)",
			.cra_driver_name = "mv-hmac-sha256",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA256_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
			.cra_init = mv_cesa_ahmac_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};