hash.c 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 * Author: Arnaud Ebalard <arno@natisbad.org>
 *
 * This work is based on an initial version written by
 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 */

15
#include <crypto/md5.h>
16 17 18 19
#include <crypto/sha.h>

#include "cesa.h"

20 21 22 23 24 25 26 27 28 29
struct mv_cesa_ahash_dma_iter {
	struct mv_cesa_dma_iter base;
	struct mv_cesa_sg_dma_iter src;
};

static inline void
mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
			    struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
30
	unsigned int len = req->nbytes + creq->cache_ptr;
31 32

	if (!creq->last_req)
33
		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
34 35 36 37 38 39 40 41 42 43 44 45 46 47

	mv_cesa_req_dma_iter_init(&iter->base, len);
	mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
	iter->src.op_offset = creq->cache_ptr;
}

static inline bool
mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
{
	iter->src.op_offset = 0;

	return mv_cesa_req_dma_iter_next_op(&iter->base);
}

48 49
static inline int
mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
50
{
51 52 53
	req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
				    &req->cache_dma);
	if (!req->cache)
54 55 56 57 58
		return -ENOMEM;

	return 0;
}

59 60
static inline void
mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
61
{
62
	if (!req->cache)
63 64
		return;

65 66
	dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
		      req->cache_dma);
67 68
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
					   gfp_t flags)
{
	if (req->padding)
		return 0;

	req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
				      &req->padding_dma);
	if (!req->padding)
		return -ENOMEM;

	return 0;
}

static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
{
	if (!req->padding)
		return;

	dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
		      req->padding_dma);
	req->padding = NULL;
}

static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	mv_cesa_ahash_dma_free_padding(&creq->req.dma);
}

static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
105
	mv_cesa_ahash_dma_free_cache(&creq->req.dma);
106
	mv_cesa_dma_cleanup(&creq->base);
107 108 109 110 111 112
}

static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

113
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
114 115 116
		mv_cesa_ahash_dma_cleanup(req);
}

117 118 119 120
static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

121
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
122
		mv_cesa_ahash_dma_last_cleanup(req);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
}

static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
{
	unsigned int index, padlen;

	index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
	padlen = (index < 56) ? (56 - index) : (64 + 56 - index);

	return padlen;
}

static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
{
	unsigned int index, padlen;

	buf[0] = 0x80;
	/* Pad out to 56 mod 64 */
	index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
	padlen = mv_cesa_ahash_pad_len(creq);
	memset(buf + 1, 0, padlen - 1);
144 145 146 147 148 149 150 151

	if (creq->algo_le) {
		__le64 bits = cpu_to_le64(creq->len << 3);
		memcpy(buf + padlen, &bits, sizeof(bits));
	} else {
		__be64 bits = cpu_to_be64(creq->len << 3);
		memcpy(buf + padlen, &bits, sizeof(bits));
	}
152 153 154 155 156 157 158 159

	return padlen + 8;
}

static void mv_cesa_ahash_std_step(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
160
	struct mv_cesa_engine *engine = creq->base.engine;
161 162 163 164
	struct mv_cesa_op_ctx *op;
	unsigned int new_cache_ptr = 0;
	u32 frag_mode;
	size_t  len;
165 166 167 168 169 170 171 172 173
	unsigned int digsize;
	int i;

	mv_cesa_adjust_op(engine, &creq->op_tmpl);
	memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));

	digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
	for (i = 0; i < digsize / 4; i++)
		writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
174 175

	if (creq->cache_ptr)
176 177
		memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
			    creq->cache, creq->cache_ptr);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
		    CESA_SA_SRAM_PAYLOAD_SIZE);

	if (!creq->last_req) {
		new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
	}

	if (len - creq->cache_ptr)
		sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
						   engine->sram +
						   CESA_SA_DATA_SRAM_OFFSET +
						   creq->cache_ptr,
						   len - creq->cache_ptr,
						   sreq->offset);

	op = &creq->op_tmpl;

	frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;

	if (creq->last_req && sreq->offset == req->nbytes &&
	    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
		if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
			frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
		else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
			frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
	}

	if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
	    frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
		if (len &&
		    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
			mv_cesa_set_mac_op_total_len(op, creq->len);
		} else {
			int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;

			if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
				len &= CESA_HASH_BLOCK_SIZE_MSK;
				new_cache_ptr = 64 - trailerlen;
218 219 220 221
				memcpy_fromio(creq->cache,
					      engine->sram +
					      CESA_SA_DATA_SRAM_OFFSET + len,
					      new_cache_ptr);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
			} else {
				len += mv_cesa_ahash_pad_req(creq,
						engine->sram + len +
						CESA_SA_DATA_SRAM_OFFSET);
			}

			if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
				frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
			else
				frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
		}
	}

	mv_cesa_set_mac_op_frag_len(op, len);
	mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);

	/* FIXME: only update enc_len field */
239
	memcpy_toio(engine->sram, op, sizeof(*op));
240 241 242 243 244 245 246 247

	if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
		mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);

	creq->cache_ptr = new_cache_ptr;

	mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
248
	writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
249 250
	BUG_ON(readl(engine->regs + CESA_SA_CMD) &
	       CESA_SA_CMD_EN_CESA_SA_ACCL0);
251 252 253 254 255 256 257 258 259 260 261 262 263 264
	writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
}

static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;

	if (sreq->offset < (req->nbytes - creq->cache_ptr))
		return -EINPROGRESS;

	return 0;
}

265 266 267
static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
268
	struct mv_cesa_req *basereq = &creq->base;
269

270
	mv_cesa_dma_prepare(basereq, basereq->engine);
271 272
}

273 274 275 276 277 278 279 280 281 282 283
static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;

	sreq->offset = 0;
}

static void mv_cesa_ahash_step(struct crypto_async_request *req)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
284
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
285

286 287
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
		mv_cesa_dma_step(&creq->base);
288 289
	else
		mv_cesa_ahash_std_step(ahashreq);
290 291 292 293 294 295 296
}

static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);

297
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
298
		return mv_cesa_dma_process(&creq->base, status);
299

300 301 302 303 304 305 306 307 308 309
	return mv_cesa_ahash_std_process(ahashreq, status);
}

static void mv_cesa_ahash_complete(struct crypto_async_request *req)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
	struct mv_cesa_engine *engine = creq->base.engine;
	unsigned int digsize;
	int i;
310 311 312

	digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
	for (i = 0; i < digsize / 4; i++)
313
		creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i));
314 315 316 317 318 319 320 321

	if (creq->cache_ptr)
		sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
				   creq->cache,
				   creq->cache_ptr,
				   ahashreq->nbytes - creq->cache_ptr);

	if (creq->last_req) {
322 323 324 325
		/*
		 * Hardware's MD5 digest is in little endian format, but
		 * SHA in big endian format
		 */
326
		if (creq->algo_le) {
327 328 329 330 331 332
			__le32 *result = (void *)ahashreq->result;

			for (i = 0; i < digsize / 4; i++)
				result[i] = cpu_to_le32(creq->state[i]);
		} else {
			__be32 *result = (void *)ahashreq->result;
333

334 335 336
			for (i = 0; i < digsize / 4; i++)
				result[i] = cpu_to_be32(creq->state[i]);
		}
337
	}
338 339

	atomic_sub(ahashreq->nbytes, &engine->load);
340 341 342 343 344 345 346 347
}

static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
				  struct mv_cesa_engine *engine)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);

348
	creq->base.engine = engine;
349

350
	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
351 352 353
		mv_cesa_ahash_dma_prepare(ahashreq);
	else
		mv_cesa_ahash_std_prepare(ahashreq);
354 355 356 357 358 359 360 361 362
}

static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
{
	struct ahash_request *ahashreq = ahash_request_cast(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);

	if (creq->last_req)
		mv_cesa_ahash_last_cleanup(ahashreq);
363 364

	mv_cesa_ahash_cleanup(ahashreq);
365 366 367 368 369 370
}

static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
	.step = mv_cesa_ahash_step,
	.process = mv_cesa_ahash_process,
	.cleanup = mv_cesa_ahash_req_cleanup,
371
	.complete = mv_cesa_ahash_complete,
372 373 374
};

static int mv_cesa_ahash_init(struct ahash_request *req,
375
			      struct mv_cesa_op_ctx *tmpl, bool algo_le)
376 377 378 379 380 381 382 383 384 385 386 387 388
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	memset(creq, 0, sizeof(*creq));
	mv_cesa_update_op_cfg(tmpl,
			      CESA_SA_DESC_CFG_OP_MAC_ONLY |
			      CESA_SA_DESC_CFG_FIRST_FRAG,
			      CESA_SA_DESC_CFG_OP_MSK |
			      CESA_SA_DESC_CFG_FRAG_MSK);
	mv_cesa_set_mac_op_total_len(tmpl, 0);
	mv_cesa_set_mac_op_frag_len(tmpl, 0);
	creq->op_tmpl = *tmpl;
	creq->len = 0;
389
	creq->algo_le = algo_le;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

	return 0;
}

static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
{
	struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);

	ctx->base.ops = &mv_cesa_ahash_req_ops;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mv_cesa_ahash_req));
	return 0;
}

static int mv_cesa_ahash_cache_req(struct ahash_request *req, bool *cached)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
		*cached = true;

		if (!req->nbytes)
			return 0;

		sg_pcopy_to_buffer(req->src, creq->src_nents,
				   creq->cache + creq->cache_ptr,
				   req->nbytes, 0);

		creq->cache_ptr += req->nbytes;
	}

	return 0;
}

425
static struct mv_cesa_op_ctx *
426 427 428
mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
		     struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
		     gfp_t flags)
429
{
430
	struct mv_cesa_op_ctx *op;
431 432
	int ret;

433 434 435
	op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
	if (IS_ERR(op))
		return op;
436

437 438 439 440 441
	/* Set the operation block fragment length. */
	mv_cesa_set_mac_op_frag_len(op, frag_len);

	/* Append dummy desc to launch operation */
	ret = mv_cesa_dma_add_dummy_launch(chain, flags);
442 443 444
	if (ret)
		return ERR_PTR(ret);

445 446 447 448
	if (mv_cesa_mac_op_is_first_frag(tmpl))
		mv_cesa_update_op_cfg(tmpl,
				      CESA_SA_DESC_CFG_MID_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);
449 450 451 452

	return op;
}

453
static int
454 455 456 457 458 459
mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
			    struct mv_cesa_ahash_dma_iter *dma_iter,
			    struct mv_cesa_ahash_req *creq,
			    gfp_t flags)
{
	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
460
	int ret;
461 462

	if (!creq->cache_ptr)
463
		return 0;
464

465 466 467 468 469 470
	ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
	if (ret)
		return ret;

	memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);

471 472 473 474 475 476
	return mv_cesa_dma_add_data_transfer(chain,
					     CESA_SA_DATA_SRAM_OFFSET,
					     ahashdreq->cache_dma,
					     creq->cache_ptr,
					     CESA_TDMA_DST_IN_SRAM,
					     flags);
477 478 479 480 481 482
}

static struct mv_cesa_op_ctx *
mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
			   struct mv_cesa_ahash_dma_iter *dma_iter,
			   struct mv_cesa_ahash_req *creq,
483
			   unsigned int frag_len, gfp_t flags)
484 485 486
{
	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
	unsigned int len, trailerlen, padoff = 0;
487
	struct mv_cesa_op_ctx *op;
488 489
	int ret;

490 491 492 493 494
	/*
	 * If the transfer is smaller than our maximum length, and we have
	 * some data outstanding, we can ask the engine to finish the hash.
	 */
	if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
495 496 497 498
		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
					  flags);
		if (IS_ERR(op))
			return op;
499

500 501 502 503 504
		mv_cesa_set_mac_op_total_len(op, creq->len);
		mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
						CESA_SA_DESC_CFG_NOT_FRAG :
						CESA_SA_DESC_CFG_LAST_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);
505 506 507 508

		return op;
	}

509 510 511 512 513
	/*
	 * The request is longer than the engine can handle, or we have
	 * no data outstanding. Manually generate the padding, adding it
	 * as a "mid" fragment.
	 */
514 515 516 517 518 519
	ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
	if (ret)
		return ERR_PTR(ret);

	trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);

520 521 522
	len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
	if (len) {
		ret = mv_cesa_dma_add_data_transfer(chain,
523
						CESA_SA_DATA_SRAM_OFFSET +
524
						frag_len,
525 526 527
						ahashdreq->padding_dma,
						len, CESA_TDMA_DST_IN_SRAM,
						flags);
528 529
		if (ret)
			return ERR_PTR(ret);
530

531 532 533 534
		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
					  flags);
		if (IS_ERR(op))
			return op;
535

536 537
		if (len == trailerlen)
			return op;
538

539 540
		padoff += len;
	}
541 542 543 544 545 546 547 548 549 550 551

	ret = mv_cesa_dma_add_data_transfer(chain,
					    CESA_SA_DATA_SRAM_OFFSET,
					    ahashdreq->padding_dma +
					    padoff,
					    trailerlen - padoff,
					    CESA_TDMA_DST_IN_SRAM,
					    flags);
	if (ret)
		return ERR_PTR(ret);

552 553
	return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
				    flags);
554 555 556 557 558 559 560
}

static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
		      GFP_KERNEL : GFP_ATOMIC;
561
	struct mv_cesa_req *basereq = &creq->base;
562 563
	struct mv_cesa_ahash_dma_iter iter;
	struct mv_cesa_op_ctx *op = NULL;
564
	unsigned int frag_len;
565 566
	int ret;

567 568
	basereq->chain.first = NULL;
	basereq->chain.last = NULL;
569 570 571 572 573 574 575 576 577 578

	if (creq->src_nents) {
		ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
				 DMA_TO_DEVICE);
		if (!ret) {
			ret = -ENOMEM;
			goto err;
		}
	}

579
	mv_cesa_tdma_desc_iter_init(&basereq->chain);
580 581
	mv_cesa_ahash_req_iter_init(&iter, req);

582 583 584 585
	/*
	 * Add the cache (left-over data from a previous block) first.
	 * This will never overflow the SRAM size.
	 */
586
	ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, &iter, creq, flags);
587
	if (ret)
588 589
		goto err_free_tdma;

590 591 592 593
	if (iter.src.sg) {
		/*
		 * Add all the new data, inserting an operation block and
		 * launch command between each full SRAM block-worth of
594
		 * data. We intentionally do not add the final op block.
595
		 */
596
		while (true) {
597
			ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
598
							   &iter.base,
599 600 601 602
							   &iter.src, flags);
			if (ret)
				goto err_free_tdma;

603
			frag_len = iter.base.op_len;
604

605 606 607
			if (!mv_cesa_ahash_req_iter_next_op(&iter))
				break;

608
			op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
609
						  frag_len, flags);
610 611 612 613
			if (IS_ERR(op)) {
				ret = PTR_ERR(op);
				goto err_free_tdma;
			}
614
		}
615
	} else {
616
		/* Account for the data that was in the cache. */
617 618 619
		frag_len = iter.base.op_len;
	}

620 621 622 623 624 625
	/*
	 * At this point, frag_len indicates whether we have any data
	 * outstanding which needs an operation.  Queue up the final
	 * operation, which depends whether this is the final request.
	 */
	if (creq->last_req)
626
		op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
627
						frag_len, flags);
628
	else if (frag_len)
629
		op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
630
					  frag_len, flags);
631 632 633 634 635 636 637 638

	if (IS_ERR(op)) {
		ret = PTR_ERR(op);
		goto err_free_tdma;
	}

	if (op) {
		/* Add dummy desc to wait for crypto operation end */
639
		ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
640 641 642 643 644 645 646 647 648 649 650 651 652
		if (ret)
			goto err_free_tdma;
	}

	if (!creq->last_req)
		creq->cache_ptr = req->nbytes + creq->cache_ptr -
				  iter.base.len;
	else
		creq->cache_ptr = 0;

	return 0;

err_free_tdma:
653
	mv_cesa_dma_cleanup(basereq);
654 655 656 657 658 659 660 661
	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);

err:
	mv_cesa_ahash_last_cleanup(req);

	return ret;
}

662 663 664
static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
665 666
	int ret;

667
	creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
668 669 670 671
	if (creq->src_nents < 0) {
		dev_err(cesa_dev->dev, "Invalid number of src SG");
		return creq->src_nents;
	}
672

673 674 675 676 677 678 679
	ret = mv_cesa_ahash_cache_req(req, cached);
	if (ret)
		return ret;

	if (*cached)
		return 0;

680
	if (cesa_dev->caps->has_tdma)
681 682 683
		ret = mv_cesa_ahash_dma_req_init(req);

	return ret;
684 685
}

686
static int mv_cesa_ahash_queue_req(struct ahash_request *req)
687 688
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
689
	struct mv_cesa_engine *engine;
690 691 692 693 694 695 696 697 698 699
	bool cached = false;
	int ret;

	ret = mv_cesa_ahash_req_init(req, &cached);
	if (ret)
		return ret;

	if (cached)
		return 0;

700 701 702
	engine = mv_cesa_select_engine(req->nbytes);
	mv_cesa_ahash_prepare(&req->base, engine);

703
	ret = mv_cesa_queue_req(&req->base, &creq->base);
704

705
	if (mv_cesa_req_needs_cleanup(&req->base, ret))
706 707 708
		mv_cesa_ahash_cleanup(req);

	return ret;
709 710
}

711 712 713 714 715 716 717 718 719
static int mv_cesa_ahash_update(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);

	creq->len += req->nbytes;

	return mv_cesa_ahash_queue_req(req);
}

720 721 722 723 724 725 726 727 728
static int mv_cesa_ahash_final(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;

	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
	creq->last_req = true;
	req->nbytes = 0;

729
	return mv_cesa_ahash_queue_req(req);
730 731 732 733 734 735 736 737 738 739 740
}

static int mv_cesa_ahash_finup(struct ahash_request *req)
{
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;

	creq->len += req->nbytes;
	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
	creq->last_req = true;

741
	return mv_cesa_ahash_queue_req(req);
742 743
}

744 745
static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
				u64 *len, void *cache)
746 747 748 749
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	unsigned int digsize = crypto_ahash_digestsize(ahash);
750
	unsigned int blocksize;
751

752
	blocksize = crypto_ahash_blocksize(ahash);
753

754 755 756
	*len = creq->len;
	memcpy(hash, creq->state, digsize);
	memset(cache, 0, blocksize);
757
	memcpy(cache, creq->cache, creq->cache_ptr);
758 759 760 761

	return 0;
}

762 763
static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
				u64 len, const void *cache)
764 765 766 767
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
	unsigned int digsize = crypto_ahash_digestsize(ahash);
768
	unsigned int blocksize;
769 770 771
	unsigned int cache_ptr;
	int ret;

772 773 774 775
	ret = crypto_ahash_init(req);
	if (ret)
		return ret;

776
	blocksize = crypto_ahash_blocksize(ahash);
777
	if (len >= blocksize)
778 779 780 781
		mv_cesa_update_op_cfg(&creq->op_tmpl,
				      CESA_SA_DESC_CFG_MID_FRAG,
				      CESA_SA_DESC_CFG_FRAG_MSK);

782 783
	creq->len = len;
	memcpy(creq->state, hash, digsize);
784 785
	creq->cache_ptr = 0;

786
	cache_ptr = do_div(len, blocksize);
787 788 789
	if (!cache_ptr)
		return 0;

790
	memcpy(creq->cache, cache, cache_ptr);
791 792 793 794 795
	creq->cache_ptr = cache_ptr;

	return 0;
}

796 797
static int mv_cesa_md5_init(struct ahash_request *req)
{
798
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
799
	struct mv_cesa_op_ctx tmpl = { };
800 801

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
802 803 804 805
	creq->state[0] = MD5_H0;
	creq->state[1] = MD5_H1;
	creq->state[2] = MD5_H2;
	creq->state[3] = MD5_H3;
806

807
	mv_cesa_ahash_init(req, &tmpl, true);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

	return 0;
}

static int mv_cesa_md5_export(struct ahash_request *req, void *out)
{
	struct md5_state *out_state = out;

	return mv_cesa_ahash_export(req, out_state->hash,
				    &out_state->byte_count, out_state->block);
}

static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
{
	const struct md5_state *in_state = in;

	return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
				    in_state->block);
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static int mv_cesa_md5_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_md5_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_md5_alg = {
	.init = mv_cesa_md5_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_md5_digest,
	.export = mv_cesa_md5_export,
	.import = mv_cesa_md5_import,
	.halg = {
		.digestsize = MD5_DIGEST_SIZE,
849
		.statesize = sizeof(struct md5_state),
850 851 852 853 854 855 856 857 858 859 860 861 862 863
		.base = {
			.cra_name = "md5",
			.cra_driver_name = "mv-md5",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
			.cra_init = mv_cesa_ahash_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

864 865
static int mv_cesa_sha1_init(struct ahash_request *req)
{
866
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
867
	struct mv_cesa_op_ctx tmpl = { };
868 869

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
870 871 872 873 874
	creq->state[0] = SHA1_H0;
	creq->state[1] = SHA1_H1;
	creq->state[2] = SHA1_H2;
	creq->state[3] = SHA1_H3;
	creq->state[4] = SHA1_H4;
875

876
	mv_cesa_ahash_init(req, &tmpl, false);
877 878 879 880 881 882 883 884

	return 0;
}

static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
{
	struct sha1_state *out_state = out;

885 886
	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
				    out_state->buffer);
887 888 889 890 891 892
}

static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
{
	const struct sha1_state *in_state = in;

893 894
	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
				    in_state->buffer);
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
}

static int mv_cesa_sha1_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_sha1_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_sha1_alg = {
	.init = mv_cesa_sha1_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_sha1_digest,
	.export = mv_cesa_sha1_export,
	.import = mv_cesa_sha1_import,
	.halg = {
		.digestsize = SHA1_DIGEST_SIZE,
918
		.statesize = sizeof(struct sha1_state),
919 920 921 922 923 924 925 926 927 928 929 930 931 932
		.base = {
			.cra_name = "sha1",
			.cra_driver_name = "mv-sha1",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA1_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
			.cra_init = mv_cesa_ahash_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

933 934
static int mv_cesa_sha256_init(struct ahash_request *req)
{
935
	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
936
	struct mv_cesa_op_ctx tmpl = { };
937 938

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
939 940 941 942 943 944 945 946
	creq->state[0] = SHA256_H0;
	creq->state[1] = SHA256_H1;
	creq->state[2] = SHA256_H2;
	creq->state[3] = SHA256_H3;
	creq->state[4] = SHA256_H4;
	creq->state[5] = SHA256_H5;
	creq->state[6] = SHA256_H6;
	creq->state[7] = SHA256_H7;
947

948
	mv_cesa_ahash_init(req, &tmpl, false);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

	return 0;
}

static int mv_cesa_sha256_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_sha256_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
{
	struct sha256_state *out_state = out;

968 969
	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
				    out_state->buf);
970 971 972 973 974 975
}

static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
{
	const struct sha256_state *in_state = in;

976 977
	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
				    in_state->buf);
978 979 980 981 982 983 984 985 986 987 988 989
}

struct ahash_alg mv_sha256_alg = {
	.init = mv_cesa_sha256_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_sha256_digest,
	.export = mv_cesa_sha256_export,
	.import = mv_cesa_sha256_import,
	.halg = {
		.digestsize = SHA256_DIGEST_SIZE,
990
		.statesize = sizeof(struct sha256_state),
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		.base = {
			.cra_name = "sha256",
			.cra_driver_name = "mv-sha256",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA256_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
			.cra_init = mv_cesa_ahash_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
struct mv_cesa_ahash_result {
	struct completion completion;
	int error;
};

static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
					int error)
{
	struct mv_cesa_ahash_result *result = req->data;

	if (error == -EINPROGRESS)
		return;

	result->error = error;
	complete(&result->completion);
}

static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
				       void *state, unsigned int blocksize)
{
	struct mv_cesa_ahash_result result;
	struct scatterlist sg;
	int ret;

	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				   mv_cesa_hmac_ahash_complete, &result);
	sg_init_one(&sg, pad, blocksize);
	ahash_request_set_crypt(req, &sg, pad, blocksize);
	init_completion(&result.completion);

	ret = crypto_ahash_init(req);
	if (ret)
		return ret;

	ret = crypto_ahash_update(req);
	if (ret && ret != -EINPROGRESS)
		return ret;

	wait_for_completion_interruptible(&result.completion);
	if (result.error)
		return result.error;

	ret = crypto_ahash_export(req, state);
	if (ret)
		return ret;

	return 0;
}

static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
				  const u8 *key, unsigned int keylen,
				  u8 *ipad, u8 *opad,
				  unsigned int blocksize)
{
	struct mv_cesa_ahash_result result;
	struct scatterlist sg;
	int ret;
	int i;

	if (keylen <= blocksize) {
		memcpy(ipad, key, keylen);
	} else {
		u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);

		if (!keydup)
			return -ENOMEM;

		ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
					   mv_cesa_hmac_ahash_complete,
					   &result);
		sg_init_one(&sg, keydup, keylen);
		ahash_request_set_crypt(req, &sg, ipad, keylen);
		init_completion(&result.completion);

		ret = crypto_ahash_digest(req);
		if (ret == -EINPROGRESS) {
			wait_for_completion_interruptible(&result.completion);
			ret = result.error;
		}

		/* Set the memory region to 0 to avoid any leak. */
		memset(keydup, 0, keylen);
		kfree(keydup);

		if (ret)
			return ret;

		keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
	}

	memset(ipad + keylen, 0, blocksize - keylen);
	memcpy(opad, ipad, blocksize);

	for (i = 0; i < blocksize; i++) {
		ipad[i] ^= 0x36;
		opad[i] ^= 0x5c;
	}

	return 0;
}

static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
				const u8 *key, unsigned int keylen,
				void *istate, void *ostate)
{
	struct ahash_request *req;
	struct crypto_ahash *tfm;
	unsigned int blocksize;
	u8 *ipad = NULL;
	u8 *opad;
	int ret;

	tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
				 CRYPTO_ALG_TYPE_AHASH_MASK);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto free_ahash;
	}

	crypto_ahash_clear_flags(tfm, ~0);

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));

	ipad = kzalloc(2 * blocksize, GFP_KERNEL);
	if (!ipad) {
		ret = -ENOMEM;
		goto free_req;
	}

	opad = ipad + blocksize;

	ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
	if (ret)
		goto free_ipad;

	ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
	if (ret)
		goto free_ipad;

	ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);

free_ipad:
	kfree(ipad);
free_req:
	ahash_request_free(req);
free_ahash:
	crypto_free_ahash(tfm);

	return ret;
}

static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);

	ctx->base.ops = &mv_cesa_ahash_req_ops;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mv_cesa_ahash_req));
	return 0;
}

1171 1172 1173
static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1174
	struct mv_cesa_op_ctx tmpl = { };
1175 1176 1177 1178

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));

1179
	mv_cesa_ahash_init(req, &tmpl, true);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

	return 0;
}

static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
				    unsigned int keylen)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct md5_state istate, ostate;
	int ret, i;

	ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
	if (ret)
		return ret;

	for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
		ctx->iv[i] = be32_to_cpu(istate.hash[i]);

	for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
		ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);

	return 0;
}

static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_ahmac_md5_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_ahmac_md5_alg = {
	.init = mv_cesa_ahmac_md5_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_ahmac_md5_digest,
	.setkey = mv_cesa_ahmac_md5_setkey,
	.export = mv_cesa_md5_export,
	.import = mv_cesa_md5_import,
	.halg = {
		.digestsize = MD5_DIGEST_SIZE,
		.statesize = sizeof(struct md5_state),
		.base = {
			.cra_name = "hmac(md5)",
			.cra_driver_name = "mv-hmac-md5",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
			.cra_init = mv_cesa_ahmac_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};

1241 1242 1243
static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1244
	struct mv_cesa_op_ctx tmpl = { };
1245 1246 1247 1248

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));

1249
	mv_cesa_ahash_init(req, &tmpl, false);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	return 0;
}

static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
				     unsigned int keylen)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct sha1_state istate, ostate;
	int ret, i;

	ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
	if (ret)
		return ret;

	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
		ctx->iv[i] = be32_to_cpu(istate.state[i]);

	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
		ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);

	return 0;
}

static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_ahmac_sha1_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_ahmac_sha1_alg = {
	.init = mv_cesa_ahmac_sha1_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_ahmac_sha1_digest,
	.setkey = mv_cesa_ahmac_sha1_setkey,
	.export = mv_cesa_sha1_export,
	.import = mv_cesa_sha1_import,
	.halg = {
		.digestsize = SHA1_DIGEST_SIZE,
		.statesize = sizeof(struct sha1_state),
		.base = {
			.cra_name = "hmac(sha1)",
			.cra_driver_name = "mv-hmac-sha1",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA1_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
			.cra_init = mv_cesa_ahmac_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
				       unsigned int keylen)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
	struct sha256_state istate, ostate;
	int ret, i;

	ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
	if (ret)
		return ret;

	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
		ctx->iv[i] = be32_to_cpu(istate.state[i]);

	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
		ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);

	return 0;
}

static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
{
	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1334
	struct mv_cesa_op_ctx tmpl = { };
1335 1336 1337 1338

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));

1339
	mv_cesa_ahash_init(req, &tmpl, false);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	return 0;
}

static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
{
	int ret;

	ret = mv_cesa_ahmac_sha256_init(req);
	if (ret)
		return ret;

	return mv_cesa_ahash_finup(req);
}

struct ahash_alg mv_ahmac_sha256_alg = {
	.init = mv_cesa_ahmac_sha256_init,
	.update = mv_cesa_ahash_update,
	.final = mv_cesa_ahash_final,
	.finup = mv_cesa_ahash_finup,
	.digest = mv_cesa_ahmac_sha256_digest,
	.setkey = mv_cesa_ahmac_sha256_setkey,
	.export = mv_cesa_sha256_export,
	.import = mv_cesa_sha256_import,
	.halg = {
		.digestsize = SHA256_DIGEST_SIZE,
		.statesize = sizeof(struct sha256_state),
		.base = {
			.cra_name = "hmac(sha256)",
			.cra_driver_name = "mv-hmac-sha256",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = SHA256_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
			.cra_init = mv_cesa_ahmac_cra_init,
			.cra_module = THIS_MODULE,
		 }
	}
};