ice_lib.c 72.2 KB
Newer Older
1 2 3 4 5 6
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

#include "ice.h"
#include "ice_lib.h"

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/**
 * ice_setup_rx_ctx - Configure a receive ring context
 * @ring: The Rx ring to configure
 *
 * Configure the Rx descriptor ring in RLAN context.
 */
static int ice_setup_rx_ctx(struct ice_ring *ring)
{
	struct ice_vsi *vsi = ring->vsi;
	struct ice_hw *hw = &vsi->back->hw;
	u32 rxdid = ICE_RXDID_FLEX_NIC;
	struct ice_rlan_ctx rlan_ctx;
	u32 regval;
	u16 pf_q;
	int err;

23
	/* what is Rx queue number in global space of 2K Rx queues */
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
	pf_q = vsi->rxq_map[ring->q_index];

	/* clear the context structure first */
	memset(&rlan_ctx, 0, sizeof(rlan_ctx));

	rlan_ctx.base = ring->dma >> 7;

	rlan_ctx.qlen = ring->count;

	/* Receive Packet Data Buffer Size.
	 * The Packet Data Buffer Size is defined in 128 byte units.
	 */
	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;

	/* use 32 byte descriptors */
	rlan_ctx.dsize = 1;

	/* Strip the Ethernet CRC bytes before the packet is posted to host
	 * memory.
	 */
	rlan_ctx.crcstrip = 1;

	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
	rlan_ctx.l2tsel = 1;

	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;

	/* This controls whether VLAN is stripped from inner headers
	 * The VLAN in the inner L2 header is stripped to the receive
	 * descriptor if enabled by this flag.
	 */
	rlan_ctx.showiv = 0;

	/* Max packet size for this queue - must not be set to a larger value
	 * than 5 x DBUF
	 */
	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);

	/* Rx queue threshold in units of 64 */
	rlan_ctx.lrxqthresh = 1;

	 /* Enable Flexible Descriptors in the queue context which
	  * allows this driver to select a specific receive descriptor format
	  */
71 72 73 74 75 76 77 78 79 80 81
	if (vsi->type != ICE_VSI_VF) {
		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
			QRXFLXP_CNTXT_RXDID_IDX_M;

		/* increasing context priority to pick up profile id;
		 * default is 0x01; setting to 0x03 to ensure profile
		 * is programming if prev context is of same priority
		 */
		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
			QRXFLXP_CNTXT_RXDID_PRIO_M;
82

83 84
		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
	}
85 86 87 88 89 90 91 92 93 94

	/* Absolute queue number out of 2K needs to be passed */
	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
	if (err) {
		dev_err(&vsi->back->pdev->dev,
			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
			pf_q, err);
		return -EIO;
	}

95 96 97
	if (vsi->type == ICE_VSI_VF)
		return 0;

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	/* init queue specific tail register */
	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
	writel(0, ring->tail);
	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));

	return 0;
}

/**
 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 * @ring: The Tx ring to configure
 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 * @pf_q: queue index in the PF space
 *
 * Configure the Tx descriptor ring in TLAN context.
 */
static void
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
	struct ice_vsi *vsi = ring->vsi;
	struct ice_hw *hw = &vsi->back->hw;

	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;

	tlan_ctx->port_num = vsi->port_info->lport;

	/* Transmit Queue Length */
	tlan_ctx->qlen = ring->count;

	/* PF number */
	tlan_ctx->pf_num = hw->pf_id;

	/* queue belongs to a specific VSI type
	 * VF / VM index should be programmed per vmvf_type setting:
	 * for vmvf_type = VF, it is VF number between 0-256
	 * for vmvf_type = VM, it is VM number between 0-767
	 * for PF or EMP this field should be set to zero
	 */
	switch (vsi->type) {
	case ICE_VSI_PF:
		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
		break;
140 141 142 143 144
	case ICE_VSI_VF:
		/* Firmware expects vmvf_num to be absolute VF id */
		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
		break;
145 146 147 148 149
	default:
		return;
	}

	/* make sure the context is associated with the right VSI */
150
	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

	tlan_ctx->tso_ena = ICE_TX_LEGACY;
	tlan_ctx->tso_qnum = pf_q;

	/* Legacy or Advanced Host Interface:
	 * 0: Advanced Host Interface
	 * 1: Legacy Host Interface
	 */
	tlan_ctx->legacy_int = ICE_TX_LEGACY;
}

/**
 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 * @pf: the PF being configured
 * @pf_q: the PF queue
 * @ena: enable or disable state of the queue
 *
 * This routine will wait for the given Rx queue of the PF to reach the
 * enabled or disabled state.
 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 * multiple retries; else will return 0 in case of success.
 */
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
	int i;

177
	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
178 179 180
		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
			      QRX_CTRL_QENA_STAT_M))
			return 0;
181

182
		usleep_range(20, 40);
183 184
	}

185
	return -ETIMEDOUT;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
}

/**
 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 * @vsi: the VSI being configured
 * @ena: start or stop the Rx rings
 */
static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	int i, j, ret = 0;

	for (i = 0; i < vsi->num_rxq; i++) {
		int pf_q = vsi->rxq_map[i];
		u32 rx_reg;

		for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
			rx_reg = rd32(hw, QRX_CTRL(pf_q));
			if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
			    ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
				break;
			usleep_range(1000, 2000);
		}

		/* Skip if the queue is already in the requested state */
		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
			continue;

		/* turn on/off the queue */
		if (ena)
			rx_reg |= QRX_CTRL_QENA_REQ_M;
		else
			rx_reg &= ~QRX_CTRL_QENA_REQ_M;
		wr32(hw, QRX_CTRL(pf_q), rx_reg);

		/* wait for the change to finish */
		ret = ice_pf_rxq_wait(pf, pf_q, ena);
		if (ret) {
			dev_err(&pf->pdev->dev,
				"VSI idx %d Rx ring %d %sable timeout\n",
				vsi->idx, pf_q, (ena ? "en" : "dis"));
			break;
		}
	}

	return ret;
}

235 236 237 238 239 240 241 242
/**
 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 * @vsi: VSI pointer
 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
 *
 * On error: returns error code (negative)
 * On success: returns 0
 */
243
static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
244 245 246 247 248
{
	struct ice_pf *pf = vsi->back;

	/* allocate memory for both Tx and Rx ring pointers */
	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
249
				     sizeof(*vsi->tx_rings), GFP_KERNEL);
250 251 252 253
	if (!vsi->tx_rings)
		goto err_txrings;

	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
254
				     sizeof(*vsi->rx_rings), GFP_KERNEL);
255 256 257 258 259 260 261
	if (!vsi->rx_rings)
		goto err_rxrings;

	if (alloc_qvectors) {
		/* allocate memory for q_vector pointers */
		vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
					      vsi->num_q_vectors,
262
					      sizeof(*vsi->q_vectors),
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
					      GFP_KERNEL);
		if (!vsi->q_vectors)
			goto err_vectors;
	}

	return 0;

err_vectors:
	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
err_rxrings:
	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
err_txrings:
	return -ENOMEM;
}

/**
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 * @vsi: the VSI being configured
 */
static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
{
	switch (vsi->type) {
	case ICE_VSI_PF:
		vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
		vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
		break;
	default:
		dev_dbg(&vsi->back->pdev->dev,
			"Not setting number of Tx/Rx descriptors for VSI type %d\n",
			vsi->type);
		break;
	}
}

/**
 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
299
 * @vsi: the VSI being configured
300
 * @vf_id: Id of the VF being configured
301 302 303
 *
 * Return 0 on success and a negative value on error
 */
304
static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
305 306 307
{
	struct ice_pf *pf = vsi->back;

308 309 310 311 312
	struct ice_vf *vf = NULL;

	if (vsi->type == ICE_VSI_VF)
		vsi->vf_id = vf_id;

313 314 315 316 317 318
	switch (vsi->type) {
	case ICE_VSI_PF:
		vsi->alloc_txq = pf->num_lan_tx;
		vsi->alloc_rxq = pf->num_lan_rx;
		vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
		break;
319
	case ICE_VSI_VF:
320 321 322
		vf = &pf->vf[vsi->vf_id];
		vsi->alloc_txq = vf->num_vf_qs;
		vsi->alloc_rxq = vf->num_vf_qs;
323 324 325 326 327 328 329
		/* pf->num_vf_msix includes (VF miscellaneous vector +
		 * data queue interrupts). Since vsi->num_q_vectors is number
		 * of queues vectors, subtract 1 from the original vector
		 * count
		 */
		vsi->num_q_vectors = pf->num_vf_msix - 1;
		break;
330 331 332 333 334
	default:
		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		break;
	}
335 336

	ice_vsi_set_num_desc(vsi);
337 338 339 340 341 342 343 344 345 346 347
}

/**
 * ice_get_free_slot - get the next non-NULL location index in array
 * @array: array to search
 * @size: size of the array
 * @curr: last known occupied index to be used as a search hint
 *
 * void * is being used to keep the functionality generic. This lets us use this
 * function on any array of pointers.
 */
348
static int ice_get_free_slot(void *array, int size, int curr)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
{
	int **tmp_array = (int **)array;
	int next;

	if (curr < (size - 1) && !tmp_array[curr + 1]) {
		next = curr + 1;
	} else {
		int i = 0;

		while ((i < size) && (tmp_array[i]))
			i++;
		if (i == size)
			next = ICE_NO_VSI;
		else
			next = i;
	}
	return next;
}

368 369 370 371 372 373 374
/**
 * ice_vsi_delete - delete a VSI from the switch
 * @vsi: pointer to VSI being removed
 */
void ice_vsi_delete(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
375
	struct ice_vsi_ctx *ctxt;
376 377
	enum ice_status status;

378 379 380 381
	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return;

382
	if (vsi->type == ICE_VSI_VF)
383 384
		ctxt->vf_num = vsi->vf_id;
	ctxt->vsi_num = vsi->vsi_num;
385

386
	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
387

388
	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
389 390 391
	if (status)
		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
			vsi->vsi_num);
392 393

	devm_kfree(&pf->pdev->dev, ctxt);
394 395
}

396 397 398 399 400
/**
 * ice_vsi_free_arrays - clean up VSI resources
 * @vsi: pointer to VSI being cleared
 * @free_qvectors: bool to specify if q_vectors should be deallocated
 */
401
static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct ice_pf *pf = vsi->back;

	/* free the ring and vector containers */
	if (free_qvectors && vsi->q_vectors) {
		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
		vsi->q_vectors = NULL;
	}
	if (vsi->tx_rings) {
		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
		vsi->tx_rings = NULL;
	}
	if (vsi->rx_rings) {
		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
		vsi->rx_rings = NULL;
	}
}

/**
 * ice_vsi_clear - clean up and deallocate the provided VSI
 * @vsi: pointer to VSI being cleared
 *
 * This deallocates the VSI's queue resources, removes it from the PF's
 * VSI array if necessary, and deallocates the VSI
 *
 * Returns 0 on success, negative on failure
 */
int ice_vsi_clear(struct ice_vsi *vsi)
{
	struct ice_pf *pf = NULL;

	if (!vsi)
		return 0;

	if (!vsi->back)
		return -EINVAL;

	pf = vsi->back;

	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
			vsi->idx);
		return -EINVAL;
	}

	mutex_lock(&pf->sw_mutex);
	/* updates the PF for this cleared VSI */

	pf->vsi[vsi->idx] = NULL;
	if (vsi->idx < pf->next_vsi)
		pf->next_vsi = vsi->idx;

	ice_vsi_free_arrays(vsi, true);
	mutex_unlock(&pf->sw_mutex);
	devm_kfree(&pf->pdev->dev, vsi);

	return 0;
}

461 462 463 464 465
/**
 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a q_vector
 */
466
static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
467 468 469 470 471 472 473 474 475 476 477
{
	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;

	if (!q_vector->tx.ring && !q_vector->rx.ring)
		return IRQ_HANDLED;

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

478 479 480 481
/**
 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 * @pf: board private structure
 * @type: type of VSI
482
 * @vf_id: Id of the VF being configured
483 484 485
 *
 * returns a pointer to a VSI on success, NULL on failure.
 */
486 487
static struct ice_vsi *
ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
{
	struct ice_vsi *vsi = NULL;

	/* Need to protect the allocation of the VSIs at the PF level */
	mutex_lock(&pf->sw_mutex);

	/* If we have already allocated our maximum number of VSIs,
	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
	 * is available to be populated
	 */
	if (pf->next_vsi == ICE_NO_VSI) {
		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
		goto unlock_pf;
	}

	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
	if (!vsi)
		goto unlock_pf;

	vsi->type = type;
	vsi->back = pf;
	set_bit(__ICE_DOWN, vsi->state);
	vsi->idx = pf->next_vsi;
	vsi->work_lmt = ICE_DFLT_IRQ_WORK;

513 514 515 516
	if (type == ICE_VSI_VF)
		ice_vsi_set_num_qs(vsi, vf_id);
	else
		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
517 518 519 520 521 522 523 524 525

	switch (vsi->type) {
	case ICE_VSI_PF:
		if (ice_vsi_alloc_arrays(vsi, true))
			goto err_rings;

		/* Setup default MSIX irq handler for VSI */
		vsi->irq_handler = ice_msix_clean_rings;
		break;
526 527 528 529
	case ICE_VSI_VF:
		if (ice_vsi_alloc_arrays(vsi, true))
			goto err_rings;
		break;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	default:
		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
		goto unlock_pf;
	}

	/* fill VSI slot in the PF struct */
	pf->vsi[pf->next_vsi] = vsi;

	/* prepare pf->next_vsi for next use */
	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
					 pf->next_vsi);
	goto unlock_pf;

err_rings:
	devm_kfree(&pf->pdev->dev, vsi);
	vsi = NULL;
unlock_pf:
	mutex_unlock(&pf->sw_mutex);
	return vsi;
}

551
/**
552 553
 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
554
 *
555
 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
556
 */
557
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
558
{
559
	int offset, i;
560

561 562 563 564 565 566
	mutex_lock(qs_cfg->qs_mutex);
	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
					    0, qs_cfg->q_count, 0);
	if (offset >= qs_cfg->pf_map_size) {
		mutex_unlock(qs_cfg->qs_mutex);
		return -ENOMEM;
567 568
	}

569 570 571 572
	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
	for (i = 0; i < qs_cfg->q_count; i++)
		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
	mutex_unlock(qs_cfg->qs_mutex);
573

574
	return 0;
575 576 577
}

/**
578 579
 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
580
 *
581
 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
582
 */
583
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
584 585 586
{
	int i, index = 0;

587 588 589 590 591 592 593 594
	mutex_lock(qs_cfg->qs_mutex);
	for (i = 0; i < qs_cfg->q_count; i++) {
		index = find_next_zero_bit(qs_cfg->pf_map,
					   qs_cfg->pf_map_size, index);
		if (index >= qs_cfg->pf_map_size)
			goto err_scatter;
		set_bit(index, qs_cfg->pf_map);
		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
595
	}
596
	mutex_unlock(qs_cfg->qs_mutex);
597 598

	return 0;
599
err_scatter:
600
	for (index = 0; index < i; index++) {
601 602
		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
603
	}
604
	mutex_unlock(qs_cfg->qs_mutex);
605 606 607 608

	return -ENOMEM;
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/**
 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 *
 * This is an internal function for assigning queues from the PF to VSI and
 * initially tries to find contiguous space.  If it is not successful to find
 * contiguous space, then it tries with the scatter approach.
 *
 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 */
static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
	int ret = 0;

	ret = __ice_vsi_get_qs_contig(qs_cfg);
	if (ret) {
		/* contig failed, so try with scatter approach */
		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
					qs_cfg->scatter_count);
		ret = __ice_vsi_get_qs_sc(qs_cfg);
	}
	return ret;
}

634 635 636 637 638 639
/**
 * ice_vsi_get_qs - Assign queues from PF to VSI
 * @vsi: the VSI to assign queues to
 *
 * Returns 0 on success and a negative value on error
 */
640
static int ice_vsi_get_qs(struct ice_vsi *vsi)
641
{
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	struct ice_pf *pf = vsi->back;
	struct ice_qs_cfg tx_qs_cfg = {
		.qs_mutex = &pf->avail_q_mutex,
		.pf_map = pf->avail_txqs,
		.pf_map_size = ICE_MAX_TXQS,
		.q_count = vsi->alloc_txq,
		.scatter_count = ICE_MAX_SCATTER_TXQS,
		.vsi_map = vsi->txq_map,
		.vsi_map_offset = 0,
		.mapping_mode = vsi->tx_mapping_mode
	};
	struct ice_qs_cfg rx_qs_cfg = {
		.qs_mutex = &pf->avail_q_mutex,
		.pf_map = pf->avail_rxqs,
		.pf_map_size = ICE_MAX_RXQS,
		.q_count = vsi->alloc_rxq,
		.scatter_count = ICE_MAX_SCATTER_RXQS,
		.vsi_map = vsi->rxq_map,
		.vsi_map_offset = 0,
		.mapping_mode = vsi->rx_mapping_mode
	};
663 664 665 666 667
	int ret = 0;

	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;

668 669 670
	ret = __ice_vsi_get_qs(&tx_qs_cfg);
	if (!ret)
		ret = __ice_vsi_get_qs(&rx_qs_cfg);
671 672 673 674

	return ret;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
/**
 * ice_vsi_put_qs - Release queues from VSI to PF
 * @vsi: the VSI that is going to release queues
 */
void ice_vsi_put_qs(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	int i;

	mutex_lock(&pf->avail_q_mutex);

	for (i = 0; i < vsi->alloc_txq; i++) {
		clear_bit(vsi->txq_map[i], pf->avail_txqs);
		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
	}

	for (i = 0; i < vsi->alloc_rxq; i++) {
		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
	}

	mutex_unlock(&pf->avail_q_mutex);
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/**
 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 * @vsi: the VSI being removed
 */
static void ice_rss_clean(struct ice_vsi *vsi)
{
	struct ice_pf *pf;

	pf = vsi->back;

	if (vsi->rss_hkey_user)
		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
	if (vsi->rss_lut_user)
		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
}

715 716 717 718
/**
 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 * @vsi: the VSI being configured
 */
719
static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
{
	struct ice_hw_common_caps *cap;
	struct ice_pf *pf = vsi->back;

	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
		vsi->rss_size = 1;
		return;
	}

	cap = &pf->hw.func_caps.common_cap;
	switch (vsi->type) {
	case ICE_VSI_PF:
		/* PF VSI will inherit RSS instance of PF */
		vsi->rss_table_size = cap->rss_table_size;
		vsi->rss_size = min_t(int, num_online_cpus(),
				      BIT(cap->rss_table_entry_width));
		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
		break;
738 739 740 741 742 743 744 745 746
	case ICE_VSI_VF:
		/* VF VSI will gets a small RSS table
		 * For VSI_LUT, LUT size should be set to 64 bytes
		 */
		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
		vsi->rss_size = min_t(int, num_online_cpus(),
				      BIT(cap->rss_table_entry_width));
		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
		break;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	default:
		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		break;
	}
}

/**
 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 * @ctxt: the VSI context being set
 *
 * This initializes a default VSI context for all sections except the Queues.
 */
static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
{
	u32 table = 0;

	memset(&ctxt->info, 0, sizeof(ctxt->info));
	/* VSI's should be allocated from shared pool */
	ctxt->alloc_from_pool = true;
	/* Src pruning enabled by default */
	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
	/* Traffic from VSI can be sent to LAN */
	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
	 * packets untagged/tagged.
	 */
	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
				  ICE_AQ_VSI_VLAN_MODE_M) >>
				 ICE_AQ_VSI_VLAN_MODE_S);
	/* Have 1:1 UP mapping for both ingress/egress tables */
	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
	ctxt->info.ingress_table = cpu_to_le32(table);
	ctxt->info.egress_table = cpu_to_le32(table);
	/* Have 1:1 UP mapping for outer to inner UP table */
	ctxt->info.outer_up_table = cpu_to_le32(table);
	/* No Outer tag support outer_tag_flags remains to zero */
}

/**
 * ice_vsi_setup_q_map - Setup a VSI queue map
 * @vsi: the VSI being configured
 * @ctxt: VSI context structure
 */
static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
801
	u16 offset = 0, qmap = 0, tx_count = 0;
802 803
	u16 qcount_tx = vsi->alloc_txq;
	u16 qcount_rx = vsi->alloc_rxq;
804 805
	u16 tx_numq_tc, rx_numq_tc;
	u16 pow = 0, max_rss = 0;
806
	bool ena_tc0 = false;
807
	u8 netdev_tc = 0;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	int i;

	/* at least TC0 should be enabled by default */
	if (vsi->tc_cfg.numtc) {
		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
			ena_tc0 = true;
	} else {
		ena_tc0 = true;
	}

	if (ena_tc0) {
		vsi->tc_cfg.numtc++;
		vsi->tc_cfg.ena_tc |= 1;
	}

823 824 825 826 827 828
	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
	if (!rx_numq_tc)
		rx_numq_tc = 1;
	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
	if (!tx_numq_tc)
		tx_numq_tc = 1;
829 830 831 832 833 834 835 836 837 838 839 840 841

	/* TC mapping is a function of the number of Rx queues assigned to the
	 * VSI for each traffic class and the offset of these queues.
	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
	 * queues allocated to TC0. No:of queues is a power-of-2.
	 *
	 * If TC is not enabled, the queue offset is set to 0, and allocate one
	 * queue, this way, traffic for the given TC will be sent to the default
	 * queue.
	 *
	 * Setup number and offset of Rx queues for all TCs for the VSI
	 */

842 843
	qcount_rx = rx_numq_tc;

844 845
	/* qcount will change if RSS is enabled */
	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
846 847 848 849 850
		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
			if (vsi->type == ICE_VSI_PF)
				max_rss = ICE_MAX_LG_RSS_QS;
			else
				max_rss = ICE_MAX_SMALL_RSS_QS;
851 852
			qcount_rx = min_t(int, rx_numq_tc, max_rss);
			qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
853
		}
854 855 856
	}

	/* find the (rounded up) power-of-2 of qcount */
857
	pow = order_base_2(qcount_rx);
858 859 860 861 862

	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
			/* TC is not enabled */
			vsi->tc_cfg.tc_info[i].qoffset = 0;
863 864 865
			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
866 867 868 869 870 871
			ctxt->info.tc_mapping[i] = 0;
			continue;
		}

		/* TC is enabled */
		vsi->tc_cfg.tc_info[i].qoffset = offset;
872 873 874
		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
875 876 877 878 879

		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
			ICE_AQ_VSI_TC_Q_OFFSET_M) |
			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
			 ICE_AQ_VSI_TC_Q_NUM_M);
880 881
		offset += qcount_rx;
		tx_count += tx_numq_tc;
882 883 884
		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
	}
	vsi->num_rxq = offset;
885
	vsi->num_txq = tx_count;
886

887 888 889 890 891 892 893 894
	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
		/* since there is a chance that num_rxq could have been changed
		 * in the above for loop, make num_txq equal to num_rxq.
		 */
		vsi->num_txq = vsi->num_rxq;
	}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	/* Rx queue mapping */
	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
	/* q_mapping buffer holds the info for the first queue allocated for
	 * this VSI in the PF space and also the number of queues associated
	 * with this VSI.
	 */
	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
}

/**
 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 * @ctxt: the VSI context being set
 * @vsi: the VSI being configured
 */
static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
	u8 lut_type, hash_type;

	switch (vsi->type) {
	case ICE_VSI_PF:
		/* PF VSI will inherit RSS instance of PF */
		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
		break;
920 921 922 923 924
	case ICE_VSI_VF:
		/* VF VSI will gets a small RSS table which is a VSI LUT type */
		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
		break;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	default:
		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		return;
	}

	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
}

/**
 * ice_vsi_init - Create and initialize a VSI
 * @vsi: the VSI being configured
 *
 * This initializes a VSI context depending on the VSI type to be added and
 * passes it down to the add_vsi aq command to create a new VSI.
 */
944
static int ice_vsi_init(struct ice_vsi *vsi)
945 946 947
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
948
	struct ice_vsi_ctx *ctxt;
949 950
	int ret = 0;

951 952 953 954
	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;

955
	ctxt->info = vsi->info;
956 957
	switch (vsi->type) {
	case ICE_VSI_PF:
958
		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
959
		break;
960
	case ICE_VSI_VF:
961
		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
962
		/* VF number here is the absolute VF number (0-255) */
963
		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
964
		break;
965 966 967 968
	default:
		return -ENODEV;
	}

969
	ice_set_dflt_vsi_ctx(ctxt);
970 971
	/* if the switch is in VEB mode, allow VSI loopback */
	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
972
		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
973 974 975

	/* Set LUT type and HASH type if RSS is enabled */
	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
976
		ice_set_rss_vsi_ctx(ctxt, vsi);
977

978 979
	ctxt->info.sw_id = vsi->port_info->sw_id;
	ice_vsi_setup_q_map(vsi, ctxt);
980

981 982 983 984 985 986 987 988
	/* Enable MAC Antispoof with new VSI being initialized or updated */
	if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
		ctxt->info.valid_sections |=
			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
		ctxt->info.sec_flags |=
			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
	}

989
	ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
990 991 992 993 994 995 996
	if (ret) {
		dev_err(&pf->pdev->dev,
			"Add VSI failed, err %d\n", ret);
		return -EIO;
	}

	/* keep context for update VSI operations */
997
	vsi->info = ctxt->info;
998 999

	/* record VSI number returned */
1000
	vsi->vsi_num = ctxt->vsi_num;
1001

1002
	devm_kfree(&pf->pdev->dev, ctxt);
1003 1004 1005
	return ret;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 * @vsi: VSI having the memory freed
 * @v_idx: index of the vector to be freed
 */
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
	struct ice_q_vector *q_vector;
	struct ice_ring *ring;

	if (!vsi->q_vectors[v_idx]) {
		dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
			v_idx);
		return;
	}
	q_vector = vsi->q_vectors[v_idx];

	ice_for_each_ring(ring, q_vector->tx)
		ring->q_vector = NULL;
	ice_for_each_ring(ring, q_vector->rx)
		ring->q_vector = NULL;

	/* only VSI with an associated netdev is set up with NAPI */
	if (vsi->netdev)
		netif_napi_del(&q_vector->napi);

	devm_kfree(&vsi->back->pdev->dev, q_vector);
	vsi->q_vectors[v_idx] = NULL;
}

/**
 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 * @vsi: the VSI having memory freed
 */
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
	int v_idx;

	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
		ice_free_q_vector(vsi, v_idx);
}

/**
 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
 * @vsi: the VSI being configured
 * @v_idx: index of the vector in the VSI struct
 *
1053
 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
 */
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
{
	struct ice_pf *pf = vsi->back;
	struct ice_q_vector *q_vector;

	/* allocate q_vector */
	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	q_vector->vsi = vsi;
	q_vector->v_idx = v_idx;
1067 1068
	if (vsi->type == ICE_VSI_VF)
		goto out;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	/* only set affinity_mask if the CPU is online */
	if (cpu_online(v_idx))
		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);

	/* This will not be called in the driver load path because the netdev
	 * will not be created yet. All other cases with register the NAPI
	 * handler here (i.e. resume, reset/rebuild, etc.)
	 */
	if (vsi->netdev)
		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
			       NAPI_POLL_WEIGHT);

1081
out:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	/* tie q_vector and VSI together */
	vsi->q_vectors[v_idx] = q_vector;

	return 0;
}

/**
 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 * @vsi: the VSI being configured
 *
1092
 * We allocate one q_vector per queue interrupt. If allocation fails we
1093 1094
 * return -ENOMEM.
 */
1095
static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
{
	struct ice_pf *pf = vsi->back;
	int v_idx = 0, num_q_vectors;
	int err;

	if (vsi->q_vectors[0]) {
		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
			vsi->vsi_num);
		return -EEXIST;
	}

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		num_q_vectors = vsi->num_q_vectors;
	} else {
		err = -EINVAL;
		goto err_out;
	}

	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
		err = ice_vsi_alloc_q_vector(vsi, v_idx);
		if (err)
			goto err_out;
	}

	return 0;

err_out:
	while (v_idx--)
		ice_free_q_vector(vsi, v_idx);

	dev_err(&pf->pdev->dev,
		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
		vsi->num_q_vectors, vsi->vsi_num, err);
	vsi->num_q_vectors = 0;
	return err;
}

/**
 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
 * @vsi: ptr to the VSI
 *
 * This should only be called after ice_vsi_alloc() which allocates the
 * corresponding SW VSI structure and initializes num_queue_pairs for the
 * newly allocated VSI.
 *
 * Returns 0 on success or negative on failure
 */
1143
static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1144 1145 1146 1147
{
	struct ice_pf *pf = vsi->back;
	int num_q_vectors = 0;

1148 1149 1150
	if (vsi->sw_base_vector || vsi->hw_base_vector) {
		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n",
			vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector);
1151 1152 1153 1154 1155 1156 1157 1158 1159
		return -EEXIST;
	}

	if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		return -ENOENT;

	switch (vsi->type) {
	case ICE_VSI_PF:
		num_q_vectors = vsi->num_q_vectors;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		/* reserve slots from OS requested IRQs */
		vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker,
						  num_q_vectors, vsi->idx);
		if (vsi->sw_base_vector < 0) {
			dev_err(&pf->pdev->dev,
				"Failed to get tracking for %d SW vectors for VSI %d, err=%d\n",
				num_q_vectors, vsi->vsi_num,
				vsi->sw_base_vector);
			return -ENOENT;
		}
		pf->num_avail_sw_msix -= num_q_vectors;

		/* reserve slots from HW interrupts */
		vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
						  num_q_vectors, vsi->idx);
1175
		break;
1176 1177 1178 1179 1180 1181 1182
	case ICE_VSI_VF:
		/* take VF misc vector and data vectors into account */
		num_q_vectors = pf->num_vf_msix;
		/* For VF VSI, reserve slots only from HW interrupts */
		vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
						  num_q_vectors, vsi->idx);
		break;
1183 1184 1185 1186 1187 1188
	default:
		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
			 vsi->type);
		break;
	}

1189
	if (vsi->hw_base_vector < 0) {
1190
		dev_err(&pf->pdev->dev,
1191 1192
			"Failed to get tracking for %d HW vectors for VSI %d, err=%d\n",
			num_q_vectors, vsi->vsi_num, vsi->hw_base_vector);
1193 1194 1195 1196 1197
		if (vsi->type != ICE_VSI_VF) {
			ice_free_res(vsi->back->sw_irq_tracker,
				     vsi->sw_base_vector, vsi->idx);
			pf->num_avail_sw_msix += num_q_vectors;
		}
1198 1199 1200
		return -ENOENT;
	}

1201 1202
	pf->num_avail_hw_msix -= num_q_vectors;

1203 1204 1205
	return 0;
}

1206 1207 1208 1209
/**
 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
 * @vsi: the VSI having rings deallocated
 */
1210
static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	int i;

	if (vsi->tx_rings) {
		for (i = 0; i < vsi->alloc_txq; i++) {
			if (vsi->tx_rings[i]) {
				kfree_rcu(vsi->tx_rings[i], rcu);
				vsi->tx_rings[i] = NULL;
			}
		}
	}
	if (vsi->rx_rings) {
		for (i = 0; i < vsi->alloc_rxq; i++) {
			if (vsi->rx_rings[i]) {
				kfree_rcu(vsi->rx_rings[i], rcu);
				vsi->rx_rings[i] = NULL;
			}
		}
	}
}

/**
 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
 * @vsi: VSI which is having rings allocated
 */
1236
static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1237 1238 1239 1240
{
	struct ice_pf *pf = vsi->back;
	int i;

1241
	/* Allocate Tx rings */
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	for (i = 0; i < vsi->alloc_txq; i++) {
		struct ice_ring *ring;

		/* allocate with kzalloc(), free with kfree_rcu() */
		ring = kzalloc(sizeof(*ring), GFP_KERNEL);

		if (!ring)
			goto err_out;

		ring->q_index = i;
		ring->reg_idx = vsi->txq_map[i];
		ring->ring_active = false;
		ring->vsi = vsi;
		ring->dev = &pf->pdev->dev;
1256
		ring->count = vsi->num_tx_desc;
1257 1258 1259
		vsi->tx_rings[i] = ring;
	}

1260
	/* Allocate Rx rings */
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	for (i = 0; i < vsi->alloc_rxq; i++) {
		struct ice_ring *ring;

		/* allocate with kzalloc(), free with kfree_rcu() */
		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
		if (!ring)
			goto err_out;

		ring->q_index = i;
		ring->reg_idx = vsi->rxq_map[i];
		ring->ring_active = false;
		ring->vsi = vsi;
		ring->netdev = vsi->netdev;
		ring->dev = &pf->pdev->dev;
1275
		ring->count = vsi->num_rx_desc;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		vsi->rx_rings[i] = ring;
	}

	return 0;

err_out:
	ice_vsi_clear_rings(vsi);
	return -ENOMEM;
}

1286 1287 1288 1289 1290 1291 1292 1293
/**
 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 * @vsi: the VSI being configured
 *
 * This function maps descriptor rings to the queue-specific vectors allotted
 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 * and Rx rings to the vector as "efficiently" as possible.
 */
1294
static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
{
	int q_vectors = vsi->num_q_vectors;
	int tx_rings_rem, rx_rings_rem;
	int v_id;

	/* initially assigning remaining rings count to VSIs num queue value */
	tx_rings_rem = vsi->num_txq;
	rx_rings_rem = vsi->num_rxq;

	for (v_id = 0; v_id < q_vectors; v_id++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;

		/* Tx rings mapping to vector */
		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
		q_vector->num_ring_tx = tx_rings_per_v;
		q_vector->tx.ring = NULL;
1312
		q_vector->tx.itr_idx = ICE_TX_ITR;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		q_base = vsi->num_txq - tx_rings_rem;

		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
			struct ice_ring *tx_ring = vsi->tx_rings[q_id];

			tx_ring->q_vector = q_vector;
			tx_ring->next = q_vector->tx.ring;
			q_vector->tx.ring = tx_ring;
		}
		tx_rings_rem -= tx_rings_per_v;

		/* Rx rings mapping to vector */
		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
		q_vector->num_ring_rx = rx_rings_per_v;
		q_vector->rx.ring = NULL;
1328
		q_vector->rx.itr_idx = ICE_RX_ITR;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		q_base = vsi->num_rxq - rx_rings_rem;

		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
			struct ice_ring *rx_ring = vsi->rx_rings[q_id];

			rx_ring->q_vector = q_vector;
			rx_ring->next = q_vector->rx.ring;
			q_vector->rx.ring = rx_ring;
		}
		rx_rings_rem -= rx_rings_per_v;
	}
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/**
 * ice_vsi_manage_rss_lut - disable/enable RSS
 * @vsi: the VSI being changed
 * @ena: boolean value indicating if this is an enable or disable request
 *
 * In the event of disable request for RSS, this function will zero out RSS
 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
 * LUT.
 */
int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
{
	int err = 0;
	u8 *lut;

	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
			   GFP_KERNEL);
	if (!lut)
		return -ENOMEM;

	if (ena) {
		if (vsi->rss_lut_user)
			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
		else
			ice_fill_rss_lut(lut, vsi->rss_table_size,
					 vsi->rss_size);
	}

	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
	devm_kfree(&vsi->back->pdev->dev, lut);
	return err;
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
 * @vsi: VSI to be configured
 */
static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
{
	u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
	struct ice_aqc_get_set_rss_keys *key;
	struct ice_pf *pf = vsi->back;
	enum ice_status status;
	int err = 0;
	u8 *lut;

	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);

	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
	if (!lut)
		return -ENOMEM;

	if (vsi->rss_lut_user)
		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
	else
		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);

1398 1399
	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
				    vsi->rss_table_size);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	if (status) {
		dev_err(&vsi->back->pdev->dev,
			"set_rss_lut failed, error %d\n", status);
		err = -EIO;
		goto ice_vsi_cfg_rss_exit;
	}

	key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
	if (!key) {
		err = -ENOMEM;
		goto ice_vsi_cfg_rss_exit;
	}

	if (vsi->rss_hkey_user)
		memcpy(seed, vsi->rss_hkey_user,
		       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
	else
		netdev_rss_key_fill((void *)seed,
				    ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
	memcpy(&key->standard_rss_key, seed,
	       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);

1423
	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	if (status) {
		dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
			status);
		err = -EIO;
	}

	devm_kfree(&pf->pdev->dev, key);
ice_vsi_cfg_rss_exit:
	devm_kfree(&pf->pdev->dev, lut);
	return err;
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/**
 * ice_add_mac_to_list - Add a mac address filter entry to the list
 * @vsi: the VSI to be forwarded to
 * @add_list: pointer to the list which contains MAC filter entries
 * @macaddr: the MAC address to be added.
 *
 * Adds mac address filter entry to the temp list
 *
 * Returns 0 on success or ENOMEM on failure.
 */
int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
			const u8 *macaddr)
{
	struct ice_fltr_list_entry *tmp;
	struct ice_pf *pf = vsi->back;

	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
	if (!tmp)
		return -ENOMEM;

	tmp->fltr_info.flag = ICE_FLTR_TX;
1458
	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1459 1460
	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1461
	tmp->fltr_info.vsi_handle = vsi->idx;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);

	INIT_LIST_HEAD(&tmp->list_entry);
	list_add(&tmp->list_entry, add_list);

	return 0;
}

/**
 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
 * @vsi: the VSI to be updated
 */
void ice_update_eth_stats(struct ice_vsi *vsi)
{
	struct ice_eth_stats *prev_es, *cur_es;
	struct ice_hw *hw = &vsi->back->hw;
	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */

	prev_es = &vsi->eth_stats_prev;
	cur_es = &vsi->eth_stats;

	ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_bytes,
			  &cur_es->rx_bytes);

	ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_unicast,
			  &cur_es->rx_unicast);

	ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_multicast,
			  &cur_es->rx_multicast);

	ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
			  &cur_es->rx_broadcast);

	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
			  &prev_es->rx_discards, &cur_es->rx_discards);

	ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_bytes,
			  &cur_es->tx_bytes);

	ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_unicast,
			  &cur_es->tx_unicast);

	ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_multicast,
			  &cur_es->tx_multicast);

	ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
			  vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
			  &cur_es->tx_broadcast);

	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
			  &prev_es->tx_errors, &cur_es->tx_errors);

	vsi->stat_offsets_loaded = true;
}

/**
 * ice_free_fltr_list - free filter lists helper
 * @dev: pointer to the device struct
 * @h: pointer to the list head to be freed
 *
 * Helper function to free filter lists previously created using
 * ice_add_mac_to_list
 */
void ice_free_fltr_list(struct device *dev, struct list_head *h)
{
	struct ice_fltr_list_entry *e, *tmp;

	list_for_each_entry_safe(e, tmp, h, list_entry) {
		list_del(&e->list_entry);
		devm_kfree(dev, e);
	}
}

/**
 * ice_vsi_add_vlan - Add VSI membership for given VLAN
 * @vsi: the VSI being configured
 * @vid: VLAN id to be added
 */
int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
{
	struct ice_fltr_list_entry *tmp;
	struct ice_pf *pf = vsi->back;
	LIST_HEAD(tmp_add_list);
	enum ice_status status;
	int err = 0;

	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
	if (!tmp)
		return -ENOMEM;

	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
	tmp->fltr_info.flag = ICE_FLTR_TX;
1562 1563
	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
	tmp->fltr_info.vsi_handle = vsi->idx;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	tmp->fltr_info.l_data.vlan.vlan_id = vid;

	INIT_LIST_HEAD(&tmp->list_entry);
	list_add(&tmp->list_entry, &tmp_add_list);

	status = ice_add_vlan(&pf->hw, &tmp_add_list);
	if (status) {
		err = -ENODEV;
		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
			vid, vsi->vsi_num);
	}

	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return err;
}

/**
 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
 * @vsi: the VSI being configured
 * @vid: VLAN id to be removed
 *
 * Returns 0 on success and negative on failure
 */
int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
{
	struct ice_fltr_list_entry *list;
	struct ice_pf *pf = vsi->back;
	LIST_HEAD(tmp_add_list);
	int status = 0;

	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
	if (!list)
		return -ENOMEM;

	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1599
	list->fltr_info.vsi_handle = vsi->idx;
1600 1601 1602
	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
	list->fltr_info.l_data.vlan.vlan_id = vid;
	list->fltr_info.flag = ICE_FLTR_TX;
1603
	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

	INIT_LIST_HEAD(&list->list_entry);
	list_add(&list->list_entry, &tmp_add_list);

	if (ice_remove_vlan(&pf->hw, &tmp_add_list)) {
		dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
			vid, vsi->vsi_num);
		status = -EIO;
	}

	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return status;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/**
 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 * Configure the Rx VSI for operation.
 */
int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
	int err = 0;
	u16 i;

1630 1631 1632
	if (vsi->type == ICE_VSI_VF)
		goto setup_rings;

1633 1634 1635 1636 1637 1638 1639
	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
		vsi->max_frame = vsi->netdev->mtu +
			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
	else
		vsi->max_frame = ICE_RXBUF_2048;

	vsi->rx_buf_len = ICE_RXBUF_2048;
1640
setup_rings:
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	/* set up individual rings */
	for (i = 0; i < vsi->num_rxq && !err; i++)
		err = ice_setup_rx_ctx(vsi->rx_rings[i]);

	if (err) {
		dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
		return -EIO;
	}
	return err;
}

/**
 * ice_vsi_cfg_txqs - Configure the VSI for Tx
 * @vsi: the VSI being configured
1655 1656
 * @rings: Tx ring array to be configured
 * @offset: offset within vsi->txq_map
1657 1658 1659 1660
 *
 * Return 0 on success and a negative value on error
 * Configure the Tx VSI for operation.
 */
1661 1662
static int
ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1663 1664 1665 1666
{
	struct ice_aqc_add_tx_qgrp *qg_buf;
	struct ice_aqc_add_txqs_perq *txq;
	struct ice_pf *pf = vsi->back;
1667
	u8 num_q_grps, q_idx = 0;
1668 1669
	enum ice_status status;
	u16 buf_len, i, pf_q;
1670
	int err = 0, tc;
1671

1672
	buf_len = sizeof(*qg_buf);
1673 1674 1675 1676 1677 1678 1679
	qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
	if (!qg_buf)
		return -ENOMEM;

	qg_buf->num_txqs = 1;
	num_q_grps = 1;

1680 1681 1682 1683
	/* set up and configure the Tx queues for each enabled TC */
	for (tc = 0; tc < ICE_MAX_TRAFFIC_CLASS; tc++) {
		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
			break;
1684

1685 1686 1687
		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
			struct ice_tlan_ctx tlan_ctx = { 0 };

1688 1689
			pf_q = vsi->txq_map[q_idx + offset];
			ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q);
1690 1691 1692 1693 1694 1695 1696 1697
			/* copy context contents into the qg_buf */
			qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
			ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
				    ice_tlan_ctx_info);

			/* init queue specific tail reg. It is referred as
			 * transmit comm scheduler queue doorbell.
			 */
1698
			rings[q_idx]->tail =
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
				pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
			status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
						 num_q_grps, qg_buf, buf_len,
						 NULL);
			if (status) {
				dev_err(&vsi->back->pdev->dev,
					"Failed to set LAN Tx queue context, error: %d\n",
					status);
				err = -ENODEV;
				goto err_cfg_txqs;
			}
1710

1711 1712 1713 1714 1715 1716
			/* Add Tx Queue TEID into the VSI Tx ring from the
			 * response. This will complete configuring and
			 * enabling the queue.
			 */
			txq = &qg_buf->txqs[0];
			if (pf_q == le16_to_cpu(txq->txq_id))
1717
				rings[q_idx]->txq_teid =
1718
					le32_to_cpu(txq->q_teid);
1719

1720 1721
			q_idx++;
		}
1722 1723 1724 1725 1726 1727
	}
err_cfg_txqs:
	devm_kfree(&pf->pdev->dev, qg_buf);
	return err;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
/**
 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
 * @vsi: the VSI being configured
 *
 * Return 0 on success and a negative value on error
 * Configure the Tx VSI for operation.
 */
int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
{
	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
/**
 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
 * @intrl: interrupt rate limit in usecs
 * @gran: interrupt rate limit granularity in usecs
 *
 * This function converts a decimal interrupt rate limit in usecs to the format
 * expected by firmware.
 */
static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
{
	u32 val = intrl / gran;

	if (val)
		return val | GLINT_RATE_INTRL_ENA_M;
	return 0;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/**
 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
 * @hw: board specific structure
 */
static void ice_cfg_itr_gran(struct ice_hw *hw)
{
	u32 regval = rd32(hw, GLINT_CTL);

	/* no need to update global register if ITR gran is already set */
	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
		return;

	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
		  GLINT_CTL_ITR_GRAN_200_M) |
		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
		  GLINT_CTL_ITR_GRAN_100_M) |
		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
		  GLINT_CTL_ITR_GRAN_50_M) |
		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
		  GLINT_CTL_ITR_GRAN_25_M);
	wr32(hw, GLINT_CTL, regval);
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
/**
 * ice_cfg_itr - configure the initial interrupt throttle values
 * @hw: pointer to the HW structure
 * @q_vector: interrupt vector that's being configured
 * @vector: HW vector index to apply the interrupt throttling to
 *
 * Configure interrupt throttling values for the ring containers that are
 * associated with the interrupt vector passed in.
 */
static void
ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector, u16 vector)
{
1800 1801
	ice_cfg_itr_gran(hw);

1802 1803 1804
	if (q_vector->num_ring_rx) {
		struct ice_ring_container *rc = &q_vector->rx;

1805 1806 1807 1808 1809 1810 1811
		/* if this value is set then don't overwrite with default */
		if (!rc->itr_setting)
			rc->itr_setting = ICE_DFLT_RX_ITR;

		rc->target_itr = ITR_TO_REG(rc->itr_setting);
		rc->next_update = jiffies + 1;
		rc->current_itr = rc->target_itr;
1812
		rc->latency_range = ICE_LOW_LATENCY;
1813 1814
		wr32(hw, GLINT_ITR(rc->itr_idx, vector),
		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1815 1816 1817 1818 1819
	}

	if (q_vector->num_ring_tx) {
		struct ice_ring_container *rc = &q_vector->tx;

1820 1821 1822 1823 1824 1825 1826
		/* if this value is set then don't overwrite with default */
		if (!rc->itr_setting)
			rc->itr_setting = ICE_DFLT_TX_ITR;

		rc->target_itr = ITR_TO_REG(rc->itr_setting);
		rc->next_update = jiffies + 1;
		rc->current_itr = rc->target_itr;
1827
		rc->latency_range = ICE_LOW_LATENCY;
1828 1829
		wr32(hw, GLINT_ITR(rc->itr_idx, vector),
		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1830 1831 1832
	}
}

1833 1834 1835 1836 1837 1838 1839
/**
 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
 * @vsi: the VSI being configured
 */
void ice_vsi_cfg_msix(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
1840
	u16 vector = vsi->hw_base_vector;
1841 1842
	struct ice_hw *hw = &pf->hw;
	u32 txq = 0, rxq = 0;
1843
	int i, q;
1844 1845 1846 1847

	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[i];

1848
		ice_cfg_itr(hw, q_vector, vector);
1849 1850 1851

		wr32(hw, GLINT_RATE(vector),
		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

		/* Both Transmit Queue Interrupt Cause Control register
		 * and Receive Queue Interrupt Cause control register
		 * expects MSIX_INDX field to be the vector index
		 * within the function space and not the absolute
		 * vector index across PF or across device.
		 * For SR-IOV VF VSIs queue vector index always starts
		 * with 1 since first vector index(0) is used for OICR
		 * in VF space. Since VMDq and other PF VSIs are within
		 * the PF function space, use the vector index that is
		 * tracked for this PF.
		 */
		for (q = 0; q < q_vector->num_ring_tx; q++) {
1865
			int itr_idx = q_vector->tx.itr_idx;
1866 1867
			u32 val;

1868 1869
			if (vsi->type == ICE_VSI_VF)
				val = QINT_TQCTL_CAUSE_ENA_M |
1870
				      (itr_idx << QINT_TQCTL_ITR_INDX_S)  |
1871 1872 1873
				      ((i + 1) << QINT_TQCTL_MSIX_INDX_S);
			else
				val = QINT_TQCTL_CAUSE_ENA_M |
1874
				      (itr_idx << QINT_TQCTL_ITR_INDX_S)  |
1875
				      (vector << QINT_TQCTL_MSIX_INDX_S);
1876 1877 1878 1879 1880
			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
			txq++;
		}

		for (q = 0; q < q_vector->num_ring_rx; q++) {
1881
			int itr_idx = q_vector->rx.itr_idx;
1882 1883
			u32 val;

1884 1885
			if (vsi->type == ICE_VSI_VF)
				val = QINT_RQCTL_CAUSE_ENA_M |
1886
				      (itr_idx << QINT_RQCTL_ITR_INDX_S)  |
1887 1888 1889
				      ((i + 1) << QINT_RQCTL_MSIX_INDX_S);
			else
				val = QINT_RQCTL_CAUSE_ENA_M |
1890
				      (itr_idx << QINT_RQCTL_ITR_INDX_S)  |
1891
				      (vector << QINT_RQCTL_MSIX_INDX_S);
1892 1893 1894 1895 1896 1897 1898 1899
			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
			rxq++;
		}
	}

	ice_flush(hw);
}

1900 1901 1902 1903 1904 1905 1906 1907
/**
 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
 * @vsi: the VSI being changed
 */
int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_hw *hw = &vsi->back->hw;
1908
	struct ice_vsi_ctx *ctxt;
1909
	enum ice_status status;
1910 1911 1912 1913 1914
	int ret = 0;

	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;
1915 1916 1917 1918 1919

	/* Here we are configuring the VSI to let the driver add VLAN tags by
	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
	 * insertion happens in the Tx hot path, in ice_tx_map.
	 */
1920
	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1921

1922
	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1923

1924
	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1925 1926 1927
	if (status) {
		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
			status, hw->adminq.sq_last_status);
1928 1929
		ret = -EIO;
		goto out;
1930 1931
	}

1932 1933 1934 1935
	vsi->info.vlan_flags = ctxt->info.vlan_flags;
out:
	devm_kfree(dev, ctxt);
	return ret;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
}

/**
 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
 * @vsi: the VSI being changed
 * @ena: boolean value indicating if this is a enable or disable request
 */
int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_hw *hw = &vsi->back->hw;
1947
	struct ice_vsi_ctx *ctxt;
1948
	enum ice_status status;
1949 1950 1951 1952 1953
	int ret = 0;

	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;
1954 1955 1956 1957 1958

	/* Here we are configuring what the VSI should do with the VLAN tag in
	 * the Rx packet. We can either leave the tag in the packet or put it in
	 * the Rx descriptor.
	 */
1959
	if (ena)
1960
		/* Strip VLAN tag from Rx packet and put it in the desc */
1961 1962
		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
	else
1963
		/* Disable stripping. Leave tag in packet */
1964
		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1965 1966

	/* Allow all packets untagged/tagged */
1967
	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1968

1969
	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1970

1971
	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1972 1973 1974
	if (status) {
		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
			ena, status, hw->adminq.sq_last_status);
1975 1976
		ret = -EIO;
		goto out;
1977 1978
	}

1979 1980 1981 1982
	vsi->info.vlan_flags = ctxt->info.vlan_flags;
out:
	devm_kfree(dev, ctxt);
	return ret;
1983
}
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

/**
 * ice_vsi_start_rx_rings - start VSI's Rx rings
 * @vsi: the VSI whose rings are to be started
 *
 * Returns 0 on success and a negative value on error
 */
int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
{
	return ice_vsi_ctrl_rx_rings(vsi, true);
}

/**
 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
 * @vsi: the VSI
 *
 * Returns 0 on success and a negative value on error
 */
int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
{
	return ice_vsi_ctrl_rx_rings(vsi, false);
}

/**
 * ice_vsi_stop_tx_rings - Disable Tx rings
 * @vsi: the VSI being configured
2010 2011
 * @rst_src: reset source
 * @rel_vmvf_num: Relative id of VF/VM
2012 2013
 * @rings: Tx ring array to be stopped
 * @offset: offset within vsi->txq_map
2014
 */
2015 2016 2017
static int
ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
		      u16 rel_vmvf_num, struct ice_ring **rings, int offset)
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;
	u32 *q_teids, val;
	u16 *q_ids, i;
	int err = 0;

	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
		return -EINVAL;

	q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
			       GFP_KERNEL);
	if (!q_teids)
		return -ENOMEM;

	q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
			     GFP_KERNEL);
	if (!q_ids) {
		err = -ENOMEM;
		goto err_alloc_q_ids;
	}

	/* set up the Tx queue list to be disabled */
	ice_for_each_txq(vsi, i) {
		u16 v_idx;

2045
		if (!rings || !rings[i] || !rings[i]->q_vector) {
2046 2047 2048 2049
			err = -EINVAL;
			goto err_out;
		}

2050 2051
		q_ids[i] = vsi->txq_map[i + offset];
		q_teids[i] = rings[i]->txq_teid;
2052 2053

		/* clear cause_ena bit for disabled queues */
2054
		val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx));
2055
		val &= ~QINT_TQCTL_CAUSE_ENA_M;
2056
		wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val);
2057 2058 2059 2060 2061 2062 2063

		/* software is expected to wait for 100 ns */
		ndelay(100);

		/* trigger a software interrupt for the vector associated to
		 * the queue to schedule NAPI handler
		 */
2064
		v_idx = rings[i]->q_vector->v_idx;
2065
		wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx),
2066 2067 2068
		     GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
	}
	status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
2069
				 rst_src, rel_vmvf_num, NULL);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	/* if the disable queue command was exercised during an active reset
	 * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as
	 * the reset operation disables queues at the hardware level anyway.
	 */
	if (status == ICE_ERR_RESET_ONGOING) {
		dev_info(&pf->pdev->dev,
			 "Reset in progress. LAN Tx queues already disabled\n");
	} else if (status) {
		dev_err(&pf->pdev->dev,
			"Failed to disable LAN Tx queues, error: %d\n",
			status);
		err = -ENODEV;
	}

err_out:
	devm_kfree(&pf->pdev->dev, q_ids);

err_alloc_q_ids:
	devm_kfree(&pf->pdev->dev, q_teids);

	return err;
}
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/**
 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
 * @vsi: the VSI being configured
 * @rst_src: reset source
 * @rel_vmvf_num: Relative id of VF/VM
 */
int ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi,
			      enum ice_disq_rst_src rst_src, u16 rel_vmvf_num)
{
	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings,
				     0);
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/**
 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
 * @vsi: VSI to enable or disable VLAN pruning on
 * @ena: set to true to enable VLAN pruning and false to disable it
 *
 * returns 0 if VSI is updated, negative otherwise
 */
int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena)
{
	struct ice_vsi_ctx *ctxt;
	struct device *dev;
	int status;

	if (!vsi)
		return -EINVAL;

	dev = &vsi->back->pdev->dev;
	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;

	ctxt->info = vsi->info;

	if (ena) {
		ctxt->info.sec_flags |=
			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	} else {
		ctxt->info.sec_flags &=
			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	}

	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
						ICE_AQ_VSI_PROP_SW_VALID);
2143 2144

	status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL);
2145
	if (status) {
2146
		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2147
			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
			   vsi->back->hw.adminq.sq_last_status);
		goto err_out;
	}

	vsi->info.sec_flags = ctxt->info.sec_flags;
	vsi->info.sw_flags2 = ctxt->info.sw_flags2;

	devm_kfree(dev, ctxt);
	return 0;

err_out:
	devm_kfree(dev, ctxt);
	return -EIO;
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
/**
 * ice_vsi_setup - Set up a VSI by a given type
 * @pf: board private structure
 * @pi: pointer to the port_info instance
 * @type: VSI type
 * @vf_id: defines VF id to which this VSI connects. This field is meant to be
 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
 *         fill-in ICE_INVAL_VFID as input.
 *
 * This allocates the sw VSI structure and its queue resources.
 *
 * Returns pointer to the successfully allocated and configured VSI sw struct on
 * success, NULL on failure.
 */
struct ice_vsi *
ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2179
	      enum ice_vsi_type type, u16 vf_id)
2180 2181 2182 2183 2184 2185
{
	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
	struct device *dev = &pf->pdev->dev;
	struct ice_vsi *vsi;
	int ret, i;

2186 2187 2188 2189 2190
	if (type == ICE_VSI_VF)
		vsi = ice_vsi_alloc(pf, type, vf_id);
	else
		vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);

2191 2192 2193 2194 2195 2196 2197
	if (!vsi) {
		dev_err(dev, "could not allocate VSI\n");
		return NULL;
	}

	vsi->port_info = pi;
	vsi->vsw = pf->first_sw;
2198 2199
	if (vsi->type == ICE_VSI_VF)
		vsi->vf_id = vf_id;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

	if (ice_vsi_get_qs(vsi)) {
		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
			vsi->idx);
		goto unroll_get_qs;
	}

	/* set RSS capabilities */
	ice_vsi_set_rss_params(vsi);

2210 2211 2212
	/* set tc configuration */
	ice_vsi_set_tc_cfg(vsi);

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	/* create the VSI */
	ret = ice_vsi_init(vsi);
	if (ret)
		goto unroll_get_qs;

	switch (vsi->type) {
	case ICE_VSI_PF:
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto unroll_vsi_init;

		ret = ice_vsi_setup_vector_base(vsi);
		if (ret)
			goto unroll_alloc_q_vector;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto unroll_vector_base;

		ice_vsi_map_rings_to_vectors(vsi);

		/* Do not exit if configuring RSS had an issue, at least
		 * receive traffic on first queue. Hence no need to capture
		 * return value
		 */
		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
			ice_vsi_cfg_rss_lut_key(vsi);
		break;
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	case ICE_VSI_VF:
		/* VF driver will take care of creating netdev for this type and
		 * map queues to vectors through Virtchnl, PF driver only
		 * creates a VSI and corresponding structures for bookkeeping
		 * purpose
		 */
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto unroll_vsi_init;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto unroll_alloc_q_vector;

		/* Setup Vector base only during VF init phase or when VF asks
		 * for more vectors than assigned number. In all other cases,
		 * assign hw_base_vector to the value given earlier.
		 */
		if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) {
			ret = ice_vsi_setup_vector_base(vsi);
			if (ret)
				goto unroll_vector_base;
		} else {
			vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx;
		}
		pf->q_left_tx -= vsi->alloc_txq;
		pf->q_left_rx -= vsi->alloc_rxq;
		break;
2269
	default:
2270
		/* clean up the resources and exit */
2271 2272 2273 2274 2275
		goto unroll_vsi_init;
	}

	/* configure VSI nodes based on number of queues and TC's */
	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2276
		max_txqs[i] = pf->num_lan_tx;
2277

2278 2279
	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
			      max_txqs);
2280 2281 2282 2283 2284 2285 2286 2287
	if (ret) {
		dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
		goto unroll_vector_base;
	}

	return vsi;

unroll_vector_base:
2288 2289 2290 2291 2292 2293
	/* reclaim SW interrupts back to the common pool */
	ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
	pf->num_avail_sw_msix += vsi->num_q_vectors;
	/* reclaim HW interrupt back to the common pool */
	ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx);
	pf->num_avail_hw_msix += vsi->num_q_vectors;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
unroll_alloc_q_vector:
	ice_vsi_free_q_vectors(vsi);
unroll_vsi_init:
	ice_vsi_delete(vsi);
unroll_get_qs:
	ice_vsi_put_qs(vsi);
	pf->q_left_tx += vsi->alloc_txq;
	pf->q_left_rx += vsi->alloc_rxq;
	ice_vsi_clear(vsi);

	return NULL;
}

2307 2308 2309 2310 2311 2312 2313
/**
 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
 * @vsi: the VSI being cleaned up
 */
static void ice_vsi_release_msix(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
2314
	u16 vector = vsi->hw_base_vector;
2315 2316 2317 2318 2319 2320 2321 2322
	struct ice_hw *hw = &pf->hw;
	u32 txq = 0;
	u32 rxq = 0;
	int i, q;

	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[i];

2323 2324
		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0);
		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		for (q = 0; q < q_vector->num_ring_tx; q++) {
			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
			txq++;
		}

		for (q = 0; q < q_vector->num_ring_rx; q++) {
			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
			rxq++;
		}
	}

	ice_flush(hw);
}

/**
 * ice_vsi_free_irq - Free the IRQ association with the OS
 * @vsi: the VSI being configured
 */
void ice_vsi_free_irq(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
2346
	int base = vsi->sw_base_vector;
2347 2348 2349 2350 2351 2352 2353

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		int i;

		if (!vsi->q_vectors || !vsi->irqs_ready)
			return;

2354
		ice_vsi_release_msix(vsi);
2355 2356
		if (vsi->type == ICE_VSI_VF)
			return;
2357

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		vsi->irqs_ready = false;
		for (i = 0; i < vsi->num_q_vectors; i++) {
			u16 vector = i + base;
			int irq_num;

			irq_num = pf->msix_entries[vector].vector;

			/* free only the irqs that were actually requested */
			if (!vsi->q_vectors[i] ||
			    !(vsi->q_vectors[i]->num_ring_tx ||
			      vsi->q_vectors[i]->num_ring_rx))
				continue;

			/* clear the affinity notifier in the IRQ descriptor */
			irq_set_affinity_notifier(irq_num, NULL);

			/* clear the affinity_mask in the IRQ descriptor */
			irq_set_affinity_hint(irq_num, NULL);
			synchronize_irq(irq_num);
			devm_free_irq(&pf->pdev->dev, irq_num,
				      vsi->q_vectors[i]);
		}
	}
}

/**
 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
 * @vsi: the VSI having resources freed
 */
void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
{
	int i;

	if (!vsi->tx_rings)
		return;

	ice_for_each_txq(vsi, i)
		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
			ice_free_tx_ring(vsi->tx_rings[i]);
}

/**
 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
 * @vsi: the VSI having resources freed
 */
void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
{
	int i;

	if (!vsi->rx_rings)
		return;

	ice_for_each_rxq(vsi, i)
		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
			ice_free_rx_ring(vsi->rx_rings[i]);
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/**
 * ice_vsi_close - Shut down a VSI
 * @vsi: the VSI being shut down
 */
void ice_vsi_close(struct ice_vsi *vsi)
{
	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
		ice_down(vsi);

	ice_vsi_free_irq(vsi);
	ice_vsi_free_tx_rings(vsi);
	ice_vsi_free_rx_rings(vsi);
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/**
 * ice_free_res - free a block of resources
 * @res: pointer to the resource
 * @index: starting index previously returned by ice_get_res
 * @id: identifier to track owner
 *
 * Returns number of resources freed
 */
int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
{
	int count = 0;
	int i;

	if (!res || index >= res->num_entries)
		return -EINVAL;

	id |= ICE_RES_VALID_BIT;
	for (i = index; i < res->num_entries && res->list[i] == id; i++) {
		res->list[i] = 0;
		count++;
	}

	return count;
}

/**
 * ice_search_res - Search the tracker for a block of resources
 * @res: pointer to the resource
 * @needed: size of the block needed
 * @id: identifier to track owner
 *
 * Returns the base item index of the block, or -ENOMEM for error
 */
static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
{
	int start = res->search_hint;
	int end = start;

2467
	if ((start + needed) > res->num_entries)
2468 2469
		return -ENOMEM;

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	id |= ICE_RES_VALID_BIT;

	do {
		/* skip already allocated entries */
		if (res->list[end++] & ICE_RES_VALID_BIT) {
			start = end;
			if ((start + needed) > res->num_entries)
				break;
		}

		if (end == (start + needed)) {
			int i = start;

			/* there was enough, so assign it to the requestor */
			while (i != end)
				res->list[i++] = id;

			if (end == res->num_entries)
				end = 0;

			res->search_hint = end;
			return start;
		}
	} while (1);

	return -ENOMEM;
}

/**
 * ice_get_res - get a block of resources
 * @pf: board private structure
 * @res: pointer to the resource
 * @needed: size of the block needed
 * @id: identifier to track owner
 *
 * Returns the base item index of the block, or -ENOMEM for error
 * The search_hint trick and lack of advanced fit-finding only works
 * because we're highly likely to have all the same sized requests.
 * Linear search time and any fragmentation should be minimal.
 */
int
ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
{
	int ret;

	if (!res || !pf)
		return -EINVAL;

	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
		dev_err(&pf->pdev->dev,
			"param err: needed=%d, num_entries = %d id=0x%04x\n",
			needed, res->num_entries, id);
		return -EINVAL;
	}

	/* search based on search_hint */
	ret = ice_search_res(res, needed, id);

	if (ret < 0) {
		/* previous search failed. Reset search hint and try again */
		res->search_hint = 0;
		ret = ice_search_res(res, needed, id);
	}

	return ret;
}

/**
 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
 * @vsi: the VSI being un-configured
 */
void ice_vsi_dis_irq(struct ice_vsi *vsi)
{
2543
	int base = vsi->sw_base_vector;
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	u32 val;
	int i;

	/* disable interrupt causation from each queue */
	if (vsi->tx_rings) {
		ice_for_each_txq(vsi, i) {
			if (vsi->tx_rings[i]) {
				u16 reg;

				reg = vsi->tx_rings[i]->reg_idx;
				val = rd32(hw, QINT_TQCTL(reg));
				val &= ~QINT_TQCTL_CAUSE_ENA_M;
				wr32(hw, QINT_TQCTL(reg), val);
			}
		}
	}

	if (vsi->rx_rings) {
		ice_for_each_rxq(vsi, i) {
			if (vsi->rx_rings[i]) {
				u16 reg;

				reg = vsi->rx_rings[i]->reg_idx;
				val = rd32(hw, QINT_RQCTL(reg));
				val &= ~QINT_RQCTL_CAUSE_ENA_M;
				wr32(hw, QINT_RQCTL(reg), val);
			}
		}
	}

	/* disable each interrupt */
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2578 2579
		for (i = vsi->hw_base_vector;
		     i < (vsi->num_q_vectors + vsi->hw_base_vector); i++)
2580 2581 2582 2583 2584 2585 2586 2587
			wr32(hw, GLINT_DYN_CTL(i), 0);

		ice_flush(hw);
		for (i = 0; i < vsi->num_q_vectors; i++)
			synchronize_irq(pf->msix_entries[i + base].vector);
	}
}

2588 2589 2590 2591 2592 2593 2594 2595
/**
 * ice_vsi_release - Delete a VSI and free its resources
 * @vsi: the VSI being removed
 *
 * Returns 0 on success or < 0 on error
 */
int ice_vsi_release(struct ice_vsi *vsi)
{
2596
	struct ice_vf *vf = NULL;
2597 2598 2599 2600 2601
	struct ice_pf *pf;

	if (!vsi->back)
		return -ENODEV;
	pf = vsi->back;
2602 2603 2604

	if (vsi->type == ICE_VSI_VF)
		vf = &pf->vf[vsi->vf_id];
2605 2606 2607 2608 2609 2610 2611
	/* do not unregister and free netdevs while driver is in the reset
	 * recovery pending state. Since reset/rebuild happens through PF
	 * service task workqueue, its not a good idea to unregister netdev
	 * that is associated to the PF that is running the work queue items
	 * currently. This is done to avoid check_flush_dependency() warning
	 * on this wq
	 */
2612
	if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) {
2613
		ice_napi_del(vsi);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		unregister_netdev(vsi->netdev);
		free_netdev(vsi->netdev);
		vsi->netdev = NULL;
	}

	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
		ice_rss_clean(vsi);

	/* Disable VSI and free resources */
	ice_vsi_dis_irq(vsi);
	ice_vsi_close(vsi);

	/* reclaim interrupt vectors back to PF */
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	if (vsi->type != ICE_VSI_VF) {
		/* reclaim SW interrupts back to the common pool */
		ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector,
			     vsi->idx);
		pf->num_avail_sw_msix += vsi->num_q_vectors;
		/* reclaim HW interrupts back to the common pool */
		ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector,
			     vsi->idx);
		pf->num_avail_hw_msix += vsi->num_q_vectors;
	} else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) {
		/* Reclaim VF resources back only while freeing all VFs or
		 * vector reassignment is requested
		 */
		ice_free_res(vsi->back->hw_irq_tracker, vf->first_vector_idx,
			     vsi->idx);
		pf->num_avail_hw_msix += pf->num_vf_msix;
	}
2644

2645
	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
2646
	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	ice_vsi_delete(vsi);
	ice_vsi_free_q_vectors(vsi);
	ice_vsi_clear_rings(vsi);

	ice_vsi_put_qs(vsi);
	pf->q_left_tx += vsi->alloc_txq;
	pf->q_left_rx += vsi->alloc_rxq;

	/* retain SW VSI data structure since it is needed to unregister and
	 * free VSI netdev when PF is not in reset recovery pending state,\
	 * for ex: during rmmod.
	 */
2659
	if (!ice_is_reset_in_progress(pf->state))
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
		ice_vsi_clear(vsi);

	return 0;
}

/**
 * ice_vsi_rebuild - Rebuild VSI after reset
 * @vsi: VSI to be rebuild
 *
 * Returns 0 on success and negative value on failure
 */
int ice_vsi_rebuild(struct ice_vsi *vsi)
{
	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2674
	struct ice_vf *vf = NULL;
2675
	struct ice_pf *pf;
2676 2677 2678 2679 2680
	int ret, i;

	if (!vsi)
		return -EINVAL;

2681
	pf = vsi->back;
2682 2683 2684
	if (vsi->type == ICE_VSI_VF)
		vf = &pf->vf[vsi->vf_id];

2685
	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2686
	ice_vsi_free_q_vectors(vsi);
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

	if (vsi->type != ICE_VSI_VF) {
		/* reclaim SW interrupts back to the common pool */
		ice_free_res(pf->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
		pf->num_avail_sw_msix += vsi->num_q_vectors;
		vsi->sw_base_vector = 0;
		/* reclaim HW interrupts back to the common pool */
		ice_free_res(pf->hw_irq_tracker, vsi->hw_base_vector,
			     vsi->idx);
		pf->num_avail_hw_msix += vsi->num_q_vectors;
	} else {
		/* Reclaim VF resources back to the common pool for reset and
		 * and rebuild, with vector reassignment
		 */
		ice_free_res(pf->hw_irq_tracker, vf->first_vector_idx,
			     vsi->idx);
		pf->num_avail_hw_msix += pf->num_vf_msix;
	}
2705
	vsi->hw_base_vector = 0;
2706

2707 2708
	ice_vsi_clear_rings(vsi);
	ice_vsi_free_arrays(vsi, false);
2709
	ice_dev_onetime_setup(&vsi->back->hw);
2710 2711 2712 2713
	if (vsi->type == ICE_VSI_VF)
		ice_vsi_set_num_qs(vsi, vf->vf_id);
	else
		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2714
	ice_vsi_set_tc_cfg(vsi);
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

	/* Initialize VSI struct elements and create VSI in FW */
	ret = ice_vsi_init(vsi);
	if (ret < 0)
		goto err_vsi;

	ret = ice_vsi_alloc_arrays(vsi, false);
	if (ret < 0)
		goto err_vsi;

	switch (vsi->type) {
	case ICE_VSI_PF:
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto err_rings;

		ret = ice_vsi_setup_vector_base(vsi);
		if (ret)
			goto err_vectors;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto err_vectors;

		ice_vsi_map_rings_to_vectors(vsi);
2740 2741 2742 2743 2744 2745
		/* Do not exit if configuring RSS had an issue, at least
		 * receive traffic on first queue. Hence no need to capture
		 * return value
		 */
		if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags))
			ice_vsi_cfg_rss_lut_key(vsi);
2746
		break;
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	case ICE_VSI_VF:
		ret = ice_vsi_alloc_q_vectors(vsi);
		if (ret)
			goto err_rings;

		ret = ice_vsi_setup_vector_base(vsi);
		if (ret)
			goto err_vectors;

		ret = ice_vsi_alloc_rings(vsi);
		if (ret)
			goto err_vectors;

		vsi->back->q_left_tx -= vsi->alloc_txq;
		vsi->back->q_left_rx -= vsi->alloc_rxq;
		break;
2763 2764 2765 2766 2767 2768
	default:
		break;
	}

	/* configure VSI nodes based on number of queues and TC's */
	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2769
		max_txqs[i] = pf->num_lan_tx;
2770

2771 2772
	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
			      max_txqs);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	if (ret) {
		dev_info(&vsi->back->pdev->dev,
			 "Failed VSI lan queue config\n");
		goto err_vectors;
	}
	return 0;

err_vectors:
	ice_vsi_free_q_vectors(vsi);
err_rings:
	if (vsi->netdev) {
		vsi->current_netdev_flags = 0;
		unregister_netdev(vsi->netdev);
		free_netdev(vsi->netdev);
		vsi->netdev = NULL;
	}
err_vsi:
	ice_vsi_clear(vsi);
	set_bit(__ICE_RESET_FAILED, vsi->back->state);
	return ret;
}

2795
/**
2796
 * ice_is_reset_in_progress - check for a reset in progress
2797 2798
 * @state: pf state field
 */
2799
bool ice_is_reset_in_progress(unsigned long *state)
2800
{
2801 2802 2803 2804
	return test_bit(__ICE_RESET_OICR_RECV, state) ||
	       test_bit(__ICE_PFR_REQ, state) ||
	       test_bit(__ICE_CORER_REQ, state) ||
	       test_bit(__ICE_GLOBR_REQ, state);
2805
}