arm-stub.c 11.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
M
Mark Salter 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * EFI stub implementation that is shared by arm and arm64 architectures.
 * This should be #included by the EFI stub implementation files.
 *
 * Copyright (C) 2013,2014 Linaro Limited
 *     Roy Franz <roy.franz@linaro.org
 * Copyright (C) 2013 Red Hat, Inc.
 *     Mark Salter <msalter@redhat.com>
 */

12
#include <linux/efi.h>
13
#include <linux/libfdt.h>
14
#include <linux/sort.h>
15 16 17 18
#include <asm/efi.h>

#include "efistub.h"

19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * This is the base address at which to start allocating virtual memory ranges
 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
 * any allocation we choose, and eliminate the risk of a conflict after kexec.
 * The value chosen is the largest non-zero power of 2 suitable for this purpose
 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
 * be mapped efficiently.
 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
 * entire footprint of the UEFI runtime services memory regions)
 */
#define EFI_RT_VIRTUAL_BASE	SZ_512M
#define EFI_RT_VIRTUAL_SIZE	SZ_512M

33
#ifdef CONFIG_ARM64
34
# define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
35 36 37 38
#else
# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
#endif

39 40
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;

41
static efi_system_table_t *__efistub_global sys_table;
42 43 44 45 46 47

__pure efi_system_table_t *efi_system_table(void)
{
	return sys_table;
}

48
static struct screen_info *setup_graphics(void)
49 50 51 52 53 54 55 56
{
	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
	efi_status_t status;
	unsigned long size;
	void **gop_handle = NULL;
	struct screen_info *si = NULL;

	size = 0;
57 58
	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
			     &gop_proto, NULL, &size, gop_handle);
59
	if (status == EFI_BUFFER_TOO_SMALL) {
60
		si = alloc_screen_info();
61 62
		if (!si)
			return NULL;
63
		efi_setup_gop(si, &gop_proto, size);
64 65 66
	}
	return si;
}
M
Mark Salter 已提交
67

68
void install_memreserve_table(void)
69 70 71 72 73
{
	struct linux_efi_memreserve *rsv;
	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
	efi_status_t status;

74 75
	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
			     (void **)&rsv);
76
	if (status != EFI_SUCCESS) {
77
		pr_efi_err("Failed to allocate memreserve entry!\n");
78 79 80 81 82
		return;
	}

	rsv->next = 0;
	rsv->size = 0;
83
	atomic_set(&rsv->count, 0);
84

85 86
	status = efi_bs_call(install_configuration_table,
			     &memreserve_table_guid, rsv);
87
	if (status != EFI_SUCCESS)
88
		pr_efi_err("Failed to install memreserve config table!\n");
89 90 91
}


M
Mark Salter 已提交
92 93 94 95 96 97
/*
 * This function handles the architcture specific differences between arm and
 * arm64 regarding where the kernel image must be loaded and any memory that
 * must be reserved. On failure it is required to free all
 * all allocations it has made.
 */
98
efi_status_t handle_kernel_image(unsigned long *image_addr,
99 100 101 102 103
				 unsigned long *image_size,
				 unsigned long *reserve_addr,
				 unsigned long *reserve_size,
				 unsigned long dram_base,
				 efi_loaded_image_t *image);
104 105 106 107 108

asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
					    unsigned long fdt_addr,
					    unsigned long fdt_size);

M
Mark Salter 已提交
109 110 111 112 113 114
/*
 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
 * that is described in the PE/COFF header.  Most of the code is the same
 * for both archictectures, with the arch-specific code provided in the
 * handle_kernel_image() function.
 */
115
efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg)
M
Mark Salter 已提交
116 117 118
{
	efi_loaded_image_t *image;
	efi_status_t status;
119
	unsigned long image_addr;
M
Mark Salter 已提交
120 121 122 123 124
	unsigned long image_size = 0;
	unsigned long dram_base;
	/* addr/point and size pairs for memory management*/
	unsigned long initrd_addr;
	u64 initrd_size = 0;
125
	unsigned long fdt_addr = 0;  /* Original DTB */
126
	unsigned long fdt_size = 0;
M
Mark Salter 已提交
127 128 129 130 131
	char *cmdline_ptr = NULL;
	int cmdline_size = 0;
	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
	unsigned long reserve_addr = 0;
	unsigned long reserve_size = 0;
132
	enum efi_secureboot_mode secure_boot;
133
	struct screen_info *si;
M
Mark Salter 已提交
134

135 136
	sys_table = sys_table_arg;

M
Mark Salter 已提交
137
	/* Check if we were booted by the EFI firmware */
138 139
	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		status = EFI_INVALID_PARAMETER;
M
Mark Salter 已提交
140
		goto fail;
141
	}
M
Mark Salter 已提交
142

143
	status = check_platform_features();
144 145 146
	if (status != EFI_SUCCESS)
		goto fail;

M
Mark Salter 已提交
147 148 149 150 151 152 153 154
	/*
	 * Get a handle to the loaded image protocol.  This is used to get
	 * information about the running image, such as size and the command
	 * line.
	 */
	status = sys_table->boottime->handle_protocol(handle,
					&loaded_image_proto, (void *)&image);
	if (status != EFI_SUCCESS) {
155
		pr_efi_err("Failed to get loaded image protocol\n");
M
Mark Salter 已提交
156 157 158
		goto fail;
	}

159
	dram_base = get_dram_base();
M
Mark Salter 已提交
160
	if (dram_base == EFI_ERROR) {
161
		pr_efi_err("Failed to find DRAM base\n");
162
		status = EFI_LOAD_ERROR;
M
Mark Salter 已提交
163 164 165 166 167 168 169 170
		goto fail;
	}

	/*
	 * Get the command line from EFI, using the LOADED_IMAGE
	 * protocol. We are going to copy the command line into the
	 * device tree, so this can be allocated anywhere.
	 */
171
	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
M
Mark Salter 已提交
172
	if (!cmdline_ptr) {
173
		pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
174
		status = EFI_OUT_OF_RESOURCES;
175 176 177
		goto fail;
	}

178 179 180 181 182 183 184 185
	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
	    cmdline_size == 0)
		efi_parse_options(CONFIG_CMDLINE);

	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
		efi_parse_options(cmdline_ptr);

186
	pr_efi("Booting Linux Kernel...\n");
187

188
	si = setup_graphics();
189

190
	status = handle_kernel_image(&image_addr, &image_size,
191 192 193 194
				     &reserve_addr,
				     &reserve_size,
				     dram_base, image);
	if (status != EFI_SUCCESS) {
195
		pr_efi_err("Failed to relocate kernel\n");
196
		goto fail_free_cmdline;
M
Mark Salter 已提交
197 198
	}

199
	efi_retrieve_tpm2_eventlog();
200

201
	/* Ask the firmware to clear memory on unclean shutdown */
202
	efi_enable_reset_attack_mitigation();
203

204
	secure_boot = efi_get_secureboot();
205

206
	/*
207 208 209
	 * Unauthenticated device tree data is a security hazard, so ignore
	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
	 * boot is enabled if we can't determine its state.
210
	 */
211 212 213
	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
	     secure_boot != efi_secureboot_mode_disabled) {
		if (strstr(cmdline_ptr, "dtb="))
214
			pr_efi("Ignoring DTB from command line.\n");
215
	} else {
216
		status = handle_cmdline_files(image, cmdline_ptr, "dtb=",
217
					      ~0UL, &fdt_addr, &fdt_size);
M
Mark Salter 已提交
218 219

		if (status != EFI_SUCCESS) {
220
			pr_efi_err("Failed to load device tree!\n");
221
			goto fail_free_image;
M
Mark Salter 已提交
222 223
		}
	}
224 225

	if (fdt_addr) {
226
		pr_efi("Using DTB from command line\n");
227
	} else {
228
		/* Look for a device tree configuration table entry. */
229
		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
230
		if (fdt_addr)
231
			pr_efi("Using DTB from configuration table\n");
232 233 234
	}

	if (!fdt_addr)
235
		pr_efi("Generating empty DTB\n");
M
Mark Salter 已提交
236

237
	status = handle_cmdline_files(image, cmdline_ptr, "initrd=",
238
				      efi_get_max_initrd_addr(dram_base,
239
							      image_addr),
M
Mark Salter 已提交
240 241 242
				      (unsigned long *)&initrd_addr,
				      (unsigned long *)&initrd_size);
	if (status != EFI_SUCCESS)
243
		pr_efi_err("Failed initrd from command line!\n");
M
Mark Salter 已提交
244

245
	efi_random_get_seed();
246

247 248
	/* hibernation expects the runtime regions to stay in the same place */
	if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
249 250 251 252 253 254
		/*
		 * Randomize the base of the UEFI runtime services region.
		 * Preserve the 2 MB alignment of the region by taking a
		 * shift of 21 bit positions into account when scaling
		 * the headroom value using a 32-bit random value.
		 */
255 256 257
		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
					    EFI_RT_VIRTUAL_BASE -
					    EFI_RT_VIRTUAL_SIZE;
258 259
		u32 rnd;

260
		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
261 262 263 264 265 266
		if (status == EFI_SUCCESS) {
			virtmap_base = EFI_RT_VIRTUAL_BASE +
				       (((headroom >> 21) * rnd) >> (32 - 21));
		}
	}

267
	install_memreserve_table();
268

269 270 271 272 273 274
	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
						efi_get_max_fdt_addr(dram_base),
						initrd_addr, initrd_size,
						cmdline_ptr, fdt_addr, fdt_size);
	if (status != EFI_SUCCESS)
		goto fail_free_initrd;
M
Mark Salter 已提交
275

276 277
	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
	/* not reached */
M
Mark Salter 已提交
278

279
fail_free_initrd:
280
	pr_efi_err("Failed to update FDT and exit boot services\n");
M
Mark Salter 已提交
281

282 283
	efi_free(initrd_size, initrd_addr);
	efi_free(fdt_size, fdt_addr);
M
Mark Salter 已提交
284 285

fail_free_image:
286
	efi_free(image_size, image_addr);
287
	efi_free(reserve_size, reserve_addr);
288
fail_free_cmdline:
289 290
	free_screen_info(si);
	efi_free(cmdline_size, (unsigned long)cmdline_ptr);
M
Mark Salter 已提交
291
fail:
292
	return status;
M
Mark Salter 已提交
293
}
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
static int cmp_mem_desc(const void *l, const void *r)
{
	const efi_memory_desc_t *left = l, *right = r;

	return (left->phys_addr > right->phys_addr) ? 1 : -1;
}

/*
 * Returns whether region @left ends exactly where region @right starts,
 * or false if either argument is NULL.
 */
static bool regions_are_adjacent(efi_memory_desc_t *left,
				 efi_memory_desc_t *right)
{
	u64 left_end;

	if (left == NULL || right == NULL)
		return false;

	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;

	return left_end == right->phys_addr;
}

/*
 * Returns whether region @left and region @right have compatible memory type
 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
 */
static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
						      efi_memory_desc_t *right)
{
	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
					 EFI_MEMORY_WC | EFI_MEMORY_UC |
					 EFI_MEMORY_RUNTIME;

	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
}

333 334 335 336 337 338 339 340 341 342 343
/*
 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
 *
 * This function populates the virt_addr fields of all memory region descriptors
 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
 * are also copied to @runtime_map, and their total count is returned in @count.
 */
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
		     int *count)
{
344
	u64 efi_virt_base = virtmap_base;
345
	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
346 347
	int l;

348 349 350 351 352 353 354 355 356
	/*
	 * To work around potential issues with the Properties Table feature
	 * introduced in UEFI 2.5, which may split PE/COFF executable images
	 * in memory into several RuntimeServicesCode and RuntimeServicesData
	 * regions, we need to preserve the relative offsets between adjacent
	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
	 * The easiest way to find adjacent regions is to sort the memory map
	 * before traversing it.
	 */
357 358 359
	if (IS_ENABLED(CONFIG_ARM64))
		sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
		     NULL);
360 361

	for (l = 0; l < map_size; l += desc_size, prev = in) {
362 363
		u64 paddr, size;

364
		in = (void *)memory_map + l;
365 366 367
		if (!(in->attribute & EFI_MEMORY_RUNTIME))
			continue;

368 369 370
		paddr = in->phys_addr;
		size = in->num_pages * EFI_PAGE_SIZE;

371 372 373 374 375
		if (novamap()) {
			in->virt_addr = in->phys_addr;
			continue;
		}

376 377 378 379 380
		/*
		 * Make the mapping compatible with 64k pages: this allows
		 * a 4k page size kernel to kexec a 64k page size kernel and
		 * vice versa.
		 */
381 382
		if ((IS_ENABLED(CONFIG_ARM64) &&
		     !regions_are_adjacent(prev, in)) ||
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		    !regions_have_compatible_memory_type_attrs(prev, in)) {

			paddr = round_down(in->phys_addr, SZ_64K);
			size += in->phys_addr - paddr;

			/*
			 * Avoid wasting memory on PTEs by choosing a virtual
			 * base that is compatible with section mappings if this
			 * region has the appropriate size and physical
			 * alignment. (Sections are 2 MB on 4k granule kernels)
			 */
			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
				efi_virt_base = round_up(efi_virt_base, SZ_2M);
			else
				efi_virt_base = round_up(efi_virt_base, SZ_64K);
		}
399 400 401 402 403 404 405 406 407

		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
		efi_virt_base += size;

		memcpy(out, in, desc_size);
		out = (void *)out + desc_size;
		++*count;
	}
}