- 23 2月, 2020 1 次提交
-
-
由 Ard Biesheuvel 提交于
Expose efi_entry() as the PE/COFF entrypoint directly, instead of jumping into a wrapper that fiddles with stack buffers and other stuff that the compiler is much better at. The only reason this code exists is to obtain a pointer to the base of the image, but we can get the same value from the loaded_image protocol, which we already need for other reasons anyway. Update the return type as well, to make it consistent with what is required for a PE/COFF executable entrypoint. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
- 25 12月, 2019 7 次提交
-
-
由 Ard Biesheuvel 提交于
Drop leading underscores and use bool not int for true/false variables set on the command line. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-25-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
The macros efi_call_early and efi_call_runtime are used to call EFI boot services and runtime services, respectively. However, the naming is confusing, given that the early vs runtime distinction may suggest that these are used for calling the same set of services either early or late (== at runtime), while in reality, the sets of services they can be used with are completely disjoint, and efi_call_runtime is also only usable in 'early' code. So do a global sweep to replace all occurrences with efi_bs_call or efi_rt_call, respectively, where BS and RT match the idiom used by the UEFI spec to refer to boot time or runtime services. While at it, use 'func' as the macro parameter name for the function pointers, which is less likely to collide and cause weird build errors. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-24-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
We have a helper efi_system_table() that gives us the address of the EFI system table in memory, so there is no longer point in passing it around from each function to the next. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-20-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
As a first step towards getting rid of the need to pass around a function parameter 'sys_table_arg' pointing to the EFI system table, remove the references to it in the printing code, which is represents the majority of the use cases. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-19-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Use a single implementation for efi_char16_printk() across all architectures. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-17-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
The efi_call macros on ARM have a dependency on a variable 'sys_table_arg' existing in the scope of the macro instantiation. Since this variable always points to the same data structure, let's create a global getter for it and use that instead. Note that the use of a global variable with external linkage is avoided, given the problems we had in the past with early processing of the GOT tables. While at it, drop the redundant casts in the efi_table_attr and efi_call_proto macros. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-16-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
In preparation of moving to a native vs. mixed mode split rather than a 32 vs. 64 bit split when it comes to invoking EFI firmware services, update all the native protocol definitions and redefine them as unions containing an anonymous struct for the native view and a struct called 'mixed_mode' describing the 32-bit view of the protocol when called from 64-bit code. While at it, flesh out some PCI I/O member definitions that we will be needing shortly. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-9-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 11月, 2019 1 次提交
-
-
由 Xinwei Kong 提交于
Wire up the existing code for ARM that loads the TPM event log into OS accessible buffers while running the EFI stub so that the kernel proper can access it at runtime. Tested-by: NZou Cao <zoucao@linux.alibaba.com> Signed-off-by: NXinwei Kong <kong.kongxinwei@hisilicon.com> Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
- 19 6月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
Based on 1 normalized pattern(s): this file is part of the linux kernel and is made available under the terms of the gnu general public license version 2 extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 28 file(s). Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NEnrico Weigelt <info@metux.net> Reviewed-by: NAllison Randal <allison@lohutok.net> Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190604081206.534229504@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 16 2月, 2019 1 次提交
-
-
由 Ard Biesheuvel 提交于
This reverts commit eff89628, which deferred the processing of persistent memory reservations to a point where the memory may have already been allocated and overwritten, defeating the purpose. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20190215123333.21209-3-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 2月, 2019 1 次提交
-
-
由 Ard Biesheuvel 提交于
The UEFI spec revision 2.7 errata A section 8.4 has the following to say about the virtual memory runtime services: "This section contains function definitions for the virtual memory support that may be optionally used by an operating system at runtime. If an operating system chooses to make EFI runtime service calls in a virtual addressing mode instead of the flat physical mode, then the operating system must use the services in this section to switch the EFI runtime services from flat physical addressing to virtual addressing." So it is pretty clear that calling SetVirtualAddressMap() is entirely optional, and so there is no point in doing so unless it achieves anything useful for us. This is not the case for 64-bit ARM. The identity mapping used by the firmware is arbitrarily converted into another permutation of userland addresses (i.e., bits [63:48] cleared), and the runtime code could easily deal with the original layout in exactly the same way as it deals with the converted layout. However, due to constraints related to page size differences if the OS is not running with 4k pages, and related to systems that may expose the individual sections of PE/COFF runtime modules as different memory regions, creating the virtual layout is a bit fiddly, and requires us to sort the memory map and reason about adjacent regions with identical memory types etc etc. So the obvious fix is to stop calling SetVirtualAddressMap() altogether on arm64 systems. However, to avoid surprises, which are notoriously hard to diagnose when it comes to OS<->firmware interactions, let's start by making it an opt-out feature, and implement support for the 'efi=novamap' kernel command line parameter on ARM and arm64 systems. ( Note that 32-bit ARM generally does require SetVirtualAddressMap() to be used, given that the physical memory map and the kernel virtual address map are not guaranteed to be non-overlapping like on arm64. However, having support for efi=novamap,noruntime on 32-bit ARM, combined with the recently proposed support for earlycon=efifb, is likely to be useful to diagnose boot issues on such systems if they have no accessible serial port. ) Tested-by: NJeffrey Hugo <jhugo@codeaurora.org> Tested-by: NBjorn Andersson <bjorn.andersson@linaro.org> Tested-by: NLee Jones <lee.jones@linaro.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Alexander Graf <agraf@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20190202094119.13230-8-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 12月, 2018 1 次提交
-
-
由 Steve Capper 提交于
We wish to introduce a 52-bit virtual address space for userspace but maintain compatibility with software that assumes the maximum VA space size is 48 bit. In order to achieve this, on 52-bit VA systems, we make mmap behave as if it were running on a 48-bit VA system (unless userspace explicitly requests a VA where addr[51:48] != 0). On a system running a 52-bit userspace we need TASK_SIZE to represent the 52-bit limit as it is used in various places to distinguish between kernelspace and userspace addresses. Thus we need a new limit for mmap, stack, ELF loader and EFI (which uses TTBR0) to represent the non-extended VA space. This patch introduces DEFAULT_MAP_WINDOW and DEFAULT_MAP_WINDOW_64 and switches the appropriate logic to use that instead of TASK_SIZE. Signed-off-by: NSteve Capper <steve.capper@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 30 11月, 2018 1 次提交
-
-
由 Ard Biesheuvel 提交于
In preparation of updating efi_mem_reserve_persistent() to cause less fragmentation when dealing with many persistent reservations, update the struct definition and the code that handles it currently so it can describe an arbitrary number of reservations using a single linked list entry. The actual optimization will be implemented in a subsequent patch. Tested-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arend van Spriel <arend.vanspriel@broadcom.com> Cc: Bhupesh Sharma <bhsharma@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Eric Snowberg <eric.snowberg@oracle.com> Cc: Hans de Goede <hdegoede@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jon Hunter <jonathanh@nvidia.com> Cc: Julien Thierry <julien.thierry@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: YiFei Zhu <zhuyifei1999@gmail.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20181129171230.18699-10-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 11月, 2018 1 次提交
-
-
由 Ard Biesheuvel 提交于
The new memory EFI reservation feature we introduced to allow memory reservations to persist across kexec may trigger an unbounded number of calls to memblock_reserve(). The memblock subsystem can deal with this fine, but not before memblock resizing is enabled, which we can only do after paging_init(), when the memory we reallocate the array into is actually mapped. So break out the memreserve table processing into a separate routine and call it after paging_init() on arm64. On ARM, because of limited reviewing bandwidth of the maintainer, we cannot currently fix this, so instead, disable the EFI persistent memreserve entirely on ARM so we can fix it later. Tested-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20181114175544.12860-5-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 26 9月, 2018 1 次提交
-
-
由 Ard Biesheuvel 提交于
Installing UEFI configuration tables can only be done before calling ExitBootServices(), so if we want to use the new MEMRESRVE config table from the kernel proper, we need to install a dummy entry from the stub. Tested-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-
- 22 7月, 2018 1 次提交
-
-
由 Lukas Wunner 提交于
There's one ARM, one x86_32 and one x86_64 version of efi_open_volume() which can be folded into a single shared version by masking their differences with the efi_call_proto() macro introduced by commit: 3552fdf2 ("efi: Allow bitness-agnostic protocol calls"). To be able to dereference the device_handle attribute from the efi_loaded_image_t table in an arch- and bitness-agnostic manner, introduce the efi_table_attr() macro (which already exists for x86) to arm and arm64. No functional change intended. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Hans de Goede <hdegoede@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20180720014726.24031-7-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 7月, 2018 1 次提交
-
-
由 Ard Biesheuvel 提交于
There are various ways a platform can provide a device tree binary to the kernel, with different levels of sophistication: - ideally, the UEFI firmware, which is tightly coupled with the platform, provides a device tree image directly as a UEFI configuration table, and typically permits the contents to be manipulated either via menu options or via UEFI environment variables that specify a replacement image, - GRUB for ARM has a 'devicetree' directive which allows a device tree image to be loaded from any location accessible to GRUB, and supersede the one provided by the firmware, - the EFI stub implements a dtb= command line option that allows a device tree image to be loaded from a file residing in the same file system as the one the kernel image was loaded from. The dtb= command line option was never intended to be more than a development feature, to allow the other options to be implemented in parallel. So let's make it an opt-in feature that is disabled by default, but can be re-enabled at will. Note that we already disable the dtb= command line option when we detect that we are running with UEFI Secure Boot enabled. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NAlexander Graf <agraf@suse.de> Acked-by: NLeif Lindholm <leif.lindholm@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20180711094040.12506-7-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 10月, 2017 1 次提交
-
-
由 Ard Biesheuvel 提交于
ARM shares its EFI stub implementation with arm64, which has some special handling in the virtual remapping code to a) make sure that we can map everything even if the OS executes with 64k page size, and b) make sure that adjacent regions with the same attributes are not reordered or moved apart in memory. The latter is a workaround for a 'feature' that was shortly recommended by UEFI spec v2.5, but deprecated shortly after, due to the fact that it broke many OS installers, including non-Linux ones, and it was never widely implemented for ARM systems. Before implementing b), the arm64 code simply rounded up all regions to 64 KB granularity, but given that that results in moving adjacent regions apart, it had to be refined when b) was implemented. The adjacency check requires a sort() pass, due to the fact that the UEFI spec does not mandate any ordering, and the inclusion of the lib/sort.c code into the ARM EFI stub is causing some trouble with the decompressor build due to the fact that its EXPORT_SYMBOL() call triggers the creation of ksymtab/kcrctab sections. So let's simply do away with the adjacency check for ARM, and simply put all UEFI runtime regions together if they have the same memory attributes. This is guaranteed to work, given that ARM only supports 4 KB pages, and allows us to remove the sort() call entirely. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Tested-by: NJeffy Chen <jeffy.chen@rock-chips.com> Tested-by: NGregory CLEMENT <gregory.clement@free-electrons.com> Tested-by: NMatthias Brugger <matthias.bgg@gmail.com> Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk>
-
- 25 10月, 2017 1 次提交
-
-
由 Ard Biesheuvel 提交于
Commit: e69176d6 ("ef/libstub/arm/arm64: Randomize the base of the UEFI rt services region") implemented randomization of the virtual mapping that the OS chooses for the UEFI runtime services. This was motivated by the fact that UEFI usually does not bother to specify any permission restrictions for those regions, making them prime real estate for exploitation now that the OS is getting more and more careful not to leave any R+W+X mapped regions lying around. However, this randomization breaks assumptions in the resume from hibernation code, which expects all memory regions populated by UEFI to remain in the same place, including their virtual mapping into the OS memory space. While this assumption may not be entirely reasonable in the first place, breaking it deliberately does not make a lot of sense either. So let's refrain from this randomization pass if CONFIG_HIBERNATION=y. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20171025100448.26056-3-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 26 8月, 2017 1 次提交
-
-
由 Matthew Garrett 提交于
If a machine is reset while secrets are present in RAM, it may be possible for code executed after the reboot to extract those secrets from untouched memory. The Trusted Computing Group specified a mechanism for requesting that the firmware clear all RAM on reset before booting another OS. This is done by setting the MemoryOverwriteRequestControl variable at startup. If userspace can ensure that all secrets are removed as part of a controlled shutdown, it can reset this variable to 0 before triggering a hardware reboot. Signed-off-by: NMatthew Garrett <mjg59@google.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170825155019.6740-2-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 4月, 2017 1 次提交
-
-
由 Ard Biesheuvel 提交于
As reported by James, Catalin and Mark, commit: e69176d6 ("ef/libstub/arm/arm64: Randomize the base of the UEFI rt services region") ... results in a crash in the firmware, regardless of whether KASLR is in effect or not and whether the firmware implements EFI_RNG_PROTOCOL or not. Mark has identified the root cause to be the inappropriate use of TASK_SIZE in the stub, which arm64 defines as: #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ TASK_SIZE_32 : TASK_SIZE_64) and testing thread flags at this point results in the dereference of pointers in uninitialized structures. So instead, introduce a preprocessor symbol EFI_RT_VIRTUAL_LIMIT and define it to TASK_SIZE_64 on arm64 and TASK_SIZE on ARM, both of which are compile time constants. Also, change the 'headroom' variable to static const to force an error if this might change in the future. Tested-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NJames Morse <james.morse@arm.com> Tested-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170417093201.10181-2-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 4月, 2017 4 次提交
-
-
由 Ard Biesheuvel 提交于
Update the allocation logic for the virtual mapping of the UEFI runtime services to start from a randomized base address if KASLR is in effect, and if the UEFI firmware exposes an implementation of EFI_RNG_PROTOCOL. This makes it more difficult to predict the location of exploitable data structures in the runtime UEFI firmware, which increases robustness against attacks. Note that these regions are only mapped during the time a runtime service call is in progress, and only on a single CPU at a time, bit given the lack of a downside, let's enable it nonetheless. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bhe@redhat.com Cc: bhsharma@redhat.com Cc: eugene@hp.com Cc: evgeny.kalugin@intel.com Cc: jhugo@codeaurora.org Cc: leif.lindholm@linaro.org Cc: linux-efi@vger.kernel.org Cc: mark.rutland@arm.com Cc: roy.franz@cavium.com Cc: rruigrok@codeaurora.org Link: http://lkml.kernel.org/r/20170404160910.28115-3-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
The EFI stub currently prints a number of diagnostic messages that do not carry a lot of information. Since these prints are not controlled by 'loglevel' or other command line parameters, and since they appear on the EFI framebuffer as well (if enabled), it would be nice if we could turn them off. So let's add support for the 'quiet' command line parameter in the stub, and disable the non-error prints if it is passed. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bhe@redhat.com Cc: bhsharma@redhat.com Cc: bp@alien8.de Cc: eugene@hp.com Cc: evgeny.kalugin@intel.com Cc: jhugo@codeaurora.org Cc: leif.lindholm@linaro.org Cc: linux-efi@vger.kernel.org Cc: roy.franz@cavium.com Cc: rruigrok@codeaurora.org Link: http://lkml.kernel.org/r/20170404160910.28115-2-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Merge the parsing of the command line carried out in arm-stub.c with the handling in efi_parse_options(). Note that this also fixes the missing handling of CONFIG_CMDLINE_FORCE=y, in which case the builtin command line should supersede the one passed by the firmware. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bhe@redhat.com Cc: bhsharma@redhat.com Cc: bp@alien8.de Cc: eugene@hp.com Cc: evgeny.kalugin@intel.com Cc: jhugo@codeaurora.org Cc: leif.lindholm@linaro.org Cc: linux-efi@vger.kernel.org Cc: mark.rutland@arm.com Cc: roy.franz@cavium.com Cc: rruigrok@codeaurora.org Link: http://lkml.kernel.org/r/20170404160910.28115-1-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
On arm64, we have made some changes over the past year to the way the kernel itself is allocated and to how it deals with the initrd and FDT. This patch brings the allocation logic in the EFI stub in line with that, which is necessary because the introduction of KASLR has created the possibility for the initrd to be allocated in a place where the kernel may not be able to map it. (This is mostly a theoretical scenario, since it only affects systems where the physical memory footprint exceeds the size of the linear mapping.) Since we know the kernel itself will be covered by the linear mapping, choose a suitably sized window (i.e., based on the size of the linear region) covering the kernel when allocating memory for the initrd. The FDT may be anywhere in memory on arm64 now that we map it via the fixmap, so we can lift the address restriction there completely. Tested-by: NRichard Ruigrok <rruigrok@codeaurora.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NJeffrey Hugo <jhugo@codeaurora.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170404160245.27812-4-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 2月, 2017 1 次提交
-
-
由 David Howells 提交于
Get the firmware's secure-boot status in the kernel boot wrapper and stash it somewhere that the main kernel image can find. The efi_get_secureboot() function is extracted from the ARM stub and (a) generalised so that it can be called from x86 and (b) made to use efi_call_runtime() so that it can be run in mixed-mode. For x86, it is stored in boot_params and can be overridden by the boot loader or kexec. This allows secure-boot mode to be passed on to a new kernel. Suggested-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1486380166-31868-5-git-send-email-ard.biesheuvel@linaro.org [ Small readability edits. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 01 2月, 2017 1 次提交
-
-
由 Lukas Wunner 提交于
There's one ARM, one x86_32 and one x86_64 version which can be folded into a single shared version by masking their differences with the shiny new efi_call_proto() macro. No functional change intended. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1485868902-20401-2-git-send-email-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 11月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
Invoke the EFI_RNG_PROTOCOL protocol in the context of the stub and install the Linux-specific RNG seed UEFI config table. This will be picked up by the EFI routines in the core kernel to seed the kernel entropy pool. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NKees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20161112213237.8804-6-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 4月, 2016 3 次提交
-
-
由 Ard Biesheuvel 提交于
This adds the code to the ARM and arm64 versions of the UEFI stub to populate struct screen_info based on the information received from the firmware via the GOP protocol. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-23-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Linn Crosetto 提交于
According to the UEFI specification (version 2.5 Errata A, page 87): The platform firmware is operating in secure boot mode if the value of the SetupMode variable is 0 and the SecureBoot variable is set to 1. A platform cannot operate in secure boot mode if the SetupMode variable is set to 1. Check the value of the SetupMode variable when determining the state of Secure Boot. Plus also do minor cleanup, change sizeof() use to match kernel style guidelines. Signed-off-by: NLinn Crosetto <linn@hpe.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roy Franz <roy.franz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-6-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Linn Crosetto 提交于
Certain code in the boot path may require the ability to determine whether UEFI Secure Boot is definitely enabled, for example printing status to the console. Other code may need to know when UEFI Secure Boot is definitely disabled, for example restricting use of kernel parameters. If an unexpected error is returned from GetVariable() when querying the status of UEFI Secure Boot, return an error to the caller. This allows the caller to determine the definite state, and to take appropriate action if an expected error is returned. Signed-off-by: NLinn Crosetto <linn@hpe.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roy Franz <roy.franz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-5-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 24 2月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
Since arm64 does not use a decompressor that supplies an execution environment where it is feasible to some extent to provide a source of randomness, the arm64 KASLR kernel depends on the bootloader to supply some random bits in the /chosen/kaslr-seed DT property upon kernel entry. On UEFI systems, we can use the EFI_RNG_PROTOCOL, if supplied, to obtain some random bits. At the same time, use it to randomize the offset of the kernel Image in physical memory. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 22 2月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
Before proceeding with relocating the kernel and parsing the command line, insert a call to check_platform_features() to allow an arch specific check to be performed whether the current kernel can execute on the current hardware. Tested-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NJeremy Linton <jeremy.linton@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-11-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 12月, 2015 1 次提交
-
-
由 Roy Franz 提交于
This patch adds EFI stub support for the ARM Linux kernel. The EFI stub operates similarly to the x86 and arm64 stubs: it is a shim between the EFI firmware and the normal zImage entry point, and sets up the environment that the zImage is expecting. This includes optionally loading the initrd and device tree from the system partition based on the kernel command line. Signed-off-by: NRoy Franz <roy.franz@linaro.org> Tested-by: NRyan Harkin <ryan.harkin@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-
- 01 10月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
The new Properties Table feature introduced in UEFIv2.5 may split memory regions that cover PE/COFF memory images into separate code and data regions. Since these regions only differ in the type (runtime code vs runtime data) and the permission bits, but not in the memory type attributes (UC/WC/WT/WB), the spec does not require them to be aligned to 64 KB. Since the relative offset of PE/COFF .text and .data segments cannot be changed on the fly, this means that we can no longer pad out those regions to be mappable using 64 KB pages. Unfortunately, there is no annotation in the UEFI memory map that identifies data regions that were split off from a code region, so we must apply this logic to all adjacent runtime regions whose attributes only differ in the permission bits. So instead of rounding each memory region to 64 KB alignment at both ends, only round down regions that are not directly preceded by another runtime region with the same type attributes. Since the UEFI spec does not mandate that the memory map be sorted, this means we also need to sort it first. Note that this change will result in all EFI_MEMORY_RUNTIME regions whose start addresses are not aligned to the OS page size to be mapped with executable permissions (i.e., on kernels compiled with 64 KB pages). However, since these mappings are only active during the time that UEFI Runtime Services are being invoked, the window for abuse is rather small. Tested-by: NMark Salter <msalter@redhat.com> Tested-by: Mark Rutland <mark.rutland@arm.com> [UEFI 2.4 only] Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com> Reviewed-by: NMark Salter <msalter@redhat.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> # v4.0+ Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1443218539-7610-3-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 01 4月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
When allocating memory for the copy of the FDT that the stub modifies and passes to the kernel, it uses the current size as an estimate of how much memory to allocate, and increases it page by page if it turns out to be too small. However, when loading the FDT from a UEFI configuration table, the estimated size is left at its default value of zero, and the allocation loop runs starting from zero all the way up to the allocation size that finally fits the updated FDT. Instead, retrieve the size of the FDT from the FDT header when loading it from the UEFI config table. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NRoy Franz <roy.franz@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 16 1月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
This ensures all stub component are freed when the kernel proper is done booting, by prefixing the names of all ELF sections that have the SHF_ALLOC attribute with ".init". This approach ensures that even implicitly emitted allocated data (like initializer values and string literals) are covered. At the same time, remove some __init annotations in the stub that have now become redundant, and add the __init annotation to handle_kernel_image which will now trigger a section mismatch warning without it. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 13 1月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
In order to support kexec, the kernel needs to be able to deal with the state of the UEFI firmware after SetVirtualAddressMap() has been called. To avoid having separate code paths for non-kexec and kexec, let's move the call to SetVirtualAddressMap() to the stub: this will guarantee us that it will only be called once (since the stub is not executed during kexec), and ensures that the UEFI state is identical between kexec and normal boot. This implies that the layout of the virtual mapping needs to be created by the stub as well. All regions are rounded up to a naturally aligned multiple of 64 KB (for compatibility with 64k pages kernels) and recorded in the UEFI memory map. The kernel proper reads those values and installs the mappings in a dedicated set of page tables that are swapped in during UEFI Runtime Services calls. Acked-by: NLeif Lindholm <leif.lindholm@linaro.org> Acked-by: NMatt Fleming <matt.fleming@intel.com> Tested-by: NLeif Lindholm <leif.lindholm@linaro.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-
- 05 11月, 2014 1 次提交
-
-
由 Mark Rutland 提交于
In the absence of a DTB configuration table, the EFI stub will happily continue attempting to boot a kernel, despite the fact that this kernel may not function without a description of the hardware. In this case, as with a typo'd "dtb=" option (e.g. "dbt=") or many other possible failures, the only output seen by the user will be the rather terse output from the EFI stub: EFI stub: Booting Linux Kernel... To aid those attempting to debug such failures, this patch adds a notice when no DTB is found, making the output more helpful: EFI stub: Booting Linux Kernel... EFI stub: Generating empty DTB Additionally, a positive acknowledgement is added when a user-specified DTB is in use: EFI stub: Booting Linux Kernel... EFI stub: Using DTB from command line Similarly, a positive acknowledgement is added when a DTB from a configuration table is in use: EFI stub: Booting Linux Kernel... EFI stub: Using DTB from configuration table Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NLeif Lindholm <leif.lindholm@linaro.org> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NRoy Franz <roy.franz@linaro.org> Acked-by: NMatt Fleming <matt.fleming@intel.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-