tx.c 30.4 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2010 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
B
Ben Hutchings 已提交
15
#include <linux/ipv6.h>
16
#include <linux/slab.h>
B
Ben Hutchings 已提交
17
#include <net/ipv6.h>
18 19 20 21
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
22
#include "nic.h"
23 24
#include "workarounds.h"

25
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
T
Tom Herbert 已提交
26 27 28
			       struct efx_tx_buffer *buffer,
			       unsigned int *pkts_compl,
			       unsigned int *bytes_compl)
29 30
{
	if (buffer->unmap_len) {
31
		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
32 33
		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
					 buffer->unmap_len);
34
		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
35 36
			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
					 DMA_TO_DEVICE);
37
		else
38 39
			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
				       DMA_TO_DEVICE);
40 41 42
		buffer->unmap_len = 0;
	}

43
	if (buffer->flags & EFX_TX_BUF_SKB) {
T
Tom Herbert 已提交
44 45
		(*pkts_compl)++;
		(*bytes_compl) += buffer->skb->len;
46
		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
47 48 49
		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
			   "TX queue %d transmission id %x complete\n",
			   tx_queue->queue, tx_queue->read_count);
50 51
	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
		kfree(buffer->heap_buf);
52
	}
53

54 55
	buffer->len = 0;
	buffer->flags = 0;
56 57
}

B
Ben Hutchings 已提交
58
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
59
			       struct sk_buff *skb);
60

61 62 63 64 65 66 67 68 69
static inline unsigned
efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
{
	/* Depending on the NIC revision, we can use descriptor
	 * lengths up to 8K or 8K-1.  However, since PCI Express
	 * devices must split read requests at 4K boundaries, there is
	 * little benefit from using descriptors that cross those
	 * boundaries and we keep things simple by not doing so.
	 */
70
	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
71 72 73 74 75 76 77 78

	/* Work around hardware bug for unaligned buffers. */
	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));

	return len;
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
{
	/* Header and payload descriptor for each output segment, plus
	 * one for every input fragment boundary within a segment
	 */
	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;

	/* Possibly one more per segment for the alignment workaround */
	if (EFX_WORKAROUND_5391(efx))
		max_descs += EFX_TSO_MAX_SEGS;

	/* Possibly more for PCIe page boundaries within input fragments */
	if (PAGE_SIZE > EFX_PAGE_SIZE)
		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));

	return max_descs;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/* Get partner of a TX queue, seen as part of the same net core queue */
static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
{
	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
	else
		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
}

static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
{
	/* We need to consider both queues that the net core sees as one */
	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
	struct efx_nic *efx = txq1->efx;
	unsigned int fill_level;

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	if (likely(fill_level < efx->txq_stop_thresh))
		return;

	/* We used the stale old_read_count above, which gives us a
	 * pessimistic estimate of the fill level (which may even
	 * validly be >= efx->txq_entries).  Now try again using
	 * read_count (more likely to be a cache miss).
	 *
	 * If we read read_count and then conditionally stop the
	 * queue, it is possible for the completion path to race with
	 * us and complete all outstanding descriptors in the middle,
	 * after which there will be no more completions to wake it.
	 * Therefore we stop the queue first, then read read_count
	 * (with a memory barrier to ensure the ordering), then
	 * restart the queue if the fill level turns out to be low
	 * enough.
	 */
	netif_tx_stop_queue(txq1->core_txq);
	smp_mb();
	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
	if (likely(fill_level < efx->txq_stop_thresh)) {
		smp_mb();
		if (likely(!efx->loopback_selftest))
			netif_tx_start_queue(txq1->core_txq);
	}
}

148 149 150 151 152 153 154 155 156 157
/*
 * Add a socket buffer to a TX queue
 *
 * This maps all fragments of a socket buffer for DMA and adds them to
 * the TX queue.  The queue's insert pointer will be incremented by
 * the number of fragments in the socket buffer.
 *
 * If any DMA mapping fails, any mapped fragments will be unmapped,
 * the queue's insert pointer will be restored to its original value.
 *
158 159 160
 * This function is split out from efx_hard_start_xmit to allow the
 * loopback test to direct packets via specific TX queues.
 *
161
 * Returns NETDEV_TX_OK.
162 163
 * You must hold netif_tx_lock() to call this function.
 */
164
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
165 166
{
	struct efx_nic *efx = tx_queue->efx;
167
	struct device *dma_dev = &efx->pci_dev->dev;
168 169
	struct efx_tx_buffer *buffer;
	skb_frag_t *fragment;
170
	unsigned int len, unmap_len = 0, insert_ptr;
171 172
	dma_addr_t dma_addr, unmap_addr = 0;
	unsigned int dma_len;
173
	unsigned short dma_flags;
174
	int i = 0;
175 176 177

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

178
	if (skb_shinfo(skb)->gso_size)
B
Ben Hutchings 已提交
179 180
		return efx_enqueue_skb_tso(tx_queue, skb);

181 182 183
	/* Get size of the initial fragment */
	len = skb_headlen(skb);

184 185 186 187 188 189 190 191
	/* Pad if necessary */
	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
		EFX_BUG_ON_PARANOID(skb->data_len);
		len = 32 + 1;
		if (skb_pad(skb, len - skb->len))
			return NETDEV_TX_OK;
	}

192
	/* Map for DMA.  Use dma_map_single rather than dma_map_page
193 194 195
	 * since this is more efficient on machines with sparse
	 * memory.
	 */
196
	dma_flags = EFX_TX_BUF_MAP_SINGLE;
197
	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
198 199 200

	/* Process all fragments */
	while (1) {
201 202
		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
			goto dma_err;
203 204 205 206 207 208 209 210

		/* Store fields for marking in the per-fragment final
		 * descriptor */
		unmap_len = len;
		unmap_addr = dma_addr;

		/* Add to TX queue, splitting across DMA boundaries */
		do {
211
			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212
			buffer = &tx_queue->buffer[insert_ptr];
213
			EFX_BUG_ON_PARANOID(buffer->flags);
214 215 216
			EFX_BUG_ON_PARANOID(buffer->len);
			EFX_BUG_ON_PARANOID(buffer->unmap_len);

217 218
			dma_len = efx_max_tx_len(efx, dma_addr);
			if (likely(dma_len >= len))
219 220 221 222 223
				dma_len = len;

			/* Fill out per descriptor fields */
			buffer->len = dma_len;
			buffer->dma_addr = dma_addr;
224
			buffer->flags = EFX_TX_BUF_CONT;
225 226 227 228 229 230
			len -= dma_len;
			dma_addr += dma_len;
			++tx_queue->insert_count;
		} while (len);

		/* Transfer ownership of the unmapping to the final buffer */
231
		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
232 233 234 235 236 237 238
		buffer->unmap_len = unmap_len;
		unmap_len = 0;

		/* Get address and size of next fragment */
		if (i >= skb_shinfo(skb)->nr_frags)
			break;
		fragment = &skb_shinfo(skb)->frags[i];
E
Eric Dumazet 已提交
239
		len = skb_frag_size(fragment);
240 241
		i++;
		/* Map for DMA */
242
		dma_flags = 0;
243
		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
244
					    DMA_TO_DEVICE);
245 246 247 248
	}

	/* Transfer ownership of the skb to the final buffer */
	buffer->skb = skb;
249
	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
250

T
Tom Herbert 已提交
251 252
	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);

253
	/* Pass off to hardware */
254
	efx_nic_push_buffers(tx_queue);
255

256 257
	efx_tx_maybe_stop_queue(tx_queue);

258 259
	return NETDEV_TX_OK;

260
 dma_err:
261 262 263 264
	netif_err(efx, tx_err, efx->net_dev,
		  " TX queue %d could not map skb with %d bytes %d "
		  "fragments for DMA\n", tx_queue->queue, skb->len,
		  skb_shinfo(skb)->nr_frags + 1);
265 266

	/* Mark the packet as transmitted, and free the SKB ourselves */
267
	dev_kfree_skb_any(skb);
268 269 270

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
T
Tom Herbert 已提交
271
		unsigned int pkts_compl = 0, bytes_compl = 0;
272
		--tx_queue->insert_count;
273
		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274
		buffer = &tx_queue->buffer[insert_ptr];
T
Tom Herbert 已提交
275
		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
276 277 278
	}

	/* Free the fragment we were mid-way through pushing */
279
	if (unmap_len) {
280
		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
281 282
			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
					 DMA_TO_DEVICE);
283
		else
284 285
			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
				       DMA_TO_DEVICE);
286
	}
287

288
	return NETDEV_TX_OK;
289 290 291 292 293 294 295
}

/* Remove packets from the TX queue
 *
 * This removes packets from the TX queue, up to and including the
 * specified index.
 */
296
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
T
Tom Herbert 已提交
297 298 299
				unsigned int index,
				unsigned int *pkts_compl,
				unsigned int *bytes_compl)
300 301 302 303
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int stop_index, read_ptr;

304 305
	stop_index = (index + 1) & tx_queue->ptr_mask;
	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
306 307 308 309

	while (read_ptr != stop_index) {
		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
		if (unlikely(buffer->len == 0)) {
310 311 312
			netif_err(efx, tx_err, efx->net_dev,
				  "TX queue %d spurious TX completion id %x\n",
				  tx_queue->queue, read_ptr);
313 314 315 316
			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
			return;
		}

T
Tom Herbert 已提交
317
		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
318 319

		++tx_queue->read_count;
320
		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
321 322 323 324 325 326 327 328 329 330 331 332
	}
}

/* Initiate a packet transmission.  We use one channel per CPU
 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 * completion events will be directed back to the CPU that transmitted
 * the packet, which should be cache-efficient.
 *
 * Context: non-blocking.
 * Note that returning anything other than NETDEV_TX_OK will cause the
 * OS to free the skb.
 */
333
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
B
Ben Hutchings 已提交
334
				struct net_device *net_dev)
335
{
336
	struct efx_nic *efx = netdev_priv(net_dev);
337
	struct efx_tx_queue *tx_queue;
338
	unsigned index, type;
339

340
	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
341

342 343 344 345 346 347 348
	index = skb_get_queue_mapping(skb);
	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
	if (index >= efx->n_tx_channels) {
		index -= efx->n_tx_channels;
		type |= EFX_TXQ_TYPE_HIGHPRI;
	}
	tx_queue = efx_get_tx_queue(efx, index, type);
349

350
	return efx_enqueue_skb(tx_queue, skb);
351 352
}

353 354
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
355 356
	struct efx_nic *efx = tx_queue->efx;

357
	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	tx_queue->core_txq =
		netdev_get_tx_queue(efx->net_dev,
				    tx_queue->queue / EFX_TXQ_TYPES +
				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
				     efx->n_tx_channels : 0));
}

int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned tc;
	int rc;

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
		return -EINVAL;

	if (num_tc == net_dev->num_tc)
		return 0;

	for (tc = 0; tc < num_tc; tc++) {
		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
	}

	if (num_tc > net_dev->num_tc) {
		/* Initialise high-priority queues as necessary */
		efx_for_each_channel(channel, efx) {
			efx_for_each_possible_channel_tx_queue(tx_queue,
							       channel) {
				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
					continue;
				if (!tx_queue->buffer) {
					rc = efx_probe_tx_queue(tx_queue);
					if (rc)
						return rc;
				}
				if (!tx_queue->initialised)
					efx_init_tx_queue(tx_queue);
				efx_init_tx_queue_core_txq(tx_queue);
			}
		}
	} else {
		/* Reduce number of classes before number of queues */
		net_dev->num_tc = num_tc;
	}

	rc = netif_set_real_num_tx_queues(net_dev,
					  max_t(int, num_tc, 1) *
					  efx->n_tx_channels);
	if (rc)
		return rc;

	/* Do not destroy high-priority queues when they become
	 * unused.  We would have to flush them first, and it is
	 * fairly difficult to flush a subset of TX queues.  Leave
	 * it to efx_fini_channels().
	 */

	net_dev->num_tc = num_tc;
	return 0;
420 421
}

422 423 424 425
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
	unsigned fill_level;
	struct efx_nic *efx = tx_queue->efx;
426
	struct efx_tx_queue *txq2;
T
Tom Herbert 已提交
427
	unsigned int pkts_compl = 0, bytes_compl = 0;
428

429
	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
430

T
Tom Herbert 已提交
431 432
	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
433

434 435 436 437
	/* See if we need to restart the netif queue.  This memory
	 * barrier ensures that we write read_count (inside
	 * efx_dequeue_buffers()) before reading the queue status.
	 */
438
	smp_mb();
439
	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
440
	    likely(efx->port_enabled) &&
441
	    likely(netif_device_present(efx->net_dev))) {
442 443 444 445
		txq2 = efx_tx_queue_partner(tx_queue);
		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
				 txq2->insert_count - txq2->read_count);
		if (fill_level <= efx->txq_wake_thresh)
446
			netif_tx_wake_queue(tx_queue->core_txq);
447
	}
448 449 450 451 452 453 454 455 456 457

	/* Check whether the hardware queue is now empty */
	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
		if (tx_queue->read_count == tx_queue->old_write_count) {
			smp_mb();
			tx_queue->empty_read_count =
				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
		}
	}
458 459
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/* Size of page-based TSO header buffers.  Larger blocks must be
 * allocated from the heap.
 */
#define TSOH_STD_SIZE	128
#define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)

/* At most half the descriptors in the queue at any time will refer to
 * a TSO header buffer, since they must always be followed by a
 * payload descriptor referring to an skb.
 */
static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
{
	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
}

475 476 477
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
478
	unsigned int entries;
479
	int rc;
480

481 482 483 484 485 486 487 488
	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	tx_queue->ptr_mask = entries - 1;

	netif_dbg(efx, probe, efx->net_dev,
		  "creating TX queue %d size %#x mask %#x\n",
		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
489 490

	/* Allocate software ring */
491
	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
492
				   GFP_KERNEL);
493 494
	if (!tx_queue->buffer)
		return -ENOMEM;
495

496 497 498 499 500 501 502 503 504 505
	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
		tx_queue->tsoh_page =
			kcalloc(efx_tsoh_page_count(tx_queue),
				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
		if (!tx_queue->tsoh_page) {
			rc = -ENOMEM;
			goto fail1;
		}
	}

506
	/* Allocate hardware ring */
507
	rc = efx_nic_probe_tx(tx_queue);
508
	if (rc)
509
		goto fail2;
510 511 512

	return 0;

513 514 515 516
fail2:
	kfree(tx_queue->tsoh_page);
	tx_queue->tsoh_page = NULL;
fail1:
517 518 519 520 521
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
	return rc;
}

522
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
523
{
524 525
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "initialising TX queue %d\n", tx_queue->queue);
526 527 528

	tx_queue->insert_count = 0;
	tx_queue->write_count = 0;
529
	tx_queue->old_write_count = 0;
530 531
	tx_queue->read_count = 0;
	tx_queue->old_read_count = 0;
532
	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
533 534

	/* Set up TX descriptor ring */
535
	efx_nic_init_tx(tx_queue);
536 537

	tx_queue->initialised = true;
538 539 540 541 542 543 544 545 546 547 548
}

void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;

	if (!tx_queue->buffer)
		return;

	/* Free any buffers left in the ring */
	while (tx_queue->read_count != tx_queue->write_count) {
T
Tom Herbert 已提交
549
		unsigned int pkts_compl = 0, bytes_compl = 0;
550
		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
T
Tom Herbert 已提交
551
		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
552 553 554

		++tx_queue->read_count;
	}
T
Tom Herbert 已提交
555
	netdev_tx_reset_queue(tx_queue->core_txq);
556 557 558 559
}

void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
560 561 562
	if (!tx_queue->initialised)
		return;

563 564
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "shutting down TX queue %d\n", tx_queue->queue);
565

566 567
	tx_queue->initialised = false;

568
	/* Flush TX queue, remove descriptor ring */
569
	efx_nic_fini_tx(tx_queue);
570 571 572 573 574 575

	efx_release_tx_buffers(tx_queue);
}

void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
576 577
	int i;

578 579 580
	if (!tx_queue->buffer)
		return;

581 582
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "destroying TX queue %d\n", tx_queue->queue);
583
	efx_nic_remove_tx(tx_queue);
584

585 586 587 588 589 590 591 592
	if (tx_queue->tsoh_page) {
		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
			efx_nic_free_buffer(tx_queue->efx,
					    &tx_queue->tsoh_page[i]);
		kfree(tx_queue->tsoh_page);
		tx_queue->tsoh_page = NULL;
	}

593 594 595 596 597
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
}


B
Ben Hutchings 已提交
598 599 600 601 602 603 604 605 606 607 608
/* Efx TCP segmentation acceleration.
 *
 * Why?  Because by doing it here in the driver we can go significantly
 * faster than the GSO.
 *
 * Requires TX checksum offload support.
 */

/* Number of bytes inserted at the start of a TSO header buffer,
 * similar to NET_IP_ALIGN.
 */
609
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
B
Ben Hutchings 已提交
610 611 612 613 614 615 616 617 618
#define TSOH_OFFSET	0
#else
#define TSOH_OFFSET	NET_IP_ALIGN
#endif

#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
#define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
#define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
B
Ben Hutchings 已提交
619
#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
B
Ben Hutchings 已提交
620 621 622

/**
 * struct tso_state - TSO state for an SKB
623
 * @out_len: Remaining length in current segment
B
Ben Hutchings 已提交
624
 * @seqnum: Current sequence number
625
 * @ipv4_id: Current IPv4 ID, host endian
B
Ben Hutchings 已提交
626
 * @packet_space: Remaining space in current packet
627 628 629 630
 * @dma_addr: DMA address of current position
 * @in_len: Remaining length in current SKB fragment
 * @unmap_len: Length of SKB fragment
 * @unmap_addr: DMA address of SKB fragment
631
 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
B
Ben Hutchings 已提交
632
 * @protocol: Network protocol (after any VLAN header)
633
 * @header_len: Number of bytes of header
634
 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
B
Ben Hutchings 已提交
635 636 637 638 639
 *
 * The state used during segmentation.  It is put into this data structure
 * just to make it easy to pass into inline functions.
 */
struct tso_state {
640 641
	/* Output position */
	unsigned out_len;
B
Ben Hutchings 已提交
642
	unsigned seqnum;
643
	unsigned ipv4_id;
B
Ben Hutchings 已提交
644 645
	unsigned packet_space;

646 647 648 649 650
	/* Input position */
	dma_addr_t dma_addr;
	unsigned in_len;
	unsigned unmap_len;
	dma_addr_t unmap_addr;
651
	unsigned short dma_flags;
652

B
Ben Hutchings 已提交
653
	__be16 protocol;
654
	unsigned header_len;
655
	unsigned int ip_base_len;
B
Ben Hutchings 已提交
656 657 658 659 660
};


/*
 * Verify that our various assumptions about sk_buffs and the conditions
B
Ben Hutchings 已提交
661
 * under which TSO will be attempted hold true.  Return the protocol number.
B
Ben Hutchings 已提交
662
 */
B
Ben Hutchings 已提交
663
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
B
Ben Hutchings 已提交
664
{
665 666
	__be16 protocol = skb->protocol;

B
Ben Hutchings 已提交
667
	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
668 669 670 671 672 673
			    protocol);
	if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
		protocol = veh->h_vlan_encapsulated_proto;
	}

B
Ben Hutchings 已提交
674 675 676 677 678 679
	if (protocol == htons(ETH_P_IP)) {
		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
	} else {
		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
	}
B
Ben Hutchings 已提交
680 681 682
	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
			     + (tcp_hdr(skb)->doff << 2u)) >
			    skb_headlen(skb));
B
Ben Hutchings 已提交
683 684

	return protocol;
B
Ben Hutchings 已提交
685 686
}

687 688
static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
			       struct efx_tx_buffer *buffer, unsigned int len)
B
Ben Hutchings 已提交
689
{
690
	u8 *result;
B
Ben Hutchings 已提交
691

692 693 694
	EFX_BUG_ON_PARANOID(buffer->len);
	EFX_BUG_ON_PARANOID(buffer->flags);
	EFX_BUG_ON_PARANOID(buffer->unmap_len);
B
Ben Hutchings 已提交
695

696 697 698 699 700 701 702
	if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
		unsigned index =
			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
		struct efx_buffer *page_buf =
			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
		unsigned offset =
			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
B
Ben Hutchings 已提交
703

704 705 706
		if (unlikely(!page_buf->addr) &&
		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE))
			return NULL;
B
Ben Hutchings 已提交
707

708 709 710 711 712
		result = (u8 *)page_buf->addr + offset;
		buffer->dma_addr = page_buf->dma_addr + offset;
		buffer->flags = EFX_TX_BUF_CONT;
	} else {
		tx_queue->tso_long_headers++;
B
Ben Hutchings 已提交
713

714 715 716 717 718
		buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
		if (unlikely(!buffer->heap_buf))
			return NULL;
		result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
B
Ben Hutchings 已提交
719 720
	}

721
	buffer->len = len;
B
Ben Hutchings 已提交
722

723
	return result;
B
Ben Hutchings 已提交
724 725 726 727 728 729 730
}

/**
 * efx_tx_queue_insert - push descriptors onto the TX queue
 * @tx_queue:		Efx TX queue
 * @dma_addr:		DMA address of fragment
 * @len:		Length of fragment
731
 * @final_buffer:	The final buffer inserted into the queue
B
Ben Hutchings 已提交
732
 *
733
 * Push descriptors onto the TX queue.
B
Ben Hutchings 已提交
734
 */
735 736 737
static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
				dma_addr_t dma_addr, unsigned len,
				struct efx_tx_buffer **final_buffer)
B
Ben Hutchings 已提交
738 739 740
{
	struct efx_tx_buffer *buffer;
	struct efx_nic *efx = tx_queue->efx;
741
	unsigned dma_len, insert_ptr;
B
Ben Hutchings 已提交
742 743 744 745

	EFX_BUG_ON_PARANOID(len <= 0);

	while (1) {
746
		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
B
Ben Hutchings 已提交
747 748 749 750
		buffer = &tx_queue->buffer[insert_ptr];
		++tx_queue->insert_count;

		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
751 752
				    tx_queue->read_count >=
				    efx->txq_entries);
B
Ben Hutchings 已提交
753 754 755

		EFX_BUG_ON_PARANOID(buffer->len);
		EFX_BUG_ON_PARANOID(buffer->unmap_len);
756
		EFX_BUG_ON_PARANOID(buffer->flags);
B
Ben Hutchings 已提交
757 758 759

		buffer->dma_addr = dma_addr;

760
		dma_len = efx_max_tx_len(efx, dma_addr);
B
Ben Hutchings 已提交
761 762 763 764 765

		/* If there is enough space to send then do so */
		if (dma_len >= len)
			break;

766 767
		buffer->len = dma_len;
		buffer->flags = EFX_TX_BUF_CONT;
B
Ben Hutchings 已提交
768 769 770 771 772 773
		dma_addr += dma_len;
		len -= dma_len;
	}

	EFX_BUG_ON_PARANOID(!len);
	buffer->len = len;
774
	*final_buffer = buffer;
B
Ben Hutchings 已提交
775 776 777 778 779 780 781 782 783 784
}


/*
 * Put a TSO header into the TX queue.
 *
 * This is special-cased because we know that it is small enough to fit in
 * a single fragment, and we know it doesn't cross a page boundary.  It
 * also allows us to not worry about end-of-packet etc.
 */
785 786
static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
			      struct efx_tx_buffer *buffer, u8 *header)
B
Ben Hutchings 已提交
787
{
788 789 790 791 792 793 794 795 796 797 798 799 800 801
	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
						  header, buffer->len,
						  DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
					       buffer->dma_addr))) {
			kfree(buffer->heap_buf);
			buffer->len = 0;
			buffer->flags = 0;
			return -ENOMEM;
		}
		buffer->unmap_len = buffer->len;
		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
	}
B
Ben Hutchings 已提交
802 803

	++tx_queue->insert_count;
804
	return 0;
B
Ben Hutchings 已提交
805 806 807
}


808 809 810
/* Remove buffers put into a tx_queue.  None of the buffers must have
 * an skb attached.
 */
B
Ben Hutchings 已提交
811 812 813 814 815 816 817 818
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
		buffer = &tx_queue->buffer[tx_queue->insert_count &
819
					   tx_queue->ptr_mask];
820
		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
B
Ben Hutchings 已提交
821 822 823 824 825
	}
}


/* Parse the SKB header and initialise state. */
826
static void tso_start(struct tso_state *st, const struct sk_buff *skb)
B
Ben Hutchings 已提交
827 828 829 830
{
	/* All ethernet/IP/TCP headers combined size is TCP header size
	 * plus offset of TCP header relative to start of packet.
	 */
831 832
	st->header_len = ((tcp_hdr(skb)->doff << 2u)
			  + PTR_DIFF(tcp_hdr(skb), skb->data));
B
Ben Hutchings 已提交
833

834 835
	if (st->protocol == htons(ETH_P_IP)) {
		st->ip_base_len = st->header_len - ETH_HDR_LEN(skb);
B
Ben Hutchings 已提交
836
		st->ipv4_id = ntohs(ip_hdr(skb)->id);
837 838
	} else {
		st->ip_base_len = tcp_hdr(skb)->doff << 2u;
B
Ben Hutchings 已提交
839
		st->ipv4_id = 0;
840
	}
B
Ben Hutchings 已提交
841 842 843 844 845 846
	st->seqnum = ntohl(tcp_hdr(skb)->seq);

	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);

847 848
	st->out_len = skb->len - st->header_len;
	st->unmap_len = 0;
849
	st->dma_flags = 0;
B
Ben Hutchings 已提交
850 851
}

852 853
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
			    skb_frag_t *frag)
B
Ben Hutchings 已提交
854
{
855
	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
E
Eric Dumazet 已提交
856
					  skb_frag_size(frag), DMA_TO_DEVICE);
857
	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
858
		st->dma_flags = 0;
E
Eric Dumazet 已提交
859 860
		st->unmap_len = skb_frag_size(frag);
		st->in_len = skb_frag_size(frag);
861
		st->dma_addr = st->unmap_addr;
862 863 864 865 866
		return 0;
	}
	return -ENOMEM;
}

867 868
static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
				 const struct sk_buff *skb)
869
{
870
	int hl = st->header_len;
871
	int len = skb_headlen(skb) - hl;
B
Ben Hutchings 已提交
872

873 874 875
	st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
					len, DMA_TO_DEVICE);
	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
876
		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
877 878 879
		st->unmap_len = len;
		st->in_len = len;
		st->dma_addr = st->unmap_addr;
B
Ben Hutchings 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
		return 0;
	}
	return -ENOMEM;
}


/**
 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Form descriptors for the current fragment, until we reach the end
893
 * of fragment or end-of-packet.
B
Ben Hutchings 已提交
894
 */
895 896 897
static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
					  const struct sk_buff *skb,
					  struct tso_state *st)
B
Ben Hutchings 已提交
898
{
899
	struct efx_tx_buffer *buffer;
900
	int n;
B
Ben Hutchings 已提交
901

902
	if (st->in_len == 0)
903
		return;
B
Ben Hutchings 已提交
904
	if (st->packet_space == 0)
905
		return;
B
Ben Hutchings 已提交
906

907
	EFX_BUG_ON_PARANOID(st->in_len <= 0);
B
Ben Hutchings 已提交
908 909
	EFX_BUG_ON_PARANOID(st->packet_space <= 0);

910
	n = min(st->in_len, st->packet_space);
B
Ben Hutchings 已提交
911 912

	st->packet_space -= n;
913 914
	st->out_len -= n;
	st->in_len -= n;
B
Ben Hutchings 已提交
915

916
	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
B
Ben Hutchings 已提交
917

918 919 920 921 922 923 924 925 926 927 928 929 930
	if (st->out_len == 0) {
		/* Transfer ownership of the skb */
		buffer->skb = skb;
		buffer->flags = EFX_TX_BUF_SKB;
	} else if (st->packet_space != 0) {
		buffer->flags = EFX_TX_BUF_CONT;
	}

	if (st->in_len == 0) {
		/* Transfer ownership of the DMA mapping */
		buffer->unmap_len = st->unmap_len;
		buffer->flags |= st->dma_flags;
		st->unmap_len = 0;
931 932
	}

933
	st->dma_addr += n;
B
Ben Hutchings 已提交
934 935 936 937 938 939 940 941 942 943
}


/**
 * tso_start_new_packet - generate a new header and prepare for the new packet
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Generate a new header and prepare for the new packet.  Return 0 on
944
 * success, or -%ENOMEM if failed to alloc header.
B
Ben Hutchings 已提交
945
 */
946 947 948
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
				const struct sk_buff *skb,
				struct tso_state *st)
B
Ben Hutchings 已提交
949
{
950 951
	struct efx_tx_buffer *buffer =
		&tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
B
Ben Hutchings 已提交
952 953 954
	struct tcphdr *tsoh_th;
	unsigned ip_length;
	u8 *header;
955
	int rc;
B
Ben Hutchings 已提交
956

957 958 959 960
	/* Allocate and insert a DMA-mapped header buffer. */
	header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
	if (!header)
		return -ENOMEM;
B
Ben Hutchings 已提交
961 962 963 964

	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));

	/* Copy and update the headers. */
965
	memcpy(header, skb->data, st->header_len);
B
Ben Hutchings 已提交
966 967 968

	tsoh_th->seq = htonl(st->seqnum);
	st->seqnum += skb_shinfo(skb)->gso_size;
969
	if (st->out_len > skb_shinfo(skb)->gso_size) {
B
Ben Hutchings 已提交
970
		/* This packet will not finish the TSO burst. */
971
		st->packet_space = skb_shinfo(skb)->gso_size;
B
Ben Hutchings 已提交
972 973 974 975
		tsoh_th->fin = 0;
		tsoh_th->psh = 0;
	} else {
		/* This packet will be the last in the TSO burst. */
976
		st->packet_space = st->out_len;
B
Ben Hutchings 已提交
977 978 979
		tsoh_th->fin = tcp_hdr(skb)->fin;
		tsoh_th->psh = tcp_hdr(skb)->psh;
	}
980
	ip_length = st->ip_base_len + st->packet_space;
B
Ben Hutchings 已提交
981

B
Ben Hutchings 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994
	if (st->protocol == htons(ETH_P_IP)) {
		struct iphdr *tsoh_iph =
			(struct iphdr *)(header + SKB_IPV4_OFF(skb));

		tsoh_iph->tot_len = htons(ip_length);

		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
		tsoh_iph->id = htons(st->ipv4_id);
		st->ipv4_id++;
	} else {
		struct ipv6hdr *tsoh_iph =
			(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));

995
		tsoh_iph->payload_len = htons(ip_length);
B
Ben Hutchings 已提交
996
	}
B
Ben Hutchings 已提交
997

998 999 1000 1001
	rc = efx_tso_put_header(tx_queue, buffer, header);
	if (unlikely(rc))
		return rc;

B
Ben Hutchings 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	++tx_queue->tso_packets;

	return 0;
}


/**
 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 *
 * Context: You must hold netif_tx_lock() to call this function.
 *
 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 * @skb was not enqueued.  In all cases @skb is consumed.  Return
1017
 * %NETDEV_TX_OK.
B
Ben Hutchings 已提交
1018 1019
 */
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1020
			       struct sk_buff *skb)
B
Ben Hutchings 已提交
1021
{
1022
	struct efx_nic *efx = tx_queue->efx;
1023
	int frag_i, rc;
B
Ben Hutchings 已提交
1024 1025
	struct tso_state state;

B
Ben Hutchings 已提交
1026 1027
	/* Find the packet protocol and sanity-check it */
	state.protocol = efx_tso_check_protocol(skb);
B
Ben Hutchings 已提交
1028 1029 1030 1031 1032 1033 1034 1035

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

	tso_start(&state, skb);

	/* Assume that skb header area contains exactly the headers, and
	 * all payload is in the frag list.
	 */
1036
	if (skb_headlen(skb) == state.header_len) {
B
Ben Hutchings 已提交
1037 1038 1039
		/* Grab the first payload fragment. */
		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
		frag_i = 0;
1040 1041
		rc = tso_get_fragment(&state, efx,
				      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1042 1043 1044
		if (rc)
			goto mem_err;
	} else {
1045
		rc = tso_get_head_fragment(&state, efx, skb);
B
Ben Hutchings 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054
		if (rc)
			goto mem_err;
		frag_i = -1;
	}

	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
		goto mem_err;

	while (1) {
1055
		tso_fill_packet_with_fragment(tx_queue, skb, &state);
B
Ben Hutchings 已提交
1056 1057

		/* Move onto the next fragment? */
1058
		if (state.in_len == 0) {
B
Ben Hutchings 已提交
1059 1060 1061
			if (++frag_i >= skb_shinfo(skb)->nr_frags)
				/* End of payload reached. */
				break;
1062 1063
			rc = tso_get_fragment(&state, efx,
					      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
			if (rc)
				goto mem_err;
		}

		/* Start at new packet? */
		if (state.packet_space == 0 &&
		    tso_start_new_packet(tx_queue, skb, &state) < 0)
			goto mem_err;
	}

1074 1075
	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);

B
Ben Hutchings 已提交
1076
	/* Pass off to hardware */
1077
	efx_nic_push_buffers(tx_queue);
B
Ben Hutchings 已提交
1078

1079 1080
	efx_tx_maybe_stop_queue(tx_queue);

B
Ben Hutchings 已提交
1081 1082 1083 1084
	tx_queue->tso_bursts++;
	return NETDEV_TX_OK;

 mem_err:
1085
	netif_err(efx, tx_err, efx->net_dev,
1086
		  "Out of memory for TSO headers, or DMA mapping error\n");
1087
	dev_kfree_skb_any(skb);
B
Ben Hutchings 已提交
1088

1089
	/* Free the DMA mapping we were in the process of writing out */
1090
	if (state.unmap_len) {
1091
		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1092 1093
			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
					 state.unmap_len, DMA_TO_DEVICE);
1094
		else
1095 1096
			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
				       state.unmap_len, DMA_TO_DEVICE);
1097
	}
1098

B
Ben Hutchings 已提交
1099
	efx_enqueue_unwind(tx_queue);
1100
	return NETDEV_TX_OK;
B
Ben Hutchings 已提交
1101
}